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'	 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM ITO. 1041

TAIL BUFFETING*

By G. Abdrasilitbv

An approx ii,iate theory of buffeting is here presented,
based on the as-suription of harmonic disturbing forces.
Two 'cases of buffeting are considered: namely, for a tail
angle of attack greater and less than the stalling angle,
respectively.	 On the basis of the tests conducted and the
results of foreign investigators, a general analysis is
given of the nature of the forced vibrations, the Dossible
load limits on tho tail, and. thu methods of elimination
of buff( tilt£:.

INTRODUCTION

The term "buffeting' in its broad sense is applied
to the forced vibrations of any Darts of the airplane
under the aerodynamic action of tLe wake in which such
parts are situated, though in general aeronautic practice
the tern- is restricted to this type of vibration of the
tail surfaces under the action of the disturbing wake of
the wing, the phenomenon occurring under certain fli;ht
conditions. Depending on the values of the parameters
t_na.t characterize the wa g=e, the tail is subjected to addi-
tional dynar:.ic loads of various kin ds which may lead 'to
its failure or otherwise render normal oDeration of the
airplane difficult.

The* buffeting problem first took on a serious aspect
after the well-known accident of the Junkers airplane at
Meo-oham. The unusual circumstances of the accident led
scientific organizations in England and Germany to under-
take detailed investia.tior.s as to the possible causes
that may have brought it about. The English conducted
extensive laboratory i::vestigations and arrived at the
concliasior. that the most Drobable c?use of the accident
was buffeting of the tail.	 In these investigations on
sciaematized models of the airplane it was accurately es-
tablished that at large angles of attac of the wing the

*Report No. 395, of the Central Aero-Hydrody.larmical Insti-
tute, roscow, 1959.
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tail situated in the aerodynamic wake-of the wing vibrates
intensely, the amp litude of the vibration increasing with
increase in the velocity.

A detailed investigation of the place of the accident
showed the presence of large rising air currents and the
following explanation was therefore given of the causes of
the accident: The airplane, flying horizontally with
great velocity, suddenly entered a region of strong rising
gusts as a result of which there was a share increase in
the angle of attack with the formation of flow seoara.tion
at the wing. The tail located in the wake was subjected
to intense forced vibrations which thus brought about the
accident.

To the investigation of this accident were also de-
voted the pacers of a. grou_o of German investigators under
the leadership of Blenk (reference 1). The latter con-
ducted laboratory and flight investigations and also de-
tailed dynamic investigations of the same type of airplane
in the hangar. Tie laboratory investigations showed that
it was entirely possible for the airplane to enter the
buffeting state; but in actual flight, except during a
steep glide, buffeting of the tail was not observed even
once.	 For this reason, after a.na.lyzing all investigations,
Blenk arrived at the conclusion that the accident of the
JU 13 could not have been due to buffeting.

The importance of the irivestigatioiis of Blenk lie in
the test procedure which he consistently em p loyed. He was
the first to apply the moving picture camera to investi-
gate buffeting on the airplane in flight. A high-speed
camera wasmounted in the pilot's cabin and enabled the
simultaneous recording of the motion of the tail surface
tip and of a silk string placed ahead of it. Figure 1
shows a part of the film, taken during a steep glide on
the wing when the tail begins to buffet. On carefully
studying the photographic record, a relation may be estab-
lished between the fluctuation of the tail-.surface and the
silk string.	 The fundamental conclusior_s from these.tests
of Blenc are the following:

1. The tail surfaces at large angles of attack of the
wing enter a. region of vortices springing, from the inter-
section of the wing and fuselage, and in all these cases
vibration of the tail is observed; the vortices arise at
both sides of the fuselage and usually in an unsymmetric
manner. The vibrations of the tail are of an irregular
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character but large amplitudes, as a rule, are rare and
continue only for a very short time.

2. Aesular periodic vibrations of the - tail surfaces
are also entirely possible. For this reason, the possi-
bility of entry into a resonance condition constitutes a
real danger.

.	 3. The amplitudes increase very slowly with the ve-
locity and do not attain: their maximum values at any def-
inite velocities.

As will be shown in what follows,s, not all results
obtained on the „cankers air p lane tests may be generalized
and accented without any reservations, assuming all con-
clusions as irrefutably prover.. Even so, the work of Blenk
is the most thorough in this field of investigation.

In 1933 two p a p ers •devoted to buffeting investigation
appeared by Duncan (references 2 and 3). This author
studied the vibrations of an elastically hinged "detector"
having the form of a stiff airfoil attached at its root to
a streamline base p iece.	 It should be said that such a
scheme, suitable for the determination of the frequency,
cannot give the corres p onding amp litude of the acting
forces, and this is one of the chief defects of this method.
Moreover, the detector cannot .vary its angle of attack.

in 1934 Hood
investigations on
flight of a.given
were conducted by
This completes es
buffeting.

(reference o) carried out wind tunnel
the elimination of buffeting observed in
airplane.	 Similar flight investigations
Biechteler (reference 4) in Germany.
sentielly the.fundamental literature on

In the routine testing of air p lanes the buffeting
problem is sometimes practically encountered. At the pres-
ent time a large number of very simp le devices are already
available for the- slimznation of buffeting.,	 It should be
pointed out, however, that these devices are based only on
a qualitative estimate of the ?henomenon,a.nd the quantita-
tive problems involved are not even a pproximately solved.
The difficulty of the problem lies in the fact that the
actual nature of the aerodynamic wake behind bodies and
the lams of the dynamic p rocesses that may occur in the
wake have not yet been established. From this fact follows
also the imp ossibility of an exact determination of the
magnitude of the forces required for making the tail undergo
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forced vibrations. The questions 'of the viscosity of the
fluid and the nonstationary character of its motion,iArhich
-facto-rs.in the usual a pplied aerodynamics of the airplane
may often be neglected, here assume predominating impor-
tance.

The complete solution of the buffeting problem thus
embraces, as yet, unsolved aerodynamic p roblems. -For this
reason, it is necessary to seek indirect methods which,
while -not encompassing the problem in its entirety, make
it -p ossible to determine states which are critical as re-
gards accidents. The present pa p er is devoted to an ex-
position of these critical cases.

NOTATION

V flow velocity

P lift	 force

t tail	 chord

T time

Ctt	 angle of attack of tail

aW	 angle of attack of giving

CCtc critical (stalling) . angle of attack of tail surface

CLWc 
critical (stalling) angle of attack of ring

ac.,
-	 derivative of lift coefficient with respect to angle
E) s	 of attack

^CmE derivative o-f:moment of aerodynamic forces about the
a	 elasticity axis of the tail with respect to the

angle of .attack

W	 angular frequency of the disturbance .forces

v	 number of vibrations per second

t	 half sp an of tail

EI	 stiffness of tail in bending
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GI -p 	stiffness of tail .in torsion

M;	 unit mass of tail

xo	 distance of center of gravity from nose of profile

Q	 distance of center of gravity from elasticity axis
at section considered

I M	 unit moment of inertia of tail surface with respect
to its stiffness axis

P	 density

y	 deflection of tail surface at given cross section

A	 angle of torsion at'given section

The x-axis is taken along t^.e tail s pp n and the y-axis
at right angles to it.

I • SOh DATA ON THE W.IiuE ts' HIiTD A DORY

A large number of 'ca p ers have dealt with the -problem
of what occurs in the flow behind a body. 	 It is, however,
impossible at the present time to point to even a single
raper ,vhich might throw light on the problem of the wake
from the -p oint of view of every-day practical needs. All
of these p apers concern themselves mainly with regions of
very small Reynolds number; and at times, restrict them-
selves to results of purely visual observations.

The behavior of light particles moving in the flow
about a body shows that there is no absolutely dead region,
behind the body but t11at a com-olicited process of fluid
otion occurs. All bodies -p laced in such a wake are sub-

„ect to vibrational motior's.	 From the p oint of view of
the well-4nown ?iarman theory, this may be exp lained by the
-p eriodic shedding of discrete vortices frond the body, there-
by producing the same type of velocity field and also field
of force behind the body.	 In general, the cuffeting theory
may be set up both on the basis of -pure wave motion of the
fluid behind the body and on the basis of the vortex wakes
of Karman, both assump tions leading to tha same results.
In the first case, it is necess p.ry to '_snow the amplitude
and frequency of the w p.vc and in the second, the frequency
and circul?tion of the individual vortices. For this
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reason, without restricting ourselves to any definite
scheme, we shall consider that behind the bodies a vibra-
tion process takes place for which two fundamental p aram-
eters must be known; namely, the amplitude and frequency.

