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Abst rac t .  The problem of maintaining a desired number of mobile 
agents on a network is not trivial, especially if we want a completely 
decentralized solution. Decentralized control makes a system more r e  
bust and less susceptible to  partial failures. The problem is exacerbated 
on wireless ad hoc networks where host mobility can result in significant 
changes in the network size and topology. In this paper we propose an 
ecology-inspired approach to  the management of the number of agents. 
The approach associates agents with living organisms and tasks with 
food. Agents procreate or die based on the abundance of uncompleted 
tasks (food). We performed a series of experiments investigating p rop  
erties of such systems and analyzed their stability under various condi- 
tions. We concluded that the ecology based metaphor can be successfully 
applied to the management of agent populations on wireless ad hoc net- 
works. 

1 Introduction 

In a typical agent based system, a number of mobile agents cooperate to achieve 
a desired goal. The efficiency of the agent system in reaching the goal, and the 
completeness of the result depends on the number of agents in the system. Too 
few agents will not achieve the full potential of parallelism and will lead to 
decreased system efficiency. Too many agents can overburden the system with 
unnecessary overhead, and may also result in significant delays. The task of 
finding the optimal number of agents required to achieve the desired effect is 
difficult and problem-specific. In this paper, we propose an ecosystem-inspired 
approach to this problem. Similar to a real ecosystem, our solution exhibits 
properties of emergent stability, decentralized control, and resilience to possible 
disturbances. In our work, we propose to solve the technical problem of agent 
management using an ecological metaphor. 

In Section 2 we describe the current state of research in the fields of sim- 
ulated ecosystems and multi-agent control and stability. Section 3 introduces 
the problem of managing the number of agents populating a physical network 
and also explains a proposed solution. Lastly, Section 4 demonstrates the initial 
experimental results and conclusions. 



2 Related Work 

2.1 Simulated Ecology 

The majority of ecologyinspired systems are used to answer some question about 
real world ecosystems and its properties. For example, the RAM system has been 
used to study mosquito control [23]. There are two major approaches to simu- 
lating an ecosystem [SI. One is a speciebased view of the system, where large 
classes of individuals interact in the simulation (Le., modeling the dynamics of 
interaction of species rather than the interaction of individuals). Evolutionary 
game theory (e.g., [l] [18] [17]) and dynamical systems (e.g., [9] [l5] [14]) are two 
approaches that often take the speciebased view. The second approach is to 
simulate individuals and their interactions, a bottom up approach to construc- 
tion of the ecological simulator. 

We are most interested in individual-based simulations, since they are 
usually built with software agents. An example of an individual-based ap- 
proach to ecosystems is a simulated habitat populated with synthetic organ- 
isms (agents) [19]. Often such systems are used to study the evolution (and 
cc-evolution) of different species and testing their interactions and emergent be- 
havior. Genetic Algorithms [SI and Genetic Programming [lo] engines can be 
used in conjunction with synthetic ecosystems to allow species to evolve over 
time. Some of the most well known examples of synthetic ecosystems of this 
type are Evolve 1, 2 and 3 [4] [5] [all, ”Artorg world” [3] and LAGER [19]. 

With this approach, global trends in the behavior of the system may emerge 
as a result of the low-level interactions of individual agents. The emergent behav- 
ior observed in an ecosystem may not be obvious given the individual behaviors 
of agents. 

2.2 Agent System Stability 

Service replication An increasing number of researchers are investigating the 
problems of reliability, robustness, and stability of multi-agent systems (MAS). 
Most approaches toward improving system robustness revolve around the repli- 
cation of agents and/or services on the MAS network. This direction has been 
taken by [7], 1121, [16] and several others. Existing approaches focus on the 
methodology of agent/senrice replication. 

Probabilistic models Another approach is the application of probabilistic 
models to the prediction of agent system stability and robustness. This research 
assumes some uncertainty in agent behavior or the agent’s environment, and pro- 
poses mechanisms for estimating, evaluating and hopefully improving stability of 
zgect system Cbe of the fird rwenrrhem to anal-me probabilistic survivability 
in an MAS is Kraus in [ll]- In that paper Kraus proposed a probabilistic model 
of MAS survivability based on two assumptions: (1) global state of the network 
is known at all times; and (2) the probabilities of host or connection failure are 
known. An alternative approach was proposed in [20,2], where agents reason 
about the state of the network and security (insecurity) of their actions. 



