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TAIL BUFFETING*

By G« Abdrashitov

An approximate theory of buffeting .is here presented,
based on the assumption of harmonic disturbing forces.
Two ‘cages of buffeting are considered:  namely, for a tail
angle of attack greater and legs than the stalling angle,
respectively. On.the bagis of the tests conducted and the
results of foreign investigators, a general analysis is
given of the nature of the forced vibrations, the possible
load ‘limits on the tail, and the methods of elimination
of buffeting.,

INTRODUCTION

The term "buffeting" in its broad sense is applied
to the forced vibrations of any parts of the airplane
under the aerodynamic action of the wake in which such
parts are situated, though in general aeronautic practice
the term is restricted to this type of vibration of the
tail surfaces under the action of the disturbing wake of
the wing, the phenomenon:occurring under certain flight
conditions. Depending on the values of the parameters
that characterize the wake, the tail is subjected to addi-
tional dynamic loads of various kinds which may lead ‘to
its failure or otherwise render normal operation of the
airplane difficult.

~ The buffeting problem first took on a serious aspect
after the well-known accident of the Junkers airplane at
Meopham. The unusual circumstances of the accident led
"scientific organizations in England and Germany to under-
take detailed invegtigations as to the possible causes
that may have brought it abtout. The English conducted
extensive laboratory investigations and arrived at the
conclusion that the most probable cause of the accident
was buffeting of the tail. 1In these investigations on
scnematized models of the airplane it was accurately es-
tablished that at large angles of attack of the wing the

*Report No. 395, of the Central Aero-Hydrodynamical Ingti-
tute, Moscow, 1939.
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tail situated in the aerodynamic wake of the wing vibrates
intensely, the amplitude of the vibration increasing with
increase in the velocity.

A detailed investigation of the place of the accident
showed the presence of ‘large rising air currents and the
following explanation was therefore given of the causes of
the accident: The airplane, flying horizontally with
great velocity, suddenly entered a region of strong rising
gusts as a result of which there was a sharp increase in
the angle of attack with the formation of flow sevaration
at the wing. The tail located in the wake was subjected
to intense forced v1br9t10ns which this brought about the
accident.

To the investigation of this accident were also de-
voted the papers of a group of German investigators under
the leadership of Blenk (reference 1). The latter con-
ducted laboratory and flight investigations and algo de-
tailed dynamic investigations of the same type of airplane
in the hangar. The laboratory investigations showed that
it was entirely possible for the airplane to enter the
buffeting state; but in actual flight, except during a
steep glide, buffeting of the tail was not observed even
once. For this reason, after analyzing all investigations,
Blenk arrived at the conclusion that the accident of the
JU 13 could not have been due to buffeting.

The 1mnortance of the irvestigations of Blenk lie in

the test procedure which he consistently employed.. He was

the first to apply the moving picture camera to investi-
gate buffet:ing on the airplane in flight. A high-speed
camera was mounted in the pilot's cabin and enabled the
simultaneous recording of the motion of the tail surface
tip and of a silk string placed ahead of it. Figure 1
shows a part of the film, taken during a steep glide on
the wing when the tail begins to buffet. On carefully

studying the photographic record, a relation may be estab-

lighed between the fluctuation of the tail surface and the

silk string. -The fundamental conclus1ons from these . tests
of Blenk are the following:

l. The tail surfaces at large angles of attack of the
wing enter a region of vortices springing . from the inter-
section of the wing and fuselage, and in all these cases
vibration of the tail is observed; the vortices arise at
both sides of the fuselage and usually in an unsymmetric
manner. The vibrations of the tail are of an irregular
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character but large amplitudes, as a rule, are rare and
contlnue only for a very.- short time.

2. Regular perlodlc v1brat10ns of the tail surfaces
are also entirely possible. For this reason, the possi-
bility of entry into a resonance condition constltutes a
real danger.

3. The amplitudes increase very slowly with the ve-
locity and do not attain their maximum values at any def-
inite velocities. :

As will be shown in what follows, not all results
obtained on the Junkers airplane tests may De generalized
and accepted without any reservations, assuming all con-
clusions as irrefutably proven. Even so, the work of Blenk
ig the most thorough in this field of investigation.

In 1933 two papers devoted to buffeting investigation
appeared by Duncan (references 2 and 3). This author
studied the vibrations of an elastically hinged "detector!
having the form of a stiff airfoil attached at its root to
a streamline base piece. It should be said that such a
scheme, suitable for the determination of the freguency,
cannot give the corresponding amplitude of the acting
forces, and this is one of the chief defects of this method.
Moreover, the detector cannot.vary its angle of attack.

In 1934 Hood (reference 3) carried out wind tunnel
investigations on the elimination of buffeting observed in
flight of a.given airplane. Similar flight investigations
were conducted by Biechteler (reference 4) in Germany.

This completes essentielly the fundamental literature on
buffeting.

In the routine testing of airplanes the buffeting
problem is sometimes practically encountered. At the pres-
ent time a large number of very simple devices are already
availatle for the-élimination of buffeting, It should be
pointed out, however, that these devicesg are based only on
a qualitative estimate of the phenomenon,and the quantita-
tive problemg involved are not even approximately solved.
The difficulty of the problem lies in the fact that the
actual nature of the aerodynamic wake btehind bodies and
the laws of the dynamic processes that may occur in. the
wake have not yet been established. From this fact follows
also the impossibility of an exact determination of the
magnitude of the forces required for making the tail undergo
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forced vibrations. The guestions:of the

1041

viscosity of the

fluid and the nonstationary character of its motion,which
factors in the usual applied aerodynamics of the airplane
may. often be neglected here assume predomlnatlng 1mnor-

tance-

The complete solution of the buffeting problem thus
embraces, as yet, unsolved aserodynamic problems. ‘For this

reason, it is necessary to.seek 1nd1rect

methods which,

while not encompassing the problem in itg entirety, make
it possible to determine states which are critical as re-
gards accidents. The present paper is devoted to an ex-

prosition of these critical cases.

NOTATION
v flow velocity
P 1ift force
t .. ~tail--choxrd
T, At ime

af ahgle bf attack.of tail
aﬁ .angle of attack of wing
critical (stalling) angle of attack

0y critical (stalling) angle of attack

a0,

: il derlvatlve of oot coeff1c1ent with
oa of attack
FJC my

aa - elasgticity axis of the tail W1th
angle of attack : :

———= derivative: of moment of aerodynamic

of- tail surface

of wing

respect tbbangle

forces about the
respect to the

W angular frequency of the disturbance foreces

v number of vibrations per second
v half span of tail

EI stiffness of tail in bending
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GIp:'Stiffness’of'tail.in torsion

< I unit‘mass of - tiail,

'Xo - distance 6f center of gravity f;om nose of profile
O: , disfénce of ;enter of.gravity from elasticity axis

at sectiod considered

Inm unit moment of inertia of tail surface with resvect
to its stiffness axis

o) density
y deflection of tail surface at given cross section
8 angle of torsion at given section

The x-axis is taken along the tail svan and the y-axis
at right angles to it.

I. SOME DATA ON THE WAKE BEHIND A BODY

A-large number of papers have dealt with the problem
of what occurs in the flow behind a body. It is, however,
impossible at the present time to point to even a single
paper which might throw light on the problem of the wake
from the point of view of every-day practical needs. All
of these papers concern themselves mainly with regions of
very small Reynolds number; and at times, restrict them-
selves to results of purely visual observations.

The. behavior of light particles moving in the flow
about a body shows that there is no absolutely dead region:
behind the body but tiuat a complicated process of fluid
motion occurs. All bodies placed in such a wake are sub-
ject to vibrational motions. From the point of view of
the well-known Karman theory, this may be explained by the
veriodic shedding of discrete vortices from the body, there-
by producing the same type of velocity field and also field
of force behind the body. In general, the buffeting theory
may be set up both on the basis of pure wave motion of the
fluid behind the body and on the basis of the vortex wakes
of Karman, both assumptions leading to the same regults.

