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An implementation of the approximate statistical moment method for uncertaintv propa-
gation and robust optimization for quasi 1-D Euler CFD code is presented. Given uncer-
tainties in statistically independent, random, normally distributed input variables, first-
and second-order statistical moment procedures are performed to approximate the
unceriaintv in the CFD owutpur, Efficient calculation of both first- and second-order sen-
sitivity derivatives is required. In order to assess the validity of the upproximations, these
moments are compared with statistical moments generated through Monte Carlo simula-
tions. The uncertainties in the CFD input variables are also incorporated into a robust
optimization procedure. For this optimization, statistical moments involving first-order
sensitivity derivatives appear in the objective function and system constraints. Second-
order sensitivity derivarives are used in a gradient-based search to successfully execute a
robust optimization. The approximate methods used throughout the analyses are found to

be valid when considering robustness about input parameter mean values.
[DOI: 10.1115/1.1446068]

1 Introduction

Gradient-based optimization of complex aerodynamic configu-
rations and their components, utilizing high-fidelity Computa-
tional Fluid Dynamics (CFD) tools, continues as a very active
area of research (see, for example, [1-3}). In most of the CED-
based aerodynamic optimization and design studies to date. the
input data and parameters have been assumed precisely known;
we refer to this as deterministic or conventional optimization.
When statistical uncertainties exist in the input data or parameters,
however. these uncertainties affect the design and therefore must
be accounted for in the optimization. Such optimizations under
uncertainty have been studied and used in structural design disci-
plines (see, for example [4—8]); we refer to these as nondetermin-
istic or robust design optimization procedures.

Derivatives of code output with respect to code input and pa-
rameters are called sensitivity derivatives and they contain infor-
mation which can be used to direct an optimization search. In a
fluid flow optimization problem. the objective and constraint gra-
dients are functions of the CFD sensitivity derivatives. Such de-
rivatives can also be used to accurately approximate the CFD
output in a small region, such as that near the mean value of a
random variable. In [9], it is shown that a statistical First Order
Second Moment (FOSM) method and automatic differentiation
can be used to efficiently propagate input uncertainties through
finite element analyses to approximate output uncertainty. This
uncertainty propagation method is demonstrated herein for CFD
code.

An integrated strategy for mitigating the effect of uncertainty in
simulation-based design is presented in [10]: this strategy consists
of uncertainty quantification. uncertainty propagation, and robust
design tasks or modules. Two approaches are discussed there for
propagating uncertainty through sequential analysis codes: an ex-
treme condition approach and a statistical approach. Both ap-
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proaches can be cfficiently implemented using sensitivity deriva-
tives. For CFD code. the former approach is demonstrated in [11],
whereas the latter approach is demonstrated hercin using second
moment approximations. These uncertainty propagation methods
have been developed and are being investigated as an alternative
to propagation by direct Monte Carlo simulation lor potentially
expensive CFD unalyses.

The present paper shows how the approximate statistical second
moment methods. FOSM and the Second Order Second Moment
{SOSM) counterpart. can be used in conjunction with sensitivity
derivatives to propagate input data uncertaintics through CFD
code to estimate output uncertaintics. The FOSM approximation is
then used to perform sample robust optimizations. For demonstra-
tion purposes. the method is illustrated on a simple design ex-
ample which contains the important clements of more complex
design problems. We assumne that the input uncertainty quantifica-
tion is given by independent normatlv-distributed random vari-
ables. and we demonstrate the strategy of [10] as applied 10 a CFD
code module. This strategy is also applicable to correlated and/or
non-nornally distributed variables: however. the analysis and re-
sulting equations become much more compfex.

The gradient-based robust optimization demonstrated herein re-
quires second-order sensitivity derivatives from the CFD code. In
[12]. we present. discuss. and demonstrate the efficient calculation
of second-order derivatives from CFD code using a method pro-
posed. but not demonstrated. in [13]. This method. used herein.
incorporates first-order derivatives obtained by both forward-
mode and reverse-mode differentiation in a noniterative scheme to
obtain second-order sensitivity derivatives.

To date. the only other demonstration or application of
gradient-based. robust optimization involving advanced or high-
fidelity (nonlinear) CFD code that we have found was just re-
cently presented in [14—15]. The analytical statistical approxima-
tion of their objective function for robust optimization also
required second-order sensitivity derivatives. However. these
studies emploved a direct numerical random sampling technique
10 compute expected values at each optimization step in order 10
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avoid the second derivatives. An example of linear acrodynamics
involved in multidisciplinary performance optimization subject to
uncertainty is found in [16].