The problem of the wave amplitudes or of the circu-
lation of the separating vortices is as yet unsolved.
Nith regard to the frequency, a criterionhas alreadybeen
established connecting the frequency of vibration with the
velocity. This is the Strouhal number (reference 5) given
by

St	 V

where

v	 is the number of vibrations iDer second

b	 a linear dimension (for example the chord)

V	 the flow velocity

A large number of investigations are concerned with
the determination of the Strouhal number. There may be
mentioned, for example, the p apers by Strouhal, Blenk,
Fage, Duncan, and others. The problem is to determine
the vibration frequency as a finction of the-velocity.
Fu:idamentally, three methods are emp loyed for this purpose:
The first is the acoustic method by which the intensity or
-p itch of the sound of thin streamlined wires in the stream
is measured, since it has been found that the vibration of
the wires is due to the periodic shedding of vortices from
it. This aethod was employed b y Strouhal and later by
31enk. A difficulty should 'mere be pointed out which un-
avoidably leads to an error in the results; namely, the
requirement of very this, wires. The method requires using
very thin. wires in streams of verb- high velocity and sep-
arating from the general sound uroduced that sound emitted
by the wire - considerations which.lead to a very compli-
cated setup including various sound analyzers. The test,
moreover, often becomes very complicated if any external
body err!its a sound of the same type as the wire. The sec-
ond is the thermal method, using the well-known hot wire
anemometer; this method being the one widely em-cloyed in
English and American investigations. In the flow behind
the body is placed a very thin :Heated wire which, under
the action of the variable flow veloc i ties, changes its
electrical prop erties., from which `he frequency of vibra-
tion can be determined. Finally,.the third method is
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that of measuring the fre quency of th
the behavior of various bodies placed
silk streamers, vanes, and so forth.
fundamentally, were obtained the data
i.-ambers for various bodies.	 She shall
obtained by different authors.

e vibrations from
in the stream -
By these methods,
on the Strouhal
present some results

Plate

Fage (reference 6) investigated in detail the floe
behind a plate and obtained the results given in the
table below:

Strouhal Number .at

for flat

Various Angles

Plate and Airfoil

of Attack

------ -------------- , ---------------^
^

------
cx Plate	 I Airfoil	 i

^90 -0.146 0.15
60 . i.5	 ' .154
50 .ice .15
45 .145 .148.
40 .148 .157
30 .153	 I .15
2G .164	 I .152

The measurements were made by-the method of the hot-wire
anemometer. The mean value of the Strouhal number of the
plate is e qual to 0.148 for a range of angle of attack of
30 to 90	 Blenk (reference 7) gives for the p late St = 0.18
where

St = 11 s i =: a

Cylinder

In the case of the cylinder the results of acoustic
measurements only are available in the literature, with
the single exception, of the work of Relf (reference 8),
where the results frorL different methods of measurement
are combined and a curve of S t against Re is obtained
(fig. 2).	 According to the results of kelf, for the
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cylinder S t = 0.18;	 but according to Blenk S t = 0.207.
Strouhal gives, for the cylinder, a value which agrees
with that . of Blenk.

Some further re~.ar'•:s should be made with regard to
the Reif curve (curve II, fig. 2). The numerical values
are not of s-oecial interest because they include only the
two extreme points of the curve and at the stalling por-
tion, two or three measurements that disagree with each
other are given.	 A co.rparison, however, ,-rith the drag
curve (curve I) confirms the rell-known fact in aerodynam-
ics that the frequency of the vibration. is associated with
the width of the wake and the latter, as is known, depends
in turn. on the posit io -n of the p oint of se-oarat ion of the
flow at the cylinder. The -ooint of seuaration at Recrit
recedes sharply and narrows the wake and therefore shar-ply
increases the frequency of the vibration so that if the
narrowing of the wake is not taken into account and every-
thing is referred to the diameter, it is -oossible at
Recrit to obtain a discontinuity of the Strouhal number
as shown on the Reif curve.

Airfoil

The p apers of Fage, Blenk, Duncan, and others are
concerned with the investigation of the Strouhal number
behind airfoil sections. The Reynolds dumber in these
pa p ers does not exceed a value of the order of 200,000.
The results of Fa.ge, after reconloutation with reference
to the p rojection of the chord or, the -p lane per-oendicular
to the flow, give a value S t = 0.15 -for aw = 24 0 -900.
These results are shown iii the table above.

The same results are ortained by Duncan from his
measurements with a detector.	 ll:e investigations of Blenk_
gave for wing profiles the value S t = 0.21.

Summarizi..:E; all the above results, the follo:ving con-
clusion may therefore be arrived at: The results of direct
measurerner_ts of the vibrations of the flow give a Strouhal
number for the plate and airfoil equal approximately
0.148 to 0.150. From acoustic measurements for the cylin-
der St = 0.207,	 for the plate St = 0.18 and for the
airfoil S t = 0.21. From these measurements one important
conclusion is derived; namely, that the value of the
Strouhal number, taken over the middle range of resistance,
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practically hasthe same value for .all bodies. This very
important fact greatly facilitates both the investigation
of the fundarrental characteristics of buffeting and its
practical elimination.	 The extent to . which these two
.roues of values of St correspond to actuality will be
considered in detail in what follows.

The region of propagation of the disturbed wake is
no less im-oortant for the -problem of buffeting.. 	 The brob-
lems associated, with the wake have beer, extensively treated
in the literature. The fundamental method em-p loyed in ob-
taining the results is that of measuring the total head
with a pitot tube, a boundary point of the wake being con-
sidered a eoint at which the dynamic - p ressure no longer
varies along th- hor ial to th,, direction of thQ velocity.

The curves of figure 3, taken from the -p atp er by
Petersohn (reference 9), show that the downwash.argle be-
hind the wing increases u p to aw cr and then with increas-
ing angle of attack begins to decrease ra p idly and at a
certain defii_ite angle of attack entirely vanishes. 	 This,
as will be shown beloti^, is of great imp_ ortance in the prob-
lem of buffeting.

Although the width of the wake as obtained from the
dynamic p ressure measurements is satisfactory,to some ex-
tent, for a number of problems arising in practice, this
is far from the case as regards the problem of buffeting.
The curves given in the pan_ er of Iiuncan (fig. 4) show that
the tail vibrates strongly beyond the tvaka limits obtained
with the usual pitot tube. The dotted curves in the figure
show the sake bou dart' behind the body obtained with the
pitot tube and the continuous lines are those of equal buf-
feting intensity, that is, the lines for which the ampli-
tude of tail vibration has the same value.	 If, for example,
over the entire line 1, the value of the amp litude is taken
equal to unity; then at line 2-it has a value by only 30
percent less titan on the first.	 Iii general, on an actual
airplane the tail g ill alwa-.-s be, at angles of attack of
the wing above the stall, ir. the region of influence of
the vortices shed from the wing.