In the first case, it is necessary to know the amplitude
and fregquency of the wave and in the second, the freguency
and circulation. of the individual vortices. For this
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reason, without regstricting ourselves to any definite-

scheme, we shall consider that behind the bodies a vibra-
tion process takes place for which two fundamental param-
eters must be known; namely, the amplitude and frequency.

The problem of the wave amplitudes or of the circu-
lation of the separating vortices is ‘as yet unsolved.
With regard to the frequency, a criterion has already been
established connecting the frequency of vibration with the

(S 1 ofet e i This ‘is the Strouhal number (reference 5) given
by :
B = 2.8
v
where
v is the number of vibrations per ‘second
b a linear dimension (for example the chord)
v the flow velocity
A large number of investigations are concerned with
the determination of the Strouhal number. There may be
mentioned, for example, the papers by Strouhal, Blenk,
Fage, Duncan, and others. . The problem is to determine

the vibration freguency as a fuinction of the velocity.
Fundamentally, three methods are employed for this purpose:
The first is the acoustic methsd by which' the intensity or
- pitch of the sound of thin streamlined wires in the stream
is measured; since-it has been. found that the:vibration of
the wiregs is due to the periodic shedding of vortices from
it. This -method was employed by Strouhal and later by
Blenk. A difficulty should here be pointed out which un-
avoidably leads to an.error in the resultfs; namely, the
reguirement of very thin wires. The method requires using
very thin wires in streams of very high velocity and sep-
arating from the general sound produced that sound emitted
by the wire - considerations which lead to a very compli-
cated setup including various sound analyzers.  The test,
~moreover, often becomes very complicated if any external
body emits a sound of the same type as the wire. The sec-
ond is the thermal method, using the well-known hot wire
anemometer; this method being the one widely employed in
English and American investigations. In the flow behind
the body is placed a very thin heated wire which, under
the action of the variable flow velocities, ‘changes its
electrical properties, from which “he frequency of vibra-
tion can be determined. - Finally, .the third method isg
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that of measuring the frequency of the vibrations from

the behavior of various bodies placed in the stream -

silk streamers, vanes, and so forth. By these methods,
fundamentally, were obtained the data on the Strouhal
numbers for various bodies. We shall present some results
obtained by different authors.

Plate 3
Fage (reference 6) investigated in detail the flow
behind a plate and obtained the results given in the
table below: '

| Strouhal Number'at Various Angles of Attack

‘for Flat Plate and Airfoil

I : ! : ™
o i Plate { Airfoil |
i | 4
90 , o T 0.15
60 ’ .15 ? .154
50 * SRR ekl « 35
$ : 45 i 2 .145 o .148
. 40 e 148 l .157
30 . ©.153 |‘ .15
20 .164 .152

The meagurements were made by -the method of the hot-wire
anemoneter. The mean value of the Strouhal number of the
plgte is 8qual to 0.148 for a range of .angle of attack of

80" to 90°. Blenk (reference 7) gives for the plate §y=0.18
where

Cylinder

In the case of the ecylinder the results of acoustic
measurements only are available in the literature, with
the single ezception of the work of Relf (reference 8),
where the results from different methods of measurement
are combined and a curve of Sy @&againgt Re is obtained
(fig. 2). According to the results of Relf, for the
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cylinder By = G.18:- but asceording to Blenk 8 = O 20F.

Strouhal gives, for the cylinder, a value which agrees
with that- of Blenk.

Some further remarks should be made with regard to
the Relf curve (curve II, fig. 2). The numerical values
are not of special interest because they include only the
two extreme points of the curve and at the stalling por-
tion, two or three measurements that disagree with each
other are given. A comparison, however, with the drag
curve (curve I) confirms the well-known fact in aerodynam-
ics that the frequency of the vibration is associated with
the width of the wake and the latter, as is known, depends
in turn on the position of the point of separation of the
flow at the cylinder. The point of separation at Re,rit
recedes sharply and narrows the wake and therefore sharply
increases the frequency of the vibration so that if the
narrowing of the wake is not taken into account and every-
thing is referred to the diameter, it is possible at
Re,,.3t to obtain a discontinuity of the Strouhal number

as shown on the Relf curve.

Airfoil

The papers of Fage, Blenk, Duncan, and others are
concerned with the investigation of the Strouhal number
behind airfoil sections. The Reynolds number in these
papers does not exceed a value of the order of 200,000,
The results of Fage, after recomputation with reference
to the projection of the chord on the plane perpendicular
to the flow, give a value §; = 0.15 for aqg = 24" =807,
These results are shown in the table above. ‘

The same results are obtained by Duncan from hisg
measurements with a detector. The investigations of Blenk
gave for wing profiles the value st = st

Summariging all the above results, the following con-
clusion may therefore be arrived at: The results of direct
measurements of the vibratiouns of the flow give a Strouhal
number for the plate and airfoil equal approximately
0,148 to 0.150. From acoustic measurements for the cylin-
der Sy = 0.207, for the plate 8§ty = 0.18 and for the
airfoll B; = .21, From these measurements one important
conclusion is derived; namely, that the value of the
Strouhal number, taken over the middle range of resistance,
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practically has the same value for .all bodies. This very
important fact greatly facilitates both the investigation
of -the fundamental characteristics of buffeting and its
practical elimination. The extent to which these two
groups of values of St correspond to actuality will be
considered in detail in-.what follows.

The region of propagation of the disturbed wake is
no less important for the problem of buffeting. The prob-
lems agssociated with the wake have been extensively treated
in the literature. The fundamental method. employed in ob-
taining the results is that of measuring the total head
with a pitot tube, a boundary point of the wake being con-
sidered a point at: which the dynamic pressure no longer
varies along the normal to the direction of the velocity.

The curves of figure 3, taken from the paper by
Petersohn (reference 9), show that the downwash.angle be-

hind the wing increases up to Qg ., 2nd then with increas-

ing angle of attack begins to decrease rapidly and at a
certain definite angle of attack entirely vanishes. This,
as will be shown below, is of great importance in the prob-
lem of buffeting. ; o '

Although the width of the wake as obtained from the

. dynamic pressure measurements is satisfactory,to some ex-
tent, for a number of problems arising in practice, this
is.far from the case.as regards the problem of -buffeting.
The curves given in the paper of Duncan (fig. 4) show that
the tail vibrates strongly beyond the wake limits obtained
with the usual pitet tube. The dotted curves in the figure
- show the wake boundary behind the body obtained with the
pitot tube and the continuous lines are those of equal buf-
feting intensity, that isg, the .lines for which the ampli-
tude of tail vibration has the .same value. If, for example,
over the entire line 1, the value of the amplitude is taken
equal to unity; then at line 2-it has a value by only 30
percent less than on the first. In general, on an actual
airplane the tail will always be, at angleg of attack of
the wing above the stall, in the region of influence of

the vortices shed from the wing,

II. ACTION OF TEE WAKE ON THE TAIL

We assume that in the wake behind the wing is situated
a gecond airfoil. The question arises how an airfoil so
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sitwated will behave, what loads it will experience, and
what motions it will execute:under these loads. The

answer to these guestions is fundamental in the theory of
buffeting. It follows immediately from the. assumed vibra-
tory character of the wake that at each point of the region
behind the wing the velocity, variable with respect to. time,
gives rise to vertical velocity components ahead of a tz2il
set at variable angles of incidence. The latter give rise,
naturally, to variable forces and vibrationrnal motion of the
-tail. To solve the problem of buffeting, it - is therefore
necessary to know the fundamental parameters of these forces,
that is, the frequency and amplitude. The problem of un-
steady motion of a wing in a disturbed flow appears so com—
Plicated that an attempt to solve it in its general form
holds forth little promise at the present time. It is
therefore necessary to make a number of assumptions by

which the problem may be schematized without impairing its
practicality. We shall assume that the stationary condi-
tion holds also for the case of buffeting; that is, we shall
congider that the general motion of the tail relative to

the flow may be subdivided into a large number of time in-
tervals within which the motion may be considered as steady.
Otherwise expressed, at each instant of time the aerodynamic
forces are determined by the Joukowsky theorem. Thisg is
equivalent to the assumption that the lift curve of the air-
foil will remain the same as for steady motion. From the
assumed nature of the disturbing forces, it follows directly
that their maximum possible value is determined chiefly,

not by the wake itself but by the wing subjected to it. It
ig known that the 1ift on the wing may be increased ounly

