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Part II– Turbulent Flows*

By H. Schlichtin8

CHAPTER XIII. GENERAL REMARKS ON TUR6ULENT FLm3

a. Turbulent Pipe Flow

numbers differ
the preceding

The flow laws of the actual flows at high Reynolds
considerably from those of the lamiw fluws treated in
psrt. These actual flows show a special characteristic, den&ed
“turbulence.”

The character of a turbulent flow is most easily understood
the case of the pipe flow. Consider the flow through a straight
circular cross section snd with a smooth wsll. For laminar flow
fluid particle moves with uniform velocity along a rectilineer path.
Because of viscosity, the velocity of the particles near the wall is
smaller than that of the psrticles at the center. i% order to maintain
the motion, a pressure decrease is requtied which, for bminsr flow, is
proportional to the first power of the meen flow velocity (compsre
chapter I, Pert 1). ActusUy, however, one ob~erves that, for larger
Reynolds numbers, the pressure drop increases almost with the sqwe of
the velocity and is very mch lsrger then that given by the Hagen–
Poiseuille law. One msy conclude that the actual flow is very different
from that of the Poiseuille flow.

as

in
pipe of
each

The following test, introduced by Reynolds, is very instructive:
If one ‘insertsinto the flowing fluid a colored filement one can observe,
for small Reynolds numbers, that the colored filament is maintained down-
strem as a sherply defined thread. One mey conclude that the fluid
actually flows as required by the theory of laminsr flow: a gliding
along, side by sfde, of the adjoining layers without mutual mixing

(~ = layer flow). For lsrge Reynolds nmters, on the other hand,
one csn observe the colored filament, even at a small distance downstream
from the inlet, distributed over the entire cross section, that is, mixed

*’~Vor-tragSreihe ‘Grenzschichtthecn?ie.‘ Teil B: Turbulence Strbmungen.”
Zentrale ffi wissenschaftl.ichesBerichtswesen der Luftfahrtforschung des
Generalluftzeugmeisters (ZWB) Berli*dlershof, pp. 1!%279. “The
original language version of this report is divided into two qain psrts,
Teil A and Teil B, which have been translated as separate NACA Technical

? Memorandums, Nos. 1217 and M18, designated Pmt I and Part ,11,respectively.
l’hisreport is a continuation of the lecture series presented in part 1, the

-. equations, figures, and tables being numbered in sequence from the first
b pert of the report. For general information on the series, &eference

should be made to the preface and the introduction of Pert I. .
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to a great extent with the rest of the fluid. Thus the flow character
has changed completely for lerge Reynolds numbers: A pronounced

A,

transverse mixing of ad~acent layers takes place. Irre@iler additional
—?

velocities in the longitudinal and transverse’iiirectionaare superposed
on the main velocity. This state of flow is called turb@nt. As a

-.

+consequence of the mixing the velocity is distributed over the cross
section more uniformly for turbulent t~ for laminer flow (compare fig. 17,
pert 1). For turbulent flow there exists a very steep velocity increase
in the immediate neighborhood of the wall and almost constant velocity in
the central regions, Consequently the wall sheering stress is considerably
lerger for turbulent than for laminer flow; the same applies to the hag.
This foUows elso from tkwfact that in turbulent flow a considerable

—

part of the energy is used up in maintaining the turbulent mixing motion.

The exact analysis of a turbulent flow shows that at a point fixed
in s~ace the velocity is.subjected to strong irregular fluctuations with
time (fig. 72). If one measures the variation with the of a velocity
component at a fixed point h space, one obtains, qualitatively, a
variation as shown in figure 72. The flow is steady only on the average
and may be interpreted as composed of a temporal mean value on which the
irregular fluctuation velocities sre superimposed.

The first extensive experimental investigationswere o-ied out
by Dercy (reference 60) in connection with the preliminary work for a *.

large water4istributing system for the city of Paris. The first quanti–
tative experhents concerning laminar pipe flow were made by ILagen
(reference 95). The first systematic tests regarding the transition from
la?ninerto turbulent fl~were made by Osborn Reynolds (reference 61). J

He determined by experiment the connection between flow volume and pressure
drop for turbulent flow and investigated very thoroughly the transition
of the laminsr to the turbulent form of flow. He found, in tests of
verious velocities and in pipes of verious diamters, that transition

‘-iid
always occurred at the same value of the Reynolds number: ~. This

Reynolds number is c~ed the critical Reynolds number. The measurements
gave for the pipe flow:

—

()aRecrit = ~ crit . 2300 .—

—

(13.1)

For Re <Recrit the

on it was ascertained

very dependent on the

flow is laminar, for Re >Recrit, turbulent. Later

that the numerical value of Recrit “is,moreover,

pez%icuhr test conditions. If the entering flow —
was very free of disturbances, leminer fluw could be maintained up to
Re = 24000. However, of main interest for the technical applications
is the lowest critic@ Reynolds number existing for an erkitrary disturbance
of the entering flow, due either to irregularities in the approaching flow lb

or to-vortices forming at the pipe inlet. Concerning thddrag law of the -
pipe Reynolds found that the pressure &rop is @oportionaL to the 1.73
power of the mean flow velocity: ~

.1.73
Ap-u
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b. Turbulent Boundary Leyers

Recently it was detemined that the flow along the surface of a body
(boundary layer flow) also can be turbulemt; We had found,for instsnce,
for the flat plate in longitudinal flow that the dreg for laminar flow is

r

-.

proportional to U 3 (compare equation (9.18),part 1.) However, towingo
tests on plates for large Reynolds nuniberscarried out by Froude

(reference 96) resulted in a dreg law according to which W ‘“U01”85. More-

over, the dreg coefficients in these measurements remained considerably
higher than the dreg coefficient of the lsminar plate flow according to
equation (9.19), Part 1. Presumably this deviation is causedby the
turbulence of the boundary layer..

A clear decision about the turbulent flow in the boundary layer was
obtained by the classical.experiments of Eiffel and Prandtl concerning
the drag of spheres in 1914 (reference 62). These tests gave the following
results regaxding the drag of spheres (compare fig. 73). The curve of
drsg agatist velocity shows a sudden drop at a definite velocity Vcrit,

although it rises again with furthe; increasing velocity. If one plots

the drag coefficient ~ = W/F :Uo (F = frontal area) sgainst the

Reynolds nuniber Uod/V, ~ shows a decrease to 2/’5of its original vslue

at a definite Reynolds number (Recrit). Prandtl explained this phenomenon

in 1914. He was able to show that this drag decrease stems from the laminar
boundary layer changing to turbulent ahead of the separation point. The
resulting considerable resrward shift of the separation point causes a
reduction of the vortex region (dead water) behind the sphere (fig. 74).
This hypothesis could be confirmed by eqeriment: by putting a wire ring
on the sphere (sphere dismeter 28 centimeters, wire diameter 1 millimeter)
one could attain the smaller dreg at smaller Vcrit end Recrit. The wire

ring is put on slightly ahead of the hminar separation point; it causes a
vortex formation in the boundary layer, which is thus made turbulent ahead
of the separation point and sepsrates only farther toward the rear. By
means of the wire ring the boundary layer is, so-~say, “infected” with
turbulence. Due-to the mixing motions which continually lead high velocity
air masses from the outside to the wall, the turbulent boundary layer is
able to overcome, without separation, a larger pressure increase than the
lsminsr boundary layer.

The turbulence of the friction leger is of great importance for all
flows along solid walls with pressure increase (diffuser, wing suction
side). It is, however, also present in the flow along a flat plate where
the pressure gradient is zero. There the flow in the boundary layer is
laminsr toward the front, experiencing transition to the turbulent state..
further downstream. Whereas the laminar boundary layer thickness increases

downstream with xl/2, the turbulent boundary layer thickness increases
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x4/5; that is, for the tur&lent boundary layer theapproximately as
increase of the boundary layer thiclmess is considerably larger, (fig. 75).
The position of the transition point Xcrit is given by (fig, 75):—

()Uox =
T 3 to 5x’lo~

crit
(13.2)

In comparing the criticsl Reynolds numbers for the pipe end the plate
one must select r and b, respectively, as reference lengths. The
equation for the flat plate is, according to Blasius (reference 8)
(compare equation (9.21a))

1

or

()UoxThus, with ~ = 25000:
crit

J

.

(13.3)

()~ = 5.500 = 2500 (flat plate) (13.4)
v crlt

U- r
This critical Reynolds number must be compared with v. at the

transition point for the pipe. Due to the parabolic laminar velocity

distribution In the pipe ~ = 2iI, and because r =$d, then, for

the pipe, ~r/v =fid/v. According to equation (13.1), ($) = 2300
Crit

for the pipe. Thus the comparable critical Reynolds nmibers for pipe and
plate show rather good agreement. -

CmAETER Xrv. OLDER THEORIES

The first efforts toward theoretical calculation of the turbulent
flows go back to Reynolds. One distinguishes in the theory of turbulence
two main problems:

1. The flow laws of the developed turbulent flow:

The space and time velocity variations affect the time average of
the velocity; they act like en additional internal f!riction. The problem
is to calculate the local distribution of the time average of the velocity
components, and thus to gain further information concerning, for Instsnce,
the friction &rag.

J

—
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2. Origin of turbulence: .

m

“d

One investigates under what conditions a small disturbance,
superposed on a lainsr flow, increases with time. According to whether
or not the disturbance inpreases with time, the laminar flow is called
unstable or stable. The investigation in question is therefore a stability
investigation, made to clarify theoretically the laminsr-turbulent trsnsi-
tlon. These investigations ah particularly at the theoretical calculation
of the critical Reynolds nuniber. They me, in general, mathematically
rather complicated.

The first problem, since it Is the more Important one for general
flow problems will be our main concern. The second will be discussed
briefly at the end of the lecture series.

As to the first problem, that of calculation of the developed
turbulent flow, one may remark quite generally that a comprehensive
theoretical treatment, as exists for laminar flow, Is not yet possible.
The present theory of the developed turbulent flow must be denoted.as
semi-9mpirical. It obtains its foundations to a great extent from
experiment,,works largely with the laws of mechanical sitiarity, snd
always contains several or at least one empirical constant. Nevertheless
the theory has contributed much toward correlating the voluminous experi–
mental data and also has yielded more thsn one new concept.

For the numerical treatment one divides the turbulent flow,unsteady
in space and time, into mesn values and fluctuation quantities. The man
velue may a priori be formed with res~ect to either space or time. We
prefer, however, the time average at a fixed point in space, and form
such mean values of the velocity, pressure, shearing stress, etc. In
forming the mean values one must not neglect to take them over a suffi–
clently long tQe interval T so that the mean value will be independent”

.

—

of T. Let the
components be

For a turbulent
the three space

velocity vector with its three mutually perpendicular

~ .iy+jv+g (14.1)

flow the velocity components are therefore functions of
coord@.ates and the time:

U=u(x, y,z,t)

V=v(x, y,z,t) (14.2)

W=v(x, y,zjt) .-

The time aversge for the component

ii(x,y, z) =

u, for instsnce, is formed as follows:

/

t.o+T
~
T

u dt (14.3]

to

W%roughout the text, underscored letters sre used in place of
corresponding German script letters used in the original text. —
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If =, ~, = =e independent of to snd T, the motion is called eteady
on the average, or qyasisteady. A steady turbulent flow, in the sense -1
that the velocity at a point fixed in space is
not exist. The velocity fluctuations are thbn

u=- U+ut

v =T+v~

w =ti+wf

1

snd in the same w~ for the pressure:

P =~+p~

The time average of the ’fluctuationg.uantities.

perfectly constant, does
defined by the equations

(14.4)

(14.5)

equals zero, according to
definition, as the following consid.eratipnwill show immediate~:

;~u,dt.~~udt~~dts<=o (,,.6)

Thus:
—— —
u? = v? =Wt=o (14.7)

The Additional “Apparentn Turbulent Stresses

As a result of the velocity fluctuations additional stresses
( = apparent friction) originate in the turbulent flow. This is readily
illustrated fob instsmce by the case of the simple shearing’flow ii=Ii(y)
(fig. 76). Here V = O; however, a fluctuation velocity v? in the
transverse direction is present. The latter causes a momentum transfer
between the ad~oining layers across the main flow. This momentum transfer
acts like en additional shearing stress T. Whereas in laminar flow the
friction is brought about by the moleculsr momentum exchsmge, the turbulent
exchange of momentum is a macroscopic motion of, mostly, nmch stronger effect.

.

w“

The equations of motion of ths turbulent flow, with this turbulent *
apparent friction taken into consideration, can be obtained from the
NavlerStokea differential equations by substituting equ@ion (14.4) into
the latter and then forming hhs time aver~es in ths NavierAtokes
iiff’erentiale uations. To that purpoee the Navier~okes differential

%
.1

equations (3.1 ) are written in the form:
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[

p &+.ti +&d a# 1
(14.8)

at ax ay+~]=-$+u($:$+~)

*+*.+*=*

b ay az J
By introducing equations (14.4) and (lk.~) and forming the time averages
one first obtains from the continuity equation:

.-

and thus d.SO:

aut avt ~t o
—+—=c +ay az

f

(14.9)

(14.10) ““

By introduction of equations (14.4) into the left side of equation (14.8)
one obtains expressions as, for instance,

U2 =(ti+u~)2= fi2+2Euf+ut2 etc.

In the subsequent formation of the time average the squared terms in
ths bsrred quantities remain unchanged since they are already constant
with respect to time. The ~xed terms, as for fnst~ce fi uf, . . .
and also the terms that are linear in the fluctuation quantities are
eliminated in forming the average because of equation (14.7). However,

the terms that are quadratic in the fluctuation quantities as ut2,— .—
IItvt,. . . remain. Thus one obtains from the equation system
(eqxation (14.8)), after formihg the time average the following system
of equations:

.—
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The left side now formally agrees with the lhvier~tokes differential
equations for Bteady flow if one wrltee instead of u, v, w the time
aver~es of these quantities. On the right side additional terms which
ai se from the flhctuations have been added to the press~e and friction
terms.

.

Remeniberhg that h deriving the Navietitokes differential equations
one could write the resultant surface force per unit volume ly means of
the components of a stress tensor accorting to equation (3.7) in the form *.

one recognizes by comparison with (equation (lk.11))
for the quantities added by the fluctuation motion a
tensor in the following manner:

a
2

x=
– put

‘w

‘w =
_ P*

CY

T =-
Xz

p=
‘yz

.

=“- pm T
X.z

._p~

(14.12)

that one may introduce
symmetrical stress

One has therefore, for
following equations of

1

ths mean values of the quasisbeady flow, the
motion:
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---

#

*

9

(pu= )–+7=+%= .-m+@F+?& aT aaz‘h ay az . az ax
+A+_

ay az
J

The continuity equation (equation (14.9)) also enters. The boundary
conditions me the same as for 1smlnar flow: adhering of the fluid to the
wall, that is, on the solid walls all velocity components equal zero.
According to equation (14.14) the mesn values of the turbulent flow obey
the same equations of motion as the velocity components of a lsadnar flow,
with the friction forces, however, increased by the appsrent stresses of
the turbulent fluctuation motion. But since the fluctuation velocities
,Jt v’, . . . and particularly their space distribution are unknown,
eq&tions (14.14) and (14.13) are, at first, rather useless for ttie
calculation of a twbdent flow.

Only wh~ one yin have succeeded in expressing the fluctuation

quantities US2, Ufvt, . j . in a suitable tier by the t= averages
ii,T, . . .,-till it be possible to use equations (14.14) to calculate,
in particular, tha mesn values li,Y, Y. .-

A first expression of this kind which brought however little success
was originated by Boussinesq (reference 64). He introduced, aside from
the ordinary viscosity coefficient, a new viscosity coefficient of the
apparent turbulent friction. Ih snalogy to the stress tensor for
laminar flow which is, according to equation (3.13):

‘x ‘Xy ‘Xz
poo

‘w ‘Y ‘Yz =– Opo +~

Txz Tyz ~z Oop

haau———
h ay az

——

1

?shx

av h av auavaw—— —
h ay az ‘v & ay ay

awawaw au h aw
hay az az az az

(14.15)

Boussinesq puts for the apparent turbulent friction:
r

(14.16)

Then there corresponds to the laminar viscosity coefficient ~ the mixing
factor PC:
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The kinematic viscosity of the turbulent flow (apparent friction) is
usually very much larger than that for the ordinary laminar friction.
(Hundred-or thousandfold or more). In general, one may therefore
altogether neglect the ordinary viscosity terms pAli,. . . in
equation (14.14). Only at the solid walls where due to the no-slip
condition

the apparent
again become
layer in the

—

.

ii=T=F= O aswellas ut=v~=w~=O

turbulent friction disappears, does the laminar friction
dominant. Thus there exists in every turbulent friction
immediate neighborhood of the wall a very narrow zone where

the flow is laminar. The thiclmess of this laminar sublayer is only a
small fraction of the turbulent boundary layer thiclmess.