!I.  ACTION OF THE WAKE ON THE TAIL

We assume that in the wake behind the wing is situated
a second airfoil. The question arises how an airfoil so
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situated will behave, what loads it will experience, and
what motions it will execute under these loads. The
ans+rer to tiiese questions is fundamental in the theory of
buffeting.	 It follows immediately from the assumed vibra-
tory character . of the wake that at each point of the region
behind the wing the velocity, variable with respect to ti.-,..e,
gives rise to vertical velocity components ahead of a tail
set at variable ankles of incidence. The latter give rise,
naturally, to variable forces and vibrational motion of the
tail.	 To solve the problem of buffeting, it is therefore
necessary to know the fundamental parameters of these forces,
that is, the frequency and anlplit.ude. Ii.e oroblem of un-
steady motion of a wing in a disturbed flow appears so com-
plicated that an attempt to solve it in its general form
holds forth little proiaise at the present time. 	 It is
therefore necessary to make a number of assumptions by
which the problem may be schematized ;without impairing; its
p racticality. We shall assume that the stationary condi-
tionholds also for the case of buffeti--L,; that is, we shall
consider that the general motion of the tail relative to
the flow may be subdivided into a large number of time in-
tervals within, .which the :aotion may be collsidered as steady.
Other ,:ise expressed, at each instant of time the aerodynamic
forces are determined by the Joukowsky theorem. This is
equivaleiA to the assumption that the lift curve of the air-
foil will remain the same as for steady motion. From the
assumed nature of the disturbing forces, it follows directly
that their maximum possible value is determined chiefly,
not by the Make itself but by the wing subjected to it. It
is known tLat the lift on the wing may be increased only
up to a certain limiting value Cy max characteristic of
the givell 7, ir_g section.	 That is to say, an additional angle
of attac> arising from the vibratioaal character of the
snake may increase or decrease the lift of the tail surface
depending on rrnether or not the total angle of attack ex-
ceeds the angle aw cr . By taking for the amp litude of the
force the value corresponding to Cy max we include the
most dangerous condition, the elimination of r!hich automat-
ically assures safety- in all the other cases. We shall
therefore assure that under forced vibrations, the value of
Cy max of the tail remains constant. This assump tion is a
direct canseq-.ience of the assu.::ption of the stationary con-
dition of the flow.	 It follows that the ci,.aracter of the
motion will vary greatly, dep endi:i on 1 Nether the tail op-
erates below or above the stall region of the lift curve.
Ia the latter case, as will be shown belo •.i, the vibrations
will be unstable.
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Ne shall take a very simp le examp le - the case of
purely bending vibrations. From the theory of flutter
it is known that such type of vibrations -..:7 ill always be
damped, the -,ing itself acting to damp the notion. The
case is otherwise if the ring vibrates in the range of
the lift curve above the stall. 	 Consider the schematized
lift curve (fig. 5).	 Let the tail surface :Hove from any
p osition A to , the -oosition B with any velocity.	 The
relative velocity of the air will then be opposite to the
direction of motion of the tail surf?.ce.	 The resultant
flo, velocity formed of the sum of the horizontal and
above-mentioned relative vertical velocity will then form
a smaller angle ..ith the tail surface than before, that is,
if the tail initially was at an angle of attack a.- then
U the course of its motion to the p osition B the angle
of attack is decreased to the value cc,. But in this case,
as is seen from the curve, the lift force increases, that
is, is directed along the motion of the tail. 	 The same
result is obtained for the motion of the tail to position
C. Thus the tail surface, operating in this range of the
lift curve, becomes unstable .a.nd hence t_-,a amplitude of
the forces is of importance for the buffeting problem only
in the range below the stall, since in the range above the
stall the vibrations will diverge iidependent of the magni-
tude of the forces. It can be readily shown that the dan-
ger of this ts^oe of buffeting for the airp lane is real.
It is known that the down:^ash angle of the flow above the
stall decreases with increase in the angle of attack of the
Ming and at a certain angle of attack entirely vanishes.
Tile disturbing wake, traveling in the direction of flight,
immediately brings the tail surface beyond the stall be-
cause rt cr is somewhat lo ,>rer than avr cr,

Tie shall consider the sim p_ le case of t'Le disturbing
forces acting according to the harmonic law. 	 It should
be noted that the case of periodic dist-arbance forces is
the most dangerous of all possible cases, since such forces
may Live rise to any am p litude of vibration and bring the
tail into a . reso.:a_,ce condition.	 From, t•tlis .o_oi-nt of . , view
it seems pro p er to start o ,,-, r consideration of buffeting
with the case of parr:>onically acting forces as the simplest
of periodic forces.	 We, therefore, shall set

AOL = A si n COT

where da is the increment in the angle of attack produced
by the wake ahead of.the tail; and A its amplitude.....
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Then

GP = ^Cy A sin CUT p t V2 dx
0a

or

ac
dP = --y A sin w -r p V' 	dx	 (1)

as

With the above assumptions, the equation of motion can be
very simply set up.	 It is clear that the equation will
be linear nonhomogeneous, its left side being similar to
the left side of the equation of wing flutter (reference 10)
and on the right side will appear the distributed load due
to the disturbing forces.	 On this basis we shall consider
a fe',; examples of possible cases of buffeting when the tail
operates below the stall.

Case of Purely Bending Vibrations

The equat-ioii of motion is of the form

a_y \	 32y
	

acy	 r	 \ay	 Cv
l\Ei - 2./1+ m(x) 	 + -	 p ti t(x^-- = Ap-- t(x) V2 sin(L)T(2)

ax` 	 ax	 aT`	 a a	 a 	 as

This is the usual equation of the forced vibrations of a
be 	 of variable cross section with loads uniformly dis-
tributed along the span.

Let EI	 constl,	 m(x) = const 2 ,	 t(x) = eor_st 3 and set

ac	 aC
al _ --^ P ^ k ;	 Ap	 t

as	 as	 .

The equation will then assume the simple form

4	 "'	 g
EI a-4 + m a° + a l v aY = 1 V sin !^1T	 (3)

a x	 aT`	 aT

The integration of the nonhomogeneous and homogeneous
equations meets with the same difficulty; namely, the
determination of the functions fn(x) of the problem by
which the solution of the nonhomogeneous and homogeneous
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p roblems is develo p ed in a series of the form

r-,

Y = ., fn(Wn(T)	 (4)

where f(x)	 are the functions characterizing the form
of the vibration of the tail surface and N(T) gives tie
change in deflection with time. This is the usual method
of Poisson for solving a.linear partial differential
equation by assumint, a solution in the form of the product
of two functions,each of which is a function of only one
variable; namely,the time and the position on the beam.

We shall rewrite equation (5) in the form

where

Ely IV + r•iy + a 1 Vy = k 1 V^ sin WT	 (3' )

'Y	 L

y 1 V = O y f	 Y y •Y)	 y — ay

ax 4 	 0 	 DT

Its general solution is of the form: y-= yi + Y. where

y l is the solution of equation ( 6 1 ), with the right-hand
side set equal to zero and A the particular solution
satisfying the equation.

Let
yl = f(x) QT)

Then, as is known, the homogeneous equation corresponding
to equation ( 3 I ) breaks up into two equations of the form

yls - k4 f = 0

and
. a V ,^	 a

t + -1-- 5 +	 0
m

where

i^4 _ N2 m
P: I

The integral of the first of these equations is

f(x) = A l cos kx + B 1 sin kx + C 1 cosh kX + D1 sinh kx (5)
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and of the second

s( T ) = e 
XIT 

(A O - ' cos PT + B o sin pT)	 (6)

where )( = 1 aCY p V ; and p is the natural frequency
2m a a

of the tail.	 It is seen that for -oositive values of 
ac--y
E) s

the free vibrations are dam-oed and for negative values -
t-hat is, for at > at c 	 they are not damped.

The coefficients of exoression (5) are deter-pined
from the boundary conditions which they must satisfy;
namely,

for x = 0,	 y = ay = 0
ax	 i

Y

(7)
^	 a 3y =o;

x = l	 -- _ --
D. 2	 ax 3

leading to a transcendental equation. of the:form

cos k^ cosh kl = -1	 (8)

from which are obtained the following values of k1
characterizing the frequerncies of vibration of the beam:.

k l l	 kLL	 k3Z	 kYl

1.875	 4.694	 7.885	 10.96

It is necessary to ooi:A out one a.ssum-otion which was
made in the above discussion; namely, that the modulus of
the velocity was equal to the velocity at infinity V.
The error involved is of the order of the square of a small
value (0`a), This assumption_ will also a_ -oly in what
follows.

The -oarticular solution of the nonhomoger_eous equation
is sought in the form

Y', = ^( T ) f(x)
	

(9)

We set
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c^C
Y pt V

m	 a1V	 as 	klaL = -	 c = --- _ --------; k o
EI	 EI	 EI	 EI

Equation (3 1 ) then becomes

f IV I + a n f(A F+ cfj = k o V ` sin WT = p o (x,T)	 (10)

The right-hand side, in general, is also a function
of the time and of the coordinate of the beam axis and,
as is known from the general theory, it may be assumed in
the form of a product

P O (a,T) = f(x) H(T)	 (11)

Substituting the above e quation in (10) -.nd dividing by
f(a), we obtain

	

aj + C b + k4^ = H( T) = COLSt sin CUT	 (12)

where the equation f IV -
 k 

4 
f = 0 was made use of for

determining FIV.

