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ABSTRACT 

 
A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined 
with scaling and tiling to generate 480X480-pixel control patterns for a spatial light modulator (SLM). The SLM 
can be combined in various ways with a microscope to create movable tweezers traps with controllable 
profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube 
sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling 
allow the 100X100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the 
full 480X480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for 
detecting variations in the scattered light from the nanotube sensors. 
 

1. INTRODUCTION 
 

 Optical tweezers are being developed at NASA Glenn to hold and to manipulate micro-scale and 
nano-scale sensors. Two NASA projects, among many, that currently support nanotechnology, in general, 
and the development of nanotube sensors, specifically, are Alternate Energy Foundation Technologies and 
the Independent Research and Development Fund. One objective is to manipulate and calibrate nanotube 
sensors that range in size from micrometers, the initial objective, to the order of nanometers, eventually. The 
sensors are to be made from carbon and silicon carbide. Some proposed tasks include using tweezers to 
manipulate the sensors to straddle electrodes and to hold isolated sensors for calibration. Calibration is to be 
accomplished by detecting light scattered from isolated sensors or from multiple interacting particles. Single 
and multiple tweezers traps can be generated and profiled using phase modulators1 such as spatial light 
modulators (SLM). The traps can be created using an isolated SLM, a SLM as a component of an 
interferometer, or a SLM together with other trap-generating components.2-4 A SLM can be light-pattern-
programmed to move the traps, to change the angular momentum of a trap beam, or to change the intensity 
profile of a trap. 
 
 One objective of the NASA Glenn work in nano technology is the fast detection and interpretation of 
scattered-light patterns from one or more tweezers traps. Detection and interpretation of the scattered light 
are expected to be performed in potentially noisy environments. The environment may include, for example, 
the electrodes and structures inserted by the sensor developers, light detection channels, unused sensors, 
unused tool particles and other residue. The interpretation of the scattered light is to be used for sensor 
calibration or the generation of SLM control patterns for manipulating the traps and the trapped sensors. 
Artificial neural networks are discussed in this paper for the fast mapping of scattered-light patterns into SLM 
control patterns. 
 
 Artificial neural networks have proven to be sensitive detectors of optical pattern changes buried in 
noise,5,6 and can be used to perform fast pattern-to-pattern transformations.7,8 The SLM, used for trap 
generation and profiling, is essentially just an optical-pattern-controlled device. A 480X480 pixel intensity 
pattern is transmitted to the SLM. The SLM, in turn, converts the intensity pattern into a phase pattern to be 
modulated onto an expanded laser beam reflected from the SLM. The phase profile, generated by the SLM, is 
then transferred to the input of a microscope that produces the optical traps for holding and manipulating the 
nanotube sensors. The objective is to train a neural net to transform a 480X480 pixel pattern of scattered light 
from a trap array into a 480X480 pixel control pattern for the SLM. Other objectives are to generate outputs 
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representative of the scattered light for calibration and to perform SLM pattern-to-pattern transformations for a 
neural-net sequencer.  
 
 Unfortunately, achievement of the simply stated objective is not so straightforward, but previous 
results on the use of neural nets for holographic non-destructive-evaluation (NDE)5,6,9 have transferred well to 
the tweezers control application. One problem was that the neural-net software and computers used for this 
study were restricted to about 10,000 inputs or outputs (100X100 pixels rather than 480X480 pixels). Hence, 
image-data compression of some kind was required. An array of 48X48 optical channels of data was selected 
for the discussions of this paper. The training set size required for noisy optical data increases as the square 
of the number of inputs, so that it is desirable to work with small input arrays. A more difficult problem in 
adapting neural-net NDE rules is to handle multiple training classes and noise sources. A training class is a 
set of input patterns that elicit the same output from the neural network.9 Multiple noise-corrupted samples of 
the members of a class must be presented to the net during training. Each training class has proven to 
require about three hidden-layer nodes, when a feed-forward neural net is trained. The required number of 
hidden-layer nodes is not affected by a noise source, but enough noise samples are required to cover the 
noise distribution function. Randomly selected noise patterns, equal in number to ten percent of the number of 
inputs, suffice. Hence, the storage requirements for one class in a training set increase in proportion to the 
square of the number of inputs multiplied by the number of members in the class and the number of 
independent noise sources. Both additive and multiplicative noise sources may be important. Large training 
requirements make neural nets impractical for many applications, but nets are feasible where the number of 
classes and the input size can be limited. The tweezers control application, in particular, has some important 
features that can be exploited by the neural-net approach. 
 