One can easily understand from the example of the simple sheer flow
according to figure 76 that in & turbulent flow the mean value m is
different from zero. For this case, a correlation exists between the
fluctuation velocities US and v~ in the following manner: The
particles with negative v~ have “mostly” appositive u!, since they
come from a region-of larger mean velocity u.* The parts with positive
~t, on the other hand, have ‘tmostlylta negative u~, because they come
from a region with smaller ti, and retain in the transverse motion
approximately the x+nomentum of the layer from which they come. Thus,
“fmostlyftUtp: < 0 and, therefore, the time average =1< (). Therefore,
the shearing stress 3s this flow is:

‘XY
..p~>o

In measuring turbulent flows one usually measures only the mean
values ii;~, ● . .. since only they are of practical int&est. However,
in order to oltain deeper insight into the mechanism of the turbulent
flow, the fluctuation quantities have recently been measured and also
their mean squares ~d products: —.

According to measurements by Reichsrdt (reference 65) in a rectangular
tunnel (width 1 millimeters height 24 centimeters) the UimUITI value

*’tMostlyttis to indicate that particle.s.withdifferent signs,.
thouph not excluded, me in the minority.

. .

4

d
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rut2, for instance, equals 0.13 ‘Ii, r
T

of the meximum value of v?

eque16 0.05 –ii&. Both L~i~ Me in the neighborhood of the wall. .

One may say, therefore, that in this case the turbulence is strongest
near the wall.

-.

In a flow that is homogeneous (wind tunnel), turbulent fluctuations
ere also always present to a varying degree. They determine the s~alled
degree of turbulence of a wind tunnel. Since the measurement of the
fluctuation quantities is rather difficult (ho&wire method), a more
convenient measuring method has been chosen, for the present, for detertin—

.-

ation of the degree of turbulence of a wind tunnel: namely, the determin-
ation of the critical Reynolds nuniberfor the sphere from force measure-
ments or pressure distribution measurements. One defines as critical
Reynolds mmiber the one where the drag coefficient ~ = 0.3. It

becomes clear that a unique connection exists between the critical Reynolds
nuniberand the turhlent fluctuation velocity in the sense that the
critical Reynolds,number of the sphere is the lower, the higher the
turbulent fluctuation velocity. According to American measurements
(reference 97) the connection between the longitudinal fluctuation and
the measured critical Reynolds nuniberfor the sphere is as shown in the
following table:

r;?afi 0.004 0.0075 0.012 0.017 0.026

ReCrit 10-5 2.8 2.4 2.0 1.6 1.2

In addition to the apperent increase of viscosity, the turbulent
fluctuation motion has other effects: It tends to even out sny tempera-
ture differences or variations in concentration existing in a flow.
The &lffusion of heat, for instence, is much larger thsm for la?ninarflow,
because of the exchange motions which are uch stronger in turbulent
flow. A close connection therefore exists, for instance, between the
laws of flow and of heat transfer from a heated body to the fluid flowing
by.

Ninth Lecture (Fe%rusry 2, 1942)

cHAPrER xv. M(IRXRECENT TBEORIES; MIXING LENGTH

TI

Ih order to make possible a quantitative calculation of turbulent
flows, it is necessary to trensform the expressions for the apparent

w., turbulent stresses (equation (14.13)) in such a msnner that they no longer
contain the unlmown fluctuation velocities but contain the components of
the mean velocities. Consider, for that purpose, a particularly simple

.
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flow, nsmely a plane flow which has the same direction everywhere and a
velocity vsrying only on the different stream lines. The main-flow
direction coincides with the x-direction; then:

ii= ii(y) T=o 7F=0 (15.1)

Of the shearing stresses, only the component T = 7 is present, for
X,y

which ftromequation (14.13) as well as fkomBoussinesq$s equation,
equation (14.15))thereresults:

T ._p~=p E&

This formula show~ that lT1/D equals the square
puts,therefore, for use in iaier calculation;,

and denotes v* as shearing”stress velocity.
velocity is a measure of the momentum transfer
fluctuation motion.

According to Prsmd.tl(reference 66), one
flow mechanism, particularly turbulent mixing,

(15.2)

of a.velocity. One

(15.3)

Thus this shearing stress
by the turbulent

may picture the turbulent
in the fol.lowhg simplified

memner: Fluid psrticles, each possessing a paticular motion, originate
in the turbulent flow; they move for a certain distsnce as coherent masses
maintaining their velocity (momentum). One now assames that such a fluid
psrticle which originates in the layer (Y1 - Z) end has the velocity
ti(yl- Z) maves a distance 1 =nrl.xinglength normal to the flow (fig. 77).

If ~his fluid
it will have,
surroundings,

Likewise a
at the new
difference

psrticle mafitains its original velocity in the x-direction
in its new location yl, a smaller velocity then its new
the velocity differenc~ being

_u?
1 = ti(Yl)-fi(Y1 - 2) with

fluid particle coming from the layer
location a greater velocity than the
is

Vt>o

(Y1 + z) to Y1 h-
surroundings there; the

.
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U? =
2 ti(Y1+ 2) –=(Y1) with Tt<o

~t
1

end u; give the turbulent velocity fluctuation in the layer yl.

One obtains for the mesn value of this velocity fluctuation

FYom this equation
the mixing length

~
p

=;(lu:l+luy)=z %1 (15.4)

one obtains the following physical interpretation for
2:

The mixing length sign.ifi~sthe distance in the transverse direction
which a fluid particle must travel at the mean velocity of its original
l~er so that the difference between its tielocityand the velocity of the
new location equals the mean velocity fluctuation of the turbulent flow.
It is”left oyen whether the fluid particles in their transverse motion
fully maint’ainthe velocity of their original layer, or whether they have
partly assumed the velocity of the traverse layer and then travelled
larger tistauces in the transverse direction. The Prandtl mixing length
which is thereby introduced has a certain analogy to the mesn free path
of the kinetic theory of gases, with, however, the difference that there
one deals tith microscopic motions of the molecules, here with macroscopic
motions of larger fluid particles.

One may picture the origin of the transverse fiuctuatiog velocity v?
in the following way:

TWO fluid particles flowing from the lqers (YI + 2) and (Y1- 7)

meet in the layer yl in such a manner that one lies hehind the other:
the faster (Y1 + Z) behind the slower “(yl- Z). They then collide

—.

with the velocity 2u? and glvew~ laterally. Thereby originates the
transverse velocity d, directed away from the layer yl to both sides.

If, conversely, the slower of the two psrticles is behind the faster,
they withdraw from each other with the velocity 2u*. In this case-the
space formed between them is filled up out of the surroundings. Thus
originates q transverse velocity v? directed toward the layer Y1.

One concludes from this consideration that v? and u? are af the seine
order of

b order

magnitude end

~

puts

= number [Utl‘=nmiher2Q
Q

(15.5)
.-

to express the sheering stress according to equation (15.2) one
= ~re closely. The followinghas to consider the mesn value u v

conclusions”cen be drawn from the.previous considerations.
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The particles arriving in the layer yl with positive V* (from

below, fig. 77) have “mostly” a negative u~ so that u~v? is negative.
For the particles arrfving with negative v?, us is “nmstly” positive,
so that ‘urv?
different sign
The mean value
one puts

is again negative. “Mostly” &ignifiea that p-&t~cles with
are not wholly excluded, but exe strongly outnunibered.
~ is therefore Ufferent from zero and negative. Thus

tith k~Oj O<k<l. The numerical factor k,
correlation coefficient is not known more closely.
equation (15,5) end (15.4) one now obtains

the ‘nuniber”in this
equation (15.5). If
length, one can also

w)

equation being different from

(15.6)

also called the
Accord3ng

the one in
one includes the “number” in the unknown
write

to

(15.7)

mixing

(15.8)

and thus finally obtafns for the turbulent shearing stress according to
equation (15.2)

()*Q2
r =p2

w

Considering that the sign of T also must chenge with the sign

it is more correct to write

T= p 22 II& dii PrandtltS
Q Zy formula

This is the fsmous Prandtl mixing lbngth formula which has been
successful for the calculation of turbulent flows.

of’ g

(15.9)

very

If one comperes this formula (equation (15.9)) with the equations
T=cg

of Boussinesq where one had put ~ (6 = mixing factor = turbulent

and.ogue of the lam.insrviscosity v), one has for the mixing factor

?-

.

*
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(15.10)

u

The turbulent mixing factor 6 is In most cases larger than the laminar
viscosity y by several powers of ten. Moreover the mixing factor G
fs dependent an the velocity and on the location and tends toward zero
near a wall, because there the ndxing length goes toward zero.

If one compares Prea&t13s formula equation (15.9) with Boussinesq~s
equation (15.2) one could perhaps think at first that not much has been
gained, since the unknown quantity ● ( = apparent viscosity) has been
replaced by the new unknown 2 = mixing length. Nevertheless lbxmdtl~s
formula is considerably better then thewl& formula for the following
reason: It is Mown from tests that the drag for turbulent flow is
proportional to the squ=e of the velocity. According to equation (15.9)
one obtains this squere law for drag by assuming the mixing length to be
independent of the velocity, that is, by assuming the mixing length to
be purely a function of”position. It is considerably easier to tie a
plausible assumption for the length 2 = mixing length than for the
apparent turbulent viscosity 6, and therein lies the considerable
superiority of Prsndtl’s formula equation (15.9) over Boussinesqts
equation (15.2).

Ih mm.y cases the length Z can be brought into a simple relation
to the characteristic lengths of the respective flows. For the flow along
a smooth wall Z must, at the wall itself, equal zero, since all trans-
verse motions are prevented at the wall. For the flow along a rough wall,
however, the limiting value of 2 at the wall equals a length of the
order of magnitude of the height of the roughness.

It would be very useful to have a formula permitting the determina-
tion of the dependence of the mixing length on the position for any
arbitrary flow. Such an attempt has been made by v. Kemmn (reference 68).
v. Karman makes the assumption that the inner meduanism of the turbulent
flow is such that the motion at various points differs only with respect
to time-=d length-scale, but is otherwise similar (similarity hypothesis).
bstead of the units of t- and length one may select those of velocity-

—

snd length. The velocity unit that is important for the turbulent motion
is the sheering stress velocity v* according to equation (15.3). The
corresponding unit of length is the mixing length 2.

b order to find the quantity 2 from the
n(y), v. Ksi’nUmapplies the Taylor development*
borhood of the point YIc

data of the basic flow
for u(y) in the neigh-

+
u(y) = U(yl) + (Y –

() ()
++(Y-Yl)z ~YJ & . +. . . . . (15.11)

dY2 ~

h * h the following, the bar over the meen velocity will be omitted,
for simplification. .
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The length 1 cannot depend on the velocity U(Y1)S since according

to Newton~s principle of relativity the addition of a constant velocity
has no influence on the course of motion. Thus

amd the higher derivatiivearemain a~ chsxacteriatic data of the basic
flow, The simplest length to be formed from it is

/

&
dY2

—

(15.22)

According to this formula Z is not dependent on the -m&znt of velocity
but only-on the velocity distribution. ‘Thus 2 is a pure position -
function as required above. In equation (15.12) ~1 is au empirical

constant which must be determined from the experiment. To arrive further
at the turbulent shearing stress, v. Karman also maintains Prandtl~s
equation (15.9).

In generalizing eqpation (15.9) one obtains, according to Prandtl,
the complete expression for the turbulent stress tensor of a plane flow
in the form

The common factor on the right side signifies the turbulent mixing
factor according to equation (15.10).

(15.13)
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Tenth Le&hre (Februery 9, 19h2)

Flow Along a Smooth Wall

We wild.immediately make a first application of Prsndtlts formula
(equation (15.9)) for the flow along a smooth wall. The normal distance
from the w&ll is denoted as y. Let the
For the velocity distribution then, u =
the mixing length in the neighborhood of
distance from the wall

2 = Ky

the constant E must be determined froti

wall coincide with the x-axis.
u(y). For this case one sets
the wall proportional to the

(15.14)

the experiment. Moreover one
@es the assumption that the shearing stresb T is constant in the
entire flow region; then the shearing stress velocity v+ according to
equation (15.3) also is constant. If one further neglects the laminar
friction, one ottains from equations (15.2),.(15.9), (15.14)

or

du v*—=—
Q KY

and by integration

T*
u = ~ Zn y + constant (15.15)

~ determining the constsnt of integration one must PW attention to the
fact that the turbulent law equation (15.9) does not apply right up to
the wall but that very neer to the wall an extremely thin laminar layer
is present. I&om the laminar viscosity u and the turbulent shearing
stress veloclty T* one can form the length V/v*. The constant of
integration in equation (15.15) is determined from the condition that
u= O for y = yo. Th-~sthere results, according to equation (15.15)

u =~(zny–lnyo) (15.16)

The as yet unknown distance from the wall Y. iS set proportional to

5 the length v/v*, thus
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(15.17)

where ~ signifies a dimensionless constant. Thus one finally obtains
for the velocity distribution at the smooth wall

‘*( Zn~-2n P)U=y (15.18)

that is, a logarithmic velocity distribution law. It cmtains two
empirical constants k and ~. According to measurements K = 0.4.
I!Yomequation (15.18) one can see that the dimensionless velocity u/v* = q
cem be represented as a function of the dimensimless distance from the
wall ~ = v#y/v. The latter is a sort of Reynolds number, formed with the
distsnce from the wall y and the shearing stress velocity v*. Thus one
obtains for larger Reynolds numbers from equation (15.18) the folJ.owing
universal velocity distributim law

with A = 1~~
friction also
law

or

d7) =AZnq+B (15.19)

= 2.5. For smaller Reynolds numbers, where the laminar .
has a certain influence, tests gave

u
()

~rv*n
—=
v* T

with the exponent n equalling about 1/7. These
tributicm laws according to measurements for pipe
figure 78. They will be tiscussed in more detail

CHAPI’ERXVI. Pm FLOW

a. The Smooth Pipe

the velocity distribution

(15.20) -

(15.20a)

universal velocity dis-
flow are given in
in the following chapter.

Among the various turbulent flows of practical.importance, pipe
flow was investigated with particular thoroughness because of its great
practical importance. We shall therefore consider the pipe flow first.
It will be noted at this point that the flow laws of the pipe flow may
be applied to other cases, as for instance the plene plate in longitudinal
flow. Consider a straight pipe of circular cross section and with a smooth
wall. Let y be the radial coordinate measured from the pipe axis. The
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balance of forces letween the shearing stress T and the pressure

droP PI – P2 on a piece of pipe of length L yields as before for the
laminsr flow according to equation (2.la), the relation:

(16.1)

This formula applies equally to laminar and turbulent flow. ~ it T
now signifies the sum of the laminer shearing stresses and of the apparent
turbulent shearing stresses. Over a cross section, T is proportional
to Y. The shearing stress at the wall. T. may be determined
expe&nentally by n&asurement of the press&re

PI –P2r
‘o = z F

For the turbulent flow the connection between

drop:

(16.2)

pressure drop snd flow
volume Q = m2ii must be obtained from tests.* ~ the literature theie
exists a very great number of pipe res~stance formulas. Only those serve our
purpose which satisfy Reynolds~ law of similarity. One of them Is the
formula of H. Blasius (reference 69), set up particulsrl.ycsrefully,
which is valid for a smoth wall and for Remolds nu?ibers
Re =

pipe

=/v~lm 000.

E one introduces, as before in equation (2.6), the dimensionless
resistance coefficient x by the equation

‘(16.3)

k is, according to Blasius:

h
iid “14

()
=0.3164 ~ (16.4)

Comparing ecyzations(16.2) and (16.3) one finds:

and therefore according to equation (16.4):
4

-7/4 vlfi d–1/4
‘o = 0.03955 p u

(16.5)

(16.6)

R *In the followings = is, for the pipe flow, the mean flow velocity
at the cross section, as distinguished from the time average in the previous
sections.
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If one introduces, moreover, instead of the diameter d the radius r, -.
t~e,l,numericslfactor In this linear equation must be divided by
&-/+ = 1.19. Thus To becomes:

-7/4 @/4 +fi . p V*2
‘o = 0.03325 p U

where the shearing stress velocity is defined by the wall

r —
P* =

?0
-T

v

(16.7)

shearing stress:

(16.8)

7/4 ‘
If one finally factors the quantity V*2 in equation (16.7) into v* x
l/4

V* ~ one obtains:

(16:9)

This equatim is very similar to equation (17.20a); however, the mean
velocity now takes the place of the local veloclty and the pipe radius
takes the place of the distance from the wall. One passes first &cm
the mean velocity to the

Nikuradse (reference 70)

equation (16.9):

maximum velocity Ulj based on measurement of

ii= 0.8 Ul, and therewith follows from

Xf this formula is assumed to be valid for any distance from the wall,
one obtains:

u
Vg /7

(Y
—=8.74 ~
v*

or

P= 8.74 +/7

(16010)

(16.11)

This is the s-ailed l/7-power law for the velocitj distribution; its
form was already given in equation (15.20a). The coefficients n and ~
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.

n

still unlnown there, have now been determined on the basis of the
resistance law of the pipe flow. Figure 78 shows, according to measure-
ments of Nikuradse (reference 70) that this law is well satisfied in the
range of Reynolds nunibersup to 100,000. Ndturally this law of velocity
distribution can apply only to the region of Reynolds nuniberswhere the
pipe resistance law given by equation (16.4) is valid, since it was
derived from this law.

For purposes of later calculations we shall derive from
equation (16.1o) the shearing stress velocity v+. One obtains:

with 8.74718 = 6.65 ad

‘o =

7/8v 1/8
P* = 0.150 u

()?
(16.12) ,

1
—= o.l~o
6.65

From equation (16.12) fo~ows:

p V*2 = 000225pu7/4 ~ /4
(}Y

(16.13)

This relation will be needed later.