" up to a certain limiting value Cy max characteristic of
the given wing section. That ig to say, an additional angle
of attack arising from the vibrational character of the

wake may increase or decrease the 1ift of the tail surface
depending on whether or not the total angle of attack ex-
ceeds the angle Oy .p. By taking for the amplitude of the
force the value corresponding to- Cy max We include the
most dangerous condition, the elimination of which automat-
ically assures safety in all. the other cases. We shall
therefore assume that under forced vibrations, the value of
Cy max ©Of the tail remains constant. Thig assumption ig a
direct consequence of the assumption of the stationary con-
dition of the flow. It follows that the character of the
motion will vary greatly, depending. on whether the tail op-
erates below or above the stall region of the 1ift curve.

In the latter case, as will bte shown below, the vibrations
will be unstable.
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We shall take a very simple example - the case of
purely bending vibrations. From the theory of flutter
it is known that .such type of vibrations will always be
damped, the wing itself acting to damp the motion. The
case is otherwise if the wing vibrates in the range of
the 1ift curve above the stall. Consider the schematized
1ift curve (fig. 5). Let the tail surface move from any
position A to ‘the position B with any velocity. The
relative velocity of the air will then be opposite to the
direction of motion of the tail surface. The resultant
flow -velocity formed of the sum of the horizontal. and
above-mentioned relative vertical velocity will then form
a smaller angle with the tail surface than before, that is,
if the tail initially was at an angle of attack a_, then
.in the course of its motion to the position B the angle
- of attack is decreased ‘to the value «a,. But in this case,
as is seen from the curve, the 1ift force increases, that
is, is directed along the motion of the tail. The same
result is obtained for the motion of the tail to position
C. Thus the tail surface, operating in this range of the
1ift curve, becomes unstable and hence the amplitude of
the forces is of importance for the buffeting problem only
in the range below the stall, -since in the range above the
stall the vibrations will diverge independent of the magni-
tude of the forces. It can be readily shown that the dan-
ger of this type of buffeting for the airplane is real."
It is known that the downwash angle of the flow above the
stall decreases with increase in the angle of attack of the
wing and at a certain angle of attack entirely vanishes.
The disturbing wake, traveling in the direction of flight,
immediately brings the tail surface beyond the stall be-
cause Ot oy is somewhat lower than Qg op-

We shall consider the simple case of the disturbing
forces acting according to the harmonic law. It should
be noted that the case of peripdic disturbance forces is
the most dangerous of all possible cases, since such forces
may give rigse to any amplitude of vibration and bring the
tail into a resonance condition.. From this point -of view,
it seems prover to start our consideration of buffeting
with the case of harmonically acting forceg as the simplest
of periodic- forces. We, therefore, ghall set

Ao = 4 gin @T

where Aq. ig-the increment in the angle of attack produced
by the wake ahead of :the tail; and A its amplitude.. . .
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Then .
AP = ég— A sin m'rptv dx
Aa A _
or 3 N
dp = %ﬁl A sin wtp VZ t(x) dx y (1)
% :

With the above assumptions, the equation of motion can be
very simply set up. It is clear that the equation will
be linear nonhomogeneous, its left side being similar to
the left side of the equation of wing flutter (reference 10)
and on the right side will appear the distributed load due

. to the disturbing forces. On this basis we ghall consider
a few examples of possible cases of buffeting when the tail
operates below the stall.

Case of Purely Bendidg Vibrations
The equation of motion is of the form
2 . 3 aC C o
jLE <EI %y 1+ m(x) ——Z + —¥L p Vt(x%"-: 4p-2 t(x) V7 sinoT()
ox ax_J_ - ~aT 3 a oT oa
Thig is .the usual'equatioﬁ:of the forced vibrations of a

‘beam of variable cross section with loads un1form1y dls-
tributed along the span.

Let . EI = const,, m(x) = const,;, t(x) = const, and set
e O ; ac =g
ay = —L Pty k, = Ap ==L t -

S o . aon
‘The equation will then assumé the simple form

84 aB 2
81 SE-d wSlobmaw W =k, ¥ sin 0T (3)
dx ar2 3T

The integration of the nonhomogeneous and homogeneous
equations meets with the same d1ff1culty, .namely, the
determination of the functions. fp(x) .of the problem by
which the solution of the nonhomogeneous and homogeneous
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problems is developed in a series of the form.

i~~18

g

where f(x) are the

of the vibration of the tail surface and
in deflection with time.

change

Pl Bl Ll s)

(4)

functions characterizing the form

tE(T) gives the
This is the usuval method

of Poisson for solving a.linear partial differential
eguation by assuming a solution in the form of the product

of two functions,each
variable; namely,the time and

0f which is a function of only one

the position on the beam.

We shall rewrite equation (8) in the form

= Iv .. . Py 2 z, y -

BEly + my +a, Vy =k, ¥ sia 0T (31)
where

™ -‘- e 742 s )
yiV = oy, y = S8 ¥ = T
Bt S oT

Its general solution is of the form: y¥-= y; + y; where

y, is the solution of egquation (4'), with the right-hand
side set equal to zero amnd y, the particular solution
satisfying the equation.
Let
v, = £(x) €(7)
Then, as is known, the homogeneous equation corresponding
to equation (3') breaks up into two equations of the form
4 :
yIV-x £=0
and : :
a2 el > ask &
where ‘
1{4:>\2;m_.
&I

The integral of the first of

flad) = 4y oos kx + By siu kg +

these equations is

-~

C, cosh ¥x + D1 sinh kx (5)
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and of the sgecond

L
E(T) = e ° (L5-cos pT + By sin pT) (5)
. . _ - |
where X = = —L p'Vt; ‘and p 1is the natural freguency
pele - E 2m 3 a . ;
s i agenn - . 3Cy
of the tail. It ds geen that “for positive values of i
~ : 3o

‘the free vibrations are damped and for negative values -
that is, for a4 > ot oy they are not damped.

The coefficients of expression (5) are determined
from the boundary conditions which they must satisfy;
namely, ‘ i

% 2
for x = 0, y =9 =0
ox ?
: . ; (7)
3y _ 9y |
T = Y =
o A - 3
leading to a trénscendental equatioh of the form
cos kl cosh kl = -1 (8)

from which are obtained the following values of kU
characterigzging the frequencies of vibration of the beam:
k1 k,l kb k,U
1Ll 4,694 7,885 LG5 96
It is necessary to point out one assumption which was

made in the above discussion; namely, that the modulus of
the velocity was equal to the:velocity at infinity V.

The error involved is of the order of the square of a small

value (A®a). This assumption will also apoly in what
follows.