 This paper will discuss the feasibility of using neural nets to interpret optical-tweezers scattered-light 
patterns and generate SLM control patterns. The neural nets are intended to perform pattern-to-pattern and 
pattern-to-feature mappings. Ideally, a neural net is to be trained with an experimental training set that 
incorporates noise sources and class characteristics, some possibly unknown to the net designer. An 
experimental test set can be used for calibration of the net, once the net is trained.10 But the feasibility of 
using the neural-net approach must be determined using model generated data. The model does not have to 
be exact, but it must generate data with the same order of complexity as the experimental data. A training set 
can then be assembled according to the rules and references just mentioned. The optical tweezers 
application is very well suited for this approach. SLM control patterns are 
calculated patterns, applied to the SLM through the VGA port of a computer. A 
software package that displays, or calculates and displays, images can be 
used to apply patterns to the SLM.11 The simplest model for tweezers 
applications treats the SLM and microscope-image planes as Fourier 
conjugates. A laser beam is expanded by a telescope, and the expanded beam 
is reflected from the SLM. The reflected beam is multiplied by a phase factor 
generated by the SLM in response to the applied calculated pattern. A 
telescope, microscope-objective combination then scales and Fourier 
transforms the SLM output to create one or more tweezers traps. The SLM 
shown in Fig. 1 has been used for phase modulation in a reflecting mode.  
   
 The process for calculating the Fourier conjugates to assemble the training sets, where one 
conjugate is converted to an arbitrary intensity distribution of tweezers traps, is described very well in a pair of 
references.1,12 The references provide algorithms for transforming optimally the trap intensity profiles into the 
phase factors to be generated by the SLM. The pattern-programmed SLM acts as a phase-only hologram 
called a kinoform.13 The phase distributions are calculated modulo 2π. The SLM, in fact, can transform the 
phase of the laser beam in a range slightly greater than 0 to 2π.2 Figure 2 shows a phase distribution and a 
corresponding array of optical traps. The references1,12 provide examples of trapped particles as well as 
phase modulations for changing the focus and angular momentum of a trap beam.  

Fig. 1. Reflecting SLM with 
480X480 programmable 
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 Fig. 2. Tiled phase distribution and trap array.  Fig. 3. Linear array of trapped micro particles. 
 
 
 The properties of the Discrete Fourier Transform (DFT) implemented by the Fast Fourier Transform 
(FFT) algorithms will be relied upon to generate the training sets. In fact, that model for evaluating the 
performance of the neural nets is really highly simplified. The traps are affected by aberrations. Calculations 
of exact scattering profiles, let alone trap forces and moments, are very complex, particularly for non-spherical 
particles. Currently, the tweezers models are being updated to include exact scattering effects in the presence 
of aberrations.14,15 Phase distributions needed to modify the effects of aberrations, for example, can be added 
to the SLM phase distribution (mod 2π). A neural net can be trained and calibrated, in principle, as a very 
sensitive null detector of the difference between a desired (or postulated) light profile and the measured 
profile.10 This feature applies to patterns buried in noise. The output of this kind of neural net might be used 
separately as part of a feedback control loop to cancel aberrations or other undesired effects. This particular 
property is one of the major motivations for developing neural nets for tweezers control. 
 
 The Fourier transform relationship between the SLM plane and the tweezers focal plane is very useful 
for compressing the number of inputs to the neural network as discussed in the next section. 
 

2. TILING AND SCALING NEURAL-NET INPUTS AND OUTPUTS 
 

 The 480X480 pixel patterns must be compressed to no more than 10,000 (96X96) pixels for neural-
net processing. The neural-net outputs must be increased again to 480X480 pixels, in order to use fully the 
resolution of the SLM.  
 
2.1 Stages of processing 
 Neural-net processing can be accomplished in stages, with separate nets for each stage. The first 
stage requires zoomed-down or de-magnified images. The image is first separated into tiles. The 480X480 
pixel array might be separated into 100 tiles containing 48X48 pixels each. A single neural-net input is drawn 
from each tile. This process can be performed with or without filtering. Without filtering, a single pixel is 
recorded from each tile. Fixed or randomly selected positions can be selected within a tile. Random selection 
of positions has been effective for neural-net processing of speckled fringe patterns. Or the data can be re-
binned by averaging adjacent pixels using a weighting function or filter. The process selected will depend on 
the intent of the experimenters as well as the density and the nature of the sensors. Micro particles, or the 
images of smaller particles, might cover several pixels as is shown for the trapped and free particles in  
Fig. 3.3 The objective of the first stage of processing is to train the net to generate a kinoform to move a 
tweezers beam to a tile containing a sensor or other significant particle. Particle identification is to be 
performed in the presence of noise.  
 
