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1. Introduction 

The Vanderbilt team performed research towards achieving autonomous robotics assistants, with 
a focus on cognitive applications using Vanderbilt’s ISAC Fawamura 20041 and NASA’s 
Robonaut humanoid robots [Ambrose 20003. Our approach consists of coupling perception-level 
behavior learning with high-level cognitive control and learning. We have achieved the 
following results: 

The Semory Egosphere (SES’ sofiare transferred and integrated on Robonaut 
A proof-ofancept experiment in superpositioning of behaviors learned through 
teleoperation conducted on RO~OMLI~ 
An intelligent health monitoring system developed and tested on Robonaut 
A proof of concept experiment in cognitive control using a working memory and modular 
control developed and tested on ISAC 
SES- and SMC-based mobile robot navigation conducted on Segway. 

These topics are presented in the following sections of this report. 

2. The Sensory Egosphere 

2.1 Background 

Today’s robots can be equipped with a wide and powerfid array of sensing modalities, but their 
cognitive abilities are st i l l  primitive. Coordinating input from the sensors presents significant 
challenges for robot cognition, and can even be confusing to a human supervisor or teleoperator. 
Under the original MARS grant, a mediating interface, called the Sensory EgoSphere (SES), 
that serves to coordinate sensory information for cognitive processing was developed 
[Kawamura 20001 Vambuchen 20041. The SES serves as an attentional, associative, short-term 
memory in the robot’s control system. It operates asynchronously as a high-level agent in a 
parallel, distributed, object-oriented or agent-based, control system that includes independent, 
parallel sensory processing modules. 

For a person interacting with the robot, either through teleoperation or as a supervisor, the SES 
can be visualized as a spherical shell centered on the robot’s base frame. Each point on the shell 
is a locally connected memory unit with an associated activation vector and a temporal decay. 
From an internal, computational point of view, the SES is a graph whose edges form a geodesic 
tessellation of a sphere. Each node of the graph connects to a database in addition to its 
neighbors. An SES manager program interacts with other agents to write and read information to 
the SES. 

The SES useful for people interacting with a robot as it provides an egocentric representation of 
the robot’s knowledge of the current environment. Additionally though, the SES possesses 
features that allow the cognitive mechanisms of a robot to leverage and coordinate sensor data 
easily. 
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2.2 SES Overview 

There are two primary hypotheses behind OUT definition and use of the SES: (1) often, a physical 
event in the environment will stimulate more than one of the robot’s sensors, and (2) changes in 
motion of the robot will precipitate sensor events2 Thus, if two or more of the SPMs detect 
events at nearly the same time, and if directionally sensitive modules report their events as 
having emanated &om similar directions in space, then we presume that the robot has detected a 
real event. Moreover, if a change in motion is accompanied by the registration of events by more 
than one sensor we presume the events may be relevant. By including proprioceptive sensing and 
motor control sequences with the exteroceptive sensory streams that project to it, the SES makes 
spatio-temporal sensory-motor data associations. It does so without having to perform any 
comparative operations on the sensory signals. 

The SES can be defined mathematically as the set of radial distances from a designated point on 
the robot to the first encountered object points in space. That definition is simple but incomplete. 
This purely geometric definition implies that the structure is memory-less, whereas in fact it can 
be used as a memory structure. Much more than the distance to the first object in space is stored 
on the SES. 

In its implementation on a robot, the SES is a database with associated computational routines. It 
is a sparse map of the world that contains pointers to sensory data or descriptors of objects or 
events that have been detected recently by the robot. Given that the sensors on a robot are 
discrete, there is nothing to gain by defining the SES to be a continuous structure. Moreover, the 
computational complexity of using the SES increases with its size which is, in turn, dependent on 
its density (number of points on its surface). The database’s graphic connectivity is isomorphic 
to a regular, triangular tessellation of a sphere centered on the coordinate h e  of the robot. 

2.2. I Geodesic Dome Topology 
We define the topological structure of data connectivity in the SES to be that of a geodesic dome, 
shown in Figure 1, since it is a quasi-uniform triangular tessellation of a sphere into a polyhedron 
[Edmondson 19873 Wmer 19911 [Albus 19911. The triangles connect at vertices forming 12 
pentagons and a variable number of hexagons. The pentagons are evenly distributed so that the 
node at the center of one is connected to the centers of five others by - vertices, where - is called 
the frequency of the dome. 

Two questions naturally arise. First, why not use a l l l y  3-D representation like an occupancy grid. 
Second, why use a fixed tessellation? 

From the robot’s point of view, it is stationary while the world moves. Features of the 
environment are located in various directions, at various depths. Only directional information is 
needed to place features within the robot’s locale. Knowledge of depth is needed only for specific 
interaction with an object. 
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Figure 1. A geodesic dome representation of the SES. 

This representation maintains direction but computes depth as only needed. We believe this 
representation is more efficient than filling an occupancy grid with data whose distance may not 
be needed. The fixed size of the tessellation provides a fixed number of entry points into the 
sensory-motor database. The SES manager maintains a direct mapping between directions with 
respect to the robot and SES nodes. Only that mapping must be updated with motion of the 
robot. The data itself does not require modification until it is accessed, at which time an estimate 
of its current location can be updated. The search for a specific object or sensory feature in the 
worst case requires the traversal of only a fixed number of nodes. 

2.2.2 Data Structure 
The geodesic dome topology of the SES organizes sensory and motor data with respect to a 
locally connected graph of pointers to data structures, indexed by location. Data fiom a 
directional SPM is stored at the node that is closest to the direction from which the stimulus 
arrived. One pointer exists for each vertex on the dome. Each pointer has six or seven links, one 
to each of its five or six nearest neighbors and one to a tagged-format data structure. The latter 
comprises a terminated list of alphanumeric tags each followed by a spatial location, a time 
stamp, an activation level, and another pointer. The fixed size, local connectivity, and directional 
indexing simplifies both the storage of sensory-motor data and ego-centric searches for it (see 
Figure 2). 

Figure 2. Each node points to its neighbors and to a database record that references 
other records of various types. 
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The tags describe the data modality, a description of the data, the data’s full-resolution spatial 
location and the name of the feature or object that the data represents. The spatial location is the 
estimated direction of the data source or object and, if available, the distance to it. A time stamp 
designates when the data was registered onto the SES. The activation indicates the relative 
importance of the specific data. The pointer associated with the tag holds the location of a 
structure that contains (or points to) the sensory data. The number of tags and their types on any 
vertex of the dome are completely variable. A central node, connected to all of the others from 
the center of the sphere, monitors the time sequence of sensory and motor inputs to enable 
temporal association of spatially distributed events or non-directional events. The node also 
contains tags to the data, associated time stamps and activations of non-directional sensory data. 

Sensory processing modules write information to the SES through a software object, the SES 
manager, which in turn interfaces to a standard database such as MySQL narger 19991. The 
manager can also perform a breadth-first search of the SES for the vertices that contain a given 
tag. The sofhare object requesting the search can specify various search parameters such as the 
starting location, number of vertices to retum, search depth, etc. The fixed number of nodes 
keeps the search paths fixed as the amount of data on the sphere increases. 

2.3 Motion Transformations of the SES 

If a robot and its environment are stationary, then the locations of data will not move on the SES. 
If the base frame of the robot remains fixed in space over t h e ,  any articulated motion of the 
robot can be counteracted via its known kinematics (see Figure 3). To correctly register moving 
objects on a stationary SES requires object tracking, and thus prediction and searching. 
Moreover if the base fiame of the robot moves, the locations of data on the SES will also move 
both as hct ions of the heading and velocity of the robot and of the distances of the sensed 
objects fiom the robot. Thus, as the robot moves, the node locations of data on the SES must be 
shified. 

Purely rotational motion of the base frame is easily compensated for by oppositely rotating the 
SES. That aligns the SES with the environment while the robot moves within the SES. 
Translational motion of the base W e  requires that object locations on the SES be shifted as a 
function of their distance from the base fi-ame. Such shifting of the information is prone to error. 
This error is not critical since the estimated SES location of an object serves as the starting point 
for a sensory search of the environment to locate the object more exactly. In this capacity, the 
SES provides reasonable starting locations for searches, reducing the time necessary to track 
multiple objects. 

As a robot moves, objects in its environment shift relatively. Thus, projections of objects move 
on the SES. If the robot’s motion is known, the change in SES projection can be estimated for 
any object a known distance away. If the distance to an object is unknown, motion on the SES 
permits the distance to be estimated. Reciprocally, the concerted motion of a set of objects on the 
SES enable the robot to compute its motion relative to the objects. These estimation procedures 
also can alert the robot to independent motion by an object. 

