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Derivatives’ 
An irnplementatiun a t h e  approximate statistical inonwit method for uncertainty pmpa- 
gation and robust optimization for quusi I-D Euler CFD code is presented. Given uncer- 
rainries in statbticdly independent. rundom, normally distributed input iuriubles, first- 
and second-order staristical moment procedures are performed to uppn).rimafe the 
mer~&njy in the CFD c q m .  Ej$~i.~t cr!!cvlntion i f  both first- und second-otder sen- 
sinvi9 derivatives is mquired 111 order to ussess the vulidiy qf the uppmximution.s. these 
mments are compand nitlr statisticid rrromenfs generated thmiigh Monte Curlo sitriulci- 
(ions. The uncertainties in the CFD iripirt variubles are iilso incorporuted into u mhust 
optimization procedure. For this op tinrixrion. stutistical iiionients involving first-order 
sensitiviiy derivatives uppeirr in the thjectiw function und system construints. Second- 
onkr sensitiviq derirariws are iised in a gradient-bused seanh to .~cce.s.Tfirl!y execute u 
robust optinrimtion. The uppnisirnurc ntethods used tlirorrglroiit the rmulyes (ire Jiiirnd to 
be valid when considpring mhirsrness uhoiit input pararrreter I I IC~ I I I  trrlrces. 
[DOL 10.1 I 15/1.1446068] 
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1 Introduction 
Gradient-based optimization of complex aerodynamic configu- 

rations and their components, utilizing hi&-Wlity Computa- 
tional Fluid Dynamics (CFD) tools, continues as a very active 
m a  of research (see, for example. [ 1-31). in most of the CFD- 
based aerodynamic optimization and design studies to date. the 
input data and parameters have been assumed precisely known: 
we refer to this as deterministic or conventional optimization 
When statistical uncertainties exist in the input data or parameters, 
however. these uncertainties affect the design and therefore must 
be accounted for in the optimization. Such optimizations under 
uncertainty have been studied and used in structural design disci- 
plines (see. for example [4-83); we refer to these as nondetermin- 
istic or robust design optimization procedures. 

Derivatives of code output with respect to code input and pa- 
rameters are called sensitivity derivatives and they contain infor- 
mation which can be used to direct an optimization search. In a 
fluid flow optimization problem. the objective and constraint gra- 
dients aE functions of the CFD sensitivity derivatives. Such de- 
rivatives can also be used to accuntely approximate the CFD 
output in a small region. such as that near the mean value of a 
random variable. In [SI, it i s  shown that a statistical First Ordes 
Second Moment (FOSM) method and automatic differentiation 
c m  be used to efficiently propagate input uncertainties through 
finite element analyses to approximate output uncertainty. This 
uncertainty propagation method is demonstrated herein for CFD 
code. 

An integrated strategy for mitigating the effect of uncertainty in 
simulation-based design is presented in [IO]: this strategy consists 
of uncertainty quantification. uncertainty propagation. and robust 
design tasks or modules. TWO approaches are discussed there for 
propagating uncertainty through sequential analysis codes: an ex- 
treme condition approach and a statistical approach. Both ap 
- 
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proaches can hc efficiently implemented using scn\itivity rlcriva- 
tives. For CFD cde .  the former approach is demonstrated in [ I  I]. 
whereas the latter approach is demonstratcd hcrcin using stu.ond 
moment approximations. Thesc uncertainty propagation mcthcds 
have been developed and are k ing  investigated as ;tn al1ern;ttivr 
to propagation by direct Monte Carlo simulation lor potcntially 
expensive CFD analyses. 

The prewnt paper shows how the approximate st;tiistical sccond 
moment nicthods. FOSM and the Second Order Second Momcnt 
(SOSM) counterpart. can be used i n  cctnjuiictictii n i t h  sensitivity 
derivatives to propagate input data uncertainties thntugh CFD 
code to estimate output uncertaintics. The FOSM appnixim;itictn is 
then u.sed to perform .sample robust optirnimtioiis. For dcmonstra- 
tion purposes. the methcd is illustrated on a simple design cx- 
aniple which contains the important dements of nHtre complex 
design problems. We assuiw that the input uncertainty quantilica- 
tion is given hy independent normally-distributd random vmi- 
ables. and we denionstrate the strategy of [ IO] as applied t o  a CFD 
code module. This strategy is also applicable to correlated andor 
non-normall! distributed variables: however. the analysis and re- 
sulting equations become much more complex. 

The _mdient-based mbust optimization demonstrated herein re- 
quires second-order sensitivity derivatives from the CFD ccde. In  
[ 121 we present. discuss. and denionstrate the efticient calculation 
of second-order derivatives from CFD ccde using a method pro- 
posed. hut not demonstrated. in [lz]. This methcd. used herein. 
incorporates tirst-order derivatives obtained by both forward- 
mode and re\.erse-mode ditrerentiation in a noniterative scheme to 
obtain second-order sensitivity derivatives. 

To date. the only other demonstration or application of 
gradient-based. robust optimization involving advanced or hiph- 
tidelity (nonlinear) CFD code that we have found \vas just re- 
cently presented in [ IJ- 151. The analytical statistical approxima- 
tion of their nb.jective function for robust optimization also 
required wctcond-der sensitivity derivatives. However. these 
studies emplo\rd a direct nuiixncal random sampling technique 
to compute espectc‘d values :it eiick optimization \icp in  crrder to 
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the d daivatives. An exllinplf of linear aeldyw&m 

Optimization d a m m t ~ ~  ‘olls for CFD code modules presented 

i a d d  io - f i q  petfonnance Opimizatioa mbjea to 
+ty is found m I161 

p,,oOther aspeas IIc8d to be pointedout in regard to the robust 

sikd were only those due to code input ~ t e s  involving 
reornay and/or flow conditions; i.e., due to sources external to 

CFD code simulation. Other computational simulation uncer- 
t;linties, such BS those due to physical, mathematical. and numeri- 
cd &ling approximations [17,18hssentially intemai model 
em and uncertainty w r c e ~ ,  wexe not considemi. That is, the 
,jisree CFD code analysis re~ults were taken to be deterministi- 
c~~~ “uatak” herein. Ultimately, all of these modeling sources 
o f e m d m  * ty must be Bsscssed and considered Semi- 
tivity  derivative^ CXII also aid in this assessment [19] since the 
m~aq of an i n t e d  model’s (Le.. algorithm, turbulence, etc.) 
prediction capability generally depends. to some extent, on the 
modeling parameter values specified as input. 