Two other aspects need to be pointed out in regard to the robust
optimiz,ation demonstrations for CFD code modules presented
perein and also in [14,15]. First, the sources of uncertainty con-
sidered were only those due to code input parameters involving
seometry and/or flow conditions; i.c., due to sources external to
the CFD code simulation. Other computational simulation uncer-
1ninties, such as those due to physical, mathematical, and numeri-
cal modeling approximations [17,18}—essentially internal model
error and uncertainty sources, were not considered. That is, the
discrete CFD code analysis results were taken to be deterministi-
cally “certain” herein. Ultimately, ali of these modeling sources
of error and uncertainty must be assessed and considered. Sensi-
tivity derivatives can also aid in this assessment [19] since the
adequacy of an internal model’s (i.e., algorithm, turbulence, etc.)
prediction capability generally depends, to some extent, on the
modeling parameter values specified as input.

Second, as discussed in [15], uncertainty classification with re-
spect to an event’s impact (from performance loss to catastrophic)
and frequency (from everyday fluctuation to extremely rare) sets
the problem formulation and solution procedure. Structural reli-
ability techniques typically deal with risk assessment of infrequent
but catastrophic failure modes, identifying the most probable
point of failure and its safety index. Here, we are addressing the
assessment of everyday operational fluctuations on performance
loss. not catastrophe. Consequently, we are most concerned with
aero performance behavior due to probable fluctuations. i.e.. near
the mean of probability density functions (pdf). Structural reliabil-
ity assessment is most concemed with improbable catastrophic
events, i.e., probability in the tails of the pdf. Simultaneous con-
sideration of both types of uncertainty is discussed in [16].

2 Integrated Statistical Approach

In [10] an integrated methodology for dealing with uncertainty
in a simulation-based design is proposed and demonstrated for a
linkage mechanism design. The integrated strategy of [10] for
mitigating the effect of uncertainty includes (a) uncertainty quan-
tification. (b) uncertainty propagation. and (c) robust design. The
present study utilizes the strategy proposed in [10], but differs in
regard to uncertainty propagation and application. Here, we are
considering the influence of uncertainty in CFD code input: that
is. the effect of uncertainty in input geometry on aerodynamic
shape-design optimization and the effect of uncertainty in flow
conditions on design for flow control.

2.1 Uncertainty Quantification. In this study. we congider
the influence of uncertainty in CFD input parameterization vari-
ables. We have assumed that these input variables are statistically
independent, random. and nomally distributed about a mean
value. This assumption not only simplifies the resulting algebra
and equations. but also serves to quantify input uncertainties. Fur-
thermore. it is not an unreasonable assumption for input geometric
variables subject to random manufacturing errors nor for input
flow conditions subject to random fluctuations.

2.2 Uncertainty Propagation. Uncertainty propagation is
accomplished by approximate statistical second moment methods
[9] and [20] where the required sensitivity derivatives are ob-
tained by hand or by automatic differentiation. The first step in
second moment analyses is to approximate the CFD system output
solutions of interest in Taylor series form. truncated to the desired
order. These approximations are formed to estimate the output
value for small deviations of the input.

Given input random variables b={b,..... b,} with mean
values.  b={h,..... b,}. and  standard  deviations.
Tv={oy,. . ..oy }. first- and second-order Taylor series ap-

proximations of the CFD output function. F. are given by
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respectively. Both first and second derivatives are evaluated at the
mean values. b.

One then obtains expected values for the mean (first moment)
and variance (second moment) of the output function, F, which
depend on the sensitivity derivatives and input variances, oj. The
mean of the output function, F, and standard deviation o, are
approximated as

First Order:
F=F(b)
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where both first and second derivatives are evaluated at the mean
values. b. Note in Eq. (4) that the second-order mean output. F. is
not at the mean values of input b. ic.. F£F(b).

Equations (3) and (4) are the FOSM and SOSM approxima-
tions, respectively. for the uncertainty propagation. The methods
are straightforward with the difficulty largely lying in computation
of the sensitivity derivatives. The very cfficient and effective
method used here to obtain such derivatives is presented in [12).

2.3 Robust Design. Conventional optimization for an ob- .
jective function. Obj. that is a function of the CFD output. F, state
variables. Q. und input variables. b. is expressed in Eq. (5).
Herein. the CFD state equation residuals. R. are represented as an
equality constraint. and other system constraints. g, are repre-
sented as inequality constraints, The input variables, b. are pre-
cisely known. and all functions of b are therefore deterministic.
min Obj.

Obj=O0bj(F.Q.b)
subject to
R(Q.b)=0
glF.Q.b)=<0 4)

For robust design. the conventional optimization. Eq. (5), must
be treated in a probabilistic manner. Given uncertainty in the
input variables. b. all functions in Eq. (5) are no longer deter-
ministic. The design variables are now the mean values,
b={b,..... b,}. where all elements of b are assumed statisti-
cally independent and normally distributed with standard devia-
tions 0. The objective function is cast in terms of expected val-
ues and becomes a function of F and op. The state equation
residual equality constraint. R. is deemed to be satisfied at the
expected values of Q and b. that is the mean values Q and b for
the FO approximation. The other constraints are cast into 2 pfoba-
bilistic statement: the probability that the constraints are satisfied

P




is greater than or equal to a desired or specified probability, Py .