There are three types of motion transformation typically employed in the SES: pure translation, 
as when a mobile robot is traveling along a straight path; translation coupled with rotation, the 
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most general case of ego-sphere motion; and articulated motion, as when a humanoid robot 
exercises it endeffectors with respect to its base frame. For implementation purposes, the details 
and description of these motions are contained in [peters 20031 [Hambuchen 20041. 

Figure 3. Robonaut, an articulated humanoid, within its SES. 

2.4 Applications and Results 

In this section, we present both quantitative and qualitative results when the SES is used as a 
short-term memory, for spatial localization and navigation, for coincidence detection, and as an 
attentional mechanism. These results were obtained from implementations of the SES on 
Vanderbilt’s humanoid robot, ISAC fKawamura 20001 on NASA’s humanoid robot, Robonaut 
[Ambrose 20003 and on a mobile robot at Vanderbilt [Kawamura 20021. These robots have 
sensory processing and motor control modules that operate in parallel continuously, 
independently, and asynchronously; additionally they communicate through message passing 
[Peters 19993. The SES is most effective when implemented on robotic architectures possessing 
these capabilities. 

2.4. I Short-Term Memory 
As a short-term memory (STM), the SES is useful for maintaining an inventory of objects in the 
robot’s locale for subsequent manipulation or other action. The SES is currently being used in 
that way by ISAC at Vanderbilt, Robonaut at NASA-JSC, and Cog at MIT. When the robot 
recognizes an object, the location of a point of reference on the object (part of the object 
definition) and the object’s pose are stored along with an identifier and time stamp at the closest 
SES node. The identifier is used as a tag by the SES for its search and recall routines. The time 
stamp can be used along with an activation decay constant to compute a probability that the 
object is at the recorded location after time has elapsed. 

As the robot, its environment, or the object moves, its location is updated by the SES so that the 
robot always stores the object’s position relative to the base frame. This position is likely to 
accrue errors if the robot is not actively tracking the object with its sensors. The SES, however, 
provides the starting location for a sensory search if the object is not found by the sensors at the 
recorded location upon later recall. The SES also maintains locations of objects if motion results 
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in the occlusion of one object by another. The spatial layout of the SES keeps track of the spatial 
relationships between objects so that the robot can know “what is where” [Peters 20031. 

Because the SES manager rotates the nodes and shifts the data to compensate for motion of the 
robot’s base frame, data from specific locations in the environment accumulate over time. Object 
recognition agents designed to monitor the SES can periodically analyze the data accumulating 
at a location. If the data is consistent with a known object the agent can tag the location with an 
object label and a codidence level. 

2.4.2. Sensory-Motor Data Association 
If parallel SPMs output to the SES, it can associate sensory and motor data through spatio- 
temporal coincidence detection. Figure 2 shows an example of a node and its immediate 
neighbor nodes. Note: the data structure of the SES used by Cog was developed independently 
and differs from that described here. 

The activation values of the nodes indicate their relative importance at the current time. Each 
node contains a radial basis function (RBF) that spreads activation to its neighbors according to 
equations (2x3) above. If multiple data are registered in the same area at about the same time, 
activation will increase around a central node. For 1-D sensors, registration occurs only at the 
equatorial axis of the SES. Therefore, activation must be spread longitudinally so that events co- 
occurring away from the equatorial axis may overlap with the 1-D sensor events. Upon 
registration of data from a 1-0 sensor, nodes along the longitude closest to the registration angle 
each receive activation as if they were the original node. Figure 4 shows the sensory processing 
overview. 

To perform coincidence detection, the node with the highest activation is selected. All data that 
contributed to the activation of that node is retrieved from the SES. Temporal coincidence can be 
detected using processing latencies of the SPMs, which can be measured experimentally. The 
latencies define a time interval during which all sensory events are considered to be 
simultaneous. 

Figure 4. Sensory processing overview [Peters 20031. 
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Tests of coincidence detection for sensory data association involved recognition of objects that 
were uniform in color, that were movable, and that could make sounds (i.e., an orange rattle, 
and a purple toy that talks). Objects were individually presented to the Vanderbilt humanoid, 
ISAC, producing 32 separate sets of multi-modal events. ISAC’s stereovision head can detect 
the angular position of an object. Sonic localization and IR motion detection are far less 
accurate. Thus, the angular position of an event that produces sound, motion, and imagery may 
be grossly mismeasured by those two sensors. In 12 of the 32 trials, the emor in measurement of 
both sound and IR was not detectable as a coincidence [Hambuchen 20041. 

An experiment comprising 21 trials was performed with two sources presented to the robot in 
succession at multiple locations. Each source generated three separate events (visual, IR, sound). 
In all of the trials, all co-occuning events from one source were selected. The cumulative time 
latency for visual, IR and sound events averaged three seconds while the time range used in 
coincidence detection was four seconds. 

Eleven objects were individually presented to the Vanderbilt humanoid, ISAC. Each object 
produced visual data from color segmentation, motion data from IR motion sensors, and sound 
data from sound localization. The resolution of sensors were vision, IR motion, and sound. The 
neighborhood can be increased or decreased depending on the resolution of the SPMs that send 
data to the SES. 

An experiment comprising 40 trials was performed with multiple sources presented to the robot. 
The source that produced the most data (visual, sound, motion) was always selected. When all 
SPMs reported correctly, all co-occUrring data were always selected. As the object separation 
approached the resolution of the sensors, incorrect results were reported. 

2.4.3 Attention 
The nodal activation vectors of the SES can be used to direct the attention of the modules that 
read data from the SES and, thereby, the attention of the robot. The SES can be biased toward 
the selection of specific data by modulating the strength of activations assigned to SES nodes. 
This bias is useful for directing the robot’s attention during tasks such as picking up tools, or 
during contextual circumstances such as working with people. The attention network balances the 
trade-off between contextually important data and unexpected yet salient data. 

The attention network combines the activation from the nodal RBFs to represent salience data in 
the environment with priority values that represent desired data. The focus of attention (FOA) is 
selected as the node that receives the highest combination of activation from both the RBFs and 
the priority values. This node is then sent through coincidence detection to detennine which data 
originated from the same source. 

Initial experiments have been performed on ISAC to determine at what level priority values shift 
the focus of attention from desired data to salient data. In these trials, the desired task for the 
robot was to grasp a turquoise beanbag. At 15-20 seconds after visual detection of the beanbag, a 
person moved back and forth in another area of the environment while clapping her hands, 
producing both sound and motion data. Priority values were decreased from 5.0 to 0.1. During all 
trials, the beanbag was selected as the focus of attention. Since the vision sensors have a small 
resolution and high reliability, one visual event creates the same amount of activation from the 
RBF as a sound event and a motion event combined. Therefore, trials were repeated to include 
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visual data from the person. Priority values were again decreased fiom 5.0 to 0.1. The beanbag 
was selected as the FOA until the priority value reached 1.0. At this point, the motion, sound, 
and person were selected as the FOA. 

3. Behaviors Learned through Teleoperation 

3.1. Approach 

The approach described here builds on the self-organization of sensory-motor information in 
response to a robot’s actions within a loosely structured environment. In [Pfeifer 19971, Pfeifer 
reported that sensory data and concurrent motor control information recorded as a vector time- 
series formed clusters in a sensory motor state-space. He noted that the state-space locus of a 
cluster conesponded to a class of motor action taken under specific sensory conditions. In effect, 
the clusters described a categorization of the environment with respect to sensory motor 
coordination (SMC). 

An exemplar of an SMC cluster corresponds at once to a basic-behavior (as used by Brooks 
waes  19901 and later defined by Flatarid 19921) and to a competency module in a spreading 
activation network. Thus, if a robot is controlled through an environment to complete a task 
while recording its SMC vector time-series, the result is a state-space trajectory that is smooth 
during the execution of a behavior but that exhibits a comer or a jump during a change in 
behavior (an SMC event). From this, a DEDS description of the task can be formed as a 
sequence of basic behaviors and the transitions between them. The task is learned in terms of the 
robot’s own sensors, actuators, and morphology. 

This section reports the results of learning to reach toward and grasp a vertically oriented object 
at an arbitrary location within the robot’s workspace by superpositioning a set of SMC state space 
trajectories that were learned through teleoperation. The ideas behind the procedure are based on a 
number of assumptions: 

1. When a teleoperator performs a task it is herhis SMC that is controlling the robot. So 
controlled, the robot’s sensors detect its own internal states and those of the environment 
as it moves within it. Thus the robot can make its own associations between coincident 
motor actions and sensory features, as it is teleoperated. 