Set t ing

t = A cos WT + B sin WT	 (13)

y 

Te obtain	

yy
S = - Aa) Sin CUT + BW COS WT;	 S = - 

A0 
COS (.UT - BW 2 

sin CUT

Substituting (13) in (12) and equating the coefficients
of the sine and cosine terms, re obtain the system

-a l A W 2 + dB w + k 4 A = 0

	

j	 (14)

-B a2 w2 -
 CA w + k 4 B = Cons t  = h j

Or

A (k 4 - a„ CU 2) + BcW = G ,

whence

A= ---=---hc w --------+

(k 4	 a`(l)2) 2 + C`W2

k4	 2

h(k
4 	 2
- a„ w )

B -_-___--

(k
4 

- a. 2 W 2 ) 2 + C2W2
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We assume

A= U sin S,	 B= U cos S

It is then re,-dily seen that

U = 3-A + B a	 --------- -------- --	 (15)

/(-k- — a, cl
2 

) 2 + c2(L12

whence

y  = f (x) U sin ((A)T * + S) _ -------- f(x)h-- - ----- --- sin (W'r + S) (1 b )
r--------------------

d	 c ^	 2

The maximum deflection of the tail will occur for

k 4 = a2(0

We shall then have

Y2	
_ -f(x) -h _. f(x) h	 (17)max

'/ c ` !x3 2 	c W

-Remembering that

C4	 k2aL=f-^
q

we obtain

Y2

	

	
= f(x) -h	 (fx)-n^	

(18)max-4--4

	

c -_-k -	 c k	 E I

	

---	 ma 2

Since h = const 1 V ` ;	 c = .Consto 57;

We shall have

V
max _ const f (x) --_---	 (19)

EI
^m

that is, the value of the deflections in the case of res-
onance is determined not only b ;;r the elastic properties
of the tail out also by the velocity of the flow. For
this reason, it.-Ls not possible,'in general, to speak of
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the danger of resonance in buffeting without specifying
the velocity at which this resonance occurs.

The same result may be arrived at much more simply
by applying the method of Galerkin to the solution of
equation (3). We shall first make two reservations which
follow immediately from the nature of the problem and
which very much simplify it. In the first place, we are
not required to find the complete integral of the equation
of motion for the simple reason that the buffeting occurs
at below-critical velocities for which reason the free
vibrations ,rill be damped and ;g ill therefore not directly
concern us. We shall, therefore, seek only the forced
vibrations of a frequency e qual to that of the acting
forces.	 in the second place, we shall not concern our-
selves with the investigations of the tail vibrations of
the hir,her harmonics, this case being of no practical
interest since it is then necessary to ta'_ce into account
the formation of nodes.	 It is known that the frequency
of the vortices of actual airplanes lies within the range
of natural fre quencies of the tail surface and for this
reason the attainment of flow frequencies equal to the
higher harmonics of the tail surface would require in-
creasing the velocity almost three times, s°.hich in the
given case is p ractically impossible.	 We shall, therefore,
consider the form of the forced vibrations as coinciding
with the form of vibration of the fundamental frequency.
The equation of vibration of the tail with variable cross
section and rigidity for the case of purely flexural vi-
brations is

62	 ^^	 ^

aC dx 
\

E

	

 ox	
6C.	

a T`'

+ ^a p Vt(x) I = Ada P V''t(x) sic w (3')

Assuming that the functions f(x) are already '.mown, Sre

seek, according to the general tb.eory, a solution in the
form of the prcduct

y = f ( x ) ^ ( T )

Substituting ir. equation (3 1 ) and a pplying the method
of Galerlrir., we multiply both sides of the equation by
f(x)dx,	 integrate over the entire half-span, and obtain

l

^ ( T	 d^ (EId f Î f(x)dx. +^ r m(x) f ` (x)dx
rz

i dx ` \ dx`/	 f
0	 o	 V

+ aCY PV[ I t(x) f ` (x)dx = Aavy P V 	 (20)
as	 J	 as

0	 0
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It is readily shown from the boundary conditions which f(x)
must satisfy that

I	 I

J dx2 ( El 
dd (X) )f (x) dx = f EI (d'

0	 0

	 )'dx.

\ 
Integrating by parts the integral on the left-hand side

I	 I	 I

J dx2 (El dx ) f(x) dx = dx (EI dx 1 f (x) I — J dx (El dx2 dx dx.
o	 JI	 0	 0

The first term, on account of the boundary conditions, is
equal to zero. Integrating the second again by harts, we
r)bt - i.n

1	 I	 1	 1

(fdx 
d 2 f df	 d2 f d f I	 d2 f d z f _	 (d2f

d (E1— dx = — EI — --	 EI 2 ; dx — EI 2 dx.dx° dx	 dx- dx +	 dx dx°	 dx
0	 0	 0'	 0

Setting
I

n

1 EI dz /

/ ` 

dx = a;

o 

I

f m (x)f2 (x) dx = b;
0

	

1	 1

day 
p f t(x)f'  (x) dx = c, A dS c pV2 ^t (x) f (x) dx = d.

	

0	 0

equation (20) assumes the form

a^-(T)+ b c+cc =.d sin wT;

	

E -} b E b E = b sin wT.	 (20')

Assuming

c=A cos ut+P sin wT,
we obtain

—Aw2 Cos W IC —Bw '12 sill wt— b A w sin wc+

B w cos w2 -I---	 A Cos w2	 B sin wt =	 sin wT .

Equating the coezficients of the cosine and sine terms, we
find

A 
b 

w+,&(b 	 d	 (21)

a_ 2 d
w

b	 b
B = - a
	 2	 C 1

( b — w21 } ( b w

2

/

A Cb-
w=1-}-b Bw =O;

whence
d c

b b "'
A=

(

a 	 z , c z'
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Setting	 A — U • Siil	 Coso,

where	 U=VA2 +F32; 	 tgg _._ A
B

we obtain	 y.= f(x)•U• sin (W'C+;).	 (22)

Khere S is the phase angle

f(x)•A C) V 2 ft(x)f(x)dxsin(wi
0

f 1 EI I dx')
J dx	 \ 2	 d a'' pV I t t (x) P dx

	

f
1	 J	 \	 _

	

o 	 f o in (x) f dx	 J In(z) f2 dx

where the expression
1	

r

f
Ej I dx'-')ydx

0	 \
!	 = p „3r

fin (x) f 2 dx
0

gives t -he natural frequency of the flexural vitrations of
the beam at any cross section.

In the case of resonance, we shall nave
I

A
da' P V" f t (x)f (x) dx	 AV f1 t (x) .f (x) dx

yMax —=f(x) ----	 °	 1	 =f (x)	 ° 1	 (24)

t	 dayPV.l t
(x)f" dx 	w ft(x)f2dx

0

j

in (x) / - (Y)dx 	 °
0

But

f 1 El
 (df

dz )?dx

{2
.^ o m J dx

hence equation (24) can be written in thir: form

ymax —f (x)
	 A • V .I ° t (x) f (x) dx	

(26)

f 1 t (x) . f ^ dx
	

J'O1 
El (dx )'odx

fo1 in f (x) dx

J1 m x (x)dx 

W

0

(20)
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For	 EI = const I ;	 m(x) = const,_;	 t(x) = const3;
we obtain

7

f(x)A Vt	 f(x)dx
const fV

max —= --- — --- ---- ---- ---- -- ------ _ --------
-^ -----

Z
(d- f

— 1̂ d	
E

x^_-
	m^aX^J	 ^I

o	 f dx

that is, the same result is obtained as by the usual
classical solution by the method of Poisson. The simplic-
ity of the obtained formula is such that no explanations
with regard to the value of the individual p arameters are
required.	 It is ire-oortant to rote only one point; namely,
that in the case of resonance the values of the deflections
do not depend on the aerodynamic properties of the tail
itself. This result follows from the assum-tion of the
stationary theory.

Case of Purely Torsional Vibrations

In the case of purely torsional vibrations, the above
lire of reasorinL-_ remains exactly the same as for the
purely flexural vibrations. We shall -_resent only the
final result.

. The equation of motion for torsional vibration is of
the form

a-( GI 10^ + I M (2 0 -

a x \ p ax	 dT`

Setting

aCME 2
 

a^	 t / 3	 xo	 r	 aQ--
a
- P V t  8 + d ( 4 - 

t
- - ---

C --) a 7
a	 j	 \	 ? 16--- ME ME

f	 as	 ^

J,(x) sin w T	 (27)

9 = M(x) Y(T)

and applying the method of Galerkin, we obtain

0-- Y1(x) co(x)dx sin ('JOT + E )

9 = cP ( x) -------------- --------------------------

v/ } f G I dcc"^o	 p^dx/

^2
+

(28)

---- ;------------------------1 -------

d-x - as	 p V2 t ` cp` dx - co ^f 
IM 

D2 dx^

0
(29)
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where	 Z	 /	 \

r	 c^	 C)CmEVta^ 3 - xo - _ T1__ I 	 ix
d a 	`4	 t	 ^^ C ra,

16---^
as

As is seed from formula. (2)), the aerodynamic character-
istics of the tail surface itself affect the character of
tl!.e vibrations.	 In the first place, there is a decrease
i_. the r:atural frequency of the vibrations by the amount

l

p V^ y--i.?F 
t` ^^` CL x

	

o	 a ^^

f C

	

J((	 I rn -P d x

0
that is, t here is a. dro- also in the ve-loc i4L.	at which
resonance aonears.	 In the second p la.ce, iii the casa of
resonance itself the deflectioi:s, in contrast to those of
the flexur=i1 vibrations, will clanend on t ' ie aerodynamic
characteristics of the taii section, a.s is shown by
t,quati.on (21).