second, as discussed in [ 153, uncertainty classification with re- 
to an event’s impact (from performance loss to catastrophic) 

frequency (from everyday fluctuation to extremely rare) sets 
the problem formulation and solution procedure. Structumi reli- 
ability techniques typically deal with risk assessment of infrequent 
but catastrophic failure modes, identifying the most probable 
point of failure and its safety index. Here, we am dres s ing  the 
ssessment of everyday operational fluctuations on performance 
loss. not catastrophe. Consequently. we are most concemed with 

performance behavior due to probable Huctwtions. i.e.. near 
the mean of probability density function\ (pdf). Structural reliabil- 
ity assessment is most concerned with improbable c i t m p h i c  
events, i.e.. probability in the tails of the pdf. Simultaneous con- 
sideration of both types of uncertainty i\ d i s c w d  in [ 161. 

h & n  a h  in C14.151. First, tht of Uncatainty COn- 

2 Integrated Statistical Approach 
In [ IO] an integrated methodology for dealing with uncertainty 

in 3 simulation-based design is proposed and demonstrated for a 
linkage mechanism design. The integrated strategy of [IO] for 
mitigating the effect of uncertainty includes (a) uncertainty quan- 
tification. (b) uncertainty propaption. and (c) robust design. T h e  
present study utilizes the strategy pmpwd in [IO]. but differs in 
regard to uncertainty propagation md application. Here. we are 
considering the influence of uncertainty in CFD code input: that 
is. the effect of uncertainty in input geometry on aerodynamic 
shapedesign optimization and the effect of uncertainty in flow 
conditions on design for flow control. 

2.1 Uncertainty Quantification. In this study. we cwn8ider 
the influence of uncertainty in CFD input parameterization vari- 
ables. We have assumed that these input variables ace statisticdly 
independent, random. and normally distributed about a mean 
value. This assumption not only simplifies the resulting algebra 
and equations. but also serves to quantify input uncertainties. Fur- 
thermore. it is not an unreasonable assumption for input geometric 
variables subject to random manufacturing errors nor for input 
flow conditions subject to nndom fluctuations. 

2.2 Uncertainty Propagation. Uncertainty propagation is 
accomplished by approximate statistical second moment methods 
[9] and [‘O] where the required sensitivity derivatives are ob  
tained by hand or by automatic differentiation. The first step in 
second moment analyses is to approximate the CFD system output 
solutions of interest in Taylor series fm. truncated to the desired 
order. These approximations are formed to estimate the output 
Value for small deviations of the input. 

Given input random variables b = { b l .  . . . .bll} with mean 
values. b={6,. . . . .5,1}. and st;mdrud deviations. 
Wt,={u, , , .  . ... u,,}. first- and second-order Taylor series ap 
Pmximations of the CFD output function. F. are given hy 

- 

and 

cespectively. Both first and second derivatives are evaluated at the 

One then obtains expected values for the mean (first moment) 
and variance (second moment) of the output function, F, which 
depend on the sensitivity derivatives and input variances, ut. The 
mean of the output function, F, and standard deviation uF. are 
approximated as 
First Order: 

mean values. 6. 

(3) 

Second Order: 

where both lirst and second derivatives are evaluatcd at the m a n  
values. 5. NOW in Eq. (4) that the second-ordcr mean output. F. is 
not at the nicy  valucs of input 6. ix.. F# F(6) .  

Quations (3) and (4) are the FOSM and SOSM approx‘ima- 
tions. rcspctively. for the uncertainly pn)pqation. The methods 
m siraighttirward with the difticulty largely lying in computation 
of the scnsitivity derivatives. Thc very cfticicnt and effective 
method used here t o  obtain such derivatives is pre.ser~ted in [ 121. 

2.3 Robust Design. Conwntional optimiration for m ob- 
jective function. Obj. that is a funcri&n of the CFD output. F, state 
variables. Q. and input variables. b. is expressed in Eq. (5).  
Herein. the CFD state equation residuals. R. are represented as an 
equality constraint. and other system cumstraints. g. we “pre- 
sented a inequality constraints. The input variables. b. are pre- 
cisely kM)Wn. and all functions of b are therefore deterministic. 
min Obj. 

Obj= Ob$ F.Q. b ) 

subject to 

R( Q. b)  = 0 

g( F.Q.b 1 S O  ( 5 )  

For rohust design. the conventional optimization. &. (51, must 
be treated in a probabilistic manner. Given uncertainty in the 
input variables. b. all functions in Eq. (5 )  are no longer deter- 
ministic. The design variables are now the mean values. 
b={6,. . . . . f i t , } ,  where all elements of 6 me assumed statisti- 
cally independent and normally distributed with standard devia- 
tions ‘Tb . The objective function is cast in terms of expected vd- 
ues and becomes a function of F and O F -  The state quation 
residual equality constraint. R. is deemed to be satisfied e the 
expected values of Q and b. that is the mean values 0 and b for 
the FO appmsiniaticm. The other constraints we cast into a proba- 
hilistic statement: the prohahilit! that the consmints are satisfied 

- 
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is praterthan or equal to a desind or specified pbbility, Pk. 
This probability statement is transformed [IO] into a collstraint 

tion that variables involved are d 1 y  distributed. The d u s t  
optim&ion can be expressed as 
min Obj. 

involving mean values and standard deviations under dre %ssump 

Obj=Obj(P.u~,O,ii) 
subject to 

R( 0.5) = 0 

g(R.h.6) +kU,60 ,  (6) 
where k is the number of standard deviations, a,, that the COD- 
stmint g must be displaced in order to achieve the desired or 
specified probability, PL . For the FOSM approximation, standad 
Clcvidss cf sx! im d &;e f m  &en in Eq. (3) involving 
first-order sensitivity derivatives. 'Ihaefon, a gradient-based op 
timization will then require second-ordcr sensitivity derivatives to 
compute tlx objective and constraint gradients. Note that for the 
SOSM approximation, rhird-oder sensitivity derivatives would be 
required for these gradients. 