This probability statement is transformed [10] into a constraint
involving mean values and standard deviations under the assump-
tion that variables involved are normally distributed. The robust

optimization can be expressed as
min Obj,
Ob.]=0bj(iv oy 96v5)
subject to
R(Q,b)=0
g(F.Q.b) +ko, <0, ©

where k is the number of standard deviations, o, that the con-
straint g must be displaced in order to achieve the desired or
specified probability, P, . For the FOSM approximation, standard
deviztions oy and o, are of the form given in Eq. (3) involving
first-order sensitivity derivatives. Therefore, a gradient-based op-
timization will then require second-order sensitivity derivatives to
compute the objective and constraint gradients. Note that for the
SOSM approximation, third-order sensitivity derivatives would be
required for these gradients.

The calculation of second-order sensitivity derivatives for CFD
code, such as those required for SOSM and robust optimization
with FOSM, was demonstrated in [13]; the efficient calculation
method used herein is demonstrated and discussed in [12]. Both
hand differentiation and automatic differentiation via the ADIFOR
tool [21-23] were used in [12] and [13]. Both conventional and
robust optimizations were performed using the Sequential Qua-
dratic Programming method option in the Design Optimization
Tools, DOT [24].

3 Application to Quasi 1-D Euler CFD

A very simple example has been chosen to demonstrate the
propagation of input uncertainty through CFD code and its effect
on optimization. The quasi one-dimensional Euler equations and
approximate boundary conditions are solved in a discretized CFD
form (see Appendix). Of course. modern CFD methods are not
required to solve the quasi {-D Euler equations; exact analytical
solutions are available in any basic textbook on gas dynamics.
However, these quasi I-D equations are commonly and effectively
used as the initial test platform in the development of CFD algo-
rithms and methods.

Two separate applications are presented: the first involving
propagation of geometric uncertainties, the second involving
propagation of flow parameter uncertainties. Both uncertainty
analyses are performed with quasi one-dimensional CFD Euler
equations and boundary conditions describing subsonic flow
through a variable area nozzle. The nozzle inlet is located at
x=0 with area A(x=0)= 1, the nozzle outlet is at x= |. The area
distribution is given by

A(x)=1—ax+bx".

The volume. V, occupied by the nozzle. is the integration of A(x)
over the length x=0 to x=1

a b
=3*3

where a and b are the input geometric parameters. Three flow
parameters are specified as input boundary conditions: the stagna-
tion enthalpy, inlet entropy, and outlet static (back) pressure. The
discretized quasi 1-D Euler equation set is symbolically written as
the state equation in Eq. (5); its residual. R is driven to (machine)
zero for a solution (see Appendix).

For supersonic flow through a variable area nozzle. shock
waves generally appear and the flow solution (objective. con-
straint. etc.) becomes noisy or non-smooth (see [25] and the ref-
erences cited therein). Care must be exercised with respect to
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obtaining and using the sensitivity derivatives needed for
gradient-based optimization [25,26]. Therefore, we chose to by-
pass issues related to this supersonic flow non-smoothness in
these initial demonstrations of the present approach for uncer-
tainty propagation and robust design for CFD code modules.

3.1 Geometric Uncertainty Propagation. For the discus-
sion of geometric uncerainty propagation, geometric shape pa- .
rameters a and b will represent the statistically independent ran-
dom input variables, b. The Mach number distribution through the
nozzle, M, is viewed here as a component of the state variable, Q;
its value at the inlet, M, is the CFD output, F. Applying the
approach previously outlined (recall Eqgs. (3) and (4)) yields the
following first-and second-order approximations of the output
function, M. .

Input random variables:  b={a,b}
CFD output function: ={M}
First-order Taylor series:

~M@h+ '+6’M b—b 7
M(a,b)-M(a.b)+-£(a~a) %‘( —b) )]

Second-order Taylor series:
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The mean. M, and standard deviation oy, of the output function
are expressed as

FOSM:
M=M(a.b
@b o)
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Predictions of M{a.b). M and o, for FOSM (Egs. (7) and (9))
and SOSM (Egs. (8) and (10)) are compared with CFD solutions
and Monte Carlo analyses based on CFD solutions. as given and
discussed in the results section.

3.2 Robust Shape Optimization. Applying the conven-
tional optimization previously described yields

min Obj.
Obj=0bj(M.a.b})
subject 1o
R(M.a.b}=0 (n
V(a.h)<0,

where the system constraint. V. is a constraint on the nozzle vol-
ume and depends only on a and b: our objective does not explic-
itly depend on M.