III. THE CASs OF TWO DEGRMS S OF FREEDGM

As is know._- from the theory of wing .vibration, vibra-
tioais of a wing Tith oiie decree of freedom are impossible,
the flexural vibrations necessarily s;ivi:iz, rise to tor-
siorial vi.bia.tions, and vice versa, that is, the tail sur-
face vibrations will always be torsiorial-flexural. This
is due to the noncoincidencE of the points of application
of the elasticity and inertia forces.	 It is a. question
onl of trc relative iz:ioortance of each of these ty p es of
vibrations iii the &ezieral system of vibration.	 We shall
therefore consider the motion for the cas .- of two degrees
of freedom, that is, simultaneous vibration in torsion
and belidiiig.

The system of equations is of the _ oria

L	
G	 ^ h

	CEI (x) a	 J + r^(x) ^a - MC7

dx 
\\\	 ax	 a 	 aT"

dC	 a.j
o

t /3	 x^ a9	 lay
P V 	 +	 (	 -	 - - - - = b(x) sin CUT;	 l3G)

af(	 L	 V \4	 t	 8T	 V aTj
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C, 	
ail\

J - mC^ a-
Y
 + I a`6

Ci x\ 	 ax/	 OT	
m aTa

ti^3	 xo	 E)0	 1 ayGC mE ^2t4 A +	 _ _ _ _-	 _
aCC	 f'	 V^ 4	 t	 a^•	 ^aT	 V aT	

N(X) Sin WT 	(.31)

I 	 ^	 16--'^ E ^

au
where

ac"	 2	 aCmEp(^) = A-- p V t(x);	 ti(l) = A----p V t (x)
ax	 C

Th is system of t vo linear -oartial differential ecuations
,,a l be intez,rated only aoproximately. As has already been
pointed out, the difficulty of integrating nonhomoLeneous
equations is tiie s p me as that for homogeneous, since the
problem in both cases reduces to i'ilidinf^, the functions
y(x)	 x)	 and ex-oanding them in absolute].?- and. uniformly
ccnverLing series in eaclh case.	 Tihe solution of this sys-
tem, we shall seek, in the form

y = f(x) ^( T ),	 0 = r.,)(X) *(T)	 (32)

Subst itut ing these functions in the equations and multiply-
ing tae first by f(x)d.x,	 the second by p(x)dx and inte-
&rating from 0 to 1,	 we obtain

a	 r a,	 + a W f a W+ a	 + a i. = a 6 J. n (L) T11- 12-13	 14	 15	 16

	

?	 (33)

b 1 011 + b 1 j + b 1 3^ + b1 *^r. + b 15 ^r + b16 = b Siit (LIT I
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where

r	 t	 Idzf z

all	 E/ dx-' dx;	 a12 = !n (x) f2 dx;	 a13 = — f ma f (x) dx;

0	 0	 0

23

t	 t

a14 --

dc	 dc	 3
 
d y P 

V2 
f t^ 

(x)f(x) dx; a l, _— dy P V f t2 C 
4

— t°) (x)' f (x) dx;
0	 0

I	 1	 1
2

alr = dV p V f t f z dx;	 a — .1 
f 

p ^x)f (x) dx ; b ll = f GI, (dx dx
0	 0	 0

(
1 	 11	 1

	

b12 J ^m^ f (x) dx ;	 b.= J 1 z dx ;	 b	 V z f d C,,,E t'- 2 dx;
0	 0	 0

I

b l. , _ — p V
 f dCmE 

t3 /3 — x0 —	 ^z dx;
0	

coot	 4	 t	
16 

dC,,E

dx

	

1	 1

b l ';  P V f d x EE 
Of (x) Y (x) dx;	 b= f (x) (x) dx.

	

0	 0

We assume

c=Acosw--+BsinwT; y =Ccosvc+Dsinut,

since there is always a phase difference between the
forces acting on the tail and its dis p lacements.	 Sub-
stituting these expressions in the obtained equations,
we shall have

all (A cos wT + B sin w,) + a l ., (— w2 A cos wT — w 2 B sin wT) +

+ a13 (—w2 C cos wT —w 2 B sin w:)+ a,, (C cos wT -{ D sin w2) {

+a,;,(—wC sin wT +w D cos wT) + a 1 , (— wAsinwT + w B COS 
wr) =asinwT

b I ,(000Sw,+T)sinwt) } b 12 (—w'A COS w;—wzBsinwc)+

+ b(—w'- Ccos wT -- ale D sin wt) + b l , (CCOs wT +D sin wT)+

+b j; (—wC sin u),+wD COS wT)+ b l , (—A(o sin Lu-,+wB COS vc)—b sin wT.

E quating the coefficients before the same functions,
we obtain

A(a„—a 12 (0)+B a l , (t)+C(a 14 —a,sw z)+Da l, 0;

— A a l , w + B(all — a12 w`) — C a l , w + D (a,4— a 13 w 2) = a;

— A b12 w2 + B b l ,; (o + C ( b l l — b I3 w2 + b l4) + D b,,, 0;

A b, ° w — 9b12 .2— C b l6 u) + D (b l l — b13 w2 +bla) = b.
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whence

A=ol;	 B= 2

C= 3	 4a	 D= 0

where

a ll — a,z w'-

--- a,, w
a,, w	 a14 — a ,:,  w'-

all	 - alt w 2 	---- a, " w
a,:, w
a,4 _a13 w2

^ — -- b12 w b,, w	 bl, — b ls w2 + b14	 bl, w

b lu w — b,.> cu"-	 -- b l. , w 17 11 _ b13 w 2 + b14

0	 a,,, w a14--a13w2 a1Gw
_^1— a	 all —

0	 b,w
I V

a 12w2	 — a, w

b	 b13 
w"z +b 14 wI,

a14	 _a13 w2
b

I
.w
u

b	 —b12 —b15cu bl,—b1J w2 + b 14

I a, - a 12 w2 0	 a14 — a, 3 w2 al:, tll

^ 2 ^-

—	
alr,w

_ b l2 w 2

a	 —al,w
0	 bl l — b,;, w 2 + b 14

a14—a13wn

b,;, w

— bl, w b	 -	 b l,, w bl, -- b 13 w' + b14

all — a,, w' alb (U	 0	 a,^ w

03 =

— al. W
-- b 12 w"

al, — a l, w2 	a	 a14 —

b,c w	 0	 bl3 w

a13 w2

blc w _b12 w-	 b	 bl, — b 13 w2 + b14

a ll -- a12 w 2	 al, w	 a14 -- a13 ('02 0

— al, w	 all — a12 w 2 	— al, w	 a
0 4 = _ 

b12 0l2
	

bl, w	
bl, _ b13 w2 T b 14	 0

— blc w	 —bl2'w2	 — bl, w	 b

In the entire discussion above, it was assumed that
the functions f(x) and co(x) are known. Actually,
their determination presents one of the most difficult
problems of present day mathematics. There is a small
number of particular cases for which these functions can
be given in strict form.	 In all practical cases, they
are generally found by approximate methods and the re-
sults later checked by experiment. In the case of forced
vibrations there is one advantage; namely, that for the
determination of the amplitude it is not required to use
the initial conditions without which in the homogeneous
problem the amplitude cannot be determined.

As is known, we seek the solution of both the
homogeneous and nonhomogeneous equations in the form of
the product

Y = f (x)' W.
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For f(x), in both of the above cases, there are a. suffi-
cient number of boundary conditions, but for 	 in the
case of the hor,o^.,eneous -problem it is necessary to specify
initial conditions and in the case of the nonhomogeneous
p roblem	 is entirely determined by the disturbance
forces.	 Thus, multi p lication of the right-harid side by
any constant factor does not introduce any complications
in the deterriination of the amplitude,and the computation
can always be carried through to the end.	 Thus, it is
;p ossible to take Af(x)	 for f(x),	 since A can enter
in the coefficient ^.

As a first approximation, we assumed that the form
of vibration of the tail in the flow is the same as in the
case of vibrations of the same surface in a vacuum. On
the basis of these assumptions, the buffeting computation
of the tail was made with the data p resented in the book
of E. P. Grossman (reference 10) on the assun'-otion that
the wing chord wa.. equal to 3 meters and the maximum ankle
of attack tliat could arise fro.i the eff :ct of the was
equal to 5 0 for vibration with two degrees of freedom.