The particular solution of the nonhomogeneous equation

ig sought in the form
¥p = (1) £(%) | (9)

We set
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o pt V
a Vv - o k
2 _I.n_; c = _..}_._ = _a_g'_.__._.__.—; ko e
EI R EI EI
Equation (3') then becomes
TV . e g Al
£57 ¢+ a f(x) b+ eff =k, V® sin o7 = p (x,7) (10)

The right-hand side, in general, is also a funection
of the time and of the coordinate of the beam axis and,
as is known from the general theory, it may be assumed in
the form of a product

p (x,7) = £(x) E(T) | )

Substituting the above equation in (10) and dividing by
f(x), we obtain '

aag - ci - k4§ = H(T1) = const sin wT ' (12)
, . iy e ) -
where the equation f «k'f =0 was made use of for

determining FIV,

Setting

{ = A cos WT + B sin T (13)
we obtain
= ~AW®W gin WT + BW cos WT; t = —»AQF cos WT - Bw? sin WT

Substituting (13) in (12) and equating the coefficients
of the sine and cosine terms, we obtain the system

—a. Aw® + cBw +x*'A =0 |
1 >
; . . (14)
-Bagw - cAw+ k B = const = hj}
or
A (x* - a,0%) + Bew = 0, -Acw+ B (k% a,0®) =n
whence _
4 2
. heo ’ a(k - apw)
A = ’ B = » -
(* = a,0%)% + cBu0? (k* - a,0%)® + P
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We agsume
-A=1Usgin 8, B =T cos &
It is then readily seen that

_____ h
b ‘= A% 4+ B® = (15)

va4— B GCY & oW

whence

f(x) U sin (wf‘+ ) = £(x)h sin(wT + 8§) (16)

«/(k4 - aaw?)a + cZw®

The maximum deflection of the tail will occur for
k4 = agwg

We shall then have
£{x) b _ flx) &

max ’\/c°’[D° 28
Remembering that
L s o
W = J/E_ g B
8z 's/ ap
we obtain
: £(z) b (fzx) h ' :
Y2 max 4 i (18)
C——=—— ck J/il‘
ﬂa m
2
Since h = const, v?; ¢ =.comstg V;
we shall have
xr
Y5 max = coust f(x) _%:: (19)

that is, the value of the deflections in the case of res-
onance is determined not only by the elastic propertiecs
of the tail but also by the velogity of the flow. For
this reason, it.is not possible, "in general, to speak of
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the danger of resonance in buffeting without specifying
the velocity at which this resonance occurs.

The same result may be arrived at much more simply
by applying the method of Galerkin to the solution of
equation (3). We shall first make two reservations which
follow immediately from the nature of the problem and
which very much simplify it. In the first place, we are
not required to find the complete integral of the equation
of motion for the simple reason that the buffeting occurs
at below-critical velocities for which reason the free
vibrations will be damped and will therefore not directly
concern us. We shall, therefore, seek only the forced
vibrations of a frequency equal to that of the acting
forces. 1In the second place, we shall not concern our-
selves with the investigations of the tail vibrations of
the higher harmonics, this case being of no practical
interest since it is then necessary to take into account
the formation of nodes. It is known that the frequency
of the vortices of actual airplanes lies within the range
of natural frequencies of the tail surface and for this
reason the attainment of flow frequencies equal to the
higher harmonics of the tail surface would require in-
creasing the velocity almost three times, which in the
given case is practically impossible. We shall, therefore,
consider the form of the forced vibrations as coinciding
with the form of vibration of the fundamental frequency.
The equation of vibration of the tail with variable cross
section and rigidity for the case of purely flexural vi-
brations is

s [/ p- - ~2
2°{ m1 2_.}:/‘; + m(x)SZ¥

ox® ox @ 3T
oC d oC ;
__.X. o = _....3_’. V")t i wT Zi
+ o th(x)BT Aaa o (x) sin (31)

Assuming that the functiong y(x) are already known, we
seek, according to the general theory, a solution in the
form of the product

y = #ixg) E4")

Subgtituting in eguation (3') and applying the method
of Galerkin, we multiply both sides of the equation by

f(x)dx, 1integrate over the entire half-span, and obtain
) a 2 . 1 -
E(TE/ a EIQ__E\\ f(x)dx +£f m(x) £f(x)dx
) ] 2
dx dx
0 0
. ac L a’! = ?’
+ § 2L pv[ t(x) £f°(x)dx = AL pv“f t(x)f(x)dx (20)
Ja < 3 :

(0] 6]
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It is readily shown from the boundary conditions which f(x)

must satisfy that
<E/ A >f(x)a’ _f51<df) dx.

i
0

Integrating by parts the integral on the left-hand side
1
@ af d’f d f df
Jax (E/ dx‘> Flx)dx— (51 ) Flx ) f - <E1 L ax.
0

The first term, on account of the boundary conditions, is
equal to zero. Integrating the second again by varts, we

nbtain
1
de df d‘Zf 2
fﬂdx,d 27 dx jEI(d—x—z> dx.
0

——f_(ﬂ‘w) dx—

Setting

fEI(;%fz)z dx—ua; me(x)f?(x)dxzb;

5 {
G—%Pft(x)fz(x)dxzc’ A%pvzft(x)f(x)dx’:d.
0

equation (20) assumes the form
at-(x)-+ b E“—I—cé_=.dsin ot;
é’+ + il 5 Sinor. : (20%)

Assuming

) ¢ = A cos vt -} B sin o,
we obtain

e g ¢ 5
—Auﬁcoscn—szsmwt—?A o sin wz -4

—{—-—Z—Ewcosm—-}—%ﬁcoscm—{——a—g sinwr:%sinm.

Equating the coerficients of the cosine and sine terms, we
find

Z(%—mﬂ+%@§=0;—Z%w+§<%—ﬁ):%. (21)

E...E_m | a 2 d
o b b - I
A : ' B d

ETr G

whence
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Setting A= U-sin 3; B=Ucos3,
where _ U=V A+ B tgﬁ_—_i,
B
we obtain y=f(x)-U-sin (04 3). v (22)
vhere 8 1is the phase angle '
f)-a %y ve [ £(x) } (%) dx sin (ws4-3)
3= TTEC 3C, » (23)
BN Y _pvf te) Pdx \*
L . 5 ax? d
fm(x)f‘(x)dx y WO S o g
0 [, m(x)fdx Juﬂ@ﬂ¢x
where the expression
{
d?f 2
fE[(dx") dx
. 7 =p2usr
fm(x)-f“dx
0
gives the naturazl frequency of the flexural vibratiocns of
the beam at any cross section.
In the case of resonmance, we shall nave
I
o0 A 1
Ry, ft(")f(")d" AV [ #(x) f(x) dx
Yuax =f(x) —— =fx) — - (24)
”CwVfa@fdx o [t(x)frdx
- ; 0 _
Jm(x)f‘(x)dx — o
0 J m(x) 1 (x)dx
But
jEl df dx
o= 25
mf2a'x g

hence equation (24) can be written in the form

AV d
Ymax = f(x) Jo 0010 dx : (26)

ft(x fdx JEI ‘”{,
m(x)j (x)dx
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For EI = const,; m(x) = consty; 5(x) = conaty;
we obtain )
f(x)A VvVt f(x)dx
Il B const fVY

v //.Z gii adx V/~EL
o ¥ 2 &t m

that is, the same result is obtained as by the usual
clasgsical solution by the method of Poisgon. The simplic-
ity of the obtained formula is guch that no explanations
with regard to the wvalue of the individual parameters are
required. It is important to note only one point; namely,
that in the case of resonance the values of the deflections
do not depend -on the aerodynamic proverties of the tail
itself. This result follows from the assumption of the
stationary theory.

Case of Purely Torsional Vibrations
In the case of purely torsional vibrations, the above
line of reasoning remains exactly the same as for the
purely flexural vibrations. We shall present only the

final result.