Applying the robust optimization previously described yields
min Obj. Obj'_‘ Obj( ‘b-’i.lf_\, .a.b

subject to



R(M,3,5)=0 a2
V(a,b)+koy=<0,
where
, [V \? [ev |2
oy= E;a-,) + 797;0” . (13)

with a and b subject to statistical uncertainties (which may be
due to measurement, manufacturing, etc.), V becomes uncertain.
Since V is linearly dependent on a and b, it is also normally
distributed. Therefore, its standard deviation, o, is given exactly

To demonstrate the optimizations, a simple target-matching
problem is selected; a unique answer is obtained when an equality
volume constraint is enforced. The CFD code is run for given a
and b; the resulting M(a,b) and corresponding V(a,b) are taken
as the target values Mt and Vi, respectively. For this conventional
optimization, the objective function and constraint function for V
of Eq. (11) become

Obj(M,a,b)=[M(a,b)~Mt}?
V(a,b)—Vt=0
enforced as
V(a,b)—Vt<0 and Vi—V(a.b)<0

for the convenience of the optimizer.
For robust optimization using the FOSM approximation, the
comresponding objective and constraint on V of Eq. (12) become

(14)

Obj(M, oy .@,b)=[M(a.b)—Mt}* + a7,
V(@.B)- Vi+ka,=0

stmilarly enforced as

V(@,b)—Vt+koy<0 and Vi—V(a.b)-ka,<0. (15)

Note that for ¢,=a,=0 in Eq. (15), the conventional optimiza-
tion is obtained. Also. in the probabilistic statement of the con-
straint on V, it is assumed that the desired volume is less than or
equal to Vi.

33 Flow Parameter Uncertainty Propagation. A second
example of uncertainty in CFD involves fluctuations in input flow
parameters. For the discussion of flow parameter uncertainty
propagation, the free-stream Mach number, Minf. and the nozzle
static back pressure, Pb. will be taken as statistically independent
random variables. Specifying the free-stream Mach number sets
the stagnation enthalpy. The Mach number distribution through
the nozzle. M, is again viewed as a component of the state vari-
able. Q; its value at the inlet, M, is the CFD output. F. Applying
the approach previously outlined yields equations which are simi-
lar to Eq. (7) through (10) but with
Input random variables:  b={Minf.Pb}

CFD output function:  F={M}

Again, predictions of M, M, and o, for the FOSM and SOSM

approximations are compared with CFD solutions and Monte

Carlo analyses based on CFD solutions. as given and discussed in
the next section.

34 Robust Design for Flow Control. The conventional
optimization is expressed as

min Obj Obj= Obj(M.Minf,Pb)
subject to

R(M.Minf.Pb)=0
g{Minf,Pb)=<0.

Where g is a constraint on the mass flux through the nozzle.

(16)
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min Obj,  Obj=Obj(M, oy ,Minf,Pb)
subject to
M, Minf,Pb) =0
R(M.Mi ) an
q(Minf,Pb) + ko <0.

For the free-stream Mach number, Minf, and the nozzle back
pressure, Pb, subject to statistical uncertainties, the mass flux, g,
becomes uncertain. Since g is dependent on Minf and Pb, its stan-
dard deviation, o, may be approximated by

74\ 3Minf TM| T\ Gpp TP/ -
Since g is not a linear function of Minf and Pb, Eq. (18) is not
exact.

To demonstrate the optimizations, a simple targei-maiching,
problem is again chosen. The CFD code is run for given Minf and
Pb, the resulting M and corresponding g are taken as the target
values Mt and gr, respectively. For this conventional optimization,
the objective function and constraint functions of Eq. (16) are

Obj(M.Minf.Pb) =[ M(Minf,Pb) — Mt]*
g(Minf,Pb)—¢r=0

(18)

enforced as

g{Minf,Pb)—g1=<0 and ¢1—¢(Minf.Pb)r=<0. (19)

For robust optimization using the FOSM approximation. the cor-
responding objective and constraint on ¢ of Eq. (17) can be shown
as

Obj = Obj( M.y, .Minf.Pb) =[ M(Minf.Pb) — Mt]* + o3,

¢(Minf.Pb)— gt+keo,=0
enforced as

g(Minf.Pb) - s +ko, <0 and g1—q(Minf.Pb) —ka, <O0.
(20)

Again note that for oy, = =0 in Eq. (20), the conventional
optimization is obtaincd. Also, in the probabilistic statement of the
constraint on ¢. it is assumed that the desired mass flux is less than
or equal to g1.

4 Sample Results and Discussion

Presentation and discussion of results for the sample quasi 1-D
Euler CFD problems are divided into four topics: function ap-
proximations. uncertainty propagation. pdf approximations, and
robust optimization. For the first three topics. the FOSM and
SOSM approximations are assessed by comparison with direct
CFD simulations. Note that the CFD code and its corresponding
devivative codes are executed at the mean values of the random
input variables to obtain the functions and sensitivity derivatives
needed for construction of the statistical approximations.