The curves (figs. o and 7) of the change of maximum
deflections and torsional ankles theoretically obtained,
show the interesting characteristic which is observed also
in p ractice; namely, that the forced torsional vibrations
start only when the frequencies of the disturbiLE forces
approach the frequencies of the natural flexural viorations
of the tail, while the flexural vibrations strongly iii--
crease with i_icrease in the flow velocity.

In the light of the theoretical r salts obtained, it
is useful to recall the follo;vin L, fact.	 Ia consi.deriag
the failure of the tail of the JU 13, the-English investi-
gators arrived at the conclusion that the failure arose
from the flexural stresses.	 T! , is is iiidirectly confirmed
by the fact that the accident was caused by buffeting
since, as shown b-y t_^e coi>>utations, in buffeting the
flexural vibrations predominate.

IV. EXPERIMENTAL INVESTIGATIWTS OF ^UFFETII?G

IN TPE LABORATORY AT HIGH REYiMLDS YUMDER

Buffeting investigations were carried out in the wind
tunnel on a, model of an elastic tail placed in a disturbed
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flow 'behind the wing.	 Tihe tests were condi)cted both on
an isolated wind and on a combinatioi, of ,wing and fuselage.
The model tail surface was a single suar airfoil of sym-
metric section.	 As May be seen from the sketch (fig. 8),
it is assembled ii several sections in suca a manner that
the entire load is taken only by the spar with the skin
taking; no load.	 the model was, moreover, designed in two
variants which differed only in the material of the spar,
one bei_ig of steel and the otilier of duralumin. This model
desibn was cLosen with a view to the requirement, not only
of fixing the frequency of vibration but also of determin-
ing tze order of aerodynamic loads acting on the tail sur-
face. As has already been pointed out, the investigations
of foreign laboratories suffered from the fundamental de-
f(^ct that they made use of P. detector which having elastic
p ro p erties very dissir:ilar to those of the wing could not
yield any inforration with regard. to the load.	 In our
case t-his problem was solved, though very approximately,
without disturbing the accuracy with respect to the fre-
quencies.	 This is enti.rel,^- understandable since tails
working in the region belo-,w the stalliri ,̂ , velocities will
have no free vibrations, but will accurately follow the
forced frequencies.

The dimensions of the tail surface are indicated on
figure 8. The fuselage was schematically represented by
,a 	 board 30 millimeters thick which was attached
directly to the wing formiiib a right-angle joint.

In order to include the basic p ractical operating
conditions, five such board fuselages were constructed
by which settings were obtained to correspond to the angles
of attack of the wing of 0. bo, 10 0, lb(-) , and 20 0 .	 Moreover,
such fuselages, not having; any elastic connection with the
tail, made -oossible the determination of only the purely
aerodynamic effect of the fusela&,e on the tail.

A sk-etch of the setu p is shown on figure 9. The ver-
tical -oosition of the tail •: as chosen after a s p ecial test
in 7,11aich the a...-Dlitudes of vibration of the ti ,) of the
tail were observed for various vertical p ositions of the
tail surface. The plane of the upper edge of the wing
gave the maximum am p litude. This a E;rees entirely nr ith the
results of Duncan and the tail r•-as therefore .set at the
level of the upper edge of the wing.
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Test Procedure

The object was to determine the frequency and ampli-
tude of the tail vibration.	 The problern of the choice of
any particular method of obtaining the fundamental pnrarn-
eters de p ended naturally on the character of the vibrations
themselves, that is, whether regular or irregular, observa-
ble with the naked eye or not, and finally, on the number
of degrees of freedom possessed by the tail. For this
purp ose, the vibrating tail eras observed.by strobosco:aic
illumiliation.	 It was found that by a.corres-oondir,6 choice
of the stroboscope frequency the vibrations could be com-
pletely determined.	 Moreover, it vaas fovind.' that the tail
in the disturbed flow vibrated with considerable amplitude,
the vibrations being ourely flexural uo to a. certain defi-
nite velocity and after this velocit-- .. ad teen reached,
being accom-oanied by torsion?1 vibratiolis. 	 This made it
possible to photograph the tail Curfa.ce and to determine
the max_ imum a:_.olitudes from the film. 	 in this way, rather
sim-o_ le and at the same time, s .).fficiently accurate appara-
tus was chosen for rr.e p s-,ari_..: the fundamental parameters;
namely, the rotoscope for rneacuring the frequencies and
the usual photocra-ghic anoar-atus for the amplitudes.

Results of Observations

The observations showed that at all ansles of attack
of the wing when there was no se p aration of flow the tail
did not vibrate. For the case of an isolated wing, for
examp le, the tail vibrations started at aw 5 aw cr.	 In
this case the tail vibrated at all flo g velocities, in-
creasiihg with increase in the latter, the vibrations being
predominantly flexural. Torsional vibrations arise only
when the frequencies of the flow approach the flexural
frequencies of the tail, there beilrg -:p ractically no tor-
sional vibrations up to this mome_ht, as was shown theo-
retically.

Fi ure 10 shows tbe . curves of frequency against
velocity.	 As may oe seen, the points with s».fficient
accuracy lie on a straight line.	 It should be'noted that
the straight l'i'ne of v a-aAnst V does not pass through
the origin of coordinates. This shows that at small veloc-
ities the law of variation of v with V gr ill be differ-
ent than in the given case. We shall write the equation
of this straight line

v = v o + k(V - Vo)
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where ')o,-Vo are the initial freouency and velocity of
the flow.

Dividing both sides of the e quation by V we obtain

V	 11 0	V

V	 V	 V

from which it is see, that for large values of the veloc-
ity the ratio >>/V is simply equal to k,	 the slooe of
the line. From the value of k, taken from the curve of
figure 10 we compute S t = 0.1. For actual landing veloc-
ities the value of St may be taken approximately equal
to 0.115 - 0.12.	 It is evident that ti_ese results may be
made more accurate .--hen tests for the determination of
St are conducted for a large number of full-scale wings.

On figure 11 is p lotted v /V asainst V. The fact
that the measureaaents obtained. by the strobosco p ic method
qu.aIitatively a7ree with the results of other autzors
lends suj-port to the assumption of full periodicity of
the disturbance forces.behind the isolated wing. This is
a very imp ortant fact for the -oroblem of buffeting.	 If
the forces ,-,ere not p eriodic it would not have been p os-
sible to apply the. stroboscope •rhich o p erates accordi_:g
to the hariloiiic law.	 Logically, i.t could not be expected
otherwise, for with a given wing and at a given velocit ,
that is, for constant condition-s of stall, the time re-
quired for tAhe full stalling process should not change..

-The curves of change of amp litude. with velocity con-
firm the conclusions p reviously drawn since all the curves
show defiiai.te resonance states as !mould be irri p ossible . in
tree 	 case of irre;v-larit3 of the disturbance forces siiice
the natural tail vibrations are harmonic.

Figure 12 slows t'-.e curve of amp litude against veloc-
it,- for aw = 2d	 and at = 0, 5 0; and 10 0 . . The curves
for at = 0 and 5 0 ?re of a character corresp onding to
the general tt_eor^

v
 of forced vibrations. For at = 100

the curve differs s larpl.y from the p receding since the
stalling p oint is at at = 11 0 ,	 It sonears that a change
in angle of attack in the wake behind the wing alternately
brings the wing from the condition above to the condition
below the stall, and this explains the arbitrary character
of the curve.
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Figure 13 likewise shows a sharp difference in'the
behavior of tale curves for at = 0 0 and a t = 100.
Whereas for a.t = 0  the amplitude curve has. its maximum
value; its minimum value is nj = 10 0 . This is apparently
due to the decrease in the amp litude of the forces acting
on the tail as a result of the transition of the tail sur-
face to the conditions beyond the stall. Figure 13 shows
the results characterizing the behavior of the tail be-
hind a wing with larger chord than for the first case,
that is, figure 14.	 For this reason, resonance is reached
at larger values of the velocity. Figure 14 shows com-
parison curves for two tail surfaces with different stiff-
ness.	 These curves show that a simple c'_lange in the
stiffness not only changes the numerical value of the
awalitudes out also sharply modifies the character of the
vitration.	 For this reason, the question of stiffness is
of fundamental importance in the buffeting theory.

An increase in the wing dimensions and in its angle
of attack has a great effect on the alilnlitnae of the vi-
brations. Figure 15 gives the results of tests on a wing of
chord 0.63 meter at a,w = 30 0 (tail with steel spar) which
show that the incron se in the a.olitude with the velocity
follows,ap proximately,the culic law.