The equation of motion for torsional vibration is of
the form

= ac - = X
-_a__< GIP@_Q> 41286 °0mE v“t“_[e ; z(a i __f-___> 29

i
3 x dx B3+12 aa ! vV N4 t 30 oT
| 16__DE
i oq
= M(x) sin®T (27)
Setting
6 = olg) L(T) (28)

and applying the %ethod of Galerkin, we obtain
o‘f M (x) o(x)dx sin (T + ¢)

5 = o(x)

= b 1) 2
/i i GIp<dm\ f BB, vi%0° ax - maof I,® dx} + ¢°

(29)
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where L\ / \
3 2
Y o= °Cng o Ve[S -0 - _ T __)o dx
oo 4 t oC
\ lo——=
o -

As is seen from formula (29), the aerodynamic character-
jstics of the tail surface itself affect the character of
the vibrations. In the first place, there is a decrease
in the natural frequency of the vibratioans by the amount

1

af 00 S
o vf B o

0 o
A

/F 1.9 dx

(0]

that is, there is a .drop also in the welocity at wvhich
resonance aoppears. In the second place, in the case of
resonance itself the deflections, in contrast to those of
the flexural vibratioans, will depend on the aerodynamic
characteristics of the tail section, as is shown by
equation (29).

III. THE CASE OF TW0O DEGREES OF FREEDOM

As is known from the theory of wing vibration, vibra-
tions of a wiang with one dezgree of freedom.are impossible,
the flexural vibrations necessarily giving rise to tor-
sional vibrations and vice versa, that ig, the tail sur-
face vibrations will always be torsional-flexural. This
is due to the noncoincidence of the points of application
of the elasticity and inertia forces. It is a question
only of the relative importance of each of these tyves of
vibrations in the general system of vibration. We shall
therefore consider the motion for the case of two degrees
of freedom, that is, simultaneous vibration in torsion
and bendiag.

The system of equations is of the form

-
G

. o <E1(x)§-;'§> B - el

ox ox S aT”
aC 2 t /3 x L) 3 : ;
g B t[e + - (—- - —3> sl B 5 W p(x) sin @T; (30)
da v \4 t/ar v OTJ




22 NACA Technical Memorandum No. 1041
7 2 2
d 30\ >y 2°8
& = GI s Wes—— L =
Ox P 3z " i ol
OCpe 2 a[ tJS 0 m \aq 13
s tTie + T . A v(x) sin T (31)
oa ' W ag.. lar ¥ a1
L : B B
oa
where
A0 2 aC 2.2
PR = T 8(a) . alx) = aS7BE 5 v (D)
o o

This system of two linear partial differential eguations
may be integrated only approximately. As has already been
pointed out, the difficulty of integrating nonhomogeneous
equations ig the gsame as that for homogeneous, since the
problem in both cases reduces to finding the functions
y(x), o(x) and expanding them in absolutely and uniformly
converging series in each case. The solution of this sys-
tem, we shall seek, in the form

y = flz} €7 8 = o(x) W(T) , (32)

Substituting these functions in the equations and multiply-
ing the first by f(x)dx, the second by o(x)dx and inte-
grating from O to 1, we obtain

g o )
allg + 8. B # a v+ a Vv + a Vv a_ ¢ a sin T

by 4 bipl + Dygl + byl + by + by

12 8

(33)

il

b gin WT i
X
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where

. de 2 . l
o [EI (W> dx; am:Jm(x)fde; a13=_fmcf(x)dx;
0 0 $

l
oc JC 3
aM:—d—;pveft:?(x)f(x)dx; Ay = ——aij v ftz <—4———);—9>9(x)-f(x)dx;
0 0

JaC, : : : 4 do\?
PR da’prtf“a’x; a=fp(x)f(x)a'x; bu—_—f al, (E dx;
(4] 0 0
! ! ld

b,._,:/m:f(x)dx; bw:flm(??a'x; by,=—pV? f s 2 0% dx
0 0
!
v o Ty J/,E___fo_._ »
by; = "Vf Surgl by s 3 |7 s
5 16—
{ 1
oC,,
bu=oV [ efmeas b= [1)2dx.
0 0

Ve assume
t=Acosor-t Bsinwr; §=Ccoswt- Dsinwr,

since there is always & phase difference between the
forces acting on the tail and its displacements. Sub-
stituting these expressions in the obtained equations,
we shall have

a,, (A cos vz - B sin w<) 4+ a,, (— 0* Acos vt — o* B sin wt) 4
4 a,, (—o? C cos ot —w*B sin wz)+-a,, (C cos vt + D sin wt) +
+a,.(—oC sin vt 4o D cos wz) 4 a;; (—oAsinet + o B cos wt)=asinwt ;
by, (C cos wx + D sin o)+ by, (— ©* A cos vz — w? B sin ot) +
by, (— 0 Ccos oz — 0? D sin ot) + by, (Ccos ot + D sin wt) 4
~+ by, (— 0 C sinwt -+ o D cos 1)~ by (— A o sin vt 0 B cos wt) = bsinor,

Equating the coefficients before the same functions,
we obtain

A (a,, — a,,0%) + Bayo —{—E(a“ —ay;0%) + D a;;=0;
“Zaw‘”“l_—g(au—an ‘”‘)_Eala‘”‘l‘ﬁ(au — a0’)=a;
— A by, 0B byy04C (byy — byy0*~+by) +Dby0=0;
A b0 — B by, —C byyo+D by — byyo*+4b,)=0b.
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whence
%t )
Fa A
o Ezzéy
A A
where
. 4
Ay — Q07 Ay ® b Ay, — Ao Q159 oy
= @y~ g ©° — 05 0 Ay — Q30
= 2
= — b, by o by — b,y ©* 1+ by by .
o — by, 0 —by;0 by, — by3©0* by,
2
0 2 b Ay — A0 A5 © i
Ao & Ay — Q0" g 25 Ay — Qg3 @
: 0 i bll_blaw'+b14‘” 15 D 2 1
b — by, 0? — b0 by, — byy0*+ 14l
@, — @ * 0 A1y — Q1307 a0 ’
i Q0 a — Qe Qi G18195
2 — b, 0° 0 by, — b3 0°+ by, 159 .
=y b by; 0 by — byy©° + b4
Q) — Qo O A © 0 Qy; O
2 ] 1
P Sl ST a Ay — G130
3 | —— by, 07 by w 0 150 . '
by — by, 0° b by — b3 o by
ay, — a;,0° Ay O : A1y — Q307 0
— A0 Ay — Gyp © —apo a
el by, * by @ by, — by30° + b1 0
— b0 —b,, w? — b, 0 b

In the entire discussion above, it was assumed that
the functions f(x) and o(x) are known. Actually,
their determination presents one of the most difficult
problems of present day mathematics. There is a small
number of particular cases for which these functions can
be given in strict form. 1In all practical cases, they
are generally found by approximate methods and the re-
sults later checked by experiment. In the case of forced
vibrations there is one advantage; namely, that for the
determination of the amplitude it is not required to use
the initial conditions without which in the homogeneous
problem the amplitude cannot be determined.

As is known, we seek the solution of both the
homogeneous and nonhomogeneous equations in the form of

the product
y=Fx)().
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For -f(x), in both of the above cases, there are a suffi-
cient number of boundary conditionsg, but for 4 in the
case of the homogeneousg nroblem it 1g necessary to specify
initial conditions and in the case of the nonhomogeneous
problem ¢ is entirely determined by the disturbance
forces. Thus, multiplication of the right-hand side by
any congtant factor does not introduce any complications
in the determination of the amplitude,and the computation
can always be carried through to the end. Thus, it is
possible to take Af(x) for f(x), since A can enter
in the coefficient §.