4.1 Function Approximations. It is important to assess the
Taylor series output function approximations with direct nonlinear
CFD code simulations prior to presenting uncertainty propagation.
If the CFD output function. M. is quasi-linear with respect to the
input variables of interest. one can expect first-order approxima-
tions to be reasonably good: that is. the first-order moments given
by Eq. (3) should match well with the moments produced by a
Monte Carlo simulation. For a more nonlinear system. one natu-
rally expects better accuracy with second-order approximations;
that is. uncertainty analyses which include second-order terms
should vield results which better predict the statistical moments
produced by the Monte Carlo simulation.

MARCH 2009 \int 124 1 AR
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Fig. 1 Comparison of function approximations versus CFD

solution, input variable b=b

Figures 1-4 show that for F=M(a.b), M behaves as a quasi-
linear function in the neighborhood of (a.h), whereas for F
=M(Minf.,Pb), M is more nonlinear in the neighborhood of
(MinfPb). In these figures, approximations of the CFD output
functions. M(a,b) and M(Minf.Pb), using the first- (FQ) and
second-order (SO) Taylor series (as given in Eqgs. (7) and (8) for
M(a,b)), are compared to direct solution of the Euler CFD. In
cach example, two traces were considered through the design
space. Trace 1 varied the first input variable. while the second
remained fixed at its mean value, and vice versa for trace 2. The
required first- and second-order sensitivity derivatives needed for
construction of the first-and second-order approximations were
obtained by hand differentiation and automatic differentiation as
discussed and presented in [12].

Nonlinear behavior of the CFD result is reasonably well ap-
proximated by the SO result in all plots; however, there does
appear to be an inflection point in the CFD results given in Fig. 3.
Note that the finear FO result is a good approximation in the
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M,
M
[ 7]
(1]
48 L3 ° [F] o8
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Fig. 2 Comparison of function approximations versus CFD
solution, input variable a=43
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Minf - Minf

Fig. 3 Comparison of function approximations versus CFD
sofution, input variable Pb=FPb

geometric example: the flow parameter example is more nonlin-
ear. At larger deviations from the mean. a linear approximation for
M(Minf.Pb) loses accuracy.

4.2 Uncertainty Propagation. Approximation of the statis-
tical first and second moments is done using equations Eq. (9) and
(10} (geometric example). and corresponding equations for the
flow parameter example. Again. both first- and second-order sen-
sitivity derivatives are required and the prediction is straightfor-
ward. given these derivatives. An independent verification of these

approximate mean and standard deviation values is obtained here

using direct Monte Carlo (MC) simulation with the quasi §-D
Euler CFD code and standard statistical analyses of these Monte
Carlo results. The standard statistical analyses used were from
MicroSoft ® Excel 2000 and the random number generator
MZRAN used was from [27]. Tables | and 2 give results for the
mean (first moment) and Tables 3 and 4 give results for the stan-
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Fig. 4 Comparison of function approximations versus CFD
solution, input variable Minf=Minf
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Table 1 Percent difference from MC for FO and SO predictions
of W (8,b)

Input & M % Eror % diff wMC % diff wMC
Case T, =0y MC MC FO Predict SO Predict
1 0.01 04041 0.0187 -0.0105 0.0656
2 0.02 0.4040 0.0379 0.0716 0.1531
3 0.04 0.4054 0.0756 —0.2867 0.0383
4 0.06 04055 0.1142 -0.3012 0.4301
5 0.08 0.4096  0.1557 —-1.3078 -0.0209

Table 2 Percent difference from MC for FO and SO predictions
of i (Minf,Pb)

Input & M  %Emor % diff WMC % diff w/MC
Case Oww=0m MC  MC  FOPredict SO Predict
i 001 03933 0.0056 0.0037 ~0.0269
2 002 03932 00114 0.0187 —0.1034
3 004 03898 00229 08917 0.3991
4 006 03889 0.0364 11251 0.0141

Table 3 Percent difference from MC for FO and SO predictions
of oy, geometric example

Input o Ty % diff wMC % diff w/MC
Case a,=ay MC FO Predict SO Predict
i 0.0t 0.0102 -0.57713 -0.5708
2 0.02 0.0207 =1.7026 —1.6769
3 0.04 0.0414 —1.5794 —1.4766
4 0.06 0.0625 —2.259% —2.0296
5 0.08 0.0853 —4.3987 —4.0001

Table 4 Percent difference from MC for FO and SO predictions
of oy, flow parameter example

Input o Ty % diff WMC % diff wiMC
Case  Opi=pe MC FO Predict SO Predict
1 001 0.0030 11815 12473
2 002 0.0062 —1.5093 —-1.2533
3 0.04 0.0125 —1.1604 ~3.1680
4 0.06 0.0199 —4.4070 -2.1938

dard deviation (second moment) value comparisons. The input
deviations (0, and o,) or (Oys and 0p,), are taken to be equal
aad given in the second column of each table. The third column in
cach table gives the result from the MC simulation, where the
sample size (N) used was 3000. The MC error in its predicted
mean is o/ \N. which is given in the fourth column of Tables |
and 2. The first-order (FO) and second-order (SO) approximate
predictions are given in the last two columns of each table as
percent difference from the MC results.