Comparing measured velocity distributions with equation (16.1o)
one can state that outside of the rsnge of validity of equation (16.1o),
namely for Re >100,000, a better approximation 3.sobtained by the
power 1/8, l/9, or 1/10 instead af l/~. The measurements concernhg
the pipe resistance (fig. 81) show ~ upward deviation from the formula
of Blasius for larger Reynolds nunibers.

The logarithmic velocity Mstribution law, equation (15.19), derived
in the previous chapter has been verified by Nilnu?adse(reference 70) on
the lasis of his measurements for the smooth pipe. For this purpose from
the measured press~uredrop for each velocity profile one first determines
the wall shearing stress according to equation (16.2) and from that
according to equation (16.’8),the shearing stress velocity v* =

c
70 p.

Then the dimensionless velocity q = u/T* can be plotted against the
dimensionless distance from the wsll ~ = F*/ v* The measurements of
Nikuradse in a very large range of Reynolds numbers, Re = 4 X103 up to
3240 X 103, lie very accurately on a straight line if one plots P sgainst
log q (fig. 78). The strafght line has the equation:

*,
E ““””-i’”’4)--

This gives, by comparison with equation (15.18), the following numerical
*. ~~ues for the coefficients K and ~
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R = 0.400 P = 0.111 (16.15) ‘-

Mixing Length
v“

F&om the measured velocity distribution and the measured pressure
droy the distribution of the mixing length over the pipe cross section

.

csnbe determined according to equations (16.2), (16.1),and (15.9).

T ‘To; (Y= dfstsnce from the pipe axis). This determination of the

mixing length from the measurements in the pipe was mad;by Nikuradse
(reference 70). For large Reynolds numbers, where the influence of
viscosity is negligible, one obtains a distrib~tion of the mixing length
Z/r over y/r which is independent of the R~umber (fig. 79). The
following interpolation formula mm be given for this distribution:

(16.16)

In this equation y signffies the distance from the wall. The develop-
ment of equation (16.16) for small y/r (neighborhood of the WSJ1) gives

2

z = o.4y–o.44; + .--0. (16.~6a)

h the neighborhood of the wall the mixing length is, therefore, propor-
tional to the distance from the wall. Equation (16.16) for the distri-
bution of the mixing length applies not only to the smooth pipe, but,
according to the meaB’urementsof Nikuradse (reference 71).also to the
rough pipe, as can be ssen from figure 79. From this fact one can derive
in a very simple manner a universal form for the law of Velocity distri-
bution, valid for the smooth as well as for the rough pipe. One puts

for the mixing length distribution: Z = tcyf($)with f(~)~l for $+0.

Furthsrnmre follows from the linear distribution
over the cross section:

T ‘To(l -$) (Y=dist~ce from

together ti’thequation (15.9)

r Y’

r&=&T=v* l-F
dy2f3ir— yf(y/r)

of the shesring stress

the wall)

b

(16.17) ,?

*and hence by integration:
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the lower limit of
according to the

to v/v*; thus:

~

v*
u =—

K

ye/r

integration y.

();f $

where the velocity equals

23

(16.18)

zero is,
considerations of the previous section, proportional

()
ye/r = Fl ~ . From equatim (16.18) fo~ows:

and therefol?e,from equations (16.18) and (16.18a):

9

This law, with the same
rough pipes. It states

(16.18a)

d (16.19)

function F’(y/r), applies equally to smooth and
that the curves of the velocity distribution over

the pipe cross section for all Reynolds mmibers and all roughnesses csn
be made congruent by shifting along the velocity sxis, if one plots

%max– u/v* against y/r (fig. 80). The explicit expression for the

function F(y/r) is obtained immediately from equation (16.14), according
to which

‘-k-” = 2.5v* zn~= 5.75 V* log ~
Y

Universal Resistance Law

(16.20)

According to their derivation the velocity+istribution–law
(equations (16.19) and (16.20)) are to be regarded as velid for arbitrary
Reynolds nunibersince the leminar viscosity was neglected as compared
with the turbulent viscosity. We shall now derive from the velocity–
distribution-law equation (16.20) a resistance law which, in contrast to
BlasiusS, applies up to Reynolds numbers of arbitrary _itude.

.—
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From equation (16.20)
cross section the mean flow
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one may determine by integration over the
velocity ii. One finds:

The test results ofl’?ikuradse.(reference70) g&e a number slightly
different from 3,75, namely:

~=’%ax -4.07 V*

According to equation (16.5):

From the
equation

universal velocity
(16.14) follows:

h= 8 (:)2

distribution law of the smooth pipe

and hence the comectlon with

ii = T*

{

V* 2.5 ln~+ 5.5
}

equation (16.21):

{

2.5 Zn% + 1.75

}

The Reynolds ?nuiberenters into the calculation by

rv* liid~ iid~
—=zTY=—v v 4G

Thus remltg from equations (16.23) and (16.24):

(16.22)

(16.23)

(16.24)

means of the identity:

●
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or:
4

-T

.

( oj@~k=2”03510gv
-0.91 (16.25)

Accordingly a straight line must result for the resistance law of the smooth

pipe, if one plots
()

l~~h against log $fi . This is very well confirmed

by Nikuradse?s tiasurement (fig. 81). ‘The numerical values according to the
measurements differ only slightly from those of this theoretical derivation.
lEromNikuradseis measurements was found:

1 1 .-

_=2.0,0.(!2Qpq1

rh (16.26)

Universal Resistance Law For Smooth Pipes

This is the final resistance law for smooth pipes. On the basis of
its derivation it may be extrapolated up to Repolds nunbers of arbitrsry
_itude. Thus measurements for larger Reynolds nunibersthan those of
Nlkuradsets tests are not required. Up to Re = 100,000 this universal
resistance law is in good agreement with the Blasius law according to
equation (16.4). For higher Reynolds numibersthe Blasius law deviates
considerably from the measurements (fig. 81).

Concerning the determination of x from equation (26.26), where it
appeers on both sides, it should be added that it can be easily obtained
by successive approximation.

Eleventh Lecture (Felnmary 16, 1942)

b. The Rough Pipe

The characteristic parameter for the flow along a rough wall is the
ratio of grain size k of the roughness to the boundsry layer thiclmess,
particularly to the thickness of the leminar sublayer 52 which is

always present within the turbulent friction layer in the immediate
neighborhood of the wall. The thiclmess of the laminar subl~er is

% = nuniber+ The.effectiveness of roughness of a certain grain size

depends, therefore, on the dimensionless roughness coefficient
kv*

k/51 -y
5

~ the experimental investigations of the resistance of turbulent flows
over rough walls,the rough pipe has been studied very thoroughly since it

% is of great practical importance. Besi’desdepending on the Reynolds number,
the resistance of a rough pipe is a function of the relative roughness r/k.
One distinguishes for the resistance law of a rough pipe three regions.
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The subsequently given boundaries of these regias are valid for sand
like those investigated by Nikuradse (reference n).

-
roughness k~

1. Hydraulically smooth: Ths grain size of the roughness is so
small that all rougbnesses lie within the lsminar sullayer. Ih this b
case the roughuess has no dra$ increasing effect. This case exists for
small Reynolds mmibers and for values of the characteristic roughness

< v~0<5anumber: O -
v

2. Fully developed roughness flow: The grain size of the roughness
is so large that all roughnessea project from the laminer sub-layer. The
friction dxag then consists predominantly of the form drag of the single
roughness elements. A purely squsre drag law applies. _For the
resistance coefficient X is then independent of Re smd only
on the relative roughness k/r. This law exists forvv ry lsrge

$
nunibers. For ssmd roughness this law applies for: ~ ~ 70.

3. Intermediate region: Only a fraction of the roughness

pipe the
dependent
Reynolds

‘elements
projec~ from the laminar-sublayer.- The drag coefficient depends on r/k
as well as on Re. This law exists for medium Re~olds.g~ers ~d~ for

< v&< To.
the sand roughness, for: 5 — — -

.

v

The dependence of the pipe resistance coefficient on the Reynolds”
number and on the relative roughness according to the measurements of d

Nilmradse (reference 71) can be seen from figure 82 as well as, in
particular, the three laws just given.

The velocity distribution on a rough wall is given, basically, in
the,mme way as for the mnooth wallby equation (15.16). One has only
to substitute for the constat Of integration Y. mother value: Y.
proportional to the roughness grain size. One puts for sand roughness

Yo = yks end hence obtains from equation (15.16)

~= ’{b$-zn’} (16.27)

The constant 7 is, moreover, a function of the rougbnees form and the
roughness distribution. Comparison with experiments of Nikuradse
(reference 71) on pipes roughened artificially by sdnd yields for the
velocity distribution the general formula:

u = v*
(

2.5 Zn~+B
)

(16.28)
s
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the constant B %eing tifferent in each domain described above; it
deyends on v*k8/V.

For the fully developed roughness flow B = 8.5, thus:

(U=V*2.5Zn
)

~+ 8.5 (f- rough)
e

(16.29)

whence follows:

( )~=v+2.5m $+8.5 (16.30)
s

and:

%%x-”=v*2”5”~; (16.3oa)

in agreement with equation (16.20). Thus there applies also to rough
pipes, as equation (16.=) did before to the smooth pipe, the relation:

~=%naX-3”75v* (16.31)

ltromhere one can, by a calculatim which is perfectly analogous to the
previous one for the smooth pipe, easily amive at the resistance law of
the rough pipe for fully developed roughness flow. By insertion of ~

according to equation (16.30) into equation (16.31) one obtains:

or:

li=T* ( )2.5 In&+ 4.75

or:

. /3(+)2. 8
L

(

2
2.5 m~+ 4.75

s )

k=
1

(2.0 2og& 1.68
)

2

B

(16.32)

(16.33)

(16.34)
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This is the square resistance law of the fully developed-roughness flow.
Comparison with the test results of Nikuradse (fig. 83) shows that one
obtains better agreement if one changes the ,nugber1.68 to 1.74. Thus
the resistance law of the pipe flow for fully developed roughness 1s:

(16.35)

In the plots of +W inst logr/!k8$ (fig. 83) the test results fall

very accurately on a straight line.

For flow along a rough wall in the intermediate region the constant
B in equation (16.28) is, ,pmreover,a function of the roughness coeffi-
cient% v~s~. For this case also one can derive the resistance law

immediately from the velocity distribution. According to equation (16.28):

B“=—- 2.52n$=&. 2.5 ~$
‘* s ‘* s

on the other hand, accordfmg to equations (16.31) and (16.23):

(16.36)

(16.37)

so that one obtains from equation (16.36):

()
v&

S- 2.5 in ~ + 3975B+ =~- 2.5 h&=

sfi
(16.38)

V* s

One can, therefore, determine the constant B a5 a function of ‘v&&

either from the velocit.vdistribution or from the resistance law. The
plot in figure 84 shows-good agreement between the values
these two methods. At the same time the determination of
law from the velocity distribution is confirmed.

The formula for B includes the case of the smooth
according to equation (16.14),

determinedly
the resistance

pipe. B is,
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&

7

*

.

v*k~
B“=—.v* 2.5 zn~ = 2.5 Zn —+ ’5.5

v
(16.39)

Thus a straight line results for B in the plot against log v&s/v.

Other Roughnesses

Because of the great practical importance of the roughnes-protlem
a few data concerning roughnesses other than the special sand roughness
‘wi~ be given. Nilmradse?s sand roughness may also be chsracterizedby
the fact that the roughness density was at its mximum value, because
the wall was covered with send as densely as possible. For - practical
roughnesses ths roughness density is considerably sm.ller. In such cases
the drag then depends, for one thing, on form and height of the roughness,
snd, moreover, on the roughness density. It is useful to classify any
arbitrary roughness in the scale of a standard roughness. Nikuradse~s
sand roughness suggests itself as roughness reference (roughness scale)
because it was investigated for a very lsrge range of Reynolds muibers
snd relative roughnesses. Classification with respect to the roughness
scale is simplest for the region of fully developed roughness. According
to what was said previously, for this region the velocity distribution
is given by:

&=5”75 2og&

and the resistance coefficient by:

+ Bs B~ = 8.5 (16.40)

1

( )2
2.0 Zog:+ 1.74

s

-(16.41)

One now relates to an arbitrary roughness k an equivalent sand roughness
ks by the ratio

ks =ak (16.42)

Where by equivalent ssnd roughness ks is meant that grain size of sand
.* roughness which has, according to equation (16.41) the same resistance

as the given roughness k.

Basically, of course, the equivalent ssnd roughness ks can be
m determined by a resistance measurement on the pipe. However, such measurements
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for arbitrary roughnemes are difficult to perform. Measurements on
arbitrary roughnesses in a tunnel with plane walls are more convenient.
To this purpose an exchangeable wall of a tunnel with rectangular cross
section is provided with the roughness to le investigated (fig. 85).
F&om the measurement of the velocity distribution in such a tunnel with
a rough and a smooth longitudinal wall one ottains, for the logarithmic
plot sgain~t the distance from the wall, a triangular velocity distribu-
tion (compare fig. 85). IZromthe logarithmic plot of the velocity distri-
bution over the rough wall —

one obtains by ccmtpsrisonwith the universal law according to
equation (16.28) for the shearing stress velocity at the wall:

?Sr

v*r
=—
5.75

(16.43)

(16.44)

Wther, one determines for the roughness to be Investigated the constant
B of the veloci~y distribution law, namely:

(16.45)

By comparison of equation (16.45) with (1.6.40)one obtains for the
equivalent sand roughness:

k
!3c75Tog ~ = 8.5 -B (16.46)—

~ this way one may determine the drag for arbitrary roughnesses froma
simple measurement in the roughness tunnel. This method ~ be also
csrried over to the case of the intermediate regim.

CEAP’TERXVII. TEE FRICTION DRAG OF THE Y!GATPLAZlll

IN LONGITUDINAL FLOW

The turbulent friction drag of the plate in longitudinal flow is
of very great practical importance, for instance as friction drag of wings,
airplane fuse143es, or ships. The exact measurement of the friction drsg
for the large Reynolds nu?ibersof practice is extremely difficult. Thus

l&-

*

m
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. it is particularly
(references 73 ad

importsnt that one can, according to Prandtl
74),calculate the fricti~ dr~ of surfaces from the

results of pipe flow studies. This conversion from the pipe to the plate
can 3e made for the m.ooth as well as for the rough plate.

One assumes,
plate is turbulent
selected according
increases with the
For the transition

a. The Smooth Plate

for simplification, that the boundary layer on the
from the leadlng edge. Let the coordinate systembe
to figure 86. The boundary layer thiclmess 5(X)
length of run x. Let b be the width of the plate.
from pipe to plate the free stream velocity U. of

the plate corresponds to the meximum velocity ~ ~ the PiYe, ad

the boundery layer thickness 5 to the pipe radius r.

One now makes the fundamental assumption that the same velocity
distribution exists in the boundary layer on the plate as in the pipe.
This is Certainly not exactly correct since the velocity distribution in
the pipe is influencedby a pressure drop, whereas on the plate the
pressure gradient equals zero. However, slight differences in velocity
distribution are insignificant since it is the momentum integral which
is of fundamental irtrportsmcefor the dreg. For the drag W(x) of one
side of the plate of length x, according to equations (10.1) and (10.2):

whence

(JO 43

1 dW——=
bdx

To(x)

The equation (17.1) can also be written in the form

3
For
the

1

w(x) /()=bpUo2b(x) $ l–$ d~
o 0

0

(17’.la)‘“

(17’.2)

the velocity distribution in the boundary l~er one now assumes
l/7-power law found for the pipe. Replaci% ~ by T-T.and r

51 one may write this law, according to equation (16.D):
.
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(17.3)

32

u ()
_ ~ 1/7 = ~,1/7

U. 8

Hence the momentum integral becomes

/1$~-$)df=[~t’/7@ -q,’/7)d~v=& (17.4)J=

o 0

and thus
—

w(x) =-$I)pUo~(x)

Hence follows, according to eqyation (17.la)

(17.5)

On the other hsmd,
again replacing r

one had
by 5

2~
‘o =&Jo~ (27.6)

.

found before for the smooth pipe, equation (16.13)
- by Uo:and U

.

= 0.0225 pu~7/4;/4‘o (7
(17.7)

By equating equations (17.6) and (17.7) results:

This is a differential equation for 5(x). The integration yields:

(17.8)

..
.
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Ux
Rex = $- (17.9)

For the turhylent boundary lay6r the botmdery layer thiclmess, therefore,

increases with x4/5. The corresponding equation for the hmi.nax flow

was, according to equation (9.21a), 8 = 5v~

By substitution of equation (17.8) into equation (17.5) one obtains

-1/5
w(x) = o.036bpUo2x (Rex)

or for the drsg coefficient
Cf =

W& Jo2xb:

-1/5
Cf = 0.072 (Rex)

Comparing this
value 0.072 to

result tith test results on plates one finds the numerical
be somewhat too low.

t

Ecv-z-J5X=’=7 (17.10)

corresponds better to the measurements. This law holds true only
7

for Rex< 10’, corresponding to the fact that the Blasius pipe resistance

law smd the l/7~ower law of the velocity distribution, which form the
basis of this plate drag law, are not valid for large Reynolds nunbers.
This law is represented in figure 87 together with the hminar-flow law
according to equation (9.19). ‘Theinitial laninsr flow on the front part
of the plate can be taken into consideration by a subtraction, according—
to Prs&tl (reference 73):

‘-U5 1700
Cf = 0.074 Rex

Re
x

..—

5.1&<Rex
(17.11)

< 107

The plate drag law for very large Reynolds nuniberscanbe obtained
in essentially the same way by starting from the universal logeritlmdc
law for the velocity distribution equation (16.41) which, according to
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its derivation, is valid up to Reynolds nuuibersof arbitrary magnitude.
Here the calculation becomes considerall.ymore complicated. The
development of the calculatim is clarified if one first introduces the
velocity distribution in a general form. We had introduced for the pipe

flow the dimensionless variables cp= ~ and q
V*

= —. The values at
v

the edge of the boundary layer aYe to be denoted by the index 0, thus

(1’7.12)

Then:

u = P*ql=
‘o ~

(17.13)

Wo Wo
Y=~ll ti=~dq (17.14)

o 0

l?romthe equation To = -~~ follows, with W accordfng to equation (17.1) .

p v** .p&

and according to equation (17.13):

U(uo - u) Q

\

8

U(uo - u) dy

o

.