The calculation of second-order sensitivity derivatives for CFD 
code, such as those required for SOSM and robust optimization 
with FOSM, was demonstrated in [13]; the efficient calculation 
method used herein is  demonstrated and discussed in [ 123. Both 
hand differentiation and automatic differentiation via the ADIFOR 
tool [2 1-23] were used in [ I21 and [ 131. Both conventional and 
robust optimizations were perfonned using the Sequential Qua- 
dratic Pmgramming method option in the Design Optimization 
Tools, DOT [24J 

3 Application to Quasi 1-D Euler CFD 
A very simple example has been chosen to demonstrate the 

propagation of input uncertainty through CFD code and its effect 
on optimization. 'The quasi one-dimensional Euler equations ;md 
approximate boundary conditions are solved in a discretized CFD 
form (see Appendix). Of course. modem CFD methods are not 
required to solve the quasi I-D Euler equations: exact analytid 
solutions are available in any basic textbook on gas dynamics. 
However, these quasi I -D equations are commonly and effectively 
used as the initial test platform in the development of CFD algo- 
rithms and methods. 

Two sepmte applications are presented: the first involving 
propqation of geometric uncertainties. the second involving 
propagation of flow parameter uncertainties. Both uncertainty 
analyses are performed with quasi onedimensional CFD Euler 
equations and boundary conditions describing subsonic flow 
through a variable area nozzle. The nozzle inlet is located at 
x = O  with area A(x=O)= 1 ; the nozzle outlet is at s= I .  The a m  
distribution is given by 

A ( x ) =  1 -ax+br'. 
The volume. V, occupied by the nozzle. is the integration of A ( x )  
over the length 1=0 to x= 1 

a b  V = l - - + -  
2 3'  

where a and 6 ate the input geometric parameters. Three flow 
panmeters are specified as input boundary conditions: the stagna- 
tion enthalpy, inlet entropy. and outlet static (back) pressure. The 
discretized quasi I-D Euler equation set is symbolicaily written as 
the state equation in q. (5);  its residual. R is driven to (machine) 
zero for a solution (see Appendix). 

For supersonic flow through a variable area nozzle. shock 
waves generally appear and the flow solution (objective. con- 
straint. etc.) becomes noisy or non-smooth (see 1251 d the nf- 
erences cited therein). Cat must be exercised with respect to 

o b i h g  and using tbe sensitivity daivatives needed for 
gradient-based O p h i Z a h  [z5,261 "bedore, we chose to by- 
pass issues related to this S-C flow non-moo&ness in 
these initial demonstrptions of the present approach for uncer- 
tainty propagation and robust design for CFD code modules. 

3.1 Gewnetnc * Uncertainty Pmpagation. For the discus- 
sion of geometric uncertainty propagation, geometric shape pa- 
rameters a and b will represent the statistically independent ran- 
dom input variables, b. The Mach number dismbution duough the 
nozzle, M. is viewed here as a component of the state variable, Q; 
its value at the inlet, M, is the CFD output, F. Applying the 
approach previously outlined hedl Eqs. (3) and (4)) yields the 
following first-and second-order approximations of the output 
function, M. 
Input random variables: b={a,b} 
CFD output function: F={M} 
First-order Taylor series: 

dM l?M 
da db M(n,b) zM(if.6) + -(a - a) + - ( b  - 6)  (7) 

Second-order Taylor series: 

dM dM i+M 
M(a.b) = M ( i f . & ) +  - ( a  do -a) + --(h ab -6) + G ( a - 3 )  

The mean. M. and standard devialion uM of the output. function 
are expressed as 
FOSM: 

SOSM: 

Predictions of M(t7.b). M and (rM for FOSM (Eqs. (7) and (9 ) )  
and SOSM (Eqs. (8) snd (10)) m complved with CFD solutions 
and Monte C d o  analyses has4  on CFD solutions. as given llnd 
discussed in the results section. 

3.2 Robust Shape Optimization. Applying the conven- 
tional optimization previously described yields 
min Obj. 

Obj= Obj( M.0.b) 

subject to 

R( h1.tr.b ) = O  

V( n.h s o .  
where the system constraint. 1'. is a constraint on the nozzle vol- 
ume and depends only on n and 6: our objective does not explic- 
itly depend on M. 

Applying the robust optimization previously described yields 
min Obj. Ob.i=Obj(~f.u,, .ti.&) 

&iect to 

, 
: 



With a and b subject to statistical uncertainties (which may be 
due to measurement, manufacturing, etc.), V becomes uncertain. 
Since V is  linearly dependent on a and 6, it is also normally 
distributed. -fore. its stadard deviation, uv , is given exactly 
by m- (13). 

To demonstrate the optimizations, a simple target-matching 
@Ian is selected; a unique answer is obtained when an eqUali9 
volume constraint is enforced. The CFD code is run for given a 

b; the resulting M t d ~ )  and corresponding V(a,b) are taken 
;tj rfK *-t K&XS Mt and Vt, iespec*<elji. Fm this conrentiod 
mmization, the objective function and constraint function for v 
of Eq. (1 1) beame 

OW M,a.b) = [ M(a,b) - Mt]' 

V(a,b) -  Vt=O 

enforced 

for the convenience of the optimizer. 
For robust optimization using the FOSM approximation. the 

'msponding objective and constraint on V of Q. (12) become 

V( a. 6) - Vt + k ff ,,= 0 

similarly enforced as 

V(b,L)-Vt+ku+O and Vt- V(H,6)-kcr,s00. (15) 

Note that for cr,=u,,=O in Eq. (15). the conventional optimiza- 
tion is obtained. Also. in the probabilistic statement of the con- 
straint on V. it is assumed that the desired volume is less than or 
equal to VI. 

3.3 Flow Parameter Uncertainty Propagation. A second 
example of uncertainty in CFD involves fluctuations in input Row 
parameters. For the discussion of flow pwameter uncertainty 
propagation, the. free-stream Mach number, Minf. and the nozzle 
.\zatic back pressure. Pb. will be taken as statistically independent 
random variables. Specifying the Free-stream Mach number sets 
the stagnation enthalpy. The Mach number distribution through 
the nozzle. M, is again viewed i ~ s  a component of the state vari- 
able. Q; its value at the inlet. M, is the CFD output. F. Applying 
the appmach previously outlined yields equations which are simi- 
lar to Eq. (7) through (IO) but with 
Input random variables: b={Minf.Pb) 
CFD output function: F={M} 

Again, predictions of M. R, and uM for the FOSM and SOSM 
approximations are compared with CFD solutions and Monte 
car10 analyses based on CFD solutions. as given and discussed in 
the next section. 