2. In repeating a task several times, a teleoperator will perform similar sequences of motor 
actions whose dynamics will depend on hidher perception of similar sensory events that 
occur in similar sequence. As a result, the robot will detect a similar set of SMC events 
during each trial. Therefore each trial can be partitioned into SMC episodes, demarcated 
by the common SMC events. 

3. Sensory events that are salient to the task will occur in every trial; sensory signals that differ 
across trials are not significant for the task and can be ignored. By averaging the time- 
series for each episode point-wise over the trials, a canonical representation of the motor 
control sequence can be constructed. As a result of the averaging, true events in the 
sensory signals will be enhanced and those that are random will be suppressed. 
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This approach does not form an approximation of the inverse kinematics of the manipulator. 
Rather, it learns 6-axis spatial end-effector trajectories that are sent as position commands to the 
robot, which computes its own inverse kinematics. This somewhat higher level approach extracts 
Cartesian motion and pose trajectories, finger position trajectories, and sensory state information 
to create a sensory-motor (or, perhaps more accurately, a sensory-motion) description of the task. 

3.2 Behavior Superposition 

3.2.1 Datu Collection 
There were four phases in the data gathering and analysis for this learning task (Figure 5): 
1. 

2. 

3. 

4. 

A teleoperator controlled the robot through the tasks that would serve as examples. Five 
trials at each of nine locations were performed of a reach and grasp of a vertically oriented 
object (a wrench). As the teleoperator pedoxmed these example motions, Robonaut’s sensory 
data and motor command streams were sampled and recorded as a vector time-series or 
signal. 
The SMC events common to all trials were found and used to partition the signal into 
episodes. The episodes were time-warped so that thejth episode in the kth trial had the same 
duration (and number of samples) as thejth episode in every other trial. 
The signals were averaged over all five trials at each location to produce a canonical, 
sensory-motor data, vector time-series for each location. This approach is similar both to 
that of Jenkins and Matarid [Jenkins 20021 and to those analyzed by Cohen [Cohen 20011. 
These generalized motions were combined using the process described by Rose et al. mose 
19983 d e d  Verbs and Adverbs. 

Figure 5.  Plot of the 9 exemplar object locations from the robot’s viewpoint. The contour is the 
end-effector trajectory from one trial of the experiment where the object was at the ninth 
position, in the center of the box. The inset shows the grasp, hold, and release episodes in 
greater detail. They are: (a) reach, (b) grasp, (c) hold, (d) release, (e) withdraw. 
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3.2.2. Segmentation 
The time-series data fiom the experiment was manually segmented into 45 trials according to 
markers embedded in the voice channel of the robot’s data stream. Then each trial was 
partitioned into five SMC episodes3 (reach, grasp, hold, release, withdraw) demarcated by 
SMC events that were found through an analysis of the mean-squared velocity (MSV) of 
the joint angles. The factor of 15 was used for the upper threshold because it yielded the 
number of episodes that were expected (Figure 6) .  

0.4 - 
lkr 

nn 

Figure 6. Plot of an instantaneous mean-squared joint velocities, z, for one t e l m w  trial at one 
object location. The lower and upper thresholds, c and 15c, are indicated by horizontal lines. Episode 
boundaries @re-motion, reach, grasp, hold, release, withdraw) are demarcated by vertical lines. 

The MSV was found to be an excellent indicator of the grasp, hold, and release events if the 
hand joint velocities were included in it. It was not reliable in detecting those events if only 
the arm joint velocities were included. The vector time series between two SMC events were 
taken as SMC episodes that corresponded to distinct behaviors. 

3.2.3. Time Warping: Normalization and Averaging 
Once the segmentation of the data was complete, the SMC episodes that comprise the task 
were time-warped through resampling to have a duration equal to the average duration of the 
45 trial episodes. Then for each of the 9 locations the average vector time-series was 
computed from the five corresponding trials. For example, the reach behavior averaged 150 
time steps across the 45 trials. Each of the time-series that comprised the reach episodes was 
time-warped and resampled to have length 150. The five reach episodes from the five trials at 
each location were averaged to create nine exemplar reach episodes each with 150 samples in 
duration. Fig. 5 shows the trajectories from the five trials at one location and the average of 
the five. 

In these experiments we used a point-wise linear averaging of the time-normalized sensory- 
motor episodes to produce an exemplar for the task. The effect of averaging the five trials at 
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each location was to enhance those characteristics of the sensory and motor signals that were 
similar in the five and to diminish those that were not. One could use the median value at 
each point, if a minority of the exemplars showed deviations due to noise or other 
mismeasurement. Moreover, signals that exhibit nonlinear behavior with respect to time (e.g. 
a binary or ordoff signal) would require a median or other order-statistic filter to preserve the 
signal characteristics. Certainly, averaging would produce a skewed result if one of the 
exemplar episodes were significantly different from the others to be combined with it. 
However, it was a premise of this work that such episodes would not differ significantly from 
each other in their salient features. If that premise were incorrect, the characterization of a 
behavior through the type of analysis described here would be of dubious value. But, the 
premise was found to hold throughout these particular experiments. 

Through the four-step procedure nine sensory-motor state-space trajectories were created. 
These were taken to be the exemplars of the clusters formed by the five trials of the reach- 
and-grasp task at each of the nine locations. More specifically, in our teleoperational 
experiment, we completed the following steps: 

1. Teleoperate Robot through manipulation task 
2. Extract canonical SMC or control policy description of task as a distributed action- 

3. Represent in terms of behaviors implemented as control policies 
4. Sequence within action-map 
5.  Perform autonomously 
6.  Behaviors can be superpositioned 
7. Behaviors can be composited. 

Figure 7 illustrates the teleoperational procedure we used in our research experiments. 

-. _- 

Figure 7. Teleoperational procedure using NASA-JSC’s Robonaut. 
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Given the dynamics of Robonaut under teleoperation - its maximum velocity is limited - the 
durations of the episodes are relatively long and the sampling rate well exceeds the Nyquist 
limit. Thus the salient sensory-motor characteristics are well represented in all the trials at 
each of the locations and time warping for episode normalization preserves those 
characteristics. This would not necessarily be the case if the sampling rate were near the 
Nyquist limit and some of the episodes were of short duration. 

3.2.4. Superposition using Verbs and Adverbs 
After the resampling and averaging of the sensory-motor data from the example tasks, the 
data were analyzed to characterize the motions that would enable Robonaut to reach toward and 
then grasp a vertically oriented wrench anywhere within its workspace. This was done with an 
interpolation method called Verbs and Adverbs, (VaV) developed in the computer graphics 
community by Fose  19981. The following description is an adaptation for robotics of the 
algorithm fiom that paper. Table I1 lists symbols used in the description. A verb in this 
implementation of the algorithm is the motion component of a task exemplar, its motion 
trajectory in the sensory-motor state-space. The adverb is a specific parameterization of the 
motion trajectory. 

In pose  19981, several example motions were created for articulated characters. The mapping of 
these motions into a multidimensional adverb space defined extremal points along axes of the 
space. A particular adverb extremum characterized the appearance of the associated motion. To 
create motions that exhibited combinations of the characteristics, a location in the adverb space 
was selected and mapped back into the motion space. In the work described here, the adverbs are 
the 3D Cartesian world coordinates of the object to be grasped (the wrench). Exemplar reach- 
and-grasps were acquired near workspace extrema for the robot’s right ann. To perfom the 
operation at other locations in the workspace, the VaV algorithm was used to interpolate the 
exemplar motions. This approach permits a limited extrapolation of the data since the subspace 
projection can construct new trajectories that extend parametrically beyond the exemplars. 
Detailed mathematical description can be found in a non-published paper 
[http://www.vuse.vanderbilt.eduriap2/papers/ in Nov. 20001. 

3 3  Experimental Methods and Procedures 

The VaV procedure was tested in simulation and on Robonaut. Simulation tests were run on a 
randomized list of 269 reachable targets in a 3D grid that covered the entire workspace and 
extended somewhat beyond the edges defined by the original box. The test on Robonaut was 
performed by affixing a wrench to a jig, and placing it arbitrarily at reachable points in the 
workspace. Some attempt was made to cover the entire workspace, but since the goal was to 
prove that Robonaut could reach randomly generated targets, a systematic selection was not used. 
Robonaut’s vision system was employed to locate the wrench in the workspace. 