“
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facts: The differentiation tith respect to the upper
since for q = ~o~ q?= To. In the differentiation of

Ta to be re&xded as constant, end go as a function

Thus follows from eqution (17.15):

note the following

limit gives zero,
the integrand cp

of ~o. Therefore

Cqo dq)o
uo=v——

(lx dqo I
V2d~

One puts, for simplification,

(17.15)

(17.16)

(17.17)

end obtains from equation (17.16):
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dx = ++Io) MO
o

If one assumes this law to be valid from the leading edge of the plate
(x = O), that is, that the flow is turbulent starting from the front,
the integration gives:

With

(17.18)

(17.19)

Equation (17.18) can also be written so that the Re=nuniberformed with
the len@h of run x appears:

with:

relatlon between the dimensionlessEquation (17.20) gives the
layer thicknesE ql = v@~ and the Re-miber Uoxfi.

The drag rematis to be calculated. From

U02
T
o
.pv*2=p—

V20
x

follows, because W = b~70dX
o

.

(17.20)

*

.

(1’i’.lga)

boundcwy
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/

m
F(TIO)

w =bpu~y -d?lo =~ Puow(lll)

902
~o=o

where

The drag coefficient .,= I@ Jo% x becomes finally

2V$ W-@
Cf ‘p (Tl) =

2—
9(TJ

(17.21)

(17.22)

(17.23)

Hence cf also turns out to be a function of TIC Eq~tions (17.20)

end (17.23) together give a parametric representation of Cf, as a ~tion

of Rex, where the parameter is the boundary layer thickness ql = ~.
v

Numerical Results
,

In order to arrive at numerical results, one must introduce a
special function for q(q).

TF
the l/7-power law according to equation

(16.11) that is, with cp= Cq one would obtain the dr~ law according
to equation (17.10). One uses &e universal logarithmic velocity distri–
bution law, equation (16.14).

‘?= 2.5 Znq + 5.5

~ order to make the carrying out of the integrations more convenient,
one writes

Then q becomes, for q = O, q = O. The adting of the one chsnges

T(q) a little, only for very small q tid has only little influence
on the integrals. If one writes the law at first in the.ge.ner~ fo~
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Q =a?, n(l+bq) (17.24) -

the calculatim of the l.ntegrah equation: (17.17), (17.19), (17.22),
with Z = 1 + hq yields

t )

F(q) = a3 (Zn2z -2znz +2-: )

J (@(v)=T zln2z-4z 2nz-2znz+6z - 6)

I

(17.25)

{

$(7)=; 2+1-2 ::;1)

}

With the numerical values

a= 2 ●493 b = 8.93

one obtains for the drag law the following table:

0.500
1.00
2.00
3.00
5.00

12.0
20.0
50.0

100.0
500.0

0.337 5.63
0.820 4.75
~.96 4.05
3.25 3.71
6.10 3.34
17.7 2.81
32.5 2.57
96.5
217.5 ::2
1401●o 1.55

This table can be replaced by the following Interpolation fornmla:

Cr = 0.472

(W Rex)2058

IL.
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Comparison with test results shows that the sgreement improves if the
nuniber0.472 is slightly varied, by putting

I d

L&34‘“’<Rex<’o’ (17.26)

Premitl - Schlichting:s Plate Drag Law

The laminar approach length w sgain be taken into consideration
by the same subtraction as before; thus:

17000.455 .—
Cf =

(@JR ex)2”58 Rex

5 x 105

< Rex < l&

(17.27)

Whereas the system of formulas equation (17.25) is valid up to Re-numbers
of arbitrary magnitude, the interpolation fornml.as,equations (17.26)

and (17.27), have the upper limit Re = l&. However, this limit takes
csre of all Re+unibers occurring in practice. The theoretical formula
(equation (17.27)) is also plotted in figure 87. Figure 88 gives a
comparison with test results on plates, wings, and airship bodies. The
agreement is quite good.

Very recently this plate drag law has beem somewhat improved by
Sohultz+rugow (reference 89). Uutil then, the turbulent velocity profile
measured in thecplpe (1/7=power law, logarithmic law) had been carried
over ‘directlyto the plate, mainly because accurate velocity distribution
measurements of the plate boundsry layer dld not exist. The exact
measurement of the plate boundary layer showed, however, that the plate
profile does not completely coincide with the pipe profile. The test
points show, for large distence from the wall, a slight upward deviation
from the logarithmic law found for the pipe. Thus the loss of momentum
on the plate is somewhat smaller than that calculated with the logarithmic
‘law. Schultz-Grunow repeated the calculaticm of the dreg law according
to the formula system given above with the velocity distribution law
for the plate measuredly him. His result is represented by the
interpolation formula

0.427
Cf =

106<Rex c 109
2.64

(17.28)

(– 0.407 + 2og Rex)
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This law is also plotted in figure 87. The differences from the Prandtl-

Schlichti~ law are only slight.*

The corresponding Votatbnally+ymnetrical problem, that is, the
turbulent boundary lqyer on a body of revolution at zero incidence, was
treatedby C. B. Mlllikan (reference 79). The l/7-power law of the
velocity distributicm was taken as basis. Application to the general
case has not yet been made.

Twelfth Lecture (February 23, 1942)

b. The Rough Plate

The conversion from pipe resistance to the plate drsg may be oarried
out for the rough plate in the same manner as descriled previously for the
smooth plate. One assumes a plate uniformly covered with the same rough-
ness k. Since the boundary layer thickness 5 increases from the front
toward the rem, the ratio k~b which is significant for the drsg decreases
from the,front toward the rear. Behind the initial laminar run, therefore,
follows at first the region of the fully developed rou@ness flow; the so-
called intermediate region follows and fartheet toward the reax there is,
finally, if the plate is long enough, the region of the hydraulically
smooth flow. These regions are determined by specification of the numerical *
values for the roughness coefficient v~s~~. lh order to obtain the drag

of the rough plate, one must perform the conversion from pipe flow to plate
flow for each of these three regions individually. This calculation was s

carried out by Prandtl and Schlichting (reference 76), lased on the results
of Nikuradse (reference 71) for the pipe tests with sand roughness. For
this conversion one stsrts from the universal velocity distribution law of
the rough pipe according to equation (16.28), the quantity B being
dependent also on the characteristic roughness value 7v*ks v~ according

to figure 84. The calculation takes basically the same course as described
in detail for the smooth plate in chapter XVIIa. It is, however, rather
complicated and will not be reproduced here. One obtains as final result
for the total drag coefficient of the smd-rough plate a die~~ (ffg~ 89)
which represents the drag coefficient as a function of the Reynolds
number Uol/V with the relative roughness 2& as parameter, Just as
for the pipe, a given relative roughness 2/k~ has a drag increasing

effect not for all Re+nmibers, but only above a certain R-e+umiber. ThiB
diagram is applicable also for roughnesses other them sand roughness, if
one uses the equivalent sand roughness. In the diagram (fig. 89) the
square drag law is attained, Just as for the pipe, for every relative

* The tables pertaining to the plate drag formulas are given in
table 7, chapter XXII.
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roughness 2/’k~ provided the Re+nmiber is sufficiently large. The
interpolation formula

( )4.5

Cf = L8g + 1.62 zog ~

s

(17.29)

applies to this law.

c. The Admissible Roughness

The problem of the admissible roughness of a wall in a flow is
very important in practice since it concezm the effort t~t ~@t
reasonably be expended b smoothing a surface for the purpose of drag
reduction. Admissible roughness signifies that roughness above which a
drag increase would occur in the given turbulent friction layer (which,
therefore, still is in effect hydraulically smooth). The admissible
relative roughness ks/2 decreases with increasing R_Umber UoZ/V

as one
curve
values
table~

can see from figure 89. It is the point where the particular
2& diverges from the curve of the smoth wall. One finds the
for the admissible relative roughness according to the following
they can also be cotiined into the one formula

% %3 aamiss. ~&i
=

v
(17.30)

U02
l& 106 107 10

8
T

109

()

ks –3 ~04 lo+ ~o-6 10–7
T 10

admsss .

.

l!komequation (17.30) one recognizes that the admissible roughness height
is by no means a function of the plate length. This fact is significant
for instance for the admissible roughness of a wing. Equation (17.30)
states that for equal velocity the admissible roughness height is the
same for a full scale wing as for a model wing. Let us assume a numerical

A example:

wing : chord 2 = !2m

* ~elocity U. = 300 -/h = 83 m/see
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From equation (17.30) results an admissible magnitude of ---

roughness k~ = 0.02 DIR. This degree of smoothness is not always attained
by the wing surfaces ~ufactured in practice, so that the latter have a
certain roughness drag. In the considerations just made one deals with
an increase of the friction drag in an a priori turbulent friction layer.

p.

However, the roughness may also change the drag by disturbing the
leminar friction layer to such an extent that the point of ldminar/
turbulent transition is shifted toward the front. Thereby the dr~ can
be increased or reduced according to the shape of the body. The drag is
increased by this displacement of the transition point if the body in
question has predominant friction drag (for instance wing profile). The
drag might be reduced, circumstances permitting, for a body with pre-
dominant pressure drag (for instance, the circular cylinder). One calls
the roughness height which causes the transition the “critical roughness
height”. According to Japanese measurements (reference 77) this critical
roughness height for the laminar friction layer is given by

‘*kcrit
-=15

v
(17.31)

—

A numerical example follows:

Assume, as prescribed before, a

wing Z=a

U. = 300km/h = 83 m/see

then Re =uo2/v= 107. Consider the point of the wing

Re= =ufix/v= 106. Up to this point the boun~ l~er
x= 0.12, thus

might remain

la&ar”under the effect of the pressure drop. The wall shearing stress
for the leminar boundary layer is according to equation (9.17)

F.3= 0.332U02 v = 0.332@= 2.29 ~
P u# 103 sec

hence: .

and according to

.

V* = ~= 1.52 m~~ec

equation (17.31)

k 15L.*Lid.o.14rcull
crit = v* 1.52 7
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The critical roughness height causing the transition is, therefore, about
ten times as high as the roughness height admissible in the turbulent
friction layer. The laminar friction layer therefore “tolerates” a
greater roughness then the turbulent one.

The following can be said about the influence of the roughness on
the formti~: ~dged bodies are indifferent to surface roughnesses
because for them the transition point is fixed by the edges, as for
instance for the plate norm&1 to the flow. Short curved bodies, on the
other hand, as for instance the circular cylinder, are sensitive. For
the circular cylinder the critical Reynolds nuniber,for which the bown
lage pressure drag reduction occurs, is lergely dependent on the
roughness. With increasing relative roughness k~ (R = radius of the
circular cylinder) Recrit decreases. According to British measurements

(reference 90) the drag curves for a circular cylinder with clifferent
relative rougbnesses have a course as indicated in figure 90. The
boundary layer is so disturbedby the roughness that the lamlner/turbulent
transition occurs for a considerably smaller Re+unuber than for the
smooth cylinder. The roughness has here the same effect as Prandtl?s
trip wire, that is, in a certain region of R~unbers it decreases the
drag. It is true, however, that the supercritical drag coefficient is
then always lsrger for the rough circular cylinder than for the smooth
one.

CmwTER XVIII. THE TTJK6UIi&Z?TF!RIEC’IONIAIERIN

Ac~ AND RETARDED Fzow

The cases of turbulent friction l~er treated so fsx are relatively
simple insofer as the velocity outside of the friction l~er along the
wall is constsnt. Here as for the laminar flow the case of special
interest is where the velocity of the potential flow is variable along
the wall (pressure drop and pressure rise). As for laudnar flow, the
form of the boundary layer profile s2.ongthe wall is variable. In
practice this case exists for instance for the friction lager on the
wing, on the turbine blaii%and in the diffuser. Of special interest is
the’question of whether separation of the boundary layer occurs and,
if so, where the separation point is located. The problem consists
therefore for a prescribed potential flow in following the turbulent
friction l~er by calculaticm. The calculation of the turbulent friction
drag is of importance. The corresponding problem for the Laminsr friction
layer was”solvedby the Pohlhausen method (chapter X).

For the turbulent friction layer the method of Gruschuitz
(reference 78) proVed best. Gruschwitz makes the asumption that the
velocity profiles of the turbulent boundary layer for pressure drop and
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rise can be represented as a one-penmeter family, if one plots u/U
against y/~. O signifies the momentum thickness which is, according
to equation (6.32), defined by:

As form pemmeter one selects

u(t) denoting the velocity in the friction l~er at
the wall y = 0. That q actually is a serviceable

(18.1)

(18.2)

the distsnce from
form parameter can

%e recognized from figure 91 where a family of turlmlent~%oun~y layer
profiles is plotted according to Gruschwitz. Gruschwitz found from hls
measurements that the turbulent separation point is given by

7 = 0.8 (Separation) (18.3)

The form parameter q is enalogous to the Pohlhausen-parsmeter k of
the laminsr friction layer. However, a considerable difference exists
between ~ and k: for the laminar friction layer an analytical relation
exists beiween X
thiclmess, nemely

and the pressure gradimt and the boundary layer
according to equation (10.41)

82P dTJ
h=——

v&
(18.4)

Such a relation is thus far lacking for the turbulent boundary layer,
since one does not yet possess an analytical.expression for the turbulent
velocity profiles*. One needs therefore an empirical equivalent for
equation (18.4).

For the special case of the turbulent’friction layer without

pressure gradient where the l/7-power law u/u = (y/5)1/7 applies for
the velocity profile, one ffnds from equations (18.1) and (18.2)

* Compare, however, chapter XXIIb, where under certain assumptions
such an analytical cormecticm is indicated. -

.

*
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(18.5)

Since in the case of the turbulent boundary layer, an analytical
expression for the velocity di.strlb~tion does not etist, the calculation
is limited to the determination of the”four characteristics of the &iction
layer: form perimeter q, wall shearing stress To, displacement
thicbess 5*, momentum thicbess $. Four equations ere required for
their calculation.

As for the laminer boun~ l~er, the momentum theorem yields
the first equation; the momentum theorem may, according to ~quation (10.36)
be written in the form:

The second equation is yielded.by the function

.

.>

r

H
obtained by Gruschwitz by evaluation of the

(n) (18.7)

measured velocity profiles
(fig. 92),-and regsxded as generally valid. It can be derived also by
cslcizlationfrom the form of the velocity profile (compare appendix
chapter XXII) and yields:

7 =

The third equation is
measurements. He considers
parallel to the wall at the

— —

()
H–1

1– ‘–1 (18.8)
H(H+ 1)

empirically derived by Gruschwitz from his
that the energy vuriatim of a particle moving
distance y = ~ is

Dimension considerations suggest the fo~owing

+ @l
-—= F(q, Re)
qdx

a function of ~, U, $, V.
relation:

(18.9)

~= g U2 ana gl .P+guafl signify the

Y=+” The evaluation of the test results

total presstie in the layer

showed that a dependence on
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the Re+mmber is practically non-existent,
equation (18.9) in the following manner:

and that one

.fj *I
-—= 0.00894 ~ -0.00461
‘adx

Furthermore, the identity

60 -gl. P+gT3--P-gua2

is valid. One puts

NACATM NO. 1218

.

can represent

and has therefore

*L= d~-—z- &f

Now equation (18.1o) canbe written:

dc
‘aF=- 0.00894 ~+ 0.00461 q (III]

(18.10)

(18.11)

(18.12)

(18.13)

The fourth equation is still missing and is replacedby the following
estimation of To: According to the calculations for the plate in
longitudinal flow, equation (17.7) was:

To

(1

~ l/4 -1/4

7
=0.0225 ~ = 0.0225 (Re5)

P
.

(18.14)

If one takes into ’considerationthat
distribution:

for the l/7-power law of the velocity
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one

For
the

can write eqyation (18.14) ~so:

‘o
-1/4 -1/4

— = 0.01338 (Rea+) = 0.01256 (ReO)
,$

(IV) (18.15)

calculation of d and q (~ = q T, respectively) one must now solve
following system of equations:

*

—

(18.16)

~=

of

~f i8 a given function of X; H ~d —
02

sre given functions

q = ~/q or ~, respectively. This system of equations is to be
solved downstream from the transition point.