3.4 Robust Design for Flow Control. The conventional 
optimization is expressed as 
min Obj Obj=Obj(M.Minf,Pb) 
subject to 

(16) 
R( M,Minf. Pb) =O 

q( Minf.Pb)sO. 
W h e r e  q is a consmint on the mass flux through the nozzle. 

Therobustoptimizationisexpressedas 
Obj, Obj=Obj(~u,,,Qinf,Fb) 

R(&&f,h)=O 

pobjbdto 

q( I%nf.h) + kU,SO. 
For the free-stream Mach number, Minf, an1 

(17) 

c nozzle back .. 

pcssure. Pb, subject to statistical uncertainties, the mass flux, q, 
betomes uncertain. Since q is dependent on Minf and Pb, its stan- 
dard deviation. u,, , may be approximated by 

S i  q is not a linear function of Minf and Pb, Eq. (18) is not 
uPct 
Tc dexonstnte t!! optimizations, a simple iargei-matching 

p b l e m  is again chosen. The. CFD code is run for given Minf and 
Pb. the resulting M and corresponding q are taken as the target 
values Mt and qr. respectively. For this conventional optimization, 
the objective function and constraint functions of Eq. (16) are 

Obj(M.Minf,Pb)=[M(Minf,Pb) - Mt]' 

q(Minf,Pb) -4t =O 
enforced as 

q( Minf,Pb) - yrs0 and yt-y(Minf.W)~O. ( 19) 
For robust optimi7.tion using the FOSM approximation. the cor- 
responding objective and constraint on 4 of  Eq. ( I  7) can be shown 
a 

Obj=Obj( M.cr,,, .&linf.Fbb)=[M( Minf.h) - MI]' + 

enforced as 

y(~intPb)-c/r+X-cr, ,~O and c l r -y(Minf .~b) -~o ,90 .  
(20) 

Again note that for ~r~,lll,=crl,,,=O i n  Eq. (20). the conventional 
optimization is obtained. Also. in the probabilistic statement of the 
constraint o n  q. it is assumcd that the desired mass flux is less than 
oc equal to qt. 

4 Sample Results and Discussion 
Presentation and discussion of results for the sample quasi I-D 

Euler CFD problems are divided into four topics: function ap- 
proximations. uncertainty pmpaE;ltion. pdf approximations, and 
robust optimization. For the tint three topics. the FOSM and 
SOSM approximations are assessed by comparison with direct 
CFD simulations. Note that the CFD code and its corresponding 
derivative codes are executed at the mean values of the random 
input variables to obtain the functions and sensitivity derivatives 
needed for construction of the statistical approximations. 

4.1 Function Approximations. It is important to assess the 
Taylor series output function approximations with direct nonlinear 
CFD code simulations prior to presenting uncertainty propagation. 
If the CFD output function. M. is quasi-linear with respect to the 
input variables of interest. one can expect first-order approxima- 
tions to be reasonably p o d :  that is. the tirst-order moments given 
by Eq. (3) should match well with the moments produced by a 
Monte Carlo simulation. For a more nonlinear system. one natu- 
d l y  expects better accuracy with .second-order approximations: 
drp is. uncertainty analyses which include second-order terms 
should yield results which better predict the statistical moments 
produced by the hlontc Carlo simulation. 
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Fig. 1 Comparison of function approximations versus CFD 
solution, input variable b=6 

l3g. 3 Comparison of function approximations versus CFD 
solution, input variable Pb=Pb 

Figures 1-4 show that for F=M(o.h), M behaves as a quasi- 
linear function in the neighborhood of (ii.6). whereas for F 
=M(Minf.Pb), M is more nonlinear in the neighborhood of 
(minf.h). In these figures. approximations of the CFD output 
functions. M(a,b) and M(Minf.F%), using the first- (FO) and 
second-order (SO) Taylor series (as given in Eqs. (7) and (8) for 
M(n.b)), are compared to direct solution of the Euler CFD. In 
each example. two traces were considered through the design 
space. Trace 1 varied the tint input variable. while the second 
remained fixed at its mean value, and vice versa for tnce 2. The 
required first- and second-order sensitivity derivatives needed for 
construction of the first-and second-order appmximations were 
obtained by hand differentiation and automatic differentiation as 
discussed and presented in [ 121. 

Nonlinear behavior of the CFD result is reasonably well ap- 
proximated by the SO result in all plots; however, there does 
appear to be an inflection point in the CFD results given in fig. 3. 
Note that the linear FO result is a g o d  approximation in the 

geometric example: the How parameter example is more nonlin- 
ear. At lager deviations from the mean. a linear approximation for 
M( Minf.Pb) loses accuracy. 

4.2 Uncertainty Propagation. Approximation ol‘ the statis- 
t i l  tirst and second moments is done using equations Eq. (9 )  and 
(IO) (geometric example). and corresponding equations for the 
flow parameter example. Again. both first- a d  second-ordcr sen- 
sitivity derivatives are required llnd the prediction is stnightfm- 
ward. given these derivatives. An independent verification of t hae  
approximate mean and standard deviation values is obtaincd here 
using direct Monte Carlo (MC) simulation with the quwi I-D 
Euler CFD ccde and standard statistical ;inalyscs of these Monte 
Carlo results. The sta&rd statistical analyses used were from 
Microsoft 0 Excel 1o(W) and the random number gcneritor 
MZRAN used was from [27]. Tables I and 2 give results lor the 
mean (first moment) and Tables 3 and 4 givc results for the stun- 

b-T; 
Fig. 2 COmpariMnr of function approxlm8tions versus CFD 
.okrtkn, input VmiIlbk 8=a 

Qx) 41s  Qoo ais 0 s  
Pb-% 

Fig. 4 Comparison of function approximations vhcsus CFD 
m, input variabk Mlllinf-Mhrf 

i 
I 
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c 

I 0.01 0.4041 0.0187 -0.0105 0.0656 
2 0.02 0.4040 0.0379 0.0716 0.1531 
3 0.04 0.4054 0.0756 -0.2867 0.0383 
4 0.06 0.4055 0.1142 -0.3012 0.4301 
5 0.08 0.40% 0.1557 -1.3078 -0.0209 

f-2 PefCentdfferwtce from MC for FO and SO predictions 
d M (mnf,ijb) 

rOprtu &I %Error 9diffw/MC RodiffwlMC 
Case U-UB MC MC HiPtd~n SOpndict 

I 0.01 0.3933 0.0056 0.0037 -0.0269 - 0.02 0.3932 0.0114 0.0187 -0.1034 
3 0.04 0.3898 0.0229 0.8917 0.399 I 
4 0.06 03889 0.0364 1.1151 0.0141 