As a first approximation, we agsumed that the form
of vibration of the tail in the flow is the game ag in the
case of vibrations of the same gurface in a wvacuum. On
the basis of these ‘assumptions, the buffeting computation
of the tail was made with the data presented in tlhe book
of B. P. Grossman (reference 10) on the assumption that
the wing chord was equal to 4 meters and the maximum angle
of attack that could arise from the effect of the wake was
equal. to 59 for vibration with two degrees of freedom.

The curves (figs. 6 and 7) of the change of maximum
deflections and torsional angles theoretically obtained,
show the interesting characteristic which is observed also
in practice; namely, that the forced torsional vibrations
start only when the frequencies of the disturbing forces
approach the frequencies of the natural flexural vibrations
of the tail, while the flexural vibrationg strongly in-
crease with increase in the flow velocity.

In the light of the theoretical results obtained, it
ig useful to recall the following fact. In congidering
the fallure of the tail of the JU- 14, the-English investi-
gators arrived at the conclusion that the failure arose
from the flexural stresses. This is indirectly confirmed
by the fact that the accident was caused by buffeting
since, as shown by the computations, in buffeting the
flexural vibrations predominate.

IV. EXPERIMENTAL INVESTIGATIONS OF BUFFETING

IN THE LABORATORY AT HIGH REYNOLDS NUMBER

Buffeting investigations were carried out in the wind
tunnel on a model of an elastic tail placed in a disturbed
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flow ‘behind the wing. The tests were conduvucted both on-
an isolated wing and -on 8 combination of wiag and fuselage.
The model -tail surface was & single svar airfoil of sym-
metric section. As may be seen from the sketch (fig. 8),
it is assembled in several sections  -in-such a manner that
the entire load is taken only by the spar with the skin-
taking no load. The model was, moreover, designed in two
variants which differed only in the material of the sgpar,
one being of steel and the other of diuralumin. : Thig model
design was chosen with & view to the requirement, not only
of fixing the frequency of vibration but also of determin-
ing the order of aerodynamic loads acting on the tail sur-
face. As has already been pointed out, the investigations
of foreign laboratories suffered from the fundamental de-
fect that they made use of a detector which having elastic
properties very dissimilar to those of the wing could not
yield any information with regard to the load. In our
case this problem was golved, though very approximately,
without disturbing the accuracy with respect to the fre-
guencieg. This i1s entirely understandable since tails
working in the region below the stalling velocities will
have no free vibrations, but will accurately follow the
forced frequencies.

The dimensions of the tail surface are indicated on
figure 8. The fuselage was schematically represented by
a flat board 30 millimeters thick which was attached
directly to the wing forming a right-angle Jjoint.

In order to include the basic prectical operating
conditions, five such board fuselages were constructed
by which settings were obtained to correspond to the angles
of attack of the wing of 0.5% 10° 15% and 20°. Moreover,
such fuselages, not having any elastic connection with the
tail, made possible the determination of only the purely
aerodynamic effect of the fuselage on the tail.

A gsketch of the. setun ig shown on figure 9.. The ver-
tical position of the tail was chogen after. a special.test
in which the amplitudeg of vibration of the tip of the
tail ‘were observed for various vertical positions of the
tail surface. The plane of the upper edge of the wing
gave the maximum amplitude. This agrees entirely with the
results of Duncan and the tail was therefore set at the
level of the upper edge of the wing.
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Tegst Procedure

The object was to determine the frequency and ampli-
tude of the tail vibration. The problem of the choice of
any particular method of obtaining the fundamental paran-
eters depended naturally on the character of the vibrations
themselves, that is, whether regular or irregular, observa-
ble with the naked eye or not, and finally, on the number
of degrees of freedom possessed by the tail. For this
purpose, the vibrating tail was observed. by strobosconic
illumination. It was found that by a.corresponding choice
of the stroboscope fregquency the vibrations could big com-
pletely determined. DMoreover, it was found that the tail
in the disturbed flow vibrated with considerable amplitude,
the vibrations being purely flexural up to a certain defi-
nite velocity and after this VelOClt" nad been reached,
being accompanied by torsional vivrat jons. This made it
possible-to photograph the tail surface and to determine
the maximum amplitudes from the film. In this way, rather
"gimple ‘and at the same time, sufficiently accurate appara-
tug wés chosen for measuring the fundamental parameters;
namely, the rotoscope for measuring the frequencies and
tlhie usual photographic apparatus for the amplitudes.

Results of QObservations

The observations showed that at all angles of attack
of the wing when there was no separation of flow the tail
did not wvibrate. For the case of an isolated wing, for
example, the tail vibrations started at ay > Oy ape In
this case the tail vibrated at all flow velocities, in-
creaging with increase in the latter, the vibrations Dbeing
predominantly flexural. Torsional vibrations arise only
when the frequencies of the flow approach the flexural
frequencies of the tail, Tthers being practically no ftor-
sional vibrations uo to this moment, as was shown theo-
retically.

Figure 10 shows_t%e_curves of freguency against
velocity. As may be seen, the points with sufficient
accuracy Yie on-a -straight line. It should bTe noted that
the straight 1ine of - v ‘against V does not pass through
the origin of coordinates. -'This shows that at small veloe-
ities the law of variation of VvV with V will be differ-
ent than in the given case. We shall write the equation
of this straight line

B P b B < ¥y
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where Vg, Vo are the initial frequency and velocity of
the flow. ‘

Dividing both ‘sides of the equation by V we obtain

1% v
v v v

from which it is seen that for large values of the veloc-
ity the ratio v/V is simply equal to k, +the slope of
the line. From the value of k. taken from the curve of
figure 10 we compute St = 0.1l. For actual landing veloc-
ities the value of §y may be taken approximately equal
to 0.115 + 0,12. It is evident that these results may De
made more accurate when tests for the determination of

St are conducted for a large number of full-scale wings.

On figure 11 is vlotted U/V against V. -The fact
that the measurements obtained by the stroboscopic method
gqualitatively agree with the results of other authors
lends support. to the agsumption of full periodicity of
the disturbance forces behind the isolated wing. This isg
a very importent fact for the problem of buffeting. If
the forces were not periodic it would not have been pos-
sible to apply the. stroboscope which operates according
to the harmonic law. . Logically, it. could not be expected
otherwise, for with a given wing and at a given velocity,
that is, for constant conditions of &tall,: the time re-
guired for. the full stalling process shoul@ not changeu

"The curves of change of amplitude with velocity con-
firm the conclusions previously drawn since all the curves
show definite resonance states as would be impossible in
the case of irregularity of the disturbance forces since
the natural tail vibrations are harmonic.

Figure 12 shows the curve of amplitude against veloc-

ity for ap = 28° and a; = O, 5% and 10°. _The curves
for af = 0O and 5° are of a character corresponding to
the general theory of forced vibrations. For a = 10°

the curve differs sharply from the preceding gince the
.stalling point is at a, = 11°. It appears that a change
in angle of attack in the wake Dbehind the wing alternately
brings the wing from the condition above to the condition
below the stall, and this explains the arbitrary character
of the curve. : !
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Figure 13 likewigse shows a sharp difference in the

behavior of the curves for ot = 00 and a4 = 10°.
Wheress for. Oy '= 0° the amplitude curve has its maximum
value; its minimim value is ay = 100.  This is apparently

due to the decrease in the amplitude of the forces acting
on the tail ag @ resully of the tragagition of the tail suar-
face to the conditions beyond the stall. Figure 13 shows
the resgults claracterizing the behavior of the tail be-
hind a wing with larger chord than for the firgt case,
that ig, figure 14. For this reason, resonance is reached
at larger values of the velocity. Figure 14 shows com-
parison curves for two tail surfaces with different stiff-
ness. These curves show that a simple cliange in the
stiffness not only changes the numerical value of the
anplitudes but also sharply modifies the character of the
vibration. For this reason, the guestion of gtiffness is
of fundamental importance in the buffeting theory.