\

~iti~ values: AS initial value for ~ one takes the value from
the leminar friction layer at the tremsition point:

4 +
o-turbo= 02am. (18.17)

This is based on the consideration that the loss of momentum does not
very at the transition point since it gives the drag. The initial value

of ~ is somewhat arbitrary. Gruschtitz takes

70 = 0.1

and states that a different choice has little influence on the result.

With these initial values the systemof equations (18.16) maybe
solved graphically, according to a method of Czuber (compere aPPefi~S
wpter XXII, where en e-le is @ven). Afirst a~oximation for $

—

is obtaineaby first solving the second equation tith constant values

$for To/p and H; .
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‘o
— = 0.002; E = 1.5

pu2

(18.18) _

are appropriate. Thereby the second equation is a differential equation
v,

of the first order for & This first approximation Ol(x) is then

substituted into the first equation, which then becomes a differential
equation of the first order for ((x); let its solution be denoted
by $(X). Thus one has also a first approximation for ~: 7@

With 71(X) one determines the course of H(v) according to figure 92

and is now able to improve To according to equation (18.15). These

values of both H and

a second approxhation

Into the first equation

The
the

method converges so
second approximation.

T are now inserted in the second equation, end

o;(x) is obtained. By substitution of d2(x)

one obtains the second approximation ~2(x), etc.

well that the answer is essentially attained in

The separation point is given by

7 = 0.8

Incidental to the boundery layer calmlation one obtains the following
characteristic values of the friction layer as functions of the src
length x:

$(x), ~*(x), ~(x), To(x).

The boundary layer calculation for the profile J 015, Ca = O is given

as exemple in figure 93. The transition point was assumed at the velocity
maximum. The calculation of the laminar boundery layer for the ssme case
was indicated in chapter XII. The details of this example are uompiled
in the appendix, chapter XXII.

—

It should be mentioned that the calculation for the turbulent
boundary layer must be performed enew for every Rc+number uo2/v, whereas

only one calculation was necessary for the laminar boundary layer. The
reasons are, first, that the transitim point travels with the Re+nzmber,
and second, that the initial value of @ varies with Re, since for

r

Uot
the lsminar boundery layer :7 at the transition point is fixed.

It must be noted that the values obtained for To become incorrect

in the neighborhood of the separation point: At the separation point To

must equal.zero, whereas equation (18.15) gives everywhere To # O.

.
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*

.

BoundEu?yLayer Without fiessure Gradient —

In this case q(x) = Constant. Equation (18.13) can be written:

iii = -0.008947 + 0.00461

or, because q(x) = constant;

~=~=q~

Thus equation (18.19) becomes:

aq
d= =–. o.oo894q + 0.00461

A solution of this equation is:

~ . = .0.516

(18.19]

(18.20)

(18.2L)

(18.22) ‘

Since at the beginning of the turbulent friction layer q is smaller
than this value (transition point q = 0.1) and since according to
equation (18.21) dq/dx >0, q nnzstin this case approach the value

v = 0.516 asymptotically from below. For the velocity profile of the
l/7-power law, T = 0.487 (compare equation (18.15)). The profile
attained asymptotically for uniform pressure (p = constant) therefore
almost agrees with the l/7-power law that was previously applied to the
plate in longitudinal flow.

A great many boundary lqer calculations according to this method
me performed in the dissertation by Pretsch (reference 80).

Thirteenth Lecture (March 2, 1942)

*

After
* along solid

turbulence.

CmeTERxlx. FBD?ITUKBWCE

a. General Remarks; Estimations

considering so f= almost exclusively the turbulent flow
walls, we shall now treat a few cases of the s~alled fkee
By that one understands turbulent flows where no solid walls
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are present. Examples are the spreading of a Jet and its mixing with the
surrounding fluid at rest; or the wake flow behind a body towed through
the fluidat rest (fig. 94). Qualitatively these turbulent flows take a
course similar to that ,forthe laminar case (compare chapter IX); quanti-
tatively, however, considerable differences exist, since the turbulent
friction is very much larger than the lamimr friction. In a certain way,
the cases of free turbulence are, with respect to calc~ations, simpler
than turbulent flows along a wall, since the lamlnar sublayer is not
present and the laminar friction as compared with th6 turbulent one can
therefore be neglected for the entire flow domain. The free turbulence
may be treated satisfactorily with Prandtlts concept of the turbulent
sh&ring stress according to-equation (15.9): -

the mixing length Z being assumed a pure position
turbulent friction has the effect of msklng the jet
the velocity at its center decrease with increasing
~et.

(19.1)

function. The
width increase
distance along

and
the

We now perfom rough calculations, according to Prandtl (reference 2, .
Part I), for a few cases of free turbulence which give ~ormatian about
the laws governing the increase of width and the decrease of “depth” with
the distance x.

.

It has proved useful for such turlulent jet problems to set the

Furthermore, the
wfdth b of the

proportional to the”jet width b: –

L=p
b

= constant (19.2)

following rule has held true: The increase of the
- zone tith time is proportional to the fluctuation

of the transverse velocity v’:

(19.3)

D a
D@t signifies the substantial derivative; thus: — = u — + v —.

Dt ax :

Accorting to our previous estimation, equation (15.5): vi = ~ ~;
ay

Therefore:

.

*
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(19.4)*

J
Furthermore, the mean value of ~ equals approximately:

au— = nuniber~
ay b

and thus:

Db zm=ntiervmex=naer~%ax (19.5)

Jet (Plane and Circuler) .

We shall estimate, by meems of these relations, how the width
increases with the distance x and the velocity at the center decreases.
At first, for the circular as well as for the plane jet:

Db _ntier ~ db
Dt max= . (19.6)

It follows, by comp&ison with equation (19.5):

l’) = nmiber x + constant

If the origin of coordinates is suitably selected (it need not coincide
with the orifice) one has therefore:

IEEEEl (plene and circular set) (19.7)

The relation between ~ and x is obtained from the momentum

theorem. Since the pressure is constent, in the x-direction, the x-
momentum must be independent of x, thas:

.-.

J= p~u2dF = constant
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whence follows for the circuler Jet: .

J = number p u*- b2

or:

and lecause of equation (19.7):

m(circ”i’e’) “’”’)

For the plane Jet, if Jt signifies the momentum per unit length of the
jet:

Jt ‘n*-%ax~
1 rJt

= nuniber—

rb
F

and bedause of equation (19.7):

= ntmiber~ FIJt

r -r (plane jet) (19.9)
x

Wake (plane and circular)

The calculation for the wake is somewhat differant, since the
monmntum which gives directly the dreg of the body must be calculated in
a slightly different way. The momentum integral is now (compare
equation (9.40)):

w =J=P
f

u(Uo-u)dF (19.10)

At hixge distance from the body u~ = U. - u is small compared with U.
(fig. 95) S0 that U?<< U. end

.

.
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.

.

U(uo — u) = (U. – u?) .U*x U. u~

Thus one obtains for the circular wake:

.

~cw FUo2-p Uou?~b2

Cw F~f

~“~

~stead of equation (19.6) now ap-p~ies:

Db U&—=
Dt ‘ax

and instead of equation (19.5):

Equating of equations (19.12) and (19.13)

u?

gives:

By comparison with equation (19.11) one obtains:

b2$&&~F
fl

m ‘W”ecirc””)
By insertion in equation (19.11) results:

ml (Makecircular)

(19.11)

(19.12)

(19.13)

(19.14)

(19.15)

— —....—

(19.16)
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For the plane wake behind a long rod, win& or the like with the

dlemeter d and the length L, W = Cw ~Uo2 Ld end

w =J~p Uou VL”

and hence:

cd~: w.*—
U. 2iY

and from this in combination with equation (19.14):

I [

By substitution in equation (19.17) results:

(19.17)

*

—.

t

—

*
(19.18)

.

I ()
~ d ~/2

~tlw
—#v—— (Wake
U. 2 px

Thus, for the circular wake, the width
-2/3

the velocity decreases-with x ; for the

plane) (19.19)

increases with
3
T x, and

plane wake, the width

increases with ~, ~1/2eand the veloc”itydeer-easeswith x

The power laws for the width end the velocity at the center are
compiled once more in the following table. The corresqdi~ l-nsr
cases which were partially treated in chapter ~, are included. More-
over, the case of the free Jet boundary is given, that is the mixing of
a homogeneous air flow with the adjoinfng air at rest. (Compare
figure 97.) *

“
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LsJninsr Turbulent

Veloclty at Center Velocity at Center
Width u Width u

Case . ?) or u? b or u?
respectively * respectively

Plane Jet =2/3 x-1/3 x x–1/2

Circular jet x x-l x x-l

Plane wake =1/2 x–1/2 =1/2 X42

Circular wake #2 + xl/3 ~2/3

F&ee Jet boundary xl/2 X“ x X“

.

For a few of the cases treated here the velocity distribution will

.

be calculated explicitly below. The calculation on the basis.of the
~andtl mixtng length theorem was performed for the free jet boundary,
the plane ~et, and’the circular set by W. Tollmien (reference 81), for
the plane wake by H. Schlichting (reference 82) and for the circula
wake by L. M. Swain (reference 83).

Theequations of motion for the plane stationary
to equation (14.14), if the laminar friction terms are
neglected:

av _QiE+P2iE+dk‘2+VF= pay ph pay

case are, according
completely

(19.20)

&
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b. The Plane Wake Flow

We shall now calculate the velocity distribution for the plane wake
flow. A cylindrical body of diameter d and span h .isconsidered.
Further, let --

.

US =Uo–u (19.21)

be the wake velocity. One applies the moment~ theorem to a control
area according to figure 95, the rear boundsry B C of which lies at
such a large distance from the body
the undisturbed value. As shown in
one obtains:

that the static pressure there has
detail in chapter IX, equation (9.40),

1’

(19.22)

w =hp

/

Ufuo-u)dy.

BC

w =hp

[

(U. - uf)u~ dy

BC

For large distances behind the body u*<< U. so that one may
2

approximately neglect the term u’ in comparison with- U. U* in
equation (19.22). Hence:

X+m: w =hpUo

/

Uf dy (19.22a)

BC

Since, on the other hand W = Cw d h ~Uo2, there becomes:

/

+b

Ut &J’= 1
~’w’uo

-b

This problem can le treated with the loundary layer

(19.23)

.

differential equations;

they read according to equation (19.20) with the Prandtl expression for the
turtndent sheering stress accordhgto eqwti~ (15.9),.With P ad ax

*

neglected:



NACA TM No. IZ18 57

For the mixing length one puts, according to equation (19.2):

2 =$11

(19;24)

(19.25)

Further:

Ut =U+u12+”””* (19.26)

(19.27)

For the wske velocity U1 and the width b the power laws for the
decrease and increase, respectively, with .x were already found in
equations (19.18) smd (19.19). One therefore mites: .

(19.28)

b =B (cwdx)
1/2

(19.29)

According to equations (19.27) and (19.29)

The estimation of the terms in equation
order of magnitude in x gives:

(19.24) with respect to their

+$Thetemsu2 . . . signify additional terms of higher approximation,

which aisappeer according to a higher power of x than does u1.
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Hence the term v $ ~ X-2 whereas the largest terms * x-3/2. Thus -

equation (19.24) is simplified to:

The neglected terms are taken into account only in the next approximation.
The further calculation gives:

+ -1/2

()

=Uo ~ f? 1

T Cwd 1/2
B (owd x)

$ul -1/2

()

=Uo ~ p 1

b2 ‘“d
B2 Cwd X

After insertion In equation (19.30) and eliminating the factor

21 x

()

–1/2
uOzq the following differential.equation results for f(~)

; (f +1’1f’) S#f’f”

The boundary conditions are:

3U1

Y =b: —=0
‘l=O; &

(19.31)

4
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That iS:

The
snd

v 1: f= f’=o= (19.32)

differential-equation (19.30) may hnediately be integrated once
gives:

Because of the boundary conditions, the
zero; thas:

This may be integrated in closed form:

Constant

integration constant must equsl

f=(..p,w+.y

Because f =

r

Ofor~.~, c=-~ > and hence:
2fi2

f . $>(, - ,3/92

*
9

(19.33)
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The condition f: =Oforq= 1 is shmltaneously satisfied according
*

to equation (19.33). In f“, that is
3%— a singularity results at the
ayz~

center (q = O) and on the edge. For q = O, f“ = OJ;the velocity
profile there has zero radius of curvature. At the edge there exists
a discontinuity in curvature. In contrast to the laminer boundary
layer solutions, where the velocity asymptotically approaches the value
of the potential flow, one obtains here velocity profiles which ad~oin
the potential flow at a finite distance from the center.

The constant B remAins to be detemnined:

From equation (19.33) one finds: 2~[1-93/2)2d~=& and hence:

.

and, by comparison with equation (19.23):

J
b

2 uw=%d~uo=$%? duo
o

or: .

.

Thus the final result for the width of the wake”and the velocity
distribution from equations (19.28) and (19.29) is:

(19.34)

*Reviewers note: Integrating from-1 to +1, as was done In the
original Gernlanversion, results in an haginary term, which was avoided
in the translation by integrating fromO to +1 end doubling’the result.

m
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.

91

●

b=vwqcw. y’ “
‘lb- x -1/’
U. did [.-(;)’”]2

(19.35)

The constant ~ = Z/b is the only empirical constant of this theory; it
must be determined from the measurements.

Comparison with the tests of Schlichting (reference 82) shows that
the two power
and also that
with equation

laws (equations
the form of the
(19.35), figure

(19.28) ad (19.3)) are we~” satisfied,
velocity distribution shows good agreement
96. The constant f3 is determined as

P;=—= 0.207

The solution found is a first
to the measurements it is valid for x/cwd250. Far smaller &stances -

approximation for lmge distances: .accordin~

–1 .x–3/2one may calculate additional terms which are proportional to x ,

for the wake velocity in equation (19.26).
>

.*O

The rotationally-symmetrical.wake problem was ‘treatedby
Miss L. M. Swain (reference 83). For the first approximation results
exactly the same function for the velocity distribution; only the power
laws for the width b and the velocity at the center ~? are different,

l/3
nsnely b - x and ~~ * x-2/3, as already indicated in
equations (19.15) and (19.16).

Fourteenth Lecture (March 9, 1942)

c. The Free Jet Boundary

The plane problem of the mixing of a homogeneous air stream with
the adjoining air at rest shall also be treated somewhat more accurately
(fig. 97) ● It is approximately present for instance at the edge of the
free jet of a wind tunnel. The problem was solved by Tollmien
(reference 81).

The velocity profiles at various distances x are affine. me
sets

u =Uof(q) =UoF’(q) (19.36)

.
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— —
.

(19.37)

and
*

Furthermore set

z =Cx =Cll

The equation of motion reads:

One integrates the continuity equation by the stream function:

I J’~= Udy=Uo X f(~) dq=Uox F(q)

Then:

(19.38)

(19.39)

(19.40)

au ‘o au ‘o a2u _ ‘o ~,”
x qF”; ~ = ~F”; ——=. —

ax
ay2 “

v .-g =–u. (F- TF?)

Substitution into the equation ofmotlon (19.39)

by uo2/x;

FF” + 2~2 FtiFIW=0

xz

(19.40a)

gives, after division

(19.41)



s

P

NACA TM NO. u18

The boundary conditions are:

at the inner edge:

7 = ~1:

at the outer edge:

q = qa:

Since the boundary pofits VI

63

u= U.: F?=l

&o—=
ay : ‘“ =

o
1

}

(19.42)

and

conditions can be satisfied %Y the
equation (19.41). By introduction

7* =

= o: Ft=o

I

q2 me still free, these five boundery _

differential eq,uatfonof the third order
of the new variable:

(19.43)

the differential equation (19.41) is transformed into (~ = differentiation
with respect to T*)

FF” +F” Ft” = O (19.44)

The solution F“ = 0, which gives u = c~stant~ is el~natedo The ....
general.solution of the linear differential equation

F+FSt’=() (19.45)

is

~v*
F=e

,

with L signifying the roots of the equation A3 + 1 = 0, thus:
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1 ~ — .
.

Hence the general solution is: .- .

g

F= c1 e~* +C2e
()

Cos g,* .c3e$Bh(q7*) (lg.46)

If,-moreover, one measures the q-coordinate
point, thus puts:

the solution (equation (19.46)) can also be

from the inner boundary
—

—

written:

llromthe boundmy
tha values:

conditions (equation (19.42)) result for the constants

0.981 ; @ =–2.ok ; ~= -3.02

al =-0.0062; d2 = 6.987; d3 = o ● 577

For the width of the mixing region one obtains:

( =X32;=’ *-7*b =xlll— 72) V( ’11 2)

rb = 3.0232C2X

The constant c must be determined from
it is found that

experiments. Fiom measurements *

II = 0.255 x:
.

(19.47)
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Hence

63

b

“

c

.

N/2C2 = 0.0845; c = 0.0174

snd

1
– = 0.0682
b

(lg.48)

It is striking that here the ratio 2/b is essentially smaller than for
the wake.

The distribution of the veloofty components u and v over the
width of the tixing zone is represented in figure 98.

From the second equation of motion one may calculate the yressure
difference between the air at rest PO and the homog~eous air stream .pl.