Results from the last two columns of Tables 1-4 are plotted in
Figs. 5 and 6. Note that mean and standard deviation approxima-
tions for output M agree well with the MC results for small stan-
dard deviations in input variables, (0,,0%) or (O, 0pp), for
both the FO and SO predictions. At higher standard deviations, the
SO results tend to agree better with the MC results, especially in
the flow parameter example.

As expected. the SO approximations are generally better than
those for FO and an increase in the standard deviation of input
parameters monotonicaily increases the error associated with both
predictions. Both FO and SO approximations predict the mean
more accurately than the standard derivation. Also note that the
MC simulation with a sample size of 3000 limits accuracy of the
MC results. This is apparent in the raggedness of the pdfs shown
in the following section.

4.3 Probability Density Function Approximations. Given
a mean and standard deviation of the CFD output function {from
either an MC simulation or an FO or SO prediction) and assuming
a normal distribution. one may thén construct a pdf to approxi-
mate the behavior of the nondeterministic output function. This
approximation is compared to pdf histograms generated from MC
simulations in Figs. 7. 8. and 9. The bars depict the MC histo-
gram. and the solid curve is a normal distribution at the MC mean
value and MC standard deviation as given in the previous tables.
The MC simulation size of 3000 is certainly not sufficient 10 ob-
tain a smooth pdf. We note that both the first-order and second-
order normal distributions are indistinguishable from this normal
MC curve at this scale so neither is shown in the figure. It is
apparent that for cither the quasi-linear functional dependence on
a and b (Fig. 7). or for small input standard deviations of the flow
parameters (Fig. 8). the statistical approximations are good for a
significant region about the mean but tend to break down in pre-
dicting the tails of the distribution. This is significant. for if one is
primarily interested in reliable failure predictions. as for structural
design. this prediction may not be good enough. It is felt. how-

% Difference From MC

0.08 0.1
L

oo, =0,)

Fig. 5 Comparison of statistical moment approximations with Monte Cario
simulation resuits, geometric examples
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Fig. 6 Comparison of statistical moment approximations with Monte
Carlo simulation resuits, flow parameter examples

ever, that in aerodynamic performance optimization using CFD,
where robustness about the mean is desired, these approximations
may be good enough. )

It is not surprising that a nonlinear CFD output function be-
haves differently for randomness in different input variables. For
M(Minf,Pb) at higher input standard deviations (G yume=0ps

(Input stdve=0.08 output stdv=0.08530)
0.06

0.05 - MC

0.04 4

0.03 4
0.02 -

0.01 -

0

Fig. 7 Probability density function for M(a,b) for o,=0o,
=0.08

(Input stdves0.02 output sidve0.012276)

Mach iniet

Fig. 8 Probabllity density function for M (Minf,Pb) for ogn
‘0”-0.02
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=0.06), the pdf of the output function is no longer normal. In Fig.
9 one can see the non-normal behavior of CFD output given nor-
mally distributed input variables Minf and Pb.

4.4 Robust Optimizations. Optimization results were gen-
erated using the quasi I-D Euler CFD code and the procedure
given by Egs. (5) and (6). As noted earlier, conventional optimi-
zation is obtained for o,= 0, =0 or for Tya=0pm=0. For the
FOSM approximation, first-order sensitivity derivatives are re-
quired to obtain oy, and y (Egs. (9) and (13)) or o, (Eqs. (9) and
(18)): therefore. second-order sensitivity derivatives will be re-
quired for their gradients, which are used in the optimization. The
second-order derivatives were obtained by the manner presented
in {12], except for those associated with Eq. (18) where the first-
order derivatives were finite differenced simply for convenience.

It is seen from Eqgs. (12) and (17) that the robust optimization
resuits should depend on the probabilistic parameters (o, .a,) or
(Tpins-Tpp). and k. The desired probability, P, is that from the
normal cumulative distribution function since oy and o, here are
assumed to be normally distributed. For each robust optimization
example. two cases are presented. For case I, P is fixed at
k=1, ie.. Py=84.13%. and the effect of increasing the in-
put variable standard deviations is addressed. For case 2. the stan-
dard deviations of the input variables are fixed at 0.01 and P,
increases.