The major difficulty encountered in performing these experiments was Robonaut’s eye-hand 
coordination. The actual location of the hand can vary as the encoders that measure the joint 
angles are turned on and off. At the time of the tests the solution to the problem was a manual 
calibration with three steps. First, the arm was reset (by eye) to its zero position and the encoders 
were reset so that they would report zero at that location. Second, the reported point-of-reference 
(POR) on Robonaut’s hand was changed fiom the standard location for teleoperation, which is 
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on the back the hand. That location on the robot corresponds to the location of the position sensor 
on the teleoperator’s data glove. The POR was changed to the standard location for autonomous 
operation, which is in the middle of the palm. Third, a wrench was placed in the workspace and 
was reached for manually by moving the individual joints to the correct location, then the 
reference location for the hand was changed again by a few centimeters. This was made as a final 
adjustment between the location reported by vision and that reported by the arm kinematics. 
After this adjustment, when the hand was grasping the wrench, the location of the hand as 
reported by Robonaut matched the location of the wrench as reported by the vision system. 

&- 

Figure 8. Plot of the 23 test locations. A wrench was placed at each of the locations marked 
with a disk. Projections onto each coordinate plane of the locations of the wrench during the 
teleoperated trials are indicated by x and - marks. 
During the experiment, the wrench was put in 23 different locations (Figure 8). The only input 
that the program had was the results of the off-line analysis and the location of the wrench 
reported by the visual system, which was updated in real time. 

3.4 Results 
The simulator was of limited value in testing the procedure since it had no direct method for 
judging the outcome of a grasp attempt. Nevertheless, the simulator was used since it enabled a 
more complete analysis of the workspace than with R o ~ ~ M u ~ ,  due to time-sharing constraints. 
To ameliorate the deficiencies of simulation, numeric criteria were created fkom the trials run 
physically on R o b o ~ u t  (both the on@ teleoperator examples and the experimental results). 
The trials were sorted based on physical evidence of a good or bad grasp, and then analyzed 
within the two categories. 
Three criteria for a good grasp in the simulated data were created. The first criterion was the 
most obvious. If the grasp occurred too far away fiom the wrench to have enveloped it, the grasp 
could not have been successful. Any grasp that was more than 2.6 cm fiom the wrench location 
was labeled as bad. The second and third criteria concern the approach angles. If the arm motion 
caused the hand to approach the wrench at the wrong angle, the hand could not grasp it because 
the fmgers, or even the hand itself, would have had to physically pass through the wrench. To 
judge approach angles, a vector was created by finding the direction of motion produced in the 
final stages of the Reach behavior. 
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Finally, some of the physical grasps that were incorrect were not the fault of the superposition 
method but of the calibration of the vision system (which was beyond the authors’ control). Also, 
occasional inaccuracies in depth perception within various regions of the workspace resulted in 
errors in reported wrench location. When that happened, the hand grasped in fiont of, or behind 
the wrench. Nevertheless it did grasp at the location indicated. Since these errors were not in the 
superposition method itself, the corresponding grasps were defined as “marginal” and were 
classified as good grasps for the purpose of creating the simulator criteria and calculating results. 
In particular, it should be straightforward for the robot to learn that is has been unsuccessful so 
that it can retry the task. Although the joint trajectories are similar in both cases, there is a clearly 
discernable difference in the force signatures. If such a difference is consistent (we found it to be 
so in the 20 successful and three unsuccessful experiments) it can be detected and so used. 

The Verbs and Adverbs method clearly outperformed the other two programs. It had better than 
99% accuracy in the simulator trials, which were designed to cover the entire workspace. While 
not performing perfectly in the physical trials, it outperformed other methods used for the task. 

4. Roboaaut Fault Diagnostic Work 

Like most humanoid robots, Robonaut is a complex electromechanical system comprised of 
many sensors and actuators. Overall task performance of such a system depends greatly on the 
proper functioning of its components. Despite the best design and maintenance practices, it is 
unlikely that such a complex system will be immune to random system faults. Any fault that may 
occur in the system may adversely affect the humanoid. Therefore it is necessary to detect, 
isolate, and ifpossible accommodate these faults as soon as they arise. 

In order to perform the above-mentioned task, we plan to design an automated monitoring 
system for Robonaut that is expected to provide a real-time status of each sensor and actuator, 
and to analyze of the possible task failures given a knowledge base of system faults. 

We have developed an intelligent system health monitoring technique based on a nonlinear 
model-based observer and a fuzzy logic framework to detect faults and identify the fault source 
in the robot. This framework was then developed into a hierarchical system health monitoring 
(SHM) technique for Robonaut where Robonaut’s lower level controller publishes sensor 
information through NDDS, network middieware, and Self Agent analyzes the data to monitor 
the status of the robot. In what follows, we present a description of SHM work. 

4.1 System Health Monitoring 

The Robonaut control system design philosophy is inspired by the human brain anatomy. The 
human brain embeds some functions, such as gaits, reactive reflexes and sensing, at a very low 
level, in the spinal cord or nerves [Ambrose 20041. Higher brain functions, such as cognition 
and planning take place in other parts of the brain, including the cerebral cortex and cerebellum. 
Within the Robonaut control system, the very low-level functions are referred to as the 
brainstem. The brainstem contains the motion controllers for the 49 DOFs, sensing, and low- 
level sequences. The lowest-level System Health Monitoring (SHM) is designed to handle any 
abnormality in this level. The brainstem approach permits higher-level cognitive functions to 
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operate independently of the low-level functions. This allows the Robonaut system to implement 
a variety of control methods ranging fiom teleoperation to full autonomy with the brainstem 
unaware of which higher-level control system is being used. In the human brain, this is called 
cognitive control [Miller 20031. 

4. I .  I 
The hdamental component on which the S H M  relies is its ability to monitor signals to detect 
faults. There are several possible component faults that can occur within Robonaut which are 
summarized as follows: 

Low level sensor monitoring 

0 Power Epower supply; failure; lost connection] 
0 Actuator [transmission failure; encoder fault; camera fault] 
0 Sensor lproximity sensor fault] 

Figure 9 illustrates a system block diagram and typical plots of sensor signal and residual using a 
nonlinear model based error residual generator. The SHM concept with a modification is being 
applied to the Robonaut at NASA-JSC. 
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Figure 9. System block diagram and plots of sensor signals 

4.2 Robonaut Fault Detection Work 

4.2. I Model for the right arm of Robonaut 
The right arm of Robonaut consists of seven joints as shown in Figure 10. 
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Figure 10. Joints in Robonaut's right arm. 

Each joint has a servo control loop that is implemented on the real-time OS, VxWorks. In order 
to derive the transfer function between the motor command and the joint velocity, we made the 
following assumptions based on observations and heuristic knowledge: 

0 Transfer function between the motor command and the joint velocity is assumed to have 
a constant gain. 

0 Gravity and Coulomb friction are the dominant external forces. 
0 Stick-slip friction force is considered. 
0 Gravity is regarded as a constant because the range of joint motion was relatively small, 

though it is a fimction of joint position. 
0 Assume no external control forces. 

Based on the above assumptions, the following structure of the model was chosen: 

o = K(u - F, - F,sign(w) - F, (0)) , (1) 

where o,u,F, and F, are joint velocity, motor command, gravity and Coulomb fiiction 
respectively. F, (0) is the stick-slip friction. 

Using the experimental data, we estimated the parameters of the model given by Equation (1) 
using a least square error method. Figure 6 shows the block diagram of the whole control system 
with the estimated parameters. As shown in the figure, the controller consists of an outer 
position control loop with a position gain kp and an inner velocity control loop with a velocity 
gain k, , a feed-forward gain kF and a gravity compensation term F'--. The motor command, 
u, is expressed in the following form. 

Note that equation (2) has the same form as a PD controller except the addition of the feed- 
forward and gravity compensation terms. 
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The developed model was used to find a position error residual. To emulate encoder fault in 
experiments, the encoder value was set to a constant value on the control level in Robonaut’s 
real-time control architecture. When the encoder value was set constant, the motor command 
increased due to the control action in Equation. (2) causing the error residual to increase and 
hence we had to quickly stop Robonaut. O n e  advantage to our fault detection system is that the 
stopping action would be automated as well as respond faster than a human who was observing 
and anticipating the fault, much less a human who was not paying close attention to the 
humanoid. 

Conhllcr +- I , Motor& &VU 
I 

i 
I 

Figure 1 1. Block diagram for controller and motor in the Elbow Pitch joint. 

4.3 Fuzzy Logic for Fault Identification 

We examined the possible sources for faults and decided to begin our focus on the following: 

Sensorfailure 

o There are many kinds of sensors including encoders in joints, forcekorque sensors in 
wrist and shoulder, touch sensors in hands, and cameras. As a basic step, we 
concentrated on detection of encoder fault because of its importance. 

o In simulation, the motor current should increase and the error residual should 
increase. 

o The derivative of the sensor output should be zero. 