One finds:

Thus an sxcess pressure of
the inflow velocity of the
equation (19.40a):

= 0.0048 ~uo2Pi-PO . —

and with the

T-m=—

measured value

(19.49)

one-half percent is present in the Jet. For
entrained air one finds according to

F(712)U. = + 0.379
r“
2C2 U.

of c;

v—m s o.032uo (19.49a)

d. The IMne Jet

In a similsr msnner one may also &lculate the plane turbulent jet
flowing froma long narrow slot (compare fig. 94). The laws for the
increase of the width and the decrease of the center velocity hav
already been given in equations (19.7) end (19.9): b *x; %~-~

The calculation of’the velocity distribution was csrried out by TolMen
(reference 81); it leads to a non–linear clifferential equation of the

second order the integration

for this case were performed

of

by

which is rather troublesome.

F6rthmann (reference 91). In

Measurements

figure W
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the measurements sxe compared with $he theoretical curve. The agreement
is rather good. Only in the neighborhood of &e velocity meximum is
there a slight systematic deviation. There the theoretical curve is
more pointed than the measured curve; the.theoretical curve, namely,
again has at the maximum a vanishing radius of curvature.

According to the Prandtl formula, equation (15.9), the exchanue
becomes zero at the velocity maximum, whe~eas actuailj”& small exch&ge
is still taking place.

e. Connection Between Exchange of Momentuoq

Heat and Material

In concluding the chapter on turbulent flows I should like to
make a few re=ks about the connection between the turbulent exchange
and the heat and material transfer in a turbulent flow.

In the Prandtl theorem equation (15.9) for the apparent turbulent
stress:

T II=P22$ $=A$

one cem interpret:

as a mixing factor. It has the same
Rarthermore, the shearing stress T

T
momentum= =

2
m see

(19.50)

dimension as the lsminar viscosity ~.
may be interpreted as a momentum flow:

momentum flow (19.51)

-1
Momentum = mass X velocity = [Kg Seed●

Another effect of the turbulent mixi~ phenomena, basides the
increased apparent viscosity by transport of mgmentum,is the transport
of all properties inherent in flowing matter, as heat, concentration of
impurities, etc. If this concentration is not uniform, more heat or
impurity is carried away by the turbulent exchange from the places of
higher concentration thm is brought back Prom.the place~ of lower concen-
tration. Thus there results, on the average, transfer &on the places of
higher to those of lower concentration.

.
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This results, for temperature differences, in a turbulent heat
transfer; for concentration differences (for instsnce, of sslt), in a
turbulent diffusion. They can, in analogy to equation (19.50) be expressed
as follows:

Momentum flow =
momentum transport = ~ d

( )

momentum
2

m sec
T~ Unit mass

Heat flow = heat trans~ort .
%(

‘heat ~

~2 sec
* unit

Flow of material =
trans~ort of material

~2
sec

mass)

d%( mterial=
— unit mass)

temperature,(The heat content of the unit mass is CpO @ =

= specific heat =

[

cal m
CP

])
. For chemical or mechanical

kg sec2 degree
concentrations the concentration of material per unit mass is called the
concentration c; it is therefore the ratio of two msses and therefore
dimensionless. Thus the above equations
following forms:

may also be written in the

-1
T = Ar$

Q
~ ‘rPe)=-

Q
}

(19.52)

The question arises as to whether AT, ~, ~ are numerically the same

or different. If the momentum is transported exactIy like heat or material
concentration — Prandtlts theorem is based on this assumption - it would -
follow that AT= ~ = ~ and, for instance, the velocity and temperature

distributions in a turbulent mixing region would have to
However, measurements show partially different behavior.

be equal.

free turbulence.
(reference 92)

One has to distinguish between wall turbulence emd
Concerning free turbulence, calculations of G. I. Taylor
and measurements of Fsge and Fallmer (reference 93) showed for the velocity
snd temperature pr”ofileof the plsge wake flow

&
AT =

2 (:ree turbulence) (19.53)
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The heat exchange is, therefore, larger than the momentum exchange.
Consequently the temperature profile is wider than the velocity profile.
The theory given for that phenomenon by G. 1, Taylor,operates with the
conce~tion that the particles, in their turbulent exchenge movements,
do not maintain their momentum (Prandtl),but their vortex strength

(Prandtl~.smomentum exchange theory -
$$”

Taylor~s vorticity transfer
theory). EoweveY, there sre cases not satisfied by the Taylor theory
(for instance the case of the rotationally symmetrical wake). That the
heat exchange for free turbulence is considerably larger than the momentum
exchange is also shown by.experiments of Gran Olsson (reference 88)
concezming the smoothing out of the temperature and velocity distributions
behind grids of heated rods. With increasing distance behind the grid
the temperature differences even out much more rapidly than the differ-
ences in velocity.

For wall turbulence the difference between the mixing factors for
momentum and temperature Is smaller. H. Reichardt (reference 87) was
able to show, from measurements of the temperature distribution in the
boundsry layer on plates in longitudinal flowlgy Elias (reference 86)
and in pipes by H. Lorenz (reference 14), that here

> = 1.4 to’lo5 (wall turbulence) (19.54)

T

Herewith we shall conclude the considerations of free turbulence.

CHATTERxx: DETERMINATION Ol?THE PROFILE DRAG FROM

THE LOSS OF MOMENTUM

The method, previously discussed in chapter ~, of determining
the profile bag from the velocity distribution in the wake is rather
important for wind tunnel measurements as well as for flight tests; we
shall therefore treat it in somewhat more detail. The determination of
the drag by force measurements is too inaccurate for mmy cases, in the
wind tunnel for instance due to the large additional.dreg of the wire
suspension; in some cases (flight test) it is altogether impossible. In
these cases the determination of the hag from the wake offers the only
serviceable possibility,

The formula derived before in chapter ~, equation (9.41) for
determination of the drag from the velocity distribution in the wake Is
valid only for relatively large distances behind the body. It had been
assumed that in the resr control plene (test plane) the static pressure
equals the pressure of the undisturbed flow. However, in practically
carrying out such tests in the wind tunnel or in flight tests one is

.-

.

●

u
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forced to approach the body more closely. Then the static pressure gives
rise to an additional term in the formula for the drag. For measurements
close behind the body (for instance; for the wing, for x < t) this term
is of considerable importance, so that it.must be known rather accurately.
A formula was indicated, first hy Betz (reference ~), later by B. M. Jones
(reference 85)wMch Westtis correction lntocasideration. Although
at present most measurements we evaluated according to the simpler Jones
formula, we shall also discuss Betzt formula since its derivation in
particular is very interesting.

a. The Method ofBetz

One imagines a control surface surrounding the body as shown in
figure 100. In the entrance plene I ahead of the body there is flow
with free-stream total pressure go, behind the body in plene II, the
total pressure g2 <go. The lateral boundaries are to lie at so large

a distsnce from the body that the flow there is undisturbed. h order ‘
to satisfy the continuity condition for the control surface the velocity
~ in plane II mustbe partially greater than the undisturbed velocity

Uo. Consider the plane problem; let the body have the height h.

Application of the momentum theorem to the control surface gives:

W=h

~-.

Tn order to make this formula useful
must be transformed in such a menner
only over the “wake”. For the total

at infinity:

in plane I:

in plane II:

(20.1)

J–co J

for test evaluation the integrals
that the integrals need to be extended
pressures

&12
p2

=p2+~u2

J

(20.2)

Outside of the weke the total pressure everywhere equals go. Eence
equation (20.1) becomes
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rfl+m fl+m 1

Thus the first integral

($O-.,)ti+q(f-%%)] (20.3)

--&

already has the desired form, since the integrand
differs from zero only within the wake. In order to give the same form
to the second integral, one introduces a hypothetical substitute flow

u2’(Y) f-npl~e II which ~ees tith ~ everywhere outside of the wake,

but differs from ~ within the wake by the fact that the total pressure
for u2~ equals go. Thus

(20.4)

Since the actual flow Ul, ~ satisfiesthe continuity equation the

‘flow volume across secti(m II for the hypothetical flow Ul, u2t is too

lerge. It shows a source essentially at the location of the body which
has-the strength

Q

A source in a frictiunless

n

=h
J( %’ -~)~ (20.5) .

parallel flow experiences a forward thrust

R.– PUOQ (20.6)

One now again applies the momentum theorem according to equation (20.3)
for the hypothetical flow with the velocity ~ at the cross section X

and the velocity ur2 at the cross section II. Since g~ = go and the

resultant force, according to equation (20.6), equals R, one obtains

J’( )-pTToQ=:h U12-Ut22@ (20,7)

By subtraction of equation (20.7) from equation (20.3) there results

W+pUoQ=h
[J(.cg2)Q+$J(u,$-$2)~] ‘2008)
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or because of equations (20.5) snd (20.6):

‘=h [J(.o-.2)~+:J(.,: -%9: -~uof(u’2-.J*]

One may now -performeach of these integrations only across the wake, since

outside of the wake u~
2 ( )(
= U2. Due to ut22–u22 = U?2 -U2 UC2 + U2

)
a transformation gives the following formula:

(20.9)

~ order to determine W acca~q.~ this equations one ~s ~ ~as~e
in the test cross section behind the body the following values:

1. Total pressure g2 (therewith go is the value of .2 outside
of the wake).

2. Static pressure p2e

Furthermore, p = static pressure at infinity.

Hence one obtains all qwtities required for the eval~tion o?
equation (20.9).

It is useful for the evaluation of
dimensionless quantities. Wfth F = ht
drag:

W=cwht~

and hence from equation (20.9):
I

wind tunnel tests to
as area of reference

U2
o

introduce
for the

(20.10)

For the case in which P2 = P. = o> at the test cross section one can

write this equation, because go = ~:
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This egrees with equation (9.41).* Thus in this case BetzS forma
chsnges, as was to be expected, into the previous simple formula.

.

b. The Method of Jones

Later B. M. Jones (reference 85) Indicated a similar method which
in its derivation and final formula is somewhat simpler thsn Betzt method. *

Let cross section II (fig. 101) (thetest cross section) lie close
behind the body; there the static pressure p2 is still noticeably

different from the static pressure po. Let cross section I be located
so f= behind the body that the static pressure there equals the undi~
turbed static pressure. Then there applies for cross sec~ion I according
to equation (9.41)*

w 1.(=hp UIUo-

In order to relate the value of u. back

)u~ Ql

to measurements

(20.12)

at cross
section II, continuity for a stred filament is first applied:

P U1 ml =PU2KY2 (20.13)

* In chapter ~ the total drag of the bo~~ (both sides of the
plates) was designated by 2 W; here the entire drag equals WI
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Jones mskes the further assumption that the flow from cross section 11
to cross section I is without loss, that is, that the total pressure is
constant along each stream line from II to I:

g2 = gl (20.14)

First, according to equtions (20.12) and (20.13):

w = hp

/
( )‘2 ‘o – ‘1 ~2

Furthermore:

&2=go=~PO+2 o

P U2=Q
‘2+5 2

and hence

withp=O
o

1

I!Yomequation (20.12) follows, with W = Cw t h ~Uo2:

/()U2 U1 ~ Y2
CW=2 ~1-~ T

and because of equation (20.17):

(20.15)

)
(20.16)

(20.18)

(20.17)

.
9



.

74

Formula of Jones

-NAC!ATM NO. 1218

Thus all quantities may be measured in cross secti6n II close to
the body. This formula is simpler for the evaluation than Betzt formula,
equation (20.10).

b the limit, when the static pressure in the test cross section
becomes P2 = Po, this forimla, of course, must also transform into the ‘

simple formula equation (20.11). One obtains for p2 = p. = O from
equation (20.18):

This iE in agreement with equation (9.41).

Fifteenth Lecture (March 16, 194.2)

CHAPTER ZtI: CRIGIN OF TUKBUGENCE

a. General Remarks

Ih this section a short summsry of the theory of the origin of
turbulence will be given. The experimental facts concerning laminar/
turbulent transition for the pipe flow and for the boundary layer on the
flat plate have beendiscussed in chapter XIII. The position of the tran-
sition point is extremely important for the drag problem, for instance
for the friction drsg of a wing, since the friction bag depends to a
great &tent on the position of the transition.point.

The s~al.led critical Reynolds &miber determines transition. For
the pipe (fid/V)crit= 2300, and for the boundary layer on the plate

(uox/v)crit = Sto 5X105. However, experimental Investigations show

the value of the critical Reynolds ntier is very dependent on the .
initial disturbance. The value of Recrlt is the hfgher the smaller the

initial disturbance. For the pipe flow the magnitude of.the initial
disturbance is given by the shape of the inlet, for the plate flow by
the degree of turbulence of the oncoming flow. For the pipe, for instsnce,
a critical Reynolds nuniber (fid/~)crit= 40,000 canbe attained with very
special precautionary measures.

According to today~s conception regarding the origin of turbulence,
transition is a stability phenomenon. The lamina flow in itself is a

solution of ths NavieMtokes differential equations up to arbitrarily
high Reynolds numbers. However, for large Re+nunibersthe laminar flow

,
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becomes unstable, in the sense
ations,in velocity) present in

that small chance
the flow increase

. 75

disturbances (fluct~
with time and then alter

the entire chsracter of the flow. This conception stems froxnRe.ynolds
(reference 101)- Accordingly, it ought to be ~ossible to obtain ‘tie
critical Reyaolds number from a stability investigation of the laminar
flow.

Theoretical efforts to substantiate these assumptions of Reynolds
m-thematically reach rather far back. Besides Reynolds, Rsyleigh
(reference 102) ~. particularworked on the problem. These theoretical
attempts &Ld not meet with success for a long time, that is, no instability
could be established in the investigated lsminar flows. Only very
recently has success bea attained, for certain cases, in the theoretical
calculation of a critical Reynolds nuniber.

One assumes for th? theoretical investigations that upon the basic
flow which satisfies the l?avie~kes differential equations a disturbance
motion is superimposed. One then investigates whether the disturbance
movement vanishes again under the influence of friction or whether it
increases with time and thus leads to ever grambg deviations from the
basic flow. The following relations till be intorduced for the plane
case:

basic flows: U(x, y]; V(x, y); P(x, y)

disturbance movement: U’(X5 y); V*(XS Y); P’(X3 Y)

1

(al)

resultant movement: u+ul;v+v~;P+pl

P, pt signify pressure. The investigation of the stability of such a
disturbed movement was carried out essentially according to two different
methods:

1. Calculation of the’energy of the disturbance movement.

2. Calculation of the development of the disturbance movement with
time according to the method of small oscillations.

I am going to say only very little about the first method since it
was rather unsuccessful. The second method was considerably more
successful and will therefore be treated in more detail later.

The first method was elaborated mainly by H. A. Lorenz
(reference 103). The following integral expression maybe derived for
the energy balance.of the disturbsmce movement:

$F=pk-l’dv ‘2”2)
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(~ft E.&’@2+v?2) signifies the kinetic energy of the disturbance

movement. The inte~ation is performed over a space which participates
in the movement of the bflslcflow and at the boundaries of which the
velocity equals zero. !5% signifies the substantial derivative. Thus

one finds on the left side of equation (21.2) the increase with time of
the energy of the disturbance movement. On the right side,

%

M

[

~,2 ~

()]~

aua’v+Ttaz+utpt —+—=-
& h by “ax

—
(21.3)

i?.(~-:)a

The first integral signifies the energy trsnsfer from the main to the
secondary movement, the second the dissipation of the energy of the
secondary movement. If the right side is greater than zero, the intensity
of the secondsry movement increases with time, and the basic flow is thus
unstable. An assumed disturbance movement uT, VT satisfies merely the
continuity equation, but no heed is paid to its compatibility with the
equations of motion. If one could prove that the right side is negative
for any arbitrary disturbance movement u*, v~ this would serve as proof
of the stability of the basic flow. On the other hsnd, the instability
would be proved as soon as the right side is positive for a possible
disturbance. Unfortunately general investigations in this direction
sre very difficult and have not led to much success. H. A. Lorenz
(reference 103) treated as an example the Couette-flow (fig. 102), assuming
en elliptical vortex

()

Uod
this case T ~~t
gave the value 1900.

b.

For the second
movement is actually

as a superimposed disturbance movement. He found for

= 288, whereas Couettets measurements for this case

..

The Method of Small Oscillaticms

method (method of smll oscillations) the disturbance
calculated, that is, its dependence on the spatial

—

m“

coordinates x, y and the the t is developed on the basis of the
hydrodynamic equations of motion. We shall explain this method of small
oscillations in the case of a plane flow. In view of the applications
of this method we shall.immediately assume a special basic flow: the
component U, namely, is to be dependent only on y end t and V- O.
Such basic flows ha~ been previously called ‘layer flows”. They exist 9

for instance in tunnel flow and pipe flow, approximately, however, also
in the boundery layer since here-the dependence of the velocity component
U on the longitudinal coordinate x is very much smaller than the
dependence on the trermverse coordinate y. One now assumes a basic flow ‘ *J
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U(y, t)j v= o; P(x, y) (21.4)

This basic,flow, by itself, then satisfies the Navie-tokes equations,
thus

au lap .v&!
Z+~Z ay2

apo—=
&

(21.5)

A disturbance movement
upon this basic flow:.

which iS dSO tw~nsional is superfiposed

disturbance motion: ul(x,y,t); v’(x,y,t); p’(x,y,t) (?L6)

One then has as ths

resultem.tmotion: u=U+ u’; v = O + v’; p =P+P’ (21.7)

.