 The 48X48 pixel holograms generated by the neural-network are easily converted to 480X480 
holograms by re-tiling. The kinoform phase pattern in Fig. 2 was actually assembled by re-tiling 48X48 pixel 
patterns. A 48X48 pixel “GRC” was transformed to a 48X48 pixel phase pattern using the procedures from the 
references.1,12 The computed patterns were then tiled to produce the 480X480 pixel results shown in the 
figure. The computed or net-generated DFT is periodic. Hence, the effect of tiling is simply to increase the 
diameter of the ray pencil forming an optical trap and to increase the resolution in the imaging plane. The 



NASA/TM—2004-213201 4

same arguments hold for 96X96 pixel holograms or for 12X12 pixel holograms. The choices lead to smaller or 
larger inter-pixel distances, respectively, in the 480X480 trap array. 
 
 The second and third stages are similar in their neural-net requirements and processing. For the 
second stage, the imaging system zooms in on the tile selected in the first stage. A second neural net is 
trained to generate holograms to fine-position the tweezers beam within the zoomed region. A 12X12 
hologram might be selected during this stage. The hologram is then scaled rather than tiled so that the 
second-stage-hologram control continues to be confined to a 12X12 pixel region. The scaled hologram is 
simply added (mod 2π) to the hologram generated during the first stage. The summed holograms then move 
the tweezers trap to the correct pixel position in the 480X480 array. A complication is that the phase patterns 
are wrapped. This requires that the selected scaling procedure should not increase the number of pixels 
across a discontinuity in the phase map. Doing so does not completely obliterate a trap, but it does reduce the 
laser power directed to the trap. Figure 4 shows a one-dimensional example. In Fig. 4a, there are two one-
pixel trap locations along a 48-pixel axis. A cut through a corresponding hologram is also shown. The 
computed efficiency of the hologram is about 81 percent for light entering the desired traps. Figure 4b shows 
the hologram scaled to 480 pixels and the corresponding traps. The traps appear at the same coordinate 
numbers (as they should for a scaled hologram but not a tiled hologram), and the computed efficiency was 
again about 81 percent.  
 

The third stage uses scaled holograms to modify trap shapes. The total phase variation of a hologram 
might not exceed 2π. The eventual objective is to use the neural net as a sensitive detector of differences in 
the measured scattered light from trapped particles when the trap shape is varied. Various processes, linear, 
non-linear and fluorescent, might be involved in scattering. Neural nets have been trained and calibrated as 
sensitive null detectors of optical pattern changes.10 The nets can be trained to ignore noise effects, and can 
be trained and calibrated with model-generated or experimental data. Hence the nets can be used to compare 
model predictions with measured scattering. A possible application is to train a net to generate holograms to 
compensate for aberrations. The compensating holograms are to be added (mod 2π) to the holograms from 
the first and second stages. 
 

 

 
    (a) 
 
Relative Power  Phase (rad.) 

     
 Pixel Number    Pixel Number 
 
    (b) 
 

   
 
 Fig. 4. (a) Traps and hologram at 48 pixel resolution. Fig. 5. Schematic of feed-forward net. 
 (b)Traps and hologram after scaling to 480 pixels. 
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2.2 Consequence of multi-stage neural-net processing 
 The multi-stage approach allows the net resource requirements to be controlled. This paper 
discusses results for 48X48 pixel-input nets for the first stage and 12X12 pixel-input nets for the second 
stage. The size of the nets for the third stage will depend on the specific models and aberration conditions, 
but are expected to range from 12X12 pixels to 48X48 pixels. The limits of the third stage are demonstrated 
using 48X48 phase patterns as inputs and 196 class indices as outputs. 
 
 All the artificial neural networks used for this work were feed-forward nets with one hidden layer as 
shown schematically in Fig. 5. These nets are trained using versions of the back-propagation algorithm16, and 
are particularly well suited for handling noisy data. The rules for training set and net design have been tested 
extensively for the processing of speckled fringe patterns and appear to apply well to the tweezers 
applications.  
 
 The first application is the handling of first-stage tweezers data, where the tweezers image plane is 
compressed to 48X48 pixels with or without filtering. The objective is to train the net to generate holograms 
which direct the tweezers beam to a tile containing a particle or sensor. Several features of neural net training 
and performance are demonstrated next to achieve this objective. 
 