Actuatorfailure 

o This OCCLKS when the actuator breaks and the joint goes limp. Because the motor 
driver supports motor health monitoring signal for malfunction of the motor, we can 
use this signal for fault isolation. 

o In simulation, the motor current should be near zero (implies low torque.) 
o The derivative of the sensor output should be non-zero. 
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We observed the experimental data to build a fuzzy logic analyzer for fault identification. 
Triangular membership €unctions were defined for all inputs to the fuzzy logic rules: 

b 

The Error Residual 
Positive (LP), Positive (P), Near zero (P), Negative (N), or Large Negative (LN) 

The Encoder Value could be Positive (P), Negative (N) or Near Zero (NZ). 

The Estimated Model Value could be Positive (P), Negative (N), or Near Zero (NZ). 

The Motor Current could be Positive (P), Negative (N), or Near Zero (NZ). 

The Derivative of the Encoder Value could be Positive (P), Negative (N) or Near Zero 

The Derivative of the Estimated Model Value could be Positive (P), Negative (N) or 
Near Zero (NZ). 

The Fuzzy Logic Output Membership functions are 
Healthy Output (0) 
Sensor Failure (2) 
Actuator Failure (4) 

(Encoder Reading -Estimated Model Value) could be Large 

(NZ). 

Esitm ate dVa i ue 

Figure 12 illustrates a sample simulation screenshot for one joint. 
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Figure 12. Sample simulation screenshot for one joint. 

Estimate dD erivatiue 

To identify a difference between an actuator fault and a sensor fault, the most important factors 
are if the residual is either no longer zero (either LP, LN, P or N), if the Motor Current acts 
almost normal or if it decreases dramatically (as one may expect if the actuator breaks and the 
motor spins), and also if the velocity of the sensor output immediately goes to zero, or if there is 
some oscillation. 

+ 
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Here are a few sample rules: 
0 

0 

0 

If Residual is NZ, AND Desired Velocity is N, AND Actual Velocity is N, THEN output is 
Healthy Signal (0) 
If Residual is LP, AND Desired Velocity is N, AND Actual Velocity is NZ, AND Motor 
Current is P, THEN output is Sensor Failure (2) 
If Residual is LN, AND Desired Velocity is P, AND Actual Velocity is NZ, AND Motor 
Current is NZ, THEN output is Actuator failure (4) 

4.4. Simulation and Experiment 

Using data gathered fiom the Robonaut API, we calculated the desired encoder value using 
the derived dynamic model. Figure 13 shows at 6.5 seconds, the encoder signal was kept at a 
constant value of -9o', which emulates an encoder fault. 

I I I 1 I 
2 4 6 I 10 12 14 16 18 20 

Figure 13. Encoder fault detection: (a) Actual and estimated encoder value; 
(b) Difference between actual and estimated encoder value; 
(c) Output from fuzzy logic based fault identification block. 

Figure 13 also shows that the error between the estimated value and the real encoder value 
increased after the occurrence of the encoder fault. Therefore, we could easily detect the encoder 
failure by observing the residual. The third diagram shows the output of the f i zzy  logic rules. 
While the encoder reading matches well with the model based estimator, the output of the Fuzzy 
Logic is 0 (for a healthy signal). Once the fault is introduced, the Fuzzy Logic outputs a value of 
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2, which corresponds to an Encoder Fault. At 8 seconds, the emergency stop button was pressed 
causing many sensor values to stop. As shown in the error residual plot, when everything is 
functioning correctly, the residual is not exactly zero. However, using Fuzzy Logic to set 
tolerances and to examine other important information, we can know that everything is 
functioning properly. 

5. IMA, Behavior Generation, and Learning 

5.1 Intelligent Machine Architecture 

A humanoid robot is an example of a machine that requires intelligent behavior to act with 
generality in its environment. Especially in interactions with humans, the robot must be able to 
adapt its behaviors to accomplish goals safely. As grows the complexity of interaction, so grows 
the complexity of the software necessary to process sensory information and to control action 
purposefully. The development and maintenance of complex or large-scale software systems can 
benefit from domain-specific guidelines that promote code reuse and integration. The Intelligent 
Machine Architecture (MA) was designed to provide such guidelines in the domain of robot 
control [Kawamura 19861 pack 19981. It is currently used to control ISAC and a set of mobile 
robot [Koku 20031 mwamura 20021. 

IMA consists of a set of design criteria and software tools for Windows NT/2000 that supports 
the development of software objects that we call “agents”. An agent is designed to encapsulate 
all aspects of a single element (logical or physical) of a robot control system. A single hardware 
component, computational task, or data set is represented by an agent if that resource is to be 
shared or if access to the resource requires arbitration. Agents communicate through message 
passing using DCOM, the Distributed Component Object Model service of Windows NT/2000. 
IMA facilitates coarse-grained parallel processing because of the loose coupling afforded by 
message passing and because DCOM allows software objects on separate computers to be 
treated as if they were local to each other. Each agent acts locally based on its internal state and 
provides a set of services to other agents through various relationships. The resulting 
asynchronous, parallel operation of decision-making agents simplifies the system model at a high 
level. IMA has sufficient generality to permit the simultaneous deployment of multiple control 
architectures. A behavior can be designed using any control strategy that most simplifies its 
implementation. For example, a simple pick and place operation may be most easily 
implemented using a standard Sense-Plan-Act approach, whereas visual saccade is more suited 
to subsumption, and object avoidance to motion schema 

There is a two-level hierarchy of IMA agents comprising atomic agents and compound agents. 
A compound agent contains or depends on other agents for its primary function. An atomic 
agent encapsulates a single resource; it neither subsumes nor references any other agent. (The 
term “atomic” is used in the sense of the Greek word atomos, literally “indivisible”.) Each 
controllable hardware device or common data resource on the robot has an associated 
hardware/resource atomic agent. A dataset or computational procedure associated with a 
specific object in the robot’s external environment has an associated emironment atomic agent. 
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Within IMA, any existing agent can be accessed by any other agent. Their connectivity, as 
defined by message passing, is flat -- without hierarchy. However, a virtual or logical hierarchy 
is implied by the structure of a compound agent. Various levels of abstraction form within the 
control system as needed but are not fixed. 

IMA works very well to promote software reuse and dynamic reconfiguration. However, the 
large systems built with it have experienced scalability problems on two fronts. First, as the 
system exceeds a certain level of complexity it is difficult for any programmer to predict the 
interactions that could occur between agents during actual operation. This level seems to be 
higher than for a direct, sequential program. But that level has been reached in the development 
of ]SAC. The other scalability problem may or may not be a problem with IMA itself but may 
be an inevitable consequence of increasing complexity in a system based on message passing. 
The asynchronous nature of message passing over communications channels with finite 
bandwidth leads to system “lock-ups”. These occur with a frequency that apparently depends on 
the number of agents in the system. It may be possible to minimize this problem through the use 
of system-self monitoring or through a process of automatic macro formation. For ehnple, the 
system could, through a statistical analysis, recognize the logical hierarchies of agents that form 
repeatedly within certain tasks or under certain environmental conditions. A structure so 
discerned could be used to “spin off’ copies of the participating agents. These could be 
encapsulated into a macro, a compound agent that optimizes the execution and inter-process 
communications of the agents involved. For such an approach to be most useful, it should be 
automatic and subject to modification over time fiames that encompass several executions of a 
macro. 

5.2 ISAC Memory Structure 
Within IMA, the robot itself is abstracted as a seyagent (SA). The self agent uses a memory 
database structure, consisting of short-term and long-term structures, to determine the 
appropriate situational control commands for the robot. The short-term memory (STM) uses the 
Sensory EgoSphere (SES) to represent short-term external events in the environment The SES 
is a data structure that provides a short-term-memory to store events, such as the state of external 
human agents. Long-term memory (LTM) contains information about procedures considered 
intrinsic to the robot. The self-agent uses both the short and long term memory structures to 
provide control. The STM is used by the self agent to provide an estimate of the current external 
state for determining appropriate task-level intentions for the robot. Based on these intentions, 
the self agent uses procedures in the LTM to provide control commands to accomplish the 
robot’s intentions. In this paper, we propose a self-agent that uses derived behaviors as 
procedures to produce motion control for achieving robot objectives. Within the self-agent, a 
central executive controller (CEC) uses the derived behaviors in the LTM. 

A more recent addition to the cognitive architecture is that of a Working Memory System 
(WMS). This system will link the memory structures with the Central Executive Controller 
(CEC), selecting only those structures appropriate for the task. Currently we have integrated the 
WMS with the derived behaviors in the LTM to produce movements for ISAC. In the future, we 
will integrate the system fully with the STM as well as the more executive functions of the CEC. 
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Figure 14. Component view of the IMA multi-agent-based system. 