This resultsnt motion is required to satisfy the NaviezS3tokes differential
equations and one investigates whether the disturbance motion dies away
or increases with time. The selection of the initial.values of the dis-
turbance motion is rather arbitrary, but it mist of course satisfy the
continuity equation. The superimposed disturbances are assumed as “small”,
in the sense that all quadratic terms of the disturbance coqonents ere
neglected relative to the linesr terms. According to whether the dis-
turbance motion fades away or increases with time, the basic flow is called
stable or unstable.

By insertion in the I?avi-ekes differential equations (3.18) one
obtains, neglecting the quadratic terms in the disturbance velocities

%

}

(21.8)
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If one now notes the fact that the basic flow by itself satisfies the
Navie~okes differential equations, equation (2tl.~),equation (21.8)
is simplified to:

&t—+~*+Lti.VA@
at tk @ ay

(21.9)

The pertinent boundary conditions are: Vanishing of the disturbance
components U? and v? on the bounding walls. lhm the system
equation (21.9) of three e~uations with three unlmown quantities u~,
V*, pt one may at first eliminate pt by differentiating the first
equation with respect to y ad the second with respect to x and then
subtracting the second from.the first. This gives, with continuity taken
into consideration:

} (Zil.lo)

In addition to this there is,the continuity equation (21.9). There we
now two equations with two unhewn quantities u’, v; ●

Form of the Disturbance Movement

.

.

For cases where the basic flow predominantly flows In one direction
as for instance boundary-layer or pipe flow, the disturbance motion Is
assumed to be a wave progressing in the x-direction (= main flow direction),
the amplitude of which depends solely on y. The continuity equation of
the disturbance motion may in general be integrated hy a disturbance
function for which the following expression may be used:
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Where:

“L.=

c =

ia(x-ct)
$ (x,y,t) =q(y)e

2K/cL the wave length of the disturbance (a = real) .

79

(21.11)*

cr+ici

velocity of wave propagation

amplification f,actor;Ci< O:

9r(Y) + i PI(Y) = ~litude of

stable; Ci> 0: unstable

the disturbance move-t

~om equation (21.11) one obtains
movement

&~t--
ay

al-~t=.
ax

for the components of the disturbance

ia(x-ct )
gt(y)e 1 (21.13)

ia(x-et)
= – icup(y)e I

By substituticm into equation (21.10) one obtains
ential equation for the disturbance amplitude q:

)
the following differ-

( –q)@’ + a2ccp”– )( 2 4
iaUq” - @ Ua2(p = ~ @l?

)–2a@’+aq

or

(u - C)(q” – a%) – @’q = + (Q’’”- 2a~” + akq) (21.14)

One introduces dimensionless quantities into this equation by referring
all velocities to the maximum velocity Um of the basic flow (that is

for the friction layer the potential flow outside of the boundary layer
and all lengths to a suiteble reference length .p) (for instance, for

~he convenient complex formulation is used here. The real part of
the flow function, which alone has physical significance, is therefore

tit{,/os[a(x-.J)]-~isin[a(x-cJ)]](2,12)Re(~) = e

L J
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the boundary layer flow, the boundary lq’er thickness). Furthermore, .
differantlationwith respect to the dimensionless quantity y/8 will
be designated by a prime mark (*).

One

where R

than obtains from equation (21.14)

[

(u - C)(q” - at) -u”(p = - & (P’’”- 2a2cp”+ a4q ) (21.15)

DISTURRKNCE DIWEHENTXAZ ZQUATIOM

. y. This is the disturbance differential equation for the
.

amplitude q of the disturbance movement. The loundary conditions are,
for instance, for a boundary layer flow

Y =0 (wall): u’=v~=o: ql=qlf=o

}

(=.16)
Y =m .. Ut =~t=(): (p=q)t .()

The stability investigation is an eigenvalue problem of this differential
equation for the disturbance amplitude q(y) in the following sense: A
basic flow U(y) is prescribed which satisfies the Navier=tokes differ-
ential equations. Also prescribed is the Reynolds nwiber R of the basic
flow and the reciprocal wave length a = 2Jc/A of the disturbance movement.
From the differential equation (21.15) with the boundary conditions
equation (21.16) the eigenvalue c = Cr + i Ci is to be determined. The
sign of the imagimmy pert of.this characteristic value determines the
stability of the basic flow. For Ci< O thepartlcular flow (U, R)

is, for the particular disturbance a, stable; for ci > 0, unstable.
The case ci = O gives the neutrally stable disturbances. One can

represent the result of the stability calculation for an assumed basic
flow u(y) in an a, R–plane In such.a manner that a pair of values
Cr, Ci belongs to each point of the a, R-plane. In particular the

■ ✎

✎

curve Ci =0 inthea, R-plane separates the stable from the unstable
disturbances. It is called the neutral stability curve (fig. 103). In
view of the test results one expects only stable distmbances to be present

*

at small Reynolds numbers for all wave lengths a,
.—

unstable disturbances,
however, for at least a few a at large Reynolds n~ber~” “The t~ent
to the neutral.stability curve parallel to the a-axis g“ivesthe critical
Reynolds number of the respective basic flow (fig. 10j).

s
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Methods of Solution and General l%operties of the Disturbance

81

Differential Equation

Since the stability limit (ci = O) is expected to occw at large

Reynolds n@ers, It suggests itself to suppress the friction terms In
the general disturbance differential equation end to obtain approximate
solutions from the s~a.lled frictionless disturbance differential
equation which reads

I(u - c) (Cp”- a2q) -u’tq = o
I

(21.17)

only two of the four boundary conditionsjequation (21.16),of the complete
disturl)-ce differential eqyation can nowle satisfied since the friction-
less Msturbeme differential equation is of the second order. The
remaining boundary conditions me:

Y=

The cancellation
equation is very

o: Vf =O,Q=O; y=m: Vf=O: Cp=O (~.18)

of the friction terns in the disturbance differential
serious, because the order of the &Lfferential.equation

is thereby lowered from 4 to 2 end thus important properties of the
general solution of the disturbance differential equation of the fourth
order possibly sre lost. (Compsre the ~evious considerations h
chapter IV concerning the transition from the Navier-stokes differential
equations to potential flow.)

An imporixmt special solution of equation (21.17) is the one for
a constant basic flow, U = constants which is needed for instance for
the stability investigation of a boundary layer flow as a joining
salution for sn outer potential flow. One obtains from equation (21.17)
for

u= constsnt: q = e
Lay

However, due to the boundary conditions for q) at y
permissible solution is

We shall prove at first two general theorems of
neutral and unstable oscillations of the frictionless
differential equation.

= m, the only

(21.19)

Rayleigh on the
disturbance
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Theorem I: The wave velocity Cr for a velocity profile with

< 0 must, for a neutral oscillation (cim(y) - =0, c= cr)~ eqyal
the basic velocity at a point so that there exists tithin the flow a
point U-c = O.

Proof: (indirect) One makes the assumption c > Um (= mximum
velocity of the baSiC flow). One then forms from equation (21.17) the
following differential expressions:

L(q) =q$’ -a2q->
-c

q.()

and
.

(21.20a)

(21.2ob)

.

L(q) siguifies the expression obtained from
everywhere the con@gate complex.quantities.
conditions

L(9), If one Inserts
Because of the boundary

.9

Y=o: 9=T=0

One forms further the expression
It between the limfts y = O and y = m

Y = m, since for large y, q - e-.
Jl must then be

w

\[‘1 = ~L(q)) +q

y=o

After insertion of equation (21.20a and

F=o” .

@L(q) + (pL(q) and integrates
The integrals may be taken up to

Because of equation (21.20a, b)

1L(q) dy=O (21.21)

b) results, because ~= c,

J1 =f(7j@’+~’ql- )2a&-2=r@j dy=o
u -c

or
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J
1
.~t+,t,~.,~,t,?m-,[ p+~)wm=o

o 0

The first term vanishes due to the boundary conditions, hence there
remains

83

‘1=-2r[Q’T’+k+=(’l.”)

(pt@ as well as

Vfi-c ~“ and
throughout. Thus
at the beginning

uy.o ~ 4

@ are positive throughout; if U“ ~ O and c > Um,
hence the fitegrand in equation (21.22) is positive
the integral c~ot become zero. The assumption made
C>um therefore leads to a contradiction.

For basic flows with U“ SO, as for instance boundary-layer flows
in a pressure drop, the wave propagation velocfty therefore must be smaller
thau Um for neutral disturbances. Hence a point U– c = O exists
within the flow. This pofnt is a singular point of the frictionless
disturbance differential equation (21..l7)and plays as such a special role
for the investigatim of this differential equation. The wall distance y
at which U — c = O is called y . y= = critical layer.

This first Ragleigh theorem proved above applies - as shall be noted
here without proof – in the same manner tc flows

Sixteenth

A necessary condition for the

with U“ >0.

Lecture (March 23, lg&2)

presence of amplified .Theorem II:
oscillations (ci > O) is the presence of an inflection point within the

basic flow (U” = O).

Proof: (indirect) According to assumption, Ci + O; thus

u– c+O for all ye ‘With L(q) end L(q) one forms, according to
equation (21.20a) smd (21.20b),
latter, integrated fl-om y = O

a similar expression as before. ThiS
toy=w, must again give O, thus

1L(q)-cP~ dy=” * (a.23)
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By substitution according to equation (21.20a and b) results with
,F=c -icir

dy.o L

or

.2=[wt-#~-2ic,j,u_”:,2@mY=o
o

(21.24)

.

The first term again vanishes because of the boundary conditions. Since @
is positive throughout and U– c] +0, the integral can only vanish if
U“ changes its sign, that Ii, en inflection poiht of the velocity profile
u“ = O must be present within the flow. It has, therefore, been proved:
In order to make the presence of amplified oscillations possible, an

●

inflection point nr~stexist in the velocity profzle of the basic flow, or,
expressed briefly, suoh oscillations ere possible only for inflection
point profiles. .

Later on Tollmien (reference 110) proved that the presence of an
inflection point Is not only a necessary but also a sufficient condition
for the existence of emplified oscillations. Hence the following simple
statement is valid: Inflection point profiles.are Mstable, It must be
mentioned that all these considerations apply in the limiting case R+=
since the proofs were obtained from the frictionless disturbance differ-
ential equation.

We how from cmr previous considerations about the lsminar boundary
layer that inflection point profiles always exist in the region of pressure
rise, whereas in the pressure drop region the boundary layer profiles are
always without an Inflection point, (fig. 104). Hence we recognize that
the pressure rise or pressure drop is of decisive significance for the
stability of a boundary”layer flow.

The converse of the theorem just set up is also valid, namely, that
for R~OY velocity profiles without Inflection point me always stable.
~om this, however,’one must not conclude that profiles without inflection
point are stable for all Reynolds nunibers. A closer investigation for
Reynolds numbers of finite magnitude shows that there profiles without an
inflection ubint also become unstable. One is faced with the peculiar
fact
that

that tie transition from Re = w to Re+nmiber of”finite =itude,
is,the addition of a small viscosity to a frictionless f’low,has a
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a

+.

D

.

.

.

destabilizing effect, whereas one intuitively expects the opposite. As
later considerations will show in more detail, the typical difference
between the neutral stability curves of a basic flow with and without
inflection point appears as represented in figure 105. For the velocity
profile without an inflection point the lower and the upper branph of the
neutral curve have, for R~M, the &me asymptote a = O. For the
velocity profile with inflection point the lower and.upper branch of the
neutral curve have, for R~m, different asymptotes so that for R =w
a certain wave length region of unstable disturbances exists. Furthermore
the critical Reynolds nuniberis smaller for velocity profiles with an
inflection point them for those without au inflection point.

Hence it is to be expected for very large R=uniber, to a first,
very rough approximation, that the transition point in the boundary layer--
of a body lies at the pressure minimum. Figur=
the pressure distribution.for a rather stiongly
a small lift coefficient. The transition point
case just behind the nose on the pressure side,
rear on the suction side.

106 shows schemati&lly
canibered.wing profile at
would be expected in this
slightly mare toward the

Solution of the Disturbance Differential Equation

In order to perfomn the actual klculation for the boundary-value
Problem .Iustformulated, one needs at first a fundamental system
~ls “ “ “ “ “ “Q4 of the g~er-
One imagines the basic flow u(y)
development:

u(y) =U:y+

If one introduces this expression

disturbance differential equation (21.15).

given In the form of a power series

‘i+ +....
2?

(21.24)

into equation (21.15) and then wants
to construct a solution &om the complete differ&ntid” equation which
satisfies the boundary conditions (equation (21.16)), one encounters
extreme difficulties of calculation, due to the two ccmditions to be
Satisfied for y = co. ~ order to obtain any solution at all, one has
to make vsrious simplifications. The simplifications concern:

1. The basic flow: Instead of the general Taylo~eries
equation (22..24)one takes only a few terms, thus for instsnce a llnesr
or a quadratic velocity distribution.

2. The disturbance differential equation: For calculaticm of the
particular solutions the disturbance di~ferential - “ ‘- --
simplified.

Regsrding
frequently have

1, it should be noted that linear
been investigated with respect to

equation is considerably .-

velocity distributions
stability, as for
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instance the (!ouetteflow according to figure 102 or a polygonal approxi–
mation for curved velocity profiles according to figure 107. This facili- 4

tates the calculation due to the fact that then the singular point
u -c = O is avoided in the frictfonless disturbance differential
equation (21.17) for neutral disturbances. However, all Investigations
with linesr velocity distributions (references 10k, 10~, 106) were unsuc— .

cessful with the fbictionless as well as with the complete differential
equation. No critical Reynolds number resulted. When one later took
for a basis parabolic profiles, these negative results became intelligible.
One must, therefore, tske at least a parabolic distribution as a basis
for the basic flow.

Regarding 2, it should be noted that one can provide approximate
solutions for the solutions of the complete differential eqmtion (21.15)
from the frictlonless differential equation (21.17) since the solutions
are required only for large R~@ber R. The frfctionless differential
equation however can yield no more than two particular solutions; two
more have to be calculated, taking the largest friction terms in
equation (21.15) into consideration.

The course of the calculation for the particular solutions will be
briefly indicated.. One limits oneself to neutral disturbances, assumes
a parabolic velocity distribution> and imagines the latter developed in
the neighborhood of the critical layer.

Y=

u-c=

Y=: U-c=u-cr=o

ut,~ ‘y.)+ +(Y - ‘KY (21.25)

The first pair of solutions ql, q2 is then obtained from the f&i.ction-

less disturbance differential equation (21.17) by substitution of
equation (21.25). According to known theorems about linear differential
equations with a singular point a linearly independent pair of solutions
has the form

‘1 ‘(’ -‘J‘1(y-‘J
(21.26)

‘1 and P
2

ae power series with a constant term different from zero.

The particular solution q2 is especi~ly int~eStiDf3.
.
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Q’2+” for Y = y=

That is, the u~-compcment of the disturbance velocity becomes infinitely
large in the critical leyer. !Thiscan also be understood directly from
the frictfonless disturbance differential equation (21.17). According
to equation (21.17)

Tr’
9“ —#q)=— l?

u -c

or

‘ “-’10’(7-yJifrK+0@’” +“- y=

This singular behavior of the solution q2 in the critical layer stems

of course from neglecting the friction. The frictionl.essdifferential
equation here no longer gives a seniceable approximation. Ih the
neighborhood of the critical layer the friction must be tdsen into
consideration. Moreover, there is another inconvenience connected with ‘
the cp2. For fulfillment of the boqndary conditions one requires the

solution for y - yK>” as well as for y - yK <0. However, for 92

it Is at first undetermined what brench of the logarithm should be chosen
at transition from y - yK>() to y-y=<”. This also csn be clarified

only if in the neighborhood of y — yK, at least, the large flrictionterms

of the complete differential equation (21.15) are taken into consideration.
The details of the calculation will not be discussed here. The calcu—
lation leads, as ToI1.mien(reference 109) has shown, to the result that
one obtains for the solufion r42 a so-oalled transition-substitution in

the critical layer which appears as fo120ws:

(21.27) J

If one writes, according to this, the complete u~+omponent, then in the
neighborhood of y – yK:
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Y = ,og (,-,=)co. (= - ,,)-yK>o: u~=. e.. o+ut
-R I

Y -Y
I

Cos (ax - fit)
K

u“=

u? -
K

(21.28)

One obtains therefore in the critical layer a phase discontinuity for the
u~-oomponent. This Is retained even in going to the limit, R~w. It
is lost, however, If me neglects the curvature of the basic flow U“
or if one operates cnly with the fiictitiess differential equation. This
phase discontinuity Is very significant for the development of the motion.
The loss of the phase discontinuity is the reason that stability investi-
gations neglecting the curvature U“ or operating only with the frictionless
differential equation remain unsuccessful. 8

With this friction correction In the critical layer the pair of
solutions pl, cp2 is sufficiently determined. By taking the friction

terms In equation (21.15) into consideration, one then obtains a second
.

pair of solutions q3, 94 which can be represented by Han.keland Bessel

functions. Of these two solutions CPk tends very strongly towards

infinity and is therefore not
equation (21.16). tends,

‘3

used because of the boundary conditions,
for lerge y, towards zero.