7 

~abk 3 Percent difference from MC for FO and SO predictions 
ofU",geo-exampk 

Input D uy % diff w/MC % diff w/MC 
C ~ X  u,=D~ MC FO Predict SO Predict 

I 0.0 I 0.0 102 -0.5773 -0.57(H 
2 0.02 0.0207 - I .7026 - 1.6769 
3 0.04 0.0414 - I .5794 - I .47M 
1 0.06 0.0625 -2.390 -2.0% 
5 0.08 0.0US3 -4.3YX7 -4.OU)I 

Tabk 4 Percent difference from MC for FO and SO predictions 
of uy, flow parameter example 

Input u D,, 'k din  \\lhlC % diff w/MC 
CaSe (TMjnr=(Tm MC FO P d i c t  SO M i c :  

I 0.0 I 0.w30 l.lX15 1.2473 
2 0.02 0.0063 - I .5ow - 1.2533 
3 0.04 0.0 I 25 -4.1604 -3.IMO 
4 0.M 0.01Y9 -4.U)70 -2.193U 

drnd deviation (second moment) value comparisons. Tbe input 

rd given in tbc second column of eacfi table. The third column in 
ach table gives the mul t  from the MC simulation, w h m  the 
sample size (N) used was 3000. The MC m r  in its predicted 
mean is o\I / ,T. which is given in the fourth column of Tables I 
ad 2. The first-order (FO) and second-order (SO) approximate 
pcdictions are given in the last two columns of each table as 
pacent difference from the MC results. 

Results from the last two columns of Tables 1-4 are plotted in 
Fgs. 5 and 6. Note that mean and standard deviation approxima- 
tions for output M agree well with the MC results for small stan- 
dard deviations in input variables. (uu.cb) or ( U ~ ~ ~ , U ~ ) ,  for 
both the FO and SO predictions. At higher standard deviations. the 
SO results tend to a p  better with the MC results, especially in 
tbe flow panmeter example. 
As expected. the SO approximations are generally better than 

those for FO and an increase in the standard deviation of input 
parameters monoronically increases the error associilted with both 
predictions. Both FO and SO approximations predict the mean 
more accurately than the standard derivation. Also note that the 
MC simulation with a sample size of 3OOO limit.. ;~ccuracy of the 
MC results. This is apparent in the raggedness of the pdfs shown 
io the following section. 

4.3 Prnhnbility Density Function A ~ ~ N K ~ I I & B I W .  Given 
a mean and standard deviation of the CFD output function (from 
either an hlC simulation or an FO or SO prediction) and assuming 
a normal distribution. one may then construct a pdl' to approxi- 
mate the behavior of the iwndcterministic output function. This 
approximation is compared t o  pdf histograms gener&tcul from MC 
simulaticms in Figs. 7. 8. m d  9. n#: bars dcpict thc MC histo- 
gram. a d  the solid curve is a normal distribution at the MC mean 
d u e  and MC mndard deviation as given in the prcvitws tables. 
Ihe MC simulation size o f  3oMl is certainly not sufticicnt to ob- 
bin a srncwth pdl. We note that both the lirst-oder a d  second- 
order normal distributions are indistinpuishablc froin this normal 
MC curve at thi\ sale so neither is shown i n  thc tigure. It is 
apparent that for either the quasi-linear functional dependence on 
a and h (Fig. 71. or for small input standard deviations of the flow 
parameters (Fis. X). thc statistical approximations arc good for a 
significant region about the mean but tend to b m k  down in pre- 
diiting the tails of the distribution. This is significant. for if one is 
p i m r i l y  interested in reliable failure predictions. as for structural 
&sign. this prediction may not he gcxxl enough. It i s  felt. how- 

_ .  aod ab) a upb) .  take0 to bc 

Fig. 5 Comparison of statistical monwmt approximations with Monte Carlo 
simulation results, geometric exsmpks 
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Rg.6  Comparisonofstatiwd * moment approximations with Monte 
Carlo simutation results, flow parameter examples 

ever, that in aerodynamic performance optimization using CFD, 
where robustness about the mean is desired, these approximations 
may be good enough. 

It is not surprising that a nonlinear CFD output function be- 
haves differently for randomness in different input variables. For 
M(Minf,W) at higher input standard deviations (aMmf=trph 

0.06 

0.05 

0.04 

0.03 

Om 
0.01 

0 

=OM). the pdf of the output function is no longer normal. In Fig. 
9 one can see the non-normal behavior of CFD output given nor- 
mally distributed input variables Minf and Pb. 

4.4 Robust Optimiitions. Optimization Fesults were gen- 
erated using the quasi I-D Euler CFD code and the pmcedure 
given by Eqs. ( 5 )  and (6). As noted earlier. conventional optimi- 
zation is obtained for cr(,=rr,=O or for nMinf=mFh=O. For the 
H)SM approximation. tirst-order sensitivity derivatives we re- 
quired to obtain 'r," and cr,, (Eqs. (9) and (13)) or n,, (Eqs. (9)  and 
(18)): therefore. second-order sensitivity derivatives will be re- 
quired for their gridients. which are used in the optimization. The 
second-order derivatives were obtained by the manner presented 
in 1121. except for those associated with Eq- (18) where the tint- 
order derivatives were tinite differenced simply for convenience. 