5.2. I Automated behavior derivation 
To utilize behavior-based control properly, a substrate of behaviors is needed that can express 
the desired range of the robot's capabilities. In deriving such skill capabilities for a robot, we 
assume that captured human motion is structured by underlying behaviors and that the performed 
activities are representative of the robot's desired capabilities. We M e r  assume that each 
underlying behavior produces motion with a common spatial signature and is typically 
performed in sequence with common preceding and subsequent behaviors. Given these 
assumptions, we can automatically derive a behavior vocabulary using a spatio-temporal 
extension of Isomap. Such derived behavior vocabularies are structurally similar to Verbs and 
Adverbs vocabularies discussed previously (Section 3) in that each behavior is defmed by a set 
of exemplar motions that are generalized through interpolation. 

The behavior derivation method consists of four main components. The derivation system takes 
as input a single continuous kinematic motion as a time-series of joint angle values. This motion 
is segmented into intervals based on some heuristic defining separating events, with each 
segment assumed to be an atomic motion. Several methods exist for segmenting time-series 
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data. We use Kinematic Centroid Segmentation which treats each limb as a pendulum and 
greedily seeks “swing” boundaries. Segmentation with time normalization produces an ordered 
set of data points in a DIN dimensional space, where D is the number of DOFs and N is the 
number of frames in each motion segment. Spatio-temporal Isomap works by finding common 
temporaZ neighbors (CTN), pairs of points with small spatial distances whose sequential 
neighbors also have small spatial distances. Through transitivity, CTNs for CTN connected 
components that result in easily distinguishable clusters in the produced embedding. 
Furthermore, the number of clusters is found automatically using no a priori cardinality estimate. 
Each cluster, called a primitive feature group, is a set of exemplars with a common spatio- 
temporal theme that is indicative of some underlying behavior. Interpolation is used within a 
cluster’s set of exemplars to sample new motions from the underlying primitive behavior. By 
densely sampling cluster exemplars, each primitive behavior is uncovered as a set of motion 
trajectories that form a low-dimensional flow field manifold in joint angle space. Additionally, 
further embedding/clustering iterations can be applied to successive embeddings for clustering 
higher-level meta-level behaviors as sequential transition models of primitive behaviors. 
Derivation process results are a behavior vocabulary consisting of primitive behaviors that 
represent a family of kinematic motion across a span of variations, and meta-level behaviors, 
which represent sequential combinations of the primitives and index into them to produce motion 
[MatariC 19923. 

5.2.2 Role of behaviors in Procedural Memory 

In our approach, the derived vocabulary is assumed to be an intrinsic substrate of basic robot 
skills. Consequently, this vocabulary is stored as long-term memory, more specifically as 
Procedural Memory (PM) (Figure 15). Generally, PM is a memory unit for storing a skill and 
procedure and is involved in tasks such as remembering how to reach to a point [Carter 20003. 

Each behavior in the vocabulary is stored as a PM unit. Each primitive behavior is stored as a set 
of trajectories in joint angle space with an indexing structure stored as a PM unit. This indexing 
structure stores the initial and final Cartesian coordinates for all arm trajectories in a primitive 
behavior. 

The Central Executive Controller (CEC) uses the PM index to search the desired initial and final 
position of motion. It uses the PM units to translate robot goals into control commands for 
accomplishing the goal by searching for PM units suitable for accomplishing goals and then uses 
the indexing structure of the PM units to produce the desired motion. 

For example, if the robot has the goal of “reach-to XYZ”, the CEC can determine that PM 
“reach” at coordinates “.XU” will accomplish this goal. In a sense, the goal “reach-to Xn” 
spawns the intention to “reach, XYZ”, and this intention directly specifies which action to take. 
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Figure 15. Structure of the LTM database 

5.2.3 
ISAC can react to the environmental changes autonomously by generating desired motions fiom 
the stored behaviors. The behaviors stored in the PM are managed by a central planner, which 
performs searching across behaviors and within each behavior. Generating new motions fiom the 
generic behaviors involves a planning algorithm and an interpolation method. 

Generating Motion porn Stored Behaviors 

The search mechanism in the CEC receives an estimate of the current external state of the 
environment fiom the Sensory EgoSphere (SES) to determine appropriate task-level intentions 
for the robot. Based on these, CEC uses two-step tasks to search the LTM to provide control 
commands to accomplish the robot's intentions (Figure 16). As mentioned above, PM units store 
primitive behavior motion data as a dense sampling of motion trajectories representing the span 
of variations of a behavior. In the case of a match, the motion trajectory is sent to the CEC. If 
there is no match, a new motion is interpolated using the local neighbor motions fiom the 
primitive behavior database. Shepard's interpolation [Shepard 19681 is used. The generated 
motion data are sent back to the planner. The actions are then sequenced and sent to the hardware 
controller(s) to accomplish the robot's intentions. 
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Figure 16. Structure of the search mechanism for generating new motions from stored behaviors. 

53 Experimental Results 
ISAC was driven by a human operator to reach to 5 random points (A, B, C, D, E) on a table, a 
limited working space, as shown in Figure 17. 

Figure 17. ISAC is taught to reach 5 points on a table. 

The motion data stream consisted of 1241 frames, which contained only one reaching behavior. 
The stream was segmented using the Kinematic Centroid Method resulting in 10 segments. Each 
segment was normalized to 100 h e s .  The parameters for the K-nearest neighborhood, 
common-temporal (c,) and adjacent temporal neighborhood (c*) constants for spatio-temporal 
Isomap were selected (*). The structure was embedded to 3 dimensions. The segments that were 
similar came closer after applying spatio-temporal Isomap (Figure 17). Each segment in the 
embedding is numbered). The primitive feature groups were produced through clustering. The 
closer segments were clustered in the embedded space within 0.1 of the diagonal of the 
embedding bounding box to derive the primitive behaviors. The clustering resulted in two 
derived primitive behaviors: reaching and returning to home positions. 
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Figure 18. Embedding and clustering of fnst motion stream using spatio-temporal Isomap. Lines 
show temporally adjacent segments. 

100 random coordinates with the bounding box method were interpolated to obtain new joint 
space trajectories for each primitive behavior [Shepard 19681. The reaching behavior and return 
to home behavior are interpolated (Figure 19). 

Figure 19. Results fiom interpolating selected action units. Each plot shows trajectories in 
Cartesian coordinates. (Left) reaching, (Right) returning to home. 

Spatio-temporal Isomap was applied a second time. Sweep-and-prune clustering was then used 
in the embedded space with a 0.1 threshold value to derive the meta-level behaviors (Figure 2 1). 
The segments from the same primitive feature groups became proximal after the first application 
of Spatio-temporal Isomap. After the second application of spatio-temporal, the primitives 
typically performed in sequence were collapsed (Figure 22). Thus segments were collapsed from 
the corresponding primitive feature groups in the sequence into the higher-level behaviors. The 
meta-level embedding resulted in the same number of clusters as in the primitive embedding. 
This convergence of the embeddings indicates there is no higher-level structure in the motion 
greater than the primitive level. Thus, we consider the vocabulary has one meta-level behavior 
that encompasses the two primitive behaviors. 
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Figure 20. Embedding and clustering of second application of Spatio-temporal Isomap. 
Proximat motion segments are grouped to form behaviors. 

Figure 2 1. The transitions between the segments that derive meta-level behavior for each 
reaching motion. Lines indicate transitions between actions. 

6. Cognitive Control and the Central Executive Agent 

6.1 Cognitive Control in Hummi and Robot 

Cognitive control in human is the ability to consciously manipulate thoughts and behaviors using 
attention to deal with conflicting goals and demands (Botvinick, et al, MacLeod and Sheehan). 
As levels of human behavioral processes range fiom reactive to full deliberation, cognitive 
control must be able to switch between these levels to cope with the demand of task and 
performance, particularly in novel situations. Cognitive robots like Robonaut and ISAC, thus, 
should have cognitive control ability to handle unexpected situations during routine operations. 
Toward this goal, we are implementing an adaptive control process called modular control for 
ISAC. The process makes use of a working memory system to allow ISAC to reason about task 
context in the error driven manner during its arm manipulation. 
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6.2 ISAC Control Architecture 

A humanoid robot like ISAC is an example of a machine that requires intelligent behavior to act 
with generality in its environment. Especially in cooperation with humans, the robot must be able 
to adapt its behaviors to accomplish tasks under conflicting demands. At Vanderbilt, we adopted 
a design strategy which allows us to control ISAC’s behavior robustly similar to human’s 
cognitive control function. We hypothesize that by using modular control and a working memory 
system, ISAC will efficiently maintain its attention and task-related information chunks to adjust 
its actions accordingly. 