An increase in the wing dimensions and in its angle
of attack has a great effect on the amplitude of the vi-
brations. Figure 15 gives the results of tests on a wing of
chord 0.638 meter at Uy = 300w (taidwithV g tael spar) which
show that the incrcase in the amplitude with the velocity
follows,approximately,the cutic law.

Combination of Wing and Fuselage

As has already been stated, boards attached to the
wing forming a right-angle intersection were used as fuse-
lages, five fuselages being used to form models with wing
angle of attack of 09, 59, 3109, 159, and 20°.. Thigs made
it possible to include the entire range of practical
angles of attack.

Prom ‘the work of a number of authors it has been
established that the"initial separation of the flow due .
to the interference between the wing and fuselage often
starts at-a wing adglé_of attack of 29 to 39 in the case
of - interséctions without fairings. We were guided by ;
these facts in chqosing.sﬁch,éﬁnumber of -angles of attack
-for-investigation. e

When the tests were begun it was found that up to-

Ow = 159 inclusive, the tail surface doeg not vibrate and
the silk string shows the absence of separation at the
intersection. Only at ay = 15° and at large velocities

ig there formed at the wing and fuselage intersection a
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small breakdown region and glight vibration of the tail.
This is explained, evidently, by the straight line char-
acter of the contour of our fuselage, that is, by the
absence of a pressure drop in the flow along the fuselage.
Tiie fuselage and wing having different profiles form dif-
ferent velocity vectors at the same points of space in

the region of the intersection. This leads to a disturb-
ance of the smoothness of the flow about the wing and
fuselage. In our case, the fuselage, not having any pres-
sure gradient and hence variable velocities along the
contour, does not disrupt the flow at the wing. We speak
here of the outer flow, of course, as the boundary layer
in the region of the juncture undoubtedly increases in
thickness in the flow direction, but this,evidently, for
such type of intersections, plays no important part up to
stallins angles of attaek. For Oy =.200  the tail
vibrates, as in the case of the isolated.wing, in the
range beyond the stall.

Figures 10 to 16 show the frecuencies and amplitudes
plotted againgt the velocity in comparison with the same
curveg for the isolated wing. As may be seen, the very
interesting result is obtained that while the fregquencies
are not affected by the presence of the fuselage the
amplitudes are strongly decreased. This means that the
fuselage acts as a damping device for the tail. Thus
the presence of the fuselage itself, from the point of
view of buffeting, not only plays a negative part, creating
vortices at the intersection but also a positive part in
damping the vibrations.

V. FORCES ACTING ON THE TAIL IN BUFFETING

We shall try to answer the question with regard to
the loads to which the horizontal tail surface is subjected
in buffeting. We shall first consider the following simple
problem. Let a single vortex with circulation I' and with
a forward velocity equal to the flow velocity move in an
infinite ideal flow about a horizontal tail of constant
chord. Assuming the path of the vortex as a straight line,
the scheme will be that shown in figure 17

where
0 is the initial position-of the vortex

So the distance of the tail from the point 0 1in the
flow direction
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h, 1is the distance of the tail from O along the vertical
S the running coordinate of the vortex

The vortex will, of course, induce at the tail the
velocity vector AV which will vary both in magnitude
and direction in the course of motion of the vortex. It
is required to find the 1ift force on the tail in this
casee.

We consider the expression for the lift in the gen-
eral case of forward motion. The 1lift, as is known, 1is
given by

x

prrt r a(vae) 2 ;3*-.{‘/q u(f)dﬁ' P
P = Sgem fiemas & 4 UFE & 60 e )}(64)

I : mJ _ £0f3+-t(x = 56
Xo

where wu(B) 1is the intengity of the vortex sheet spring-
ing from the trailing edge and generated by lines of
velocity discontinuity. 1In the case of nongtationary
motion the circulation at the ta2il varies and therefore,
in order to satisfy Kelvin's theorem of the constancy of
the circulation in time, it is necessary that a vortex

be shed with circulation equal to the increment in circu-
lation about the tail but of opposite sign. Schematically
this may be represented as shown in figure 18, where

——

Xo 1s the starting point of the nonsteady motion
¥ the distance traversed after the start of the motion
B the running coordinate

Formula (34) thus consists of two parts: namely,
the Joukowsky terms and the terms due to the nonstationary
character of the motion. As shown by Wagner (reference
11), the value of the latter integral is small by compari-
son with the remaining terms and may be neglected without
too great an error. Moreover, it always acts to reduce
the total 1lift force so that neglecting it will be on the
favorabtle side as regards the wing strength.

In general, u(ﬁ) ig found from the solution of an
integral equation of the form
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i b'e
0
Mg, remains to consider the term thgil.' We write it
in. the form ; '
a(Va) da av
RS T L T B S =
a ar aT (35)

Assuming the velocity of the flow constant we obtain

gl Ta) . - do
aT ar

The 1ift force will then be

ot do
= S - Y S re o
iz 2 <t 5 V >

It is necessary to determine —— . From a consideration

1
<

of figure 17 we ﬁay write

¥ AV cosY _ AV(S?—-D) 0N
¥ v \/(SQ-S>?+}.102 :
but T e
AT = = - ' (37)
2TTI‘ Dox \/(SO i S>2+hod
Substituting the above in (36) we obtain
r S4— 8
g i . 3 ) (38)
s (85 = 3)% + hg"
whence . _ .
! 2 = Bhas 29 dS
PRI E-2(50—8)2=(5,—8)°—-ho"] 3%
at 2aV [(Sg—.8)%+ hy2]"
ds

b = ;
wt *('1? v
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B T (8g =S)2 — he® -
Av " 3y [{85 = -B)% + h03]a

Since we are interested only in the maximum value of the
1ift force we 8hall find the value of S for which

A% 311 be a maximum for which purpose we differentiate
T .

(39) with respect to S denoting %% by @t

—[(S,=S)?+h ]2 2(5,—5)+2 [(5,=5)2+ho2]2(5,=8) [(80—5)2~hy?]

SRR

[(5o-8)%+h,2]*

Equating the numerator to zero we obtain

[(So—S)2+ho® 12(5,—8)

[(5,~5)2~h,?]al(s,~5)3+h 2] (5,-5)
ho

(Sg=8)2+ho?=2(5,—5)2-2h?
§,~S=%4/3 h_ (40)
Substituting (40) in (39) .-
/ da\ r

- = e e (41)
RETY | o LOHE S :

But I is connected with the angle of attack by the .
following expression

{8 et}

I'= 2nVa (42)
S5 =S ?
" ,
whence
: 8 -
I's =L Vi, o _ (43)

/5

Substituting the above in (41) .

da\ g b = -
= — Va
Atdnay = B on S

The expression for the maximum 1ift force is Written as
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4 PTT'G< 2 L gl 3 -
P . =""—\4V°a + tV —/— Va | = protVa + pmt V- a (25)
o 4 afehg / 8./ 3 h,
| / R »
P = P 1+ — — (46)
max st K BJS ho/ .

where Pgt is the 1ift for steady motion.