It is seen from Eqs. ( 12) and (17) that the robust optimimtion 
results should depend on the probibiiistic parameters (n;, .cr,,) or 
(uMinl,crf~,,). and k. The desired probability, PI , is that from thc 
normal cumulative distribution function since crv and n,, here are 
assumed to be normally distributed. For each robust optimization 
example. two cases are presented. For I ,  P, is tixed at 
k= 1. Le.. Pl=RJ.13%. and the effect of increasing the'in- 
put variable standard deviations is addressed. For case 2. the stan- 
dard deviations of the input variables are fixed at 0.01 and P, 
increases. i 
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Table5 --weopthnitldkn-rrfthincreesingin- mblel3 Robucrtshspeoptknitatlolr~withinasasingP* 
prt puwnrter u for k-1 ioro-ant 

av  K pt 

&on is illustrated. As the standard deviations of design variables 
6 6 )  increase, the OptiKd nondeterministic vo~ume, V(ii,6). sig- 
nificantiY decreases- 

optimization, where 

pacent ( k = o  to 4) are given in Table 6. A@n mean values (a.6) 
change, keeping the IWXM value. R(Z,6>, of the probabilistic Wt- 

near the w e t  value, Mt. since na= a b  remains s d l .  the dM 
term of the objective remains small, and the displacement of fi 
from the dashed line depicting Mt due to the ox term remains 
small as shown in Fig. 12. With an increase in Pk, V(n.6) is 
displaced from the sdid curve V =  Vt by k a v ,  as required by the 
probabilistic constraint. Accordingly. the mean values. (a$), 
which minimize the objective function and satisfy the constraint, 
again become increasingly displaced from those at the wget vol- 
ume. Vt. Note the significant displacement of the solution from 
the target volume when PA is large. Le.. when one i s  attempting to 
incorporate the tails of the pdf. In order to increa.se the probability 
of conktraint uti5faction from 97.77 percent to 99.99 percent, one 
sees a significant change in (5.6) for a mere gain of 2 percent in 
constraint satisfaction. 

4.4.2 Ro/mt  Dr.\igti f iw  Fiow Cotzrrd Rrarlts. Similar re- 
.suits are seen in the Haw parameter example. In Table 7, the 

4.4.1 Robust S@ opf imhn Res&. [n Table 5, results 
for case 1 of the robust shape optimization are displayed. For 
a,=ub ranging from 0 to 0.08, qid V a l ~  for input vari- 

in&. the mean values (z.6,. which minim& the &jmive func- 
tion satisfy the probabilktic c o n h n t ,  become increasingly 
displaced from the target volume, Vt. This is shown in Fig. 10. 
Mean values (a.6) change, keeping the mean value, M(a,6), of 
the probabilistic output near the target value, Mt. The robust de- 
sign points track the dashed curve for M=Mt with . m e  displace- 
ment due to the a~~ term of the objective, Eiq. ( 15). The volume, 
V(n .6 ) ,  is displaced from the solid curve V=Vt by k a v ,  as 
required by the probabilistic constraint. This displacement can be 
viewed as the solution dependent or "effective" safety factor. 

In Fig. I I the changing area distribution of the robukt optimi- 

The results for case 2 of the robust 
&ks (a.6) l i d  ua=qb d m  mv.  a,=ab k fixed at 0.01, and PI. inCreaSeS from 50 percent &I 99.99 

W- 

a7 - 
0s- 

am- 

O A -  

ab- 

Rg. 10 Optimization results in design space (a,b), PI fixed at 
PI 

Rg. 12 Optimization results in design space (a,b), u fixed at 

Table 7 Robust design for flow control results with increasing 
input parameter u for k- 1 

~ w i , , = ~ p r ,  Rinf PIJ W R urn 0 s  

0.3000 O.&ooo O.oo00 0.3933 O.oo00 o.oo00 
0.02 0.2861 0.7883 0.0001 0.3974 0.0116 0.m8 
0.01 0.26-55 0.7801 0.0005 0.3985 0.0231 0.0112 

0.08 0.2468 0.7498 0.0020 0.4118 ' 0.0407 0.0209 
0.06 0.2555 0.7653 0.0011 0.4050 0.0327 0.0163 

Ag. 11 Nozzle area distributions, Pk fixed at P, 
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Fig. 13 Optimization results in design space (Minf,Pb), PI, 
fixed at P, 

results for case 1 are displayed. For aMinf=a& ranging from 0 to 
0.08, optimal values for the input variables (fiinffi) are listed. 
As (TMinf= U p 6  increases, so does aq . Accordingly, the mean val- 
ues, (Minf,pb), which minimize the objective function and satisfy 
the constraint, become increasingly displaced from the w e t  mass 
flux, qt. This is shown in Fig. 13. Mean values (Minf.Fb) change, 
keeping the mean value, R(Rinf ,h) ,  of the probabilistic output 
near the target value, Mt. The robust design points track the 

Tab& 8 Robust design for flow control results with increasing 
P,, for u==O.Ol 

K 9 a n f  Bb mj M ux1 uq 

0 0.5000 0.3oOo 0.8OOO O.ooOo3 0.3933 O.OO60 0.0030 
I 0.8413 0.2919 0.7953 O.ooOo3 0.3945 0.0059 0.0029 
2 0.9771 0.2825 0.7916 O.ooOo3 0.3949 0.0059 0.0029 
3 0.9986 0.2688 0.78% O.ooOo3 03936 O.Oo60 0.0028 
4 0.9999 0.2598 0.7867 O.ooOo3 0.3938 O.Oo60 0.0028 

O S r  

Oen t \ 

dashed curve for M=Mt With displaccmen tduetothe&umof 
the objective, Eq. (17). Tbc opimizba mass flux, q(@i .%) ,  is 
displaced from the solid apve q=qt by &a,, as required by & 

The results for case 2 of the rpbyst design for flow control. 
wtme a ~ = = u p b  is fixed 0.01, and Pk increases from 50 per- 
cent to 99.99 percenf (k=O to 4) are given in Table 8. Again, 
mean values (Rid,%) change. keeping the mean value, 
R(Rin f ,h ) ,  of the probabilistic output near the target value, Mt. 
As in the preceding example, since crMinf= upb remains small, the 
dM term of the objective remains small and the displacement due 
to the ai  term remains small, as shown in Fig. 14. With an 
increase in PI., q(Rinf,h) is displaced from the solid curve 4 
=qr by kuq , as required by the probabilistic constraint. Accord- 
ingly, the mean values. (&nf,h), which minimize the objective 
function and satisfy the constraint again becomt increasingly dis- 
placed from the tarpet mass flux, qr. Again, note the significant 
displacement from the target m a s  flux i n c u d  in the higher 
probability optimizations. i.e., when one is attempting to incorpo- 
rate the tails of the pdf. 

5 Concluding Remarks and Challenges 
The present results represent an implementation of the approxi- 

mate statistical moment method for uncertainty propagation and 
robust optimization for a qmsi I-D Euler CFD code. Assuming 
statistically independent. random. normally distributed input vari- 
ables, first- and second-order statistical moment procedures were 
performed to appmximate the uncertainty in the CFD output. Ef- 
ficient calculation of both first- and second-order sensitivity de- 
rivatives was employed and the validity of the appmximations 
was assessed by comparison with statistical moments generated 
through Monte Carlo simulations. The uncertainties in the CFD 
input variables were incorporated into il mbust optimization pro- 
cedure where statistical moments involving tirst-order sensitivity 
derivatives a p p e a d  in the objective function and system con- 
straints. Second-order sensitivity derivatives were used in a 
gradient-based robust crptimi7;ltion. The approximate incthcds 
used throughout the anilyses were fwnd to be valid when con- 
sidering robustness about input pllrameter mean values. 