During the original MARS grant, Intelligent Machine Architecture (IMA) was designed to 
control ISAC behavior and communicate with humans (Kawamura). Since then, various new 
IMA agents and memories have been added such as the Central Executive Agent (CEA) and the 
Working Memory System (WMS). Figure 21 depicts the current IMA-based ISAC control 
architecture and the memory structure. 

Figure 22. Key IMA agents and the memory structure. 

6 3  ISAC Memory Structure 

Sensory processing agents write data to the Sensory Egosphere (SES) which acts as a short-term 
memory (STM). The STM thus maintains a short-term spatio-temporal relations of various 
objects in the environment. Long-term memory (LTM) stores motor skills and semantic 
knowledge. Motor skills are represented as primitive motions (PMs) which are chained together 
to generate behaviors. Semantic knowledge is stored in another part of LTM called declarative 
memory @M). We are now adding a third memory structure called the working memory system 
( W S )  to facilitate behavior learning and task execution. 
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The WMS is expected to interface closely with the Self Agent, the STM and the LTM to achieve 
the following goals: 

1. Selection of task-relevant primitive motions 
2. Generation and execution of behaviors 
3. Task execution and learning. 

Activated elements of STM and LTM are shown as STM-WM and LTM-WM Franklin 20031. 
In addition to the WMS, we are developing a Central Executive Agent (CEA) to handle the 
behavior generation and execution aspect of cognitive control. The agent is a part of the Self 
Agent and interfaces directly With the WMS. 

Research this year focused on accomplishing the second goal: the generation and execution of 
behaviors. This has been accomplished through the use of TD-Learning. Simple efforts have also 
been made towards the first and third goals. The next section describes the details. 

6.4 Central Executive Agent 

One of the most important agents in the ISAC architecture is a cognitive agent called the Self 
Agent (SA). Being developed to represents the robot’s “self,” the SA currently maintains 
information about the robot’s internal state and the progress of task execution. The internal 
representation of the robot’s self -model is expected to be continuously updated. Human 
cognitive abilities such as past experience and emotion will be adapted to be a part of the SA in 
the fixture. 

Recent cognitive psychology research supports the idea that working memory plays a very 
important role in human cognitive control. Cognitive control in ISAC is partially inspired by a 
working memory model in which the control of executive processes is done by a component 
called the Central Executive. In that model, the Central Executive controls two working memory 
systems, namely the phonological loop and the visuo-spatial sketch pad. These two systems are 
responsible for both the storage and processing of linguistic and visio-spatial information, 
respectively. Cognitive control in ISAC is enabled by a component with a similar function 
called the Central Executive Agent (CEA) that interfaces with a working memory system 
(WMS) that allows task related information to be actively maintained and analyzed in order to 
successfully select and execute an action for an assigned task. 

Primitive motions previously taught or learned are stored in the LTM m o l  20031. When a new 
command or goal is given, the CEA selects a small number of behaviors that are believed to be 
the best for the current task, and loads them into the WMS based on past experience as measured 
within a Reinforcement Learning (RL) module. Within the WMS, the state estimator and 
behavior controller are assigned to each behavior. At current time t ,  the CEA takes the estimated 
state of the robot xf  and goal state x* to determine the amount each selected behavior will 
contribute to a particular action based on its relevancy to the task context. The computation of 
task relevancy is based on the original concept of modular controllers and their responsibilities 
[ Wolpert 1 9981. 
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a 

For each behavior i, its task relevancy is computed by 

Where, ec, ( t )  = x, -2; is d e  current state error and eg, ( t )  = x * -ii is d e  goal state error. The 
values of a are varying based on the type of task and values of D are adjusted based on the type 
of the actuator. From A,, the CEA produces appropriate weights for the behaviors within the 
WMS to combine control signals fiom behavior controllers before the result is then sent to the 
robot for action execution. Figure 22 shows the interaction of components in ISAC’s cognitive 
robot architecture with relation to modular control. 

Con - 

I 

I 

lodular Control 

Current State 
I 
I -  

l l  - / 

Action 

Legend 
PM=procedural Memory 
DM=Dedarative Menriry 
SESSensory Ego-Sphere 
AN=Attenbon Netwwk 
T D = T e m p a r a l - m  
W M S W b n g  Memory System 
LTM=Long-Term Menmy 
STM=Short-Tenn Memry 

Figure 22. Modular control in cognitive robot architecture and related components. 

Finally, the role of the reinforcement learning system is to learn to select appropriate behaviors 
for a given task. Learning is done at the end of a task execution. A new reward is calculated for 
each set of behaviors after attempting the task. The reward is equal to the average relevancies of 
behaviors within the set over the time it took to complete the task, discounted by the task 
completion time. Thus, the set of behaviors that complete the task most quickly with the most 
precision will be rewarded and are likely to be selected in the future. ISAC learns which set of 
behaviors to select for each task. New, similar tasks can be built on the learned values. 
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6.5 Experiment 

To prove the concept of this modular control system, we have created an experiment in which 
ISAC is asked to perform apoinfing task. In this task, multiple PMs must be combined in order 
for the robot to reach a point that is not accessible by the execution of any single PM. Over a 
small number of trials, the CEA learned to select appropriate PM units, loaded into the WMS, 
combined the PM units to produce the desired movement as shown in Figure 23. The 
combination of control signal represented by weights of a successll trial is shown in Figure 24. 
The system was successful in this simple task, and will be expanded in the future to handle a 
larger PM size as well as to execute more complex movements. 

In this case, a small number of PM units were used for the task, minimizing the initial period in 
which the system randomly selects PM units before finding a set that returns a reward. In the 
future, we expect to include more information within the PM units to assist the TD-Learning unit 
in selecting the units. This will prevent the need to have large amounts of settling time for the 
system to learn a task. 

Figure 24. 

Figure 23. Cumulative successN trials. 

Weight distribution among behavior motion during a successN trial. 
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7. Segway RNP Research 

7.1 SES-based Segway Navigation 

The CIS was given a Segway RMP to work on during the time of this grant, with the intention of 
developing innovative application soha re .  Our Segway RMP is shown in Figure 25. Hardware 
added were SICK LMS200 Laser sensor placed on top of an independent rotating platform, and a 
panoramic m y  of six cameras. The rotating platform consist of a stepper motor, controlled via a 
computer's parallel port, and a table to set various sensors on. The panoramic camera array 
consist of six cameras connected to a multiplexer which consecutively captures one image at a 
time fiom the environment and feeds that image to the computer via a standard USB port. 

Figure 25. Conducting Segway exercises outside with Pioneer AT-2. 

Software installed includes NDDS, a communications tool used to share all information traveling 
to and fi-om the robot with any process or computer that requires it (with help fi-om Bill 
Bluethmann and Ken Adler fiom NASA JSC) and Player, a robot server used primarily to act as 
the driver connecting the robot and sensors to the computer. We decided to extend our 2-D 
Egocentric navigation algorithm developed under the original DARPA grant [Kawmura 20021. 
We decided to extend to 3-D SES-based navigation. Figure 26 illustrates the concept. 

Figure 26.3-D venon of SES with Segway. 
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To construct the SES for Segway navigation, we focused on utilizing camera vision and a laser 
scanner as separate entities, each working to identify objects of interest in the immediate 
environment. 

Using such contrasting sensors allows us to extract a wide range of information fiom the 
environment. The work with the camera as been to obtain 360 degree images by arranging seven 
separate cameras in an outward circle, take a snapshot with each camera, and combine it with the 
other snapshots to obtain a complete panoramic view. 

Using this sensor with the unique dynamics of the Segway robot has both benefits and problems. 
One of the main benefits is that we can extract images from the environment at near human eye- 
level, allowing us to draw relationships fiom the environment similar to those that a human 
would draw (it is important to note that most environments that the robot will travel in have been 
designed for humans seeing at human eye-level). 

One of the main problems with using this system on the Segway is that while traveling, the 
Segway tends to sway back and forth, an effect that is only amplified the higher up one travels 
on the robot. Due to this, the robot must stop in order to collect an image scan. Currently, the 
work on this system has been to take image scans, process them to identify specific landmarks, 
and localize the position of the landmark relative to the image. This work will facilitate the 
construction of a SES on the Segway similar to that already in use on other robots in OUT lab. 

71.1 Laser scanners and a spatial map of the environment 
The work regarding the laser scanner has taken a similar approach in many aspects. In the past, 
laser scanners have been used to detect walls, openings (such as doorways, etc.), and obstacles in 
the environment. 