The result is thus obtained that the 1ift of the
tail depends on the distance from the vortex lines, The
nearer the tail is to the vortex lines the greater the
1ift force on it for the same angle of attack. It is
clear that the case ho = 0 has no immediate physical
significance as the tail can never beé situated in this
position in view of the fact that the tail in turn induces
at the vortex a velocity which causes the vortex to deviate,
a fact which for simplicity we neglected to take into con—
sideration, ZFigure 19 shows the curves of vibration am—
plitude against the vertical position of the tail, It is
seen that the maximum deviations lie in the pleane of the
upper edge of the wing in the flow direction. This may be
explained by the fact that the vortices shed from the
upper edge of the wing travel approximately in the same
Plane, a fact which well confirms the assumption made,

On the basis of the obtained formula and the experi—
ments of Duncan it may be stated that the separating vor—
tex travels along a practically straight line, The dif-—
ficulty may arise that vortices are shed not only fronm
the upper edge of the wing but also from the lower but no
such increase in the amplitude of the vibration is ob—
tained in the plane of the lower edge. The reason is that
the vortices springing from the upper and lower edges do
not produce the same effect on the tail. Having oppositely
directed circulations one of the vortices acts to reduce
the dynamic load while the other acts to increase it. The
theorem is proved in mechanics that for dynamic loading
the deformations may attain double the value of those for
static load but for dynamic unloading they can never exceed
the static load deformations. In general the tail may be
loaded not only by the vortices springing from the upper
edge but by those from the lower edge depending-on the
angle of attack of the tail itself. In the given tests due
to the downwash of the flow behind the wing the tail was at
a negative angle of attack. Hence it would be more correct
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to say that the line of dangerous buffeting lies in the
plane of the edges of the wing if it is assumed that the
vortices travel approximately in these planes in the flow
direction. ' '

Figures 20 to 26 give the force curves obtained fronm
the tests: As has already bean pointed out the maximun
value of the deflections was determined by a photographic
camera and from these values the forces were deternined

o 00,
by formula (23). Setting k(z) = 4 —8——’ we obbtain
= : . Y
1 'l 2. \\2 2 o0 L
. f BI E—I—(—j}—)— | dx ————)—r-pv,(/;t f?(x)dx
. a “0 dx= / Ja
Ym [nﬂx)f“(x)dx - —w= +| = "
J S m(x)f®(x)dx Lom(x)£2(x)ax
0
_ l
f(x) pzvg t(x)f(x)dx
whence

AP = k(x) pVZ3S¢

where St is the area of the tail surface and y, the

measured amplitude of the tip of the tail. We make use
of nondimensional coefficient

c = AP _ k(x) 100 percent

G o"‘fz St
x|

yma Ymax

The curves show that the variation of the acting
forces with the velocity for all cases considered is sub—
ject to a definite law. The coefficient C assumes vari-—
ous values not always regular. This is explained partly
by the fact that 2 sinuscid does not accurately represent
the actual character of the varying forces which act im—
pulsively and strictly speaking should be represented by
a Fourier series. As may be seen the overloads may reach
100 percent and more depending on the characteristics of
the wake and the angle of attack of the tail. Theoreti-—
cally the overloads can be of any order of magnitude from
O to . The theory is here important on account of the
fact that it gives an explanation of the causes giving
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rise to these loads since the results of the usual wind
tunnel tests and of the Joukowsky theory do not throw any
light on the causes giving rise to these overloads. A
fundamental factor the effect of which is considered by the
theory here presented is the rate of change of the angle

of abback of the tail, A wvortex traveling toward the tail
does not simply vary the angle of attack but does this at

a definite rate which is determined by the magnitude of the
flight velocity, the circulation of the vortex and the dis—
position' of the tail surface relative to the vortex path.
The physical theory concerns itself with the explanation

of the effect of these factors. The infinite increase in
the force for hg = 0 must be considered as the maximum

overload of the tail surface in this position, similar to
the infinite velocity at the sharp edges in the case of
the wing theory.

CONCLUS ION

We have considered a very simplified scheme of a com—
plicated phenomenon which is often a source of worry to
designers and which up to the present has received no
fundamental solution. In this very simple scheme it was
found that the isolated wing gives rise to purely periodic
.,disturbances which can be represented by a simple series
of trigonometric functions., It is shown that the tail too
vibrates periodically with amplitudes increasing with the
velocity corresponding to the laws of the general theory
of forced vibrations in a resisting mediunm,

Consideration was given to the character of the loads
to which the tail surface was subjected in the wake of the
wing., It was found that they are fundamentally determined

by

a) The ratio of the frequency of the flow to the
natural frequency of the tail surface;

b) The magnitude of the flow velocity

c) The vertical position of the tail surface rela—
tive the wing

d) The amplitude of the disturbance forces
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Depending on the character of the combination of all
these factors the tail may be brought into a critical
buffeting condition and in this connection the .conclu—
sion of Blenk with regard to the impossidbility of fail—
ure of the Junkers Ju 13 due to buffeting does not -appear
to . be an entirely justified assertion, At the value Si :=

0.12 obtained in our tests the Junkers airplane was in a
resonance state at large velocities, that is, simultaneous
action of the above factors a and b was obtained.

The actual character of the tail vibration on a real
airplane is very complicated, a fact which is quite under—
standable since it 1is not a question of the tail vibra—
tions alone but of the vibrations of the complete mechani—
cal system including a very large number of the structural
details, .

The important question is how to eliminate buffeting
on the actual airplane. Experiment shows that a very
large number of structural details of a size comparable
with that of the tail surface may form a disturbing wake
acting on the tail surface and giving rise to buffeting
at various veclocities of the airplane, The factor of
comparable size is here emphasized since for some reason
it is customary to assume in usual practice that even a
small bolt on the upper surface of the wing may give rise

e, : ; o)
to dangerous buffeting. In a wind tunnel at «a, = 10

on a wing of 600-millimeter chord plastic objects of
various shapes of dimensions 100 to 150 millimeters were
attaehed and no buffeting was observed., This is explained
by the fact that the frequencies of the vortices spring—
ing from such small objects many times exceed the natural
frequency of the tail and their amplitudes in the first
place .are small in magnitude and in the second place do
not reach the tail, being dissipated completely by diffu—
sion. In order to check this the following test was made,
A plate of 125 millimeters width was placed ahead of
the tall the latter vibrating with appreclable amplitude,
These vibrations decreased with increasing distance from
the plate and at a distance of about 1 millimeter from the
tail they vanished completely.

Thus in considering the origin of the buffeting it
is necessary to pay attention to structural details of a
greater order of magnitude than small excrescences. If
buffeting occurs in landing the source of the trouble in
most cases is to be found in the wing attachment to the
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fuselage. The measures to be taken for eliminating buf-—
feting in this case are well known to all designers (the
use- of various kinds of a fairings, slats, flaps, stc., the
action of which leads either to a suppression of the flow
- breakdown at the intersection or to a reduction of the
likelihood of resomance between the vortices and tail.

It is here necessary to bear in mind first that fillets
often have an unfavorable effect on the speed characteris—
tics of the‘airplane, and secondly that buffeting arising
in the presence of fillets often is more dangerous than
without them. This is well illustrated on the curves of
Duncan (fig, 27) which give the changes in amplitude for
various combinations of fillets with other types of de—
vices.

In general the means taken for eliminating buffeting
may be classified into three groups:

1. Removal of the causes producing buffeting, that
is, avoidance of the possibility of flow breakdown at the
wing.

2. Location of the tail in the least dangerous posi-—
tion.

3. Change in the elastic properties of the tail so
that its natural frequencies will not be resonance fre—
guencies.

The first grcup has already been discussed. The
second group requires that the tail surface be located
as far as possible from the path of the vortices which
lie approximately in the plane of the wing edges. This
can always be done by sketching the path of the vortices
on the drawing for various angles of attack and taking
account -of the .actual condlblons of flow about a given

 wing SJStem. :

The means for eliminating buffeting included . in the
thlrd group are very often applied in practice in the
final . design of an airplane. If-is necessary in many
cases to vary the postion of the tail surface several
times or strengthen it by various supports which is often
done blindly without any preliminary computations. The
values of St @given in the present paper would seem to
offer a certain usefulness to the designer by enabling him
to determine in advance the regquired order of natural
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frequencies of the tail surface, that is, its elastic
properties.

Translation by S, Reiss,
National Advisory Committee
for Aeronautics,
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Figs. 25,26
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