Collectively. these results demmstrate the possibility for an a p  
p m x h  to trclll input piarameter uncertainty and iLs propagation in  
gradient-based design optimization that is governed by complcx 
CFD analysis solutions. It h s  been clemmstmted on a very simple 
CFD code and pmblrni: there are computlltioiial rwiurce issues to  
be addressed in application to significant 7-D a d  3-D CFD cocks 
and pmblems. Conventional optimization in 2-D and 3-D already 
requires signiticantly more resources than in I-D and obtaining 
second-order sensitivity derivatives for more design variables will 
add even more work. Some of these are addressed in [ I? ]  iind 
work is presently in progress regarding application and demon- 
stration using ?-D and 3-D Euler CFD code. 

plobabilistic coostraint 

Acknowledgments 
The authors wish to thank Dr. Luc Huyse of the Institute for 

Computer Applications in Science and Engineering (ICASE) at 
NASA Langley for many helpful discussions regarding statistical 
aspects related to this study. and also Dr. Thomas Zmg of the 
Multidisciplinary Optimization Branch at NASA h g l e y  for his 
encouragement and support. One author (ACT 111) was partially 
supported by an ASEE Gnnt during the summer of 2000 at NASA 
Langley. 

Nomenclature 
A = nozzle m a  
( I  = geometric shape parameter 
6 = geometric shape piuameter 
b = vector of independent input variables 
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F =  veaOrof<JFDoutputfuocticms 
g = vector of conventional oprimization collstraints 
k = numba of standard deviatims 
M = Mach number a! nozzle inkt 
M = vectorofMachnumkateachgridpoht 

Minf = free-stnam Mach number 
Mt = target inlet Mach number 
N = Monte Carlo sample size 
pb = nonnalizad n o d e  static back (outlet) pressure 
Q = vector of flow-field variables (state variables) 
q = mass flux through nozzle 
qr = target mass flux through nozzle 
R = vector of state equation residuals 
V = nozzlevolume 

Vt = target 
x = I l o m a h d  * axial position withii n o d e  
u = standarddeviation 
d = variance 

volume used for optimization 

SapermiPt 
- -  - mean value 

Appendix-Quasi One-Dimensional Euler CFD 
The steady-state, quasi 1 -D Euler equations are 

+S( Q )  = 0 
dX 

where 

In these equations. p is density. u is flow speed. P is pressurc. cI, 
is the specific totill energy (Le.. ell=c+ir'/2. where c is the spe- 
cific internal energy). and A(.r) is the local cross-sectional mi. 
The ideal gas law with a constant ratio of specilic heat!! y (taken 
to be 1.4) is used for clc~ure, which iinplics P = ( y -  I )(pc,,, 
-pu'/7_). me governing equations are discretixd and solved nu- 
merically with the upwind flux-vector-splitting methcwl of  Van 
Leer [38]. which includes the use of higher order accuricy to  
approximate the flux terms. A 111017: completc discussion of these 
numerical procedures is presented in [19]. The How field was 
discretized with 100 grid points. This discretiztion of the govern- 
ing equations, together with the numerical treatment of the bound- 
ary conditions, results in a large set of coupled nonlinear algebraic 
equations with the form of Eq. (5) .  In this study, the pmcedure for 
solving the discrete nonlinear flow equations is Newton's method. 

References 
[ I ]  N e u m n .  P. A.. Hou. G. J.-W.. and Taylor. A. C.. I l l .  IW7 " ( h w i i t i c m s  

Rc-Psing Use of Advanced CFD Awlysih Scmitivity Analysis. a d  Design 
Code in MDO." N.M. Alexnnhv .  and M.Y. Husstini. ds.. Midridiscipliiurn. 
Dcsigii Oprimimion: Srurr rfrltr An. SIAM h x d i n g s  ScTicx. SIAM. Phila- 
delphia. pp. 263-279. also ICASE Rcpon 96-16. NASA CR 1911293 favaihhle 
ekeuonically at vw.icsst.edu). 

[2] Newman. J. C.. 111. Taylor. A. C.. Ill. Barn\vdl. R. W.. N e w m .  P. A.. ilnd 
Hou. G. J.-W.. 1999. "O\wview or Sensitivity Analysis and Shape Optimiw- 

i h f o r c o E l l p l t X A t d p d C ~  . " J . A ~ u ~ X N O .  I.w.117- 
%. 
lpmaL A. rad Vassbe& J. C 2001. "complt.arml . n16aDymrmafa 

h s i g ~ :  In CMmt rad huun ImpM" AIAA-20014538. J a  
mlhaadp. P. B., ad Kodiplm, S.. 1992 "Stnwtiml Optimiutioa Using 

smrt Optim.. Cpp .  236-240 (ah A M - 9 I -  

[q pllrioson. A. Samsm C md Poclrtuzwa N.. 1993. "AGenen l  Approach 

[q C k a  X.. Harrlman. T. K, d Neill, D. 1.. 1997, "Reliability B a d  Sow- 
OR1 Design Optimization for Rsaical Applicncionr"AIAA-97-1403. Apl 

[7] Du, X. and Chm W., 1999, "Towards a &tta Understanding of Modcling 
Feasibility Robumwss in Enginmine k i p . "  A m n i u n  Society of Mcchani- 
ai Engineus. p;rPer DAC-8565. Sepc. 

arr~. Saucnnal Dynamii and MPvrials Confatwe and Exhibit. AlAA Fu- 
nm on Non-Deterministic Appmschcr. SL h i s .  MO, April 12-15. 1999. 

[9] Chinddkar. S.. and Taylor. D. I, 1994. "GmmeuiC Uncmainties in Finite 
ucnvnt Analysis." Computing Systems in Engincaing. 5. No. 2. pp. 159- 

[IO] Dn. X.. and char W.. -m, '~MahoQl@y fa M n y i q  the E l f a  of Un- 
e a u i n t y  in Simuhtion-Baud Design." A I M  I.. 38. No. 8. pp. 1471-1478. 

ii;j 'iwgm. i. Fellsrier. S.. and Bcq@ !.. -W1. "Sendticicy aid Uiiar- 
tlinty Analysis lor Variabk Ropnry Flows.- AIAA MoI-0139. Jam. 