3. NEURAL-NET REQUIREMENTS FOR FIRST-STAGE PROCESSING 
 

3.1 Coordinates and training records 
 Pixels are to be labeled from the lower left beginning at (0,0) for the 48X48 array. The origin of 
coordinates is chosen near the center at (23, 23) as is common in Fourier optics. Software packages often 
assume an origin at the lower left. This feature is accommodated conveniently for the optics point (i, j) using 
the coordinate transformations: 
 
 Quadrant 1 (71-i, 71-j); Quadrant 2 ( 23-i, 71-j); Quadrant 3 (23-i, 23-j); Quadrant 4 (71-i, 23-j). 
 
The order of inputs is irrelevant to the neural network, as long as it is consistent. Each coordinate represents 
a tile potentially containing a particle. Hence there are 2304 (48x48) locations to be presented to the neural 
network. There may be multiple particles or sensors in the field of view, but the objective is to direct a trap to 
one tile.  
 
 The assumptions for this exercise are that only one particle or sensor appears in the 48X48 pixel 
field, or that only one particle or sensor appears brightly in the 48X48 pixel field, or that the filter (or lack of 
filter) used in zooming down shows only one sensor or particle. If the sensors or particles are too dense, then 
the field needs to be reduced to 24X24 or 12X12 so that only one particle or sensor is in the field. The 
objective is to discover the neural net resources required to generate the SLM patterns to direct traps to the 
tile locations. In this case, the neural net inputs consist of 0’s at all locations except for a 1 at the tile location 
to receive the trap.  
 
 Eventually, noise will be added to the other locations to test noise immunity. The optical power in a 
trap is represented by the square of its magnitude. The performance of a net is evaluated by calculating the 
relative power in the desired trap or traps computed from the net-generated kinoforms. 
 
 The appropriate SLM pattern for a single particle is easy to calculate. The phase distribution for the 
kinoform for tile coordinates (i, j) in the first quadrant is given by 
 

 πππ 2 mod , 23)l-j(
48
2 23)k -i(

48
2  +=Θ . (1) 
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The phase distribution in the third quadrant is given by 
 

 πππ 2 mod l),-j)(47-23(
48
2  k)-i)(4723(

48
2

+−=Θ . (2) 

 
  
Here, k and l are coordinates in the phase plot measured from (0,0). Alternatively, one cycle of a kinoform 
algorithm1,12 can be used to generate the same result. 
 
 Figure 6 shows the phase plot for point (27, 27). The calculated plot is 
somewhat ragged as might be expected for the magnified image of the low 
resolution hologram. The only other requirement is that the phase used as a 
neural-net output be normalized in the range [0.2, 0.8] to accommodate the 
sigmoid transfer function of an output neuron of the feed-forward net. In this range, 
0.2 corresponds to a phase of 0 radians and 0.8 corresponds to a phase of 2π 
radians. The magnitude of the input is already correctly normalized for the feed-
forward net in the range [0,1]. 
 
 There are now 2304 possible training records containing noise-free inputs. 
The requirements and performance of the neural nets are easily evaluated with and 
without noise. 
 
3.2 First-stage net resources and performance 
 The feed-forward neural nets, shown schematically in Fig. 5 with a reduced number of inputs and 
outputs, have 2304 inputs and 2304 outputs for the first stage. Unfortunately, the nets proved to have weak 
generalization or interpolation capability. Consequently, the nets needed to be trained on each tile position. 
Another consequence was that each tile input behaved like a separate class, requiring its own hidden-layer 
nodes. The rule for noisy classes, discussed in the introduction, would have demanded about 6912 hidden-
layer nodes.  
 
 A rational limitation was imposed to reduce the size of the net. The 48X48-size kinoforms were 
required to have about 8 samples for each cycle in the range [0, 2π]. Figure 4 shows the familiar blazed-
grating behavior of the phase patterns. Previous experience with the SLM showed good performance for the 
selection of at least 8 samples per cycle. Only the central 14X14 or 196 tile positions supported this sampling 
requirement. Noisy training inputs then required only about 3X196 = 588 hidden-layer nodes. Diagonally 
opposite corners of this region were bounded by coordinates (17,17) and (30, 30). 
 