(nput stdve=0.06 output stdv=0.03795)

0.06

Fig. 9 Probability density function for M (Minf,Pb) for oy,
=cp,,=0.06

f SRR} - - ——




Table 5 mmmm@mmmmm—

Table 6 Robust shape optimization resuits with increasing P,

put parameter o for k=1 for o=0.01

a,=0y i b Obj M oM oy K P 3 b Obj M L4 ov
0.00 0.6001 03001 00000 04043 0.0000 0.0000 0 05000 05996 0.2995 0.000104 04041 00101 0.006
0.02 0.6685 03667 00004 04036 0.0203 00120 I 08413 06246 03189 0.000118 04004 00101 0.006
0.04 0.7338 04286 00016 04018 0.0406 0.0240 2 09772 0.6698 03687 0.000104 04041 00101 0.006
0.06 0.7948 04841 0.0037 03984 0.0607 00360 3 09986 0.7052 04037 0000104 04042 0.0102 0.006
0.08 0.8534 05358 00065 0.3941 00804 0.0480 4 09999 07406 043838 0.000104 04043 0.0102 0.006

4.4.1 Robust Shape Optimization Results. In Table 5, results
for case 1 of the robust shape optimization are displayed. For
0,= 0, ranging from 0 to 0.08, optimal values for the input vari-
ables (a.,b) are listed. As 0,= o, increases, so does oy . Accord-
ingly. the mean values, (2,5), which minimize the objective func-
tion and satisfy the probabilistic constraint, become increasingly
displaced from the target volume, Vt. This is shown in Fig. 10.
Mean values (a,b) change, keeping the mean value, M(a,b), of
the probabilistic output near the target value, Mt. The robust de-
sign points track the dashed curve for M= Mt with some displace-
ment due to the o,,2 term of the objective, Eq. (15). The volume,
V(a.b), is displaced from the solid curve V=Vt by ko, as
required by the probabilistic constraint. This displacement can be
viewed as the solution dependent or “effective™ safety factor.

In Fig. 11 the changing area distribution of the robust optimi-

1

0.7

' 3 i 3
”‘ [ ¥ -] 0: o.rs 1

Fig. 11 Nozzie area distributions, P, fixed at P,
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zation is illustrated. As the standard deviations of design variables
(2.b) increase, the optimal nondeterministic volume, V(a,b), sig-
pificantly decreases.

The results for case 2 of the robust shape optimization, where
a,= g, is fixed at 0.01, and P, increases from 50 percent to 99.99
percent (k=0 to 4) are given in Table 6. Again mean values (7,5)
change, keeping the mean value, M(Z,b), of the probabilistic out-
put near the target value, Mt. Since 0, = o, remains small, the o,
term of the objective remains small, and the displacement of M
from the dashed line depicting Mt due to the o3, term remains
small as shown in Fig. 12. With an increase in P,, V(@.b) is
displaced from the solid curve V=Vt by ko, as required by the
probabilistic constraint. Accordingly, the mean values, (@,b),
which minimize the objective function and satisfy the constraint,
again become increasingly displaced from those at the target vol-
ume, Vt. Note the significant displacement of the solution from
the target volume when P, is large. i.e.. when one is attempting to
incorporate the tails of the pdf. In order to increase the probability
of constraint satisfaction from 97.77 percent to 99.99 percent, one
sees a significant change in (@.5) for a mere gain of 2 percent in
constraint satisfaction.

4.4.2 Robust Design for Flow Control Results. Similar re-
sults are seen in the flow parameter example. In Table 7, the

o8r

07

208

Fig. 12 Optimization results in design space (a,b), o fixed at
001

Table 7 Robust design for flow control resuits with Iincreasing
input parameter o for k=1

Onen=0ppr Minf Pb Obj M oM I
0 0.3000 0.8000 00000 0.3933 0.0000 0.0000
0.02 02861 0.7883 0.0001 03974 0.0116 00058
0.04 0.2655 0.7801 - 00005 03985 00231 00112
0.06 02555 0.7653 0.0012 04050 0.0327 0.0163
0.08 02468 07498 00020 04118 ° 0.0407 0.0209
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Fig. 13 Optimization results in design space (Minf,Pb), P,
fixed at P,

results for case 1 are displayed. For o ,y= g, ranging from 0 to
0.08, optimal values for the input variables (Minf,Pb) are listed.
As O yjini= @ pp, IncTEASES, SO dOEs o, . Accordingly, the mean val-
ues, (Minf,Pb), which minimize the objective function and satisfy
the constraint, become increasingly displaced from the target mass
flux, qt. This is shown in Fig. 13. Mean values (Minf,Pb) change,
keeping the mean value, M(Minf.Pb), of the probabilistic output
near the target value, Mt. The robust design points track the

Table 8 Robust design for flow control results with increasing
Py for =0.01

K Py Minf o Obj M O\ oy
0 0.5000 03000 08000 0.00003 03933 0.0060 0.0030
| 0.8413 0.2919 07953 0.00003 0.3945 0.0059 0.0029
2 09772 02825 07916 0.00003 0.3949 0.0059 0.0029
3 09986 02688 0.7896 0.00003 0.3936 00060 0.0028
4 09999 0.2598 0.7867 0.00003 03938 00060 0.0028

O‘ISF
Target, gt

g o=001

o8
g st
3 mx‘ mmk'

orsh

018 s 3 o3 s
Free-Stream Mach No. (Min)

Fig. 14 Optimization results in design space (Minf,Pb), «
fixed at 0.01
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dashed curve for M=Mt with displacement due to the o term of
the objective, Eq. (17). The optimized mass flux, g(Minf,Pb), is
displaced from the solid curve g=gt by ko, as required by the
probabilistic constraint.