[I21 T3ylor. A. C.. 111. Gmn. L. L.. Neumn. P. A,. and Putko. M. M.. "Some 
Advanced Concepts in D i m e  Aerodynamic Sensitivity Analysis." AIAA- 
2001;2529. 

[I31 Sherman. L.. Taylor. A- 111. Green. L.. Newman. P.. Hou. G.. ;vwl Korivi. M.. 
1996. "Fim-and S d - O R k r  Aerodynamic Scn~itivity Derivatives via Au- 
m t i c  DiNermtiaion wi* lncremend 1tcrdtir.e M~xhwJs." J. C o m p u ~  Phys.. 

[ I 4  Huyse. L.. and Lewis. R. M.. 2 0 1 .  "Acridynamic Shqx O p t i n i i n h n  o l  
Twwlimnsiun;ll Airfoils Undcr Vncemin Ciiditions." ICASE R L ~  Nci. 

[IS] Huyw. L. 3101. "Solving Prohlcrn\ id C)Ftiiiiimiiin llndcr Umxmainty as 
Stati*rical Dcciskin Pnihlcnis." AIAA 2lNl l - l5 l9.  Apr. 

[l6] O-Aky. 0. R.. SUL~. R. 11.. and R l~dc , .  G. S.. I W K .  "I'erfimncc Optimi- 
mtiiin ol Slultidiwiplimry Mechanical Sy\tcms Suhjwt to Uncxnintic~." 
h i h h i l i 4 c  13gincyring Mechanics. 13. Sti. I. pp. 15-20. 

1171 Alvin. K. I:.. Ohrrhampl. \V. I... Kutlwdiird. U. M.. uwl D i c p n .  K. V.. IOMN). 
-Mctlwrkiltigy lis (%xtzni in$ Midcling and Dix rd imt imi  Ilnccnaintics in 
Ccutqnitatitnial Sinwlatkni." S a d i a  Kcpm SANI)IfIWl-5015. Mar. 

11x1 O h d x n p C .  W. I... DLl;md. S. M.. R u t k r l i d .  It. M.. IY igm.  K. V.. mi 
Alvin. #. I:.. I'WL "A Ncw McrLdi i I iqy ltir tlw li4nialiim olTilcal llwcr- 
bin(! in Coitiputaticrnal Siniulalion ... ;\l.AA-W-l(il2. Apr. (su. Kef. [X]. pp. 
.uK, I -3lW3 1. 

[I91 Cam. t.. I... Ne\vnian. I? h.. and Iiaiplcr. K. 1.. I"6. "Scnsitivity lhnvat ivcs  
far Advanced ('IT) r \ l p i t h m  and Viwcwus Sfidcling Ibmnnrm via Autiv 
m i c  Dil1crcMiaticm.'- 1. CwiipuI. I%?\.. 125. To. I. pp. 113-324 (alw AlAA 
u3-322 I 1. 

[Xi Rohinum. D. G.. I W X .  "h S u n  Proh;ihili\tic Methods U?rd in Rcliahil- 
ky. Risk ;ual t ' n m o i n i y  ,\xiI?. ml>tical TcchniquL~ I." SYrlia Kqxm 
SANMX-I IXY. Junc. 

[?I J Bizubl. C. H.. Cdc. I\.. Corliu. <;. E. C;ric\\;ink. A,. a d  I i o v l d .  P.. 1992. 
-ADIIQR: Ciiirmtiap Iknvat ivc C<&- lnm Fonrm Pnipnis..' ki. Pnv.. 
1. No. I .  pp. 1-3. 

[Z!] BiutuiC. C.. Fulc. t\.. ICh;JL.mi. P.. and Slucr. A,. IWi. - 'Au tcmlk  D i N w  
cnuidiim a i l  IWRTRAW." IEEE Cumput. .k i .  Eng.. Fall. 

[2.3] C d c  A- a d  I3gai. XI.. 2fMMl. '-Overvie\\ 0 1  Adilw 3.0." h ! m r . n t  nl 
CcHnputational a d  Applicd hlatkmatics. Rice C'niwsity. CAAM-TR 0042. 
J;m. 

[3] Anm.. IW5. I h ~ i y i ~  0~iIiiiii:iiriiwi hi/.v-llOT L!.vcrs hfciiiiuil: Vrrsifni 4.20. 
V;MJcuFl;wtz R c x * m h  Ccr DLvckvmnt. I!w.. Colcrrado Springs. May. 

[SI D k .  A.. V a k m i .  XI.. Gmssmn. E.. 2mO. "Smc- Sensitivity 
EquAnm % l ~ . . d  C h  Fluid Dyan i i c  Dcsign Rohkmr." AlAA J.. 38. No. 3. 

[XI] zh;m?r. S.. Pcllcticr. D.. Tkyanier. 1.. a d  Caiiiarcni. R.. 2(MM). "Verilication of 

[27J M-lia. G.. a d  Zniian. A,. IYY4. "Some Pcmuhle Vcry-Long-Pcriud Rim- 

[Xt] Van Lcvr. 8.. IYK2. "Rur-Vc-ctor Splitting lor Eukr  Equations." ICASE Re- 

[XI Thoma%. 1. L.. Van Lwr. B.. and \VaIten. R. \V.. 1990. "Implicit Flux-Split 

m€P. 1991). 

f a  Robun optimal ASME 1. M&. Des., 115, NO. I, pp. 74-80. 

[SI A Cdkcci~n of Techniwl P m  40th AIANASMWASCEJAHS/ASC Sow- 

im 

m. No. 2. pp. 207-336. 

pp. 418--120. 

E ~ N  Estimators lis the EUILY Equations." .AIAA-200(LIUOI. Jan. 

dom NumhL~ Gt.ilcTJlc:." Ciimput. PhyS.. #. SO. I .  pp. 117-121. 

p m  82-30. Sep. (Also hcrirrr  SIIICT irt Phyvitr.  170. pp. 507-512. 1Y82). 

S c h s  for the Eukr Equations." .AlAA J.. 28. pp. Y73-Y74. 

Journal of fluids Engineering MARCH 2002. Vol. 124 I 69 