For this project, the laser is rotated perpendicular to the axis it scans about so that it can collect 
3-dimensional views of the environment. From this scan, objects of interest are found, pathways 
that the robot can use are calculated, and obstacles (to a degree) can be avoided. The work done 
thus far has been that once an obstacle has been detected, to calculate its position relative to the 
robot and to all of the other objects detected in the environment. By doing this allows the robot 
to create a spatial map of the environment based on the objects that it has seen, without prior 
knowledge of the identity of the objects it is looking at. 

A sample laser scan, with different colors to assigned to different objects of interest, along with 
the corresponding spatial maps is shown in Figure 27. 
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Figure 27. Sample laser scan and spatial map. 

The future work for these systems is to combine the information collected from each separate 
system into an overall view of the environment, a SES for a mobile robot. We hypothesize that 
having such a SES will allow the robot to navigate environments similarly to the way humans 
navigate, as well as to obtain usem navigation information about new environments, which can 
then be shared with a human user or other robots in need of that information. 

7. I. 2 SEWision-based Segwrry navigation 
We have been working on the original vision-based landmark recognition system called the 
Egocentric Navigation (ENav) algorithm (Kawamura et al. 2002) under the original M A R S  
program. Our 
current work improved on the original 2-D ENav, making it more robust, and additionally, 
porting it to run under Linux. Separately, we have been working on a more sophisticated vision 
system that we believe has the potential to learn to recognke natural landmarks. 

This system was designed to identify brightly colored artificial landmarks. 

An interactive approach to gather, analyze, and present processed visual information to the user 
was tried. Such an interaction enables the user to identify which landmarks the robot can 
reliably recognize in the environment, and then automatically design and implement detectors 
for these objects. The user and the robot working together will explore the visual features that 
provide the best performance in object recognition. 

Because the features have semantic meaning, both the user and the robot have the same s h e d  
semantic context, and as a result, the user has an understanding of how the robot is identifying 
the objects. This knowledge can be used to refine the recognition methods, or may lead the user 
to decide that the current feature set is inadequate and more features must be added to the 
system. Such a system has significant advantages during the development process as well as 
supporting the training of the robot in the field as conditions change, which, in a real situation, 
is inevitable. 
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A conceptualization of the system is given as follows. First, the user teaches the robot about 
objects the user wants the robot to recognize, by showing the robot the various objects in a 
variety of images collected by the robot. Next, the robot examines these objects, computes 
visual features from them, and searches for discriminating features for identifying the objects. 
At present the search methods involve two approaches. The first is based on Maximum A 
Posteriori ( M A P )  estimation while the second approach adapts a machine learning approach 
(i.e., decision trees) to the automatic learning of fuzzy membership functions for the object 
classes. 

It is important that the chosen features used by the system be such that they have a semantic 
meaning that can be expressed in human language. Choosing features in this fashion provides a 
shared semantic context for subsequent dialog between the human and the robot. Initially, we 
used a generic set of features that can be described as 250 different colors, two texture measures 
(roughness), one symmetry measure, and the presence of straight lines at 180 different angles. 
This yields 433 different visual features, eaeh describable in clear language terms. This set of 
features was observed to work relatively well in outdoor environments, but it’s color perception 
was too coarse for the more subtle color patterns of indoor environments. For increased color 
sensitivity we have now increased the number of color features to 10,000, and the observed 
results are significantly better for our indoor environment experiments. 

The MAP approach mentioned above is a well known method, however, the fuzzy set approach 
deserves some extra comments. The training set is examined using decision trees, e.g., the C4.5 
algorithm. The result is a tree structure with the branches of the tree being created by different 
values of the features. Since the features have semantic meaning, traversing the tree produces a 
description of the features important for identifying different objects. We have formulated these 
descriptions in the form of fuzzy IF-THEN rules. 

Initial experiments on natural objects such as trees have also been very encouraging. Detectors 
for finding trees were automatically designed by the system and tested on images containing 
trees. The results are shown in Figure 28. 

Figure 28. Results from automatically designed detectors for trees. 
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7.2 Reinforcement Learning Techniques for Segway 

This research focused on machine learning, specifically testing reinforcement learning 
techniques on real-world robots. Reinforcement learning is a promising algorithm that has been 
tested in many simulated environments but on a limited basis in real-world scenarios. This 
research measures how well reinforcement-learning techniques perform when applied to real- 
world tasks, managed as a discrete-event dynamic system. This work will test reward 
anticipation models and reinforcement methods on a robot to determine if it can learn through 
reinforcement to complete a novel task. 

The focus is on a specific navigation task using our Segway RMP. Reward signals will be used 
as reinforcement during the trials. In order to create a robot that can learn to associate reward as 
a consequence of its behavior the robot must be able to explore its environment and exploit its 
existing knowledge. These two objectives of exploration and exploitation are key factors in 
reinforcement learning [Sutton 19981. Reinforcement learning (RL) methods including temporal 
difference learning will be used in the construction of the robot’s learning algorithms 
[Rosenstein 20033. 

The premise of the Segway RL experiment is to have the Segway learn how to travel from an 
initial position on the third floor of Featheringill Hall on the campus of Vanderbilt University to 
the third floor elevators, take an elevator to the ground floor, and travel fiom the ground floor 
through a set of doors to an outside patio. Tests can also be run to challenge the architecture’s 
ability to re-plan when a path is completely blocked, such as when doors block off a portion of a 
hallway. RL methods take advantage of exploring the environment while choosing the actions 
predicted as most rewarding. Therefore, a robot using RL can learn the optimal path to a goal 
but also retains the means to explore different solutions. In reinforcement learning experiments 
the stares are mapped to actions that connect between the next states that define a p o k y  for the 
robot to use for a given task. In this experiment, states must be defined at positions along the 
task that break up the journey into segments connected by simple actions (Le. basic behaviors). 
The possible variables of raw data that can be used to define the states include: distance readings 
from Segway’s wheel odometers, distance readings from a SICK LMS laser rangefinder, and the 
angle of a particular distance reading fiom the laser scans. Preliminary data files have been 
recorded using the real Segway robot in a red-world environment that will be the basis for 
defining the states of the environment for the reinforcement learning trials on the Segway. 
Gazebo and PlayerIStage software are also used as simulation tools to test experiments before 
running trials with the Segway in the red world. Stage has been used as an environment for 
other RL experiments with a simulated Segway RMP provost 20041, which encouraged the 
desire to go a step further in this experiment and use RL in the real world to test how well the 
theory holds in a real environment compared to a simulated one. 

The framework of the experiment is made of the states, actions, rewards, and environment. In 
this experiment the states are defmed both by odometry measurements and laser scans. The 
actions available to the Segway RMP at any given state are to move forward, backward, turn left, 
or turn right. The reward is based on the state and the time elapsed from the beginning of the 
trial. The states are derived from the environment; which includes the third floor of Featheringill 
Hall, a set of elevators on the third floor, the ground floor of the same building, and an outdoor 
patio next to the building. A large, positive reward (400) is sent if the state is a goal state. A 
significant, negative reward (-50) is sent if the state ends the experiment prematurely, without the 



goal being met. A small, negative reward is given for all other states based on the time that has 
elapsed in order to encourage learning a path that minimizes the time taken to reach the goal. 

8. Summary 

Our research achievements under the DARPA grant contributed significantly in the following 
areas: 

Basic Research 

0 Multi-agent based robot control architecture called the Intelligent Machine Architecture 
(IW) - The Vanderbilt team received a Space Act Award for this research from NASA 

JSC in October 2004. 

0 Cognitive Control and the Self Agent 
- Cognitive control in human is the ability to consciously manipulate thoughts and 

behaviors using attention to deal with conflicting goals and demands. We have 
been updating the IMA Self Agent towards this goal. If opportunity arises, we 
would like to work with NASA to empower Robonaut to do cognitive control. 

Applications 

SES for Robonaut 
Dr. Peters spent last two summers at JSC transferring our SES software to 
Robonaut. 

- 

RobonaUt Fault Diagnostic System - The Vanderbilt team in conjunction with Bill Bluethman and Ken Adler at JSC 
successfully developed a fault diagnostic system for Robonaut and tested on site. 

ISAC Behavior Generation and Learning 
- With an assistance from Drs. Matarit and Jenkins (see the USC report), the 

Vanderbilt team successfully implemented behavior generation and learning 
algorithm and tested on ISAC. 

Segway Research 

- We installed NDDS on the Segway and tested SES-based Segway navigation. The 
work is still in early development stage. 
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