The results for case 2 of the rgbust design for flow control,
where o= 0y, is fixed at 0.01, and P, increases from 50 per-
cent to 99.99 percent, (k=0 to 4) are given in Table 8. Again,
mean values (Minf,Pb) change, keeping the mean value,
M(Minf,Pb), of the probabilistic output near the target value, Mt.
As in the preceding example, since o ys= Opy, remains small, the
o7, term of the objective remains small and the displacement due
to the ai, term remains small, as shown in Fig. 14. With an
increase in P, g(Minf,Pb) is displaced from the solid curve ¢
=gt by ko, as required by the probabilistic constraint. Accord-
ingly, the mean values, ( Minf,Pb), which minimize the objective
function and satisfy the constraint again become increasingly dis-
placed from the target mass flux, gr. Again, note the significant
displacement from the target mass flux incurred in the higher
probability optimizations. i.e., when one is attempting to incorpo-
rate the tails of the pdf.

5§ Concluding Remarks and Challenges

The present results represent an implementation of the approxi-
mate statistical moment method for uncertainty propagation and
robust optimization for a quasi 1-D Euler CFD code. Assuming
statistically independent. random. normally distributed input vari-
ables, first- and second-order statistical moment procedures were
performed to approximate the uncertainty in the CFD output. Ef-
ficient calculation of both first- and second-order sensitivity de-
rivatives was employed and the validity of the approximations
was assessed by comparison with statistical moments generated
through Monte Carlo simulations. The uncertainties in the CFD
input variables were incorporated into a robust optimization pro-
cedure where statistical moments involving first-order sensitivity
derivatives appeared in the objective function and system con-
straints. Second-order sensitivity derivatives were used in a
gradient-based robust optimization. The approximate methods
used throughout the analyses were found to be vatid when con-
sidering robustness about input parameter mean values.

Collectively. these results demonstrate the possibility for an ap-
proach to treat input parameter uncenainty and its propagation in
gradient-based design optimization that is governed by complex
CFD analysis solutions. It has been demonstrated on a very simple
CFD code and problem: there are computational resource issues to
be addressed in application to significant 2-D and 3-D CFD codes
and problems. Conventional optimization in 2-D and 3-D already
requires significantly ‘more resources than in 1-D and obtaining
second-order sensitivity derivatives for more design variables wifl
add even more work. Some of these are addressed in [12] and
work is presently in progress regarding application and demon-
stration using 2-D and 3-D Euler CFD code.
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Nomenclature
A

a
b
b

nozzle area

geometric shape parameter
geometric shape parameter

vector of independent input variables

o non
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vector of CFD output functions

vector of conventional optimization constraints
number of standard deviations

Mach number at nozzle inlet

vector of Mach number at each grid point
free-stream Mach number

target inlet Mach number

= Monte Carlo sample size

normalized nozzle static back (outlet) pressure
vector of flow-field variables (state variables)
mass flux through nozzle

target mass flux through nozzle

vector of state equation residuals

nozzle volume

= target nozzle volume used for optimization

= npormalized axial position within nozzle
standard deviation

variance

Superscript
- = mean value
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Appendix-Quasi One-Dimensional Euler CFD
The steady-state, quasi 1-D Euler equations are

E(Q)

+5(Q)=0

where
0=[p.pu.pey)’.
E(Q)=[pu.pu’+ P (pey+Plu],

dA 1
S(Q)=—— —[pu pudpeg+ P}’

In these equations. p is density, u is flow speed. P is pressure, ¢,
is the specific total energy (i.e.. ¢,=¢+ 112, where ¢ is the spe-
cific intemnal energy). and A(x) is the local cross-sectional area.
The ideal gas law with a constant ratio of specific heats y (taken
to be 1.4) is used for closure, which implics P=(y— 1)(pe,
—pu*f2). The governing equations are discretized and solved nu-
merically with the upwind flux-vector-splitting method of Van
Leer [28]. which includes the use of higher order accuracy to
approximate the flux terms. A more complete discussion of these
numerical procedures is presented in [29]. The flow feld was
discretized with 100 grid points. This discretiztion of the govern-
ing equations, together with the numerical treatment of the bound-
ary conditions. results in a large set of coupled nonlinear algebraic
equations with the form of Eq. (5). In this study, the procedure for
solving the discrete nonlinear flow equations is Newton's method.
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