Combination of ring and Fuselage

As has already been stated, boards attached to the
wing forming a right-angle intersection were used as fuse-
lages, five fuselages being used to form models with wing
angle of attack of 0 0 ,. 5 0 , 10 0 , 15 0 , and 20 0 .	 This made
it p ossible to include the entire range of practical
angles of attack.

From , the work of a number of authors it has been
established that tie - initial separation of the flow due,
to the interference betReer the r.in, and fuselage often
starts at -a wi;_g an le . of attach of 2 0 to 3 0 in the case
of intersections. ,71thout fairings. We were guided by
these fAts in &oos pg . q ca . a.. number of _angles of attack
for investigation.

When the tests were begun it was found that up to
aw = 15° inclusive, the tail surface does not vibrate and
the silk string shoos the absence of separation at the
intersection.	 Only at aw = 15 0 and at large velocities
is there forced at the wing and fuselage intersection a
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small breakdown region and slight vibration of the tail.
T h is i, s explained, evidently, by the straight line char-
acter of the contour of our fuselage, that is, by the
absence of a -pressure drop in the flow along the fuselage.
Tl.e fuselage and wing having different profiles form dif-
ferent velocity vectors at the same points of space in
tile region of the intersection.	 This leads to a disturb-
ance of the sjnoothness of the flow about the wing and
fuselage.	 In our case, the fuselage, not having any pres-
saire gradient and hence variable velocities along the
contour, does not disrupt the flow at the vy ing.	 We soeak
here of the outer flow, of course, as the bouiid.ary layer
in the region of the juncture undoubtedly increases in
t Zickness in the flora direction, but this, evidently, for
such type of intersections, plays no important part up to
stalling angles of attack. For aw = 200 the tail
vibrates, as in the case of the isolated.wi_.g, in the
range beyond the stall.

Figures 10 to to show the freouencies and amrlitudes
plotted a^;ai,-.st tie velocit y-in co___parison with the same
curves for the isolatad win G . As may be seen, the very
interesting result is obtai:ied that while the frequencies
are not affected by the prosence of the fuselage the
anarlitudes are strongly- decreased. 	 This means that the
fuselage acts as a darling device for the tail. Thus
the presence of the fuselage itself, from the point of
vieiv of buffeting, not only _plays a negative hart, creating
vortices at the intersection but also a positive part in
damping the vibrations.

V. FORCES ACTING ON THE TAIL IN BUFFETING

We shall try to ans^er the question with regard to
the loads to which the horizontal tail surface is subjected
in buffeting. We shall first consider the following simple
problem. Let a single vortex with circul p tion i and with
a forward velocity equPl to the floe velocity move in an
infinite ideal flow about a horizontal tail of constant
chord. Assuming the p?th of the vortox as a straight line,
the scheme will be that shown in. f igure 17

where

0	 is the initial -p osition of the vortex

So the distni'jce of tha tail from the point 	 0 in the
flow direction
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h o is the distance of the tail from 0 along the vertical

5	 the running coordinate of the vortex

The vortex will, of course;, induce at the tail the
velocity vector z^V which will vary both in magnitude
and direction in the course of motion of the vortex. It
is re q uired to find the lift force on the triil in this
case.

She consider the ex-oression for the lift in the gen-
eral case of forward motion. The lift, ^s is known, is
given by

x
prrt	 d(Va.}	 c	 2:^	 u(R)d^

P = -4- t--T- + 4V	 a -	
7(

	 /	
-	 (34)

L 0.	 ^'	 . - Nq) y + t (X - F 0
xo

T°here u(P)	 is the intensity of the vortex sheet s p ring-
ing from the trailing edge and generated by lines of
velocity discontinuity.	 In the case of nonstationa.ry
motion the circulation  at the tail varies and therefore,
in order to satisfy Kelvin's theorem of the constancy of
the circulation in time, it is necessa.ry that a vortex
be shed with circulatior_ equal to the increment in circu-
lation about the tail but of opposite sign. 	 Schematically
this may be represented as sho- ..7n in figure 18, where

xo is the starting point of the nonsteady motion

the distance traversed after the start of the motion

S	 the running coordinate

Formula (34) thus consists of two parts: namely,
the Joukoti^sky terms and the tor::s due to the nonstationary
character of the motion. As shown by Wagner (reference
11), the value of the letter integral is small by compari-
son ,: ith the remaining ter:: s and 4,ny be neglected without
too great an error. Moreover, it always acts to reduce
the total lift force so that neglecting it rill be on the
favorable side as regards the ^ing strength.

	

Ij,l general, u(p)	 is found from the solution of an
integral equation of the form
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x

Vsina= ^ L1±x-_^ u(A)d^
Tr	

1Y - S
Xp

It rem	
d (Va

ains to consider the term -- --	 We write it
d 

in the form

d(VC0	 da	 dV

T

Assuming the velocity of the flow constant we obtain

V d
r

d T	 dT

The lift force will then ue

0 4	CSTp	 ^
=	 j	 ;, + d ^T2

d

C! mIt is necessar-r to determine 
dT	

from a consideration

of f igur e 17 we may writ e

V	 11 -(S- —0 -Sri + ',102

bu t

G V = - T - _= ---	 ^___--- _=_	 (37)
2 rr r 2.r ^S 0 - S) 2 

+ ho'^

Substituting the above in	 (36)	 we obtain

r So - 
S (38)r	

2rrV (So - S)2 + hoe

whence

[-2(So- S)2-(So-S)`-" -hoe] dT
d  P'
aT 2•1-rV so 	 1 h2j"

out	 a" = V .
a 
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da = T	
(So —S)2 — 1102	

(39)
d 	 2TT C( S o — S) + ho J

Since we are interested only in the maximum value of the
lift force we shall find the value of S for which

will be a maximum for which purpose we differentiate
dT

( 30) wi t i respect to S denot int, dT by a

da

ds

i —[(S o —S) 2+h o ] r 2(S o —S)+2 [(So— S) 2 +ho 2 12(So—S) [(So—S)2—ho2^

1	 }	 4
2TT	 [(So—S)`+h^^]

Equating the numerator to zero wo obtain

C(S o — S) 2+h o 2 l2 (S c —S) =[ (S o— S) 2—h o 2 1 4 [ ( J o—S ) 2+h o 2] (S o— )

(S 0 —S) 2+h o 2= 2 (S o—S) 2-2h 02

so— s, f /3h 0 	(40)

Substituting (40) in (39)

il da; .	 r

\d T / max	 16TTho2	
(41)

But P is connected with the angle of attack by the
following expression

r,	 (SO— S) 2+h p2

S o —S

whence

	

87
T= — Vh c a	 (4-3)

1

Substituting the above in (41)

cia'^1	Va 	 (4.n)
dT%max	 2,f ho

The expression for the Maximum lift force is written as
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P-	
- a t (4V 2 a + tV --1	 Vcc

2,/T, ho

Pst \1 +

t
prrt V 2a + - 1 - p Tt V 2 a8,7_3ho

1 t 	 (46)
8 v/3	 ho'/

where i st	 is the lift for steady motion.

The result is thus obtained that the lift of the
tail de--)ends on the distance from the vortex lines. The
nearer the tail is to the vortex lines the greater the
lift force o_-_ it for the same angle of attack. 	 It is
clear that the case ho = 0 has no immediate physical
significance as the tail can never be situated in this
position in view of the fact that the tail in turn induces
at the vortex a velocity which causes the vortex to deviate,
a fact which for simplicity we ne ;lected to take into con-
sideration. Figure 1 0, shows the c-,_rves of vibration am-
plitude against the vertical position of the tail. 	 It is
seen that the ma.-imum deviations lie in the plane of the
upper edge of the wing in the flow direction. This may be
explained_ by the fact that the vortices shed from the
upper edge of the wing travel apDro Fimately in the same
plane, a fact which well confirms the assumption made.

On the basis of the obtained formula and the experi-
ments of Duncan it may be stated that the separating vor-
tex travels along a practically straight line. The dif-
ficulty may arise that vortices are shed not only from
the up p er edge of the wing but also from the lower but no
such increase in the arlplitude of the vibration is ob-
tained in the plane of the lot,.er edge. The reason is that
the vortices springing from the upfer and lower edges do
not produce the same effect on the tail. Having oppositely
directed circulations one of the vortices acts to reduce
the d;yn-amic load while the other acts to increase it. The
theorem is 1Droved in ~echanics that for dynamic loading
the defor-mations may attain double the value of those for
static load but for dynamic unloading they can never exceed
the static load deformations. In general the tail may be
loaded not only by the vortices springing from the upper
edge but by those from the lower edge depending on the
angle of ,attack of the tail itself. 	 In the given tests due
to the do;!nwash of the flow behind the wing the tail was at
a negative angle of attack. Hence it would be more correct
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to say that the line of dangerous buffeting lies in the
plane of the edges of the wing if it is assumed that the
vortices , travel approximately in these planes in the flow
direction.