The Boundary Value Problem

The general solution as a linear co?ibinationof the four particular
solutions is:

Let us consider in particular the case where a boundery l~er profile is
investigated with respect to stability. For this case the boundary value
problem can be somewhat simplified. The previous considerations showed
that in the disturbance differential equation the friction essentially
needs to le taken into consideration only in the neighborhood of the
critical layer; also, “ofcourse, at the wall, because of non-slip. The
critical layer Is always rather close to the wall; hence-for y > 5,

.
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where U = Um = constant, s one may use the frictionless solution which is

according to–equation (21.19) p= e~. Thus the condition that the
solution for y = 5 joins the solution for u= constant is

o (21.30)

This mixed boundary condition is therefore to be set up on the outer edge.
Furthermore, the particular eolution qk is a priori eliminated in the

general solution (equation (21.3)), since it grows, for positive y -yK,

beyond all Mmits; “thus c~ = o. Hence there remains for the boundary

v~ue according to equation (=.16)

,
Cql
1 10

+Cql +Cql=o
2 20 3 30 I

(21.31)

J
A further simplification takes place because of the fact that because of _
the rapid fading away of the solution cp3 on the outer edge y = 8, the

solution @la already practically equals zero. lh,the third equation of

equation (21.31) 03b

problem actually to be

may therefore be cancelled. The boundary value

solved is, therefore,

This determinant gives
requires — as has been
Given

= o (=.32)

the eigenvalue problem indicated above, which
said before – the solution of the following problem:
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1.

2.

3.

basic flow U(y)

Reynolds nruiber Re = um~/v

wave length of the disturbance ,CZ= 2Jc/A

One seeks from equation (21.32) the pertinent
cc= ~+ici. Therein Cr gives the velocity of

Ci the amplification or damping.

complex eigenvalue
wave propagation and

Equation (21.32) may formally be written in the form:

F(a, Cr, Ci, R; U~o, @’o, . . . . ) = O (21.33)

where equation (=.33)
to two real equations

(
fl a,

(
f2 a,

●

signifies a complex equation, hence is equivalent

Cr, c , R; U’ ~
i )

= o
o’ o’ “ “ ●

)
)

(21.34)

c Ci, R; Uto, U“o, . .. . = O
r;

If one imagines for instance Cr eliminated from these tio eqmtions,

one obtains one equation between a, R, Ci:

From this eauation

( )q%Ci~ R; U’o, U“o, . . . = o (21.35)

Ci can be calculated as a function of “a end R.
The constants IPo, U“o, . . , are parameters of the basic flow. Thus,
if equation (21.35) is assumed solved with respect to Ci,

Ci
( )

= g2 a, R; U?o, U’fo,. . . (21.36)

Finally one obtains from it, for

curve in the a, R-plane, given

the neutral disturbances Ci=o’ a
by the equation

(g2 a, R; Uto, U“o, . . .
)

(21.37)

.

*
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This is the sought for neutral stability curve (compare figure 103), which
seperaljesthe unstable from the stable disturbances and also yields
the theoretical stability limit, that is, the critical Reynolds number

‘Scrit”

The performance of the calculation, here only indicated, is analyt-
ically not possible since the quantities a, Cr, R enter into the

determinant, equation (21.32), ti a very complicated manner. One has
therefore to resort to numerical and graphical methods. The critical
Reynolds number is very largely dependent on the form of the velocity
profile of the basic flow, in particular on whether the velocity profile
of the basic flow has an inflection point, thus on U“(y).

The critical Reynolds nuniberfound from such a calculation gives
exactly the boundary between stability =d instability, hence the first
occurrence of a neutrally stable disturbance. In comparison with the
transition point of test results it is therefore to be ex@ected that the
experimental transition point ,appeersonly for larger Reynolds nunibers
where an amplification of the unstable disturbance has already occurred.

c. Results

A few results of such stability calculations will be given. The
completely calculated example concerns the boundary layer on the flat
plate in longitudinal flow tith the laminar velocity profile according
to Blasius (compare chapter ma). Zn figure 108 the streamline pattern

of this plate boundary layer with the superimposed disturbance movement
is given for a special neutrsl disturbemce. Figure l@ shows, for the
same neutral disturbance, the amplitude distribution emd the eney~
balance. Since the disturbance in question is neutral, the energy
transfer from the main to the secondary movement is of exactly the same
magnitude as the dissipation of the energy of the secondary movement.
Figure 1~0 shows the neutral-stability curve as result of the stability
calculation according to which the critical Reynolds nuniberis referred
to the displacement t~ckness 5* of the boundary layer

(“m5*/V )crit = 575.” The connection between displacement thickness 8*

‘andlength of run x is for the laminar boundary layer according to
equation (9.21-)

um~* rUmx
—=1.73 ~v

Thus a critical Reynolds nu?iberformed with the length of run x
(u./v)crft = 1.1 X 105 corresponds to the critical R-umber

(“m5*/V)crit = 575. The critical nuuiberfor this case observed in tests
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was 3 to 5x105. . It was eqlained above that it must be larger than
the theoretical number. Furthermore, figure 110 shows that at the
stability limit the unstable wave lengths are of the order of magnitude
A = ~. The unsta~le disturbances thus have rather long wave lengths.

This calculation, carried out by Tollmien (reference 109) for the
flow without pressure gradient was later applied by Schlichting
(reference 114, 115’)to boundary layer flows with pressure drop and
pressure rise. The boundary layer profiles with pressure rise end
pressure drop canbe represented in a manner appropriate for the stability
calculation as a oneparameter family with the fo~perameter ~ ~

according to Pohlha.usen?sapproximate calculation. Qne then obtains for
each.profile of this family”a neutral-stability curve as indicated in
figure 111. Hence the critical Reynolds number (um5*/v)cr,t is a
function of the form pemuneter ‘P 4 according to figure 112. In

retarded flOW (Xp 4 <0) the critical R~uniber is smaller than for the

plate flOw (%4 = 0)5 for accelerated flow (AP4 > O) it is larger.

With this result of”a universal stability calculation the position of the
theoretical trsmsition point may be determined conveniently for sn
arbitrary body shape (plane problem) in the following manner: At first,
one has to calculate for this body the potential flow along the contour,
furthermore one has to csxry out, with this potential flow, a boundary
layer calculation according to the Pohlhausen method. This calculation
yields the displacement thlckuess and the form parameter LP4 as

functions of the wc length along the contour, in the form

V& Uot
—=fl(s) and AP4 =f2(s)

tv

Since In general there exists, accelerated flow at the tmmt of the body
end retarded flow at the rear %4 decreases from the front toward the

rear. By means of the unlve~sal stability calculation according to
figure 112 one may determine a critical Reynolds nuniber (“m5*/‘)crit
for each point of the contour. The position of the
for a prescribed Re+umiber Uot/V is then given by

um~* ()qJj*s’s=
crit: ~ = T crit

transition point
the condition

Figure 113 shows, for the example of an elliptic cylinder*, how to find
the transition point. The curve (um~*/~).rft decreases from the front

Whe boundary layer calculation for this elliptic cylinder was given
in figure 52.

.
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toward the rear; the curve Um5*/~ for a fixed R~tier Uot/~ increases

from the front towerd the rear. The titersection of the two curves gives
the theoretical transition point for the respective Re+nuiber Uot/v.

By determining this point of intersection.for various Uot/v one obtains

the transition point as a function of Uot/v. The result iS represented

in figure 114. The transition point travels with increasing Re+nmiber
from the rear toward the front; however, the travel is considerably
smaller than for the plate in longitudinal flow which is repres&ted in
figure 124 for comparison. Finally figure 115 shows the result of such a
stability calculation for four different elliptic cylinders in flow
psrallel to the major axis. The shifting of the transition point with
the Re-nuniberincreases with the slenderness of the cylinder. For the
circular cylinder the shifting is very slight, which is caused by the
strongly msrked velocity maximum. AS a last result, figure 116 shows the
travel with Re=nuMber of the transitim point on a wing profile for various
lift coefficients. The profile in question is a symmetk2cal Joukow&y
profile with lift coefficimts Ca = O to 1. With increasing angle of

attack the transition point travels, for fixed R~uniber toward the front
on the suction side,toward the rear on the pressure side. (compare the
velocity distirbutions for this profile, given in figure 54.) One recog–
nizes that the shift of the transition point with the lift coefficient
is essentially determined by the shift of the velocity maximum.

The last exemples have shown that it is possible to calculate
beforehand the position of the transition point as a function of the
Re-n@ber snd the lift coefficient for the plane problem of sn arbitrary -
body immersed in a flow (particularly awing). Regarding the comparison
with test results it was determined that the experimental transition
point always lies somewhat further downstream than the theoretical tran–
sition point. The reason is that between the theoretical and the experi–
mental transition points lies the region of amplification of the unstable
disturbances. This amplification also csnbe calculated on principle
according to methods similar to those previously described. (Compare
Schlichting (reference U2) where this was done for the special case of
the plate in longitudinal flow.) Presumably one csn obtain a still closer
connection between the theoretical instability point and the experimental. _ _
transition point by applying such calculations to the accelerated and
retarded flow.

CHAI’TERXXII. CONCERNINGTBE CALCULATION OF TBE TUKBULENT FRICTION

LAYER ACCORDgGTO TEE METHOD OF GRUSCHWTTZ (REFERENCE 78)

a. Integration of the Differential Equation of the

Turbulent Boundary Layer

.

~ order to integrate the system of equations (18.16), one
first introduces dimensionless variables. One refers the lengths to the



94 I?ACATM No. 1218

wing chord t and the velocity to the free stream velocity Uo, thus:

Hence the system of equations (equation (18.16)) may be written:

d(* !*
—+ 0.008$Ik ~= 0.00461

(iT’* 1

(22.1)

(22.2)

First, the second equation is solved with constant values fw To/P@
and H, nemely

●

-ro—=0.002; H=l.5
p$

.

The first approximation $l*(H) obta~ed f&om that is then substituted

in the first differential equation. From the latter one obtains a first
approximation ~l*(ti) and flrornthat, according to equation (22.1),
71(X*)●

with ~Jx*) one determines according to figure 92 the course

of H(q) and corrects To according to equation (18.15). Then one -

obtains from the second differentialequation a second approximation
02*(TI)> etc.

For the solutim of the differential equations one uses the isocline
method which can be applied for the present case, according to Czuber,
in the following mamner: Both differential equations have the form:

dy
~+ f(x)y = g(x) (22.3)

As can be easily shown, this differential equation has the property that
all line elements on a straight line x = constant radiate from one point.
The coordinates of this point (= pole) are:

.
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(22.4)

-.

Thus one has only to calculate a sufficient nuniberof these poles and
can then easily draw the integral curve.

Figure 93 indicates the result of such a calculation for the profile
J015; Ca = O. The calculation of the laminar boundary layer for the

ssme profile was performed in chapter XII, figure 49, table 6.

Ihitlal values: The transition point was placed somewhat arbitrarily
at the veloclty maximum of the potential flow (x/t = 0.141). It was
assumed that:

Ut
Re=~= 106

v

For the laminar boundary layer was found:

x rUot–= 0.141: : y= 1.56 (table 6)
t

Hence there results, with b*/19= 2.55;

The corresponding

()=0.141: $ = 0Y611 x10-3
o

T - value was assumed to be

11= 0.1 (table 8)

Calculation to the second approximation stifices.
in table 8 and figure 93. A turbulent separation
since q remains below 0.8. Flromthe variation

(table 8)

The result is compiled
~ofnt does not exist
of the shearing

stress ‘T along the wing chord the dreg coefficient of the sur~ace

friction & be determined:

t

1’
IW=2b To & (x =meagured along chord)
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or c = w/2 bt9Jo

w
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.

With n = 1/6, 1/7, l/8
Hence results:

~

1

v=

y/&O

Furthermore: .

P1

(22.5)

/

1

‘o
Cw = J2# ‘t

020

The evaluation of the integral gives

‘w = O.oogo

1. Connectim Between the Form Parameters ~ and H = d/t5*

of the Turbulent Boundsry Layer

Aocording to Pretsch (reference 80) one may also represent analyti-
cally the relatim between the form parameters q = 1 - (~ $/@2 ~d

H= b*/t9 which was found empirically by”Gruschwitz, compare figure 92.
A power law is set up for the velocity distribution, of the form:

:= (Tii ‘Zn (22.6)

● ** 3 according to the experiments so far.

I
1

()1 -; dg= (’-+=+ (22.7)

o

Llyp) k) (22.8)

/

1

(
Zn _

)
1= z~dz=c.c =

n+l 2n:l (n+l)?a+l)

( 2=0
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lIYomequations (22.7) and (22.8) follows:

H=%= 2n+”l

or

H-1n=—
2

97

(22.9)

IYom equation (22.8) follows further

—.

$=-
(22.10)

The Gruschwttz form parameter q is defined according to equation (18.2)
by:

with equation (22.6) ~ becomes:

Substitution of equation (22.10) into (22.11) gives:

(22.11)

‘=’-[i=r I (22.12)

The connection hetween H end q calculated according to this equation
is given in the following table and is also plotted in figure 92. The
curve calculated according to equation (22.12) almost coincides with the
curve found empirically by Gruschwitz.

.
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H

1
1.1
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Translated by Mary L. Mahler

o
0.270
0.404
0.373
0.688
0.77Q
0.833
0.881
0.916
0 ● 941
0.959
0.972
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Laminar

Turbulent

Figure 71.- Laminar and turbulent
In pipe.

velocity distribution

Figure 72. - Fluctuation with time of the velocity
turbulent flow at a fixed position.
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Figure 73. - Drag and drag coefficientof a sphere.
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Figure 74. - Flow around q. sphere; subcritical

and supercritical (schematic).
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Figure 75.- la- and turbulent boundary layer on a flatplate in
longitudinal flow.
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Figure 77. - Explanation of the mixing length.
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Figure 78. - Universal velocitydistributionlaw in tie smooth pipe.
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Figure80.- Universslvelocitydistributionlawforsmoothsndroughpipes.
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F&ure 81.- Universsl resistance law of the smooth pipe.
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fig~e 82. - Resistance law of the rough pipe.



Figure 83.- Resistance law of the rough pipe for fullydeveloped

roughuess flow.

, .

Figure 84.- The roughness function B ss a functionof v ~ /v.
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(b) Velocity distribution in the section A A.

Figure 85. - Measurement of the drag of an arbitrary roughness.

Y

U*

+)--—.

x

—

Figure 86. - Calculation of the turbulent plate drag.



w+
Cf

f
7

5

4

3

2

10*

I(F 23457
106

23457,.7 ~3457@ 23457WP 2 3457,.10

Figure 87. - The clrsglaw of the smooth

T
t pkLt8 in h@ldiml flow

(theoretical curves .



Cf. l

I

w
Cf=q

o. Wetted area
/0

03

7

5

4

3

z

I
I

v * ●

ZEE=E!-:C’=*8
11111

‘ ‘ ““~

I I 1 ! 11 1 1 I
I

II
I I

11111 u 1 II 11111 I 1

106 ~ 5 /#? z

I

V1
+&. —

vI 11111 I I I I 1111 I I 1 1 1 11,

5 toe ~ s 109 ~ s ,Om

Atrehipe Speed -
~~hat 6 Ewemen”

High-aped
fflgllt

- W- ‘lb drag lsw of the smooth plate; wmparteonwith tj’



t

E
aoo5

aoo4
+

aoo3

aooz5

O.lMe

0.0015

0.00!u*

\

—
i

+t
I I

Es

log+ ~

m~-- Thadmglaw ofulei-On@iplate.



NACA TM NO. J2L.8 J.lg

Figure 90. -

a6

az

Drag of the circular cylinder for various relative roughnesses.
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Figure 91. - Velocity profiles in the turbulent friction layer with ressure
Ydecrease and pressure increase (according to Gruschwitz [78 ).
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Figure 94. - Free turbulence: free jetandwa.ke.

R

Figure 95. - Plane wake flow; explanatory sketch.
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Figure 97. - The free jet boundary;

I I

explanatory sketch.
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98. - Free jet boundary; distribution of the longitudinal and
transverse velocity.
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Figure 99,- ‘The plane free jet; comparison ofmeasurement andcalculation.
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Figure 100. - Determination of the profile drag according to Betz.
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Figure 101.- Determination of the profile drag according to Jones.
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Figure 103. - The neutral stability curve as result of a stability
investigation (schematic).
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Figure 104, - Basic’ flow without and with inflection point.
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Figure 105. - Neutral stabili~ curves for velocity profiles without and
with inflection point (schematic).
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Figure107.- Approximation of a velocity
profile by a polygon.
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Figure 108. - Streamline pattern and velocity distribution of the plate
boundary layer for neutrally stable disturbance U(y) = basic flow;
u(y) = u(y) + u’(%Y,t) = disturbed velocity distributio~l;
A = 2~/a = wave length of the disturbance.
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Figure 109. - Neutral disturbance for the friction layer on the flat plate.
Amplitude of the disturbance velocity:

u’(x,y,t) = ul(Y) cos (x - ‘rt) - ‘2(Y) ‘ti ‘x
- prt).



NACA TM NO. 1218 131

0,3
cd%

2?4!?
A

in

I I 1
I
1/ “-

I
I

I

I
Unstable1,

I

I
I

f?Q42357@

4 2 -U”
\

\

Figure 110.- Neutral stability curve for the friction layer on the flat
plate in longitudinal flow.
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Figure 112.
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Figure 113. - Stability calculation for the elliptic cylinder
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Figure 115.- The positionof the instabilitypointas a ftictionof the
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Figure 116.- The position of the instability point as a function of the
~@ynolds number for a Joukows& profile for tit coefficients of.
Ca =Oto Ca=l.