 The training performance of a net is usually measured with the root-mean-square training error as 
well as the response of the net to a test set that is distinct from the training set. These measures are not 
applicable here. The training set must contain all the tile positions, so that a distinct test set is not feasible. 
The overall performance is really measured by the ability of the net-generated holograms to generate traps. 
Performance was, therefore, defined as the ratio of the power in the intended trap to the maximum power in 
any extraneous traps generated by the output hologram. The input power ratio is infinite for noise-free inputs, 
but the output holograms for the SLM always deviate slightly from the ideal, and direct some power to other 
locations. 
 
 Figure 7 shows the logarithms of the training power ratios for the noise-free row-17 training records 
(the x coordinates vary from 17 to 30). The net contained 196 hidden-layer nodes. Power ratios varied from 
7274-to-1 at x=28 to 39-to-1 at x=29. There is a correlation between the rms training error and the power ratio 
as shown in Fig. 8. Note that power ratios are calculated by Fourier transforming the net generated 
holograms. 

Fig. 6. Phase plot 
corresponding to point 
(27, 27) in 48X48 array 
with origin at (0, 0). 
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 Log Power Ratio Power Ratio Change in Power Ratio 

    
 Point number in Row 17 RMS Training Error  Point number in Row 17 
  
Fig. 7. Net generated power ratios Fig. 8. Power ratio versus Fig. 9. Power ratio change when 

 for noise-free training records. training error.  noisy inputs pass through 
   noise-free trained net. 
 
 It is a property of feed-forward nets that even deterministically trained nets will have some noise 
immunity. Noise inputs that had maximum powers of about 4 percent of the deterministic input were added to 
the training records. Input power ratios were then about 25 to 1. Figure 9 shows the improvement in the 
power ratios achieved with the net-generated holograms for most of the points (17, 17) through (17, 30), when 
the net was tested with noisy inputs. This improvement can be made consistent for all points when the net is 
trained with noisy inputs. 
 
 The noise performance can be improved greatly by training with noisy inputs. A maximum noise 
power of 49 percent was selected, where the noise inputs were uniformly distributed between 0.0 and 0.7. 
The noise inputs were generated using a double-precision random-number generator. Care must be 
exercised to avoid correlations in this kind of exercise. The standard rules for neural-net processing of noisy 
fringe patterns were used as a guide. The rules are to select uncorrelated noise sample functions equal in 
number to 10 percent of the number of pixels and to use 3 hidden nodes per class. These fringe-pattern-
based rules were not necessarily expected to apply exactly. The useful input information here was contained 
at one location rather than distributed over an entire pattern. In this case, the net required 3 hidden nodes per 
class for 588 hidden layer nodes. Noise was supplied to the full 48X48 pixel input. The NDE rule would 
require 231 noise sample functions per class. A rule based on the number of information containing pixels 
alone would require 20 noise sample functions per class. In fact, 10 sample functions per class were 
adequate. The net learned the 1960 training records with a rms error of 0.0127.  
 
 The second stage requires that a net direct a trap to the correct location within a tile. Multi-pixel 
images of postulated particles were selected to demonstrate the second stage. For the second stage, actual 
particles may be large enough to cover several pixels, or may be viewed out of focus. 
 

4. NEURAL-NET REQUIREMENTS FOR SECOND-STAGE PROCESSING 
 

4.1 Coordinates and training records 
 The training records differed in three ways from the first-stage records. There were 12X12 = 144 
coordinates that addressed actual pixel locations within a tile rather than tiles. The inputs were generated for 
postulated 3X3 = 9 pixel-size particles. Both the particles and the background can be deterministic or noisy. 
There were then 10X10 full-particle locations within the tile. Hence, the first and second stages together 
address 480X480 locations. Figure 10 shows a postulated particle magnitude distribution for a noise-free 
particle. Noise-distorted images were also used for training and testing. The postulated noise fluctuation 
range was ±0.35. Figure 11 shows a noisy particle distribution. The actual particle magnitude distribution 
turns out not to be critical for the second stage. Finally, the background was noisy with noise power as high 
as 20 percent per pixel outside the particle image. The second-stage output consists of the phase distribution 
corresponding to a trap directed to the particle center. The inputs were normalized in the range [0, 1] after the 
noise was added. The training records then have 144 inputs and 144 outputs. The outputs are to be scaled to 
480X480 pixels and added (mod 2π) to the tiled phase distributions of the first stage. 
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 Fig. 10. Postulated scattering magnitude Fig. 11. Sample of noisy scattering magnitude 
 distribution of particle. distribution of particle. 
 