Figures 20 to 26 give the force curves obtained from
the tests: As has already bean pointed out t he maximum
value of the deflections was deter-m'ined by a photographic
camera and from these values the forces were deterrlined

6 Cy
by formula (23). Setting k(x) = A	 ore obtain

r	 `o EI1 d_dx2 	
dx	 __Y pVftf2(x)da	

1

	

y	 m (x) f 2 ( =) d x	 ----\---- ---- — w	 — —,--	 ------ w

	

m	
f rn(x)f 2 (x)dx	 rzf'm( C)1 (x)dxo 

/	 \	 n

	

k ( x) _ - - --------- ------	 --

f(x) p2V J t( x) f(x)aX

whence
Gp = k(x) p V 2 St

where St is the area of the tail surface and ym the

measured amplitude of the tip of the tail. We make use
of nonaimensional coef- icient

	

C = --- AP	 =-( 
x) 100 percent

Cymax p',r2 S t
	 C ymax

The curves show that the variation of the acting
forces with the velocity for all cases considered is sub-
ject to a definite la^:a. The coefficient C assumes vari-
ous values not always regular. This is explained partly
by the fact t1iet a sinusoid does not accurately represent
the actual character of the varying forces which act im—
pulsively and strictly spea_-ing should be represented by
a Fourier series. As may be seen the overloads may reach
100 percent and more depending on the characteristics of
the wa--e and the angle of attac -- of the tail. Theoreti-
cally the overloads can be of any order of magnitude from
0 to 00. ^lk e theory is here important on account of the
fact that it gives an explanation of the causes giving
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rise to these loads since the results of the usual wind
tunnel tests and of the Joukowsky theory do not throw any
light on the causes giving rise to these overloads. A
fundamental factor the effect of which is considered by the
theory here presented is the rate of change of the angle
of attack of the tail. A vortex traveling toward the tail
does not simply vary the angle of attack but does this at
a definite rate which is determined by the magnitude of the
flight velocity, the circulation of the vortex and the dis-
position o? the tail surface relative to the vortex path.
The physical theory concerns itself with the explanation
of the effect of these factors. The infinite increase in
the force for ho = 0 must be considered as the maximum
overload of t'_ne tail surface in this position, similar to
the infinite velocity at the sharp edges in t__e case of
the tiring theory.

0 O ITT 0LUS IG T

We have considered a very sim; lified scheme of a com-
plicated phenomenon which is often a source of worry to
designers and which up to the present .as received no
fundamental solution. In this very simple scheme it was
found that the isolated wing gives rise to purely periodic
disturbances t-,hich can be represented by a simple series
of trigonometric functions. It is shown that the tail too
vibrates periodically with amplitudes increasing with the
velocity corresponding to the laws of the general theory
of forced vibrations in a resisting medium.

Consideration was given to the character of the loads
to w ic'__ the tail surface was subjected in the wa.-e of the
wing. It was found that they are fundamentally determined
by

a) The ratioof t'_--e frequency of the flow to the
natural'frequency of the tail surface;

by The magnitude of the floj.r velocity

c) The vertical position of the tail surface rela-
tive the hying

d) The amplitude of the disturbance forces
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Depending on the character of the combination of al.l
these factors the tail may be brought into a critical
buffeting condition and in this connection the .conclu-
sion ofDlenit erith regard to the impossibility of fa il—
ure of the Junkers Ju 13 due to buffeting does not appear
to ,be an entirely ,justified assertion. At the value St

0.12 obtained in our tests the Junkers airplane was in a
resonance state at large velocities, that is, simultaneous
action of the above factors a and b was cbtained.

The actual character of the tail vibration on a real
airplane is very co.aplicatcd, a fact which is quite under-
standable since it is not an question of the tail vibra-
tions alone but of the vibraticns of the com p lete mechani-
cal system including a very 1^rge number of the structural
details.

The important question is hour to eliminate buffeting
on t'_ie actual airplare. Experiment shows that a very
large number of structural details of a size comparable
Faith ti?at of the tail surface may form a disturbing wake
acting on the tail surface and giving rise to buffeting
at various velocities of the airplane. The factor of
compa.r•a.blo size is here emphasized since for some reason
it is customary to assume in usual practice that even a
s;nall 'Dolt on the upper surface of the wing may give rise
to dangerous buffetin gg. In an wind tunnel t aw = 1 C

on a Grin" of 600—millimeter chord 1,, lastic objects of
various shapes of dimensions 100 to 150 millimeters were
attaeh•ed . and no buffeting was observed. This is explained
by the fact that tho frequencies of the vortices spring-
ing from such small objects many times exceed the natural
freque_icy of the tail and their amplitudes in the first
place are small in magnitude n.nd in the second place do
not reae'i the tail, being dissipated completely by diffu-
sion.	 In order to check this the follcering test was made.
A plate of 125 millimeters width	 was placed ahead of
the tail the latter vibrating with ap p reciable amplitude.
These vibrations decreased with increasing distance from
the	 and at a distance of about 1 millimeter from the
tail they vanished completely.

Thus in considering the orifsin of the buffeting it
is necessary to pay attention to structural details of a
greater order of magnitude than small excroscences. If
buffeting occurs in landing the source of the trouble in
most cases is to be found in the wing attachment to the
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fuselage. The measures to be taken for eliminating buf-
feting in this case are well known to all designers (the
use-of various kinds of a fairings, slats, flaps, etc., the
action of which leads either to a suppression of the flow
breakdown at the intersection or to a reduction of the
likelihood of resonance between the vortices and tail.
It is here necessary to bear in mind first that fillets
often have an unfavorable effect on the speed characteris-
tics of the airplane, and secondly that buffeting arising
in the presence of fillets often is more dangerous than
without the:. This is well illustrated on the curves of
Duncan (fig. 27) which give the changes in aziplitude for
various combinations of fillets with other types of de-
vices.

In general the means taken for eliminating buffeting
may be classified into three groups:

1. Removal of the causes producing buffeting, that
is, avoidance of the possibility of flow breakdown at the
wing.

2. Location of the tail in the least dangerous pesi-
tion.

3. Change in the elastic properties of the tail so
that its natural frequencies will not be resonance fre-
ouencies.

The first group has already been discussed. The
second group requires that the tail surface be located
as far a.s possible from the path of the vortices which
lie approximately in the plane of the wind: edges. This
can always be done by sketching the path of the vortices
on the drawi n g for various angles of attack and taking
account of the actual conditions of flow about a given
wing system.

The means for eliminating buffeting included in the
third group are very often applied in practice in the
final design of an airplane. It is necessary in many
cases to vary the postion of the tail surface several
times or stren€°then it by various supports which is often
done blindly without any preliminary computations. The
values of St given in the present paper ..rould seem to
offer a certain usefulness to the designer by enabling him
to determine in advance the re q uired order of natural
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frequencies of the tail surface, that is, its elastic
properties.

Translation by S. Reiss,
11ational Advisory Committee
for Aeronautics.
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Figs. 6,7,$
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Figure 8.- Sketch of model tail.
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Figs. 12,13
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Figure 12. ^ Maxirmam deflections of tail surface for aw 23 0 , a t=50 and 100,
wing chord 0.6 m.
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Figure 13.- Maximum deflections of tail surface for mw=23 0 , mt=^?0 and 100,
wing chord 0.63 m.
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Figs. 14,15
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position of tail.	 ,
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Figure 20.- Curve of amplitude of forces against velocity for various angles
of attack of tail, wing angle of attack 230.
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Figure 21— Comparison force curves for tail with isolated wing and with
combination of wing and fuselage.
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Fi gure 22.- Force curves for various angles of attack of the wing.
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a,,,v=300

Figure 23.- Force curve for living of chord 0.63 m. Angle of attac' of tail 00.
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Figure 24.- Coefficient curves for various angles of attack of tail for
vying angle of attac r- of 230.
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Figs. 25,29
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Figure 25.- Coefficient curves for isolated v ying and combination of wing
with fuselage.
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Figure 26.- Coefficient curve for vy ing angle of attack of 30 0 , chord 0.63 m.
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Fig. 27
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Figure 27.- Comparison of buffeting intensity for various devices to re-
duce buffeting. Ordinates give inclination of detector from

mean position in radians, abscissas give angle of attach of vying.


