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The Effect of Fiber Architecture on Matrix Cracking in SiC/SiC CMC’s
Gregory N. Morscher, Ohio Aerospace Institute, Cleveland, OH

Applications incorporating silicon carbide fiber reinforced silicon carbide matrix
composites (CMC’s) will require a wide range of fiber architectures in order to fabricate
complex shapes. The stress-strain response of a given SiC/SiC system for different
architectures and orientations will be required in order to design and effectively life-
model future components. The mechanism for non-linear siress-strain behavior in CMC’s
is the formation and propagation of bridged-matrix cracks throughout the composite. A
considerable amount of understanding has been achieved for the stress-dependent matrix
cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated
S1. This presentation will outline the effect of 2D and 3D architectures and orientation on
stress-dependent matrix-cracking and how this information can be used to model material
behavior and serve as the starting point for mechanistic-based life-models.
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Objective

+ To understand the effect of architecture on matrix
cracking in CMC's
— Cause of non-linearity — necessary for modeling o/ behavior
— Access for ingress of oxidation species that lead to strength-
degrading embrittlement mechanisms
* To stimulate the use of architecture-based designs
for composite applications

— Architectures offer the potential to enhance matrix cracking
stress, interlaminar strength, thermal conductivity, etc...
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Outline

» Matrix cracking in 2D Woven systems when stressed
in orthogonal directions
— The standard Ml system
- Ways to improve matrix cracking
+ Matrix cracking in some 3D Woven M| systems when
stressed in orthogonal directions
» Matrix cracking in 2D woven and braided
architectures when stressed in off-axis directions

* Summary and conclusions
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2D Woven Systems When Stressed in
Orthogonal Direction

HN and Sylramic (iBN) Fiber-types
MI and CVI SiC Matrix
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Stress-Strain and AE for Different Composite Panels

+  Acoustic Emission used to monitor matrix crack density and derive a
matrix crack distribution
— Excellent source location coupled with a near direct proportion between
cumulated AE energy and matrix crack density
+ Applied to Sylramic-based and Hi-Nicalon-based compaosite systems
that vary by a factor of two in number of plies, thickness, fow ends per
cm, and number of fibers per woven tow
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For Orthogonal Composites, the 90° Fiber-Tows are
the Source for Matrix Crack Formation

* The stress that acts on the 90° fiber-tows is the stress in the
composite “outside” of the load-bearing fiber, BN, CVI SiC
minicomposite, i.e., the “mini-matrix” stress:

Applied Net residual 0° minicomposite modulus
compositelstress / stress \Erule of mixtures)
.. . = (O-c + O-th) Ec — fminiEmini Fraction of
min iatrix . 1— f minicomposite
COmposite modulus 4 min # in 0° direction

All the information required is obtained from RT stress-strain
test (or sound techniques) and processing data sheet.

Glenn Research Center at Lewis Figid @/ ’

— e
A very simple 7| reesionn 2 | st
: g 5 - “linear” region 75 ‘ — HNMi55
relationship :° | s
. u 061 /] Critical SyIMIOTT
fOI' matrlx £ 031 . Design . SyMioss
. QO 04 /. Parameter | s
H ix-cracki ~— SyiMI044
cracking in o e
. . Z 0.2 !/ environmental ‘ SyMI153
2D MI SIC/SIC 2| 7/ = i
~ on e T

CO m p oS iteS ’ 0 -n-df“""ﬂ 100 200 300 4t:)0

Minimatrix Stress, MPa

Norm Cum AE Energy

P
r Y

p. = final crack density "
~ 2.5/mm for Hi-Nicalon G min imayri
~ 10/mm for Sylramic P (‘7 milt imtatrix ) =p.|1-exp| - [%MJ
o, =150 MPa; m=5 ¢

Glenn Research Center at Lewss Field @, ¢




Effect of Tow Size and Shape:
Single-Tow vs. Double-Tow Woven Composites
ldentical fiber volume fraction; Both five-harness satin
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3D-0Orthogonal Composites With Different Z-

Fiber Types

X- and Y-direction Fibers = Sylramic or Syl-iBN
M| Composites
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Woven 3D-Orthogonal Composites with Different Z-Direction:
Z-Fiber Types ZMi (800 fiberftow)

T300 (1000 fiber/tow)
Rayon (400 fiber/tow)

Y-Direction:

X-Direction: One Sylramic

Two Sylramic Tows Tow (800

(1600 fibers) fibers)
10 epi 18 or 20 epi
7 plies 8 plies
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3D Orthogonal o/e Behavior
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Loading in the Y-Direction

Loading Axis

-
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Stress Distributions For Three Y-Direction Oriented 3D
Composites and Standard 2D Composite

*Wide range of matrix cracking 12
stress-distributions
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*XPLY cracking stresses always 10 4
higher than UNI cracking
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Minimatrix Stress Dependence for Matrix Cracking in
3D Composites
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» Good correlation for XPLY regions
»UNI regions unaffected @,
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UNI Regions Dependent on Height of Z-Tow: Griffith-
type Relationship
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* Tow height measured 0.5 mm from surface
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Ways to Increase Matrix Cracking Strength

Using the 2D Woven System
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Ways to improve matrix cracking stress

+ Optimize constituent contents
- E.g., increase fiber volume fraction in loading direction
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Ways to improve matrix cracking stress

* Improve strength of 90° minicomposites
- E.g., fluffed” fabric (A. Caloming, NASA Glenn)
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Relax the Matrix Via Creep

+ Holmes et al, Widaja et al. (See Morscher-Pujar Poster)
» HNS/MI 1375°C Tensile o/t history
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Relax the Matrix Via Creep

+ Holmes et al, Widaja et al. (See Morscher-Pujar Poster)
* HNS/MI room temperature tensile o/c after creep
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Off-Axis 2D Woven and Braided Architectures

Syl-iBN MI Composites
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Matrix Cracking in Off-Axis Direction and for Braided
Structure is Equivalent if not Better than Orthogonal
Direction
» Limited data so far

+ Note, double-tow woven, 0/+60 braided composite
tested in the 90° direction
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Summary and Conclusions

» The stress-distribution for matrix cracking in 2D and 3D
orthogonal dense SiC matrix composites is dependent on
architecture and can be effectively modeled with simple
“minimatrix” approach

— Mechanical behavior of 90° minicomposites and matrix-rich regions

» The stresses for matrix cracking in these systems can be

optimized via architecture/processing enhancements
— Fiber loading in desired direction
- 90° tow dimension
— Matrix relaxation via creep

« Onset of matrix cracking in off-axis directions is similar to
orthogonal directions and is potentially superior for some
architectures such as a braided structure

— More optimization needed
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