4.2 Second stage net resources and performance 
 The old fringe-pattern-based estimate of required resources is 10 to 15 noise sample functions per 
pixel position and 3X144 = 432 hidden-layer nodes. In fact, a net with 432 hidden-layer nodes, and trained 
with a combination of deterministic particles, 15 external-noise sample functions per particle position and the 
100 possible noise-free training records, did perform best for both noisy and noise-free particles. In effect, the 
footprints of the particles as in Figs. 10 and 11 were more important for net performance than the particles’ 
amplitude distributions. But, a net with only 144 hidden-layer nodes performed almost as well as the net with 
432 nodes.  
 
 The third stage of neural-net processing, discussed next, applies to an already-trapped particle, and 
is intended to detect small variations in light scattering and to provide the control information to make small 
changes in the trap intensity profile. By contrast, the particle intensity profile was not important for the second-
stage processing already discussed in this section. The simplest implementation of the third stage is for the 
net output to consist of a degradable 1-of-N code for N classes. Then an output is to change gradually as the 
input varies from the input of the training class. The approach has been proven for fringe-pattern-based non 
destructive evaluation (NDE) requiring 2 classes and 2 outputs.10 The major challenge is to train the net to 
ignore noise sources and to respond only to small systematic changes. A systematic change is to decrease 
the corresponding class index, so that the net acts like a null detector for changes in the class present. A 
demonstration is discussed next, where the phase patterns from the first phase are used as inputs rather than 
outputs.  
 

 5. DEMONSTRATION OF NEURAL-NET REQUIREMENTS FOR A  
THIRD-STAGE PROCESS 

 
5.1 Coordinates and training records 
 With three exceptions, the training records for this demonstration are simply the inverses of the 
48X48 records used for the first stage. The first exception is that the inputs for training were varied with a 
noise source consisting of random fluctuations in the start phase. Second, the 10-percent rule was applied to 
the central 14X14 pixels of the original input pattern, so that there were 20 phase fluctuations per class rather 
than the 231 fluctuations that would normally be required by a 48X48 pattern. Third, there were 196 output 
nodes corresponding to the 196 classes rather than 48X48 outputs representing all possible tweezers 
positions. These outputs constitute classification indices, and would be expected to change in response to 
distortions, but not noise, in the input patterns.10 Figure 6, repeated with various start phases, would 
constitute examples of input records.  
 
5.2 An example of third-stage net resources and performance 
 Training required about 3 hidden-layer nodes per class or 3X196 = 588 hidden layer nodes as 
expected. Classification outputs were qualitatively correct, and generally 0.6 or higher in the range [0.2, 0.8]. 
But there were outliers. Figure 12 shows the 20 training classification outputs corresponding to point (17,17). 
The correct class was generally selected, but the conjecture is that more noise samples per class are 
required for the net to learn to generate class outputs nearer to the phase-independent training index of 0.8. 
The full 48X48 pattern would have required 231 rather than 20 noise samples, if the fringe-pattern rule were 
imposed. 
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Neural Net Output 
 

 
     Sample Number 

Fig. 12. Point (17, 17) classification outputs of neural net for  
random-phase holograms serving as neural-net inputs. 

 
 
5.3 Discussion of third-stage processing example 
 Most applications are expected to require 2 to 10 classes, rather than the 196 classes used for the 
example. Hence most of the training resources can be devoted to training for noise immunity. The objective is 
to monitor the gradual change in an index as the scattering pattern is altered systematically. One exception 
would be a neural-net pattern-to-pattern sequencer, designed to step a tweezers trap through several profiles. 
Then, both input and output phase patterns might be required. 
 

6. CONCLUDING REMARKS 
 

 The major conclusion is that scaling and tiling indeed allow neural nets to be adapted to controlling 
the full resolution of a 480X480 pixel SLM. The 3 stages of compression are able to limit the number of net 
inputs to less than 10,000 for each processing stage. The net designer can use previously discovered rules to 
estimate initially the required net resources, including the number of hidden-layer nodes and the size of the 
training set. Detailed design of the neural-net image-to-image controller will depend on which of a multitude of 
potential applications is selected. Initially, the objective is to perform simple manipulations of nanotube 
sensors. Stage 2 might be used to generate combined translation and rotation holograms for that application. 
Stage 2 might be subdivided into two stages, one for translation and one for rotation. Kinoforms are added 
(mod 2π) from multiple stages. Stage 3 is perhaps the most interesting stage, because it can be tested with 
scattering patterns generated from exact scattering theory. 
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