3 Problem Formulation 

3.1 Motivation 

In a typical dynamic ad hoc network there is limited, variable bandwidth between 
hosts, and the memory and CPU on each host is constrained. Given this dynamic 
and resource constrained environment, it is impractical to prescribe any pre- 
computed solution. 

The solution we propose for such networks is to create a system that can 
control the number of agents dynamically, adapting to the ever-changing envi- 
ronment. In order to work in the context of an agent based system, a control 
system should be distributed and decentralized. By distributed, we mean that the 
system should be able to use the underlying network to parallelize problem solv- 
ing on multiple hosts. By decentralized, we mean that the system should avoid 
reliance on a single node, and should allow each agent to act independently. 
The emergent behavior resulting from the individual localized control decisions 
ideally will yield an optimal, or near-optimal, solution at the global level. 

3.2 Approach 

Large ecosystems usually have several attractive qualities (such as dynamic de- 
centralized control, self regulation, no single point of failure, robustness, and 
stability) that we require for our system. We propose a solution to the prob- 
lem of determining the number of agents appropriate for a task at hand that is 
inspired by large ecosystems: 

1. Each task in our system is associated with food. 
2. Agents which successfully complete a task collect the associated food points. 
3. Agents consume food points over time to sustain their existence. 
4. Agents that exhaust their supply of food die. 
5 .  An abundance of food can cause a new agent to spawn. 

By this analogy, tasks can be thought of as plant life growing at some rate. 
Agents are associated with herbivore animals that perform tasks, therefore eating 
all the food provided by successfully completing a task. Upon completion of a 
task, an agent is forced to migrate to look for more food (tasks to complete). 
As time passes, agents consume food according to a predefined consumption 
function, analogous to a metabolic rate of an animal. Agents unable to find 
enough food (tasks) to sustain their existence over time will exhaust their food 
resources and will be terminated. Large amounts of food collected by a single 
agent or accumulated in a single location can force a new agent to spawn at 
this location. Agents procreate by division similar to a cell mitosis. However, 
this approach makes it impossible for the system to recover from a state with 
no agents. Therefore, we also allow tasks the ability to spawn a servicing agent 
whenever a certain threshold of accumulated food supply is reached. This control 
metaphor allows the system to dynamically adjust to the environment, while 
avoiding centralized control. 
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3.3 Formal Model 

The set H denotes the set of producers h where h E H ,  with the production rate 
d&ed by a function F h  (t) for each individual producer h. The set A defines the 
set of consumers a (a E A), and each consumer has a predeked consumption 
function f a ( t ) .  The dynamic system of H producers and A consumers is consid- 
ered to be in an equilibrium state over some period of time from tl to t 2 ,  if and 
only if the amount of food produced during that period of time is equal to the 
amount of food consumed during that same period of time. This relationship 
can be expressed as: 

Fh(t)  d t  = It2 fa( t )  dt 
hEH a E A  *l 

At the simplest level, these principles can be modeled by a dynamic system of 
homogeneous producers and homogeneous consumers with constant production 
and consumption rates, c and d respectively. The equations below define the 
equilibrium state for this simple example: 

IHI x c x ( t z  - ti) = IAl x d x ( t z  - t i )  
C 

14 = PI, 
This is essentially a speciesbased analysis of our individual-based ecological 
control system. 

4 Experimental Results 

4.1 System Setup 

In order to  confirm our conclusions we implemented a series of experiments 
using a discrete event simulation. The control flow of an ecology based agent 
is shown in Figure l(a). According to this control flow diagram, an agent first 
decreases it’s internal food bank by f a ( t )  for each second that elapsed since the 
last decrement. Then, the agent completes the task and collects all food points 
zss~\datPCJ ari_th that task. Based on its current food rsouTcces, the agent may 
decide to die or to reproduce. Lastly, the agent migrates to another random host 
looking for food. We experimented with different ways for an agent to decide 
when to  reproduce. We chose a fuzzy threshold method. Given the threshold 
value T ,  the probability of an agent reproducing is 0 if the amount of food is 
less then T - i. The probability of an agent reproducing is 1 if the food ievel 
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Fig. 1. Agents life cycle (a) and probability of reproduction based on the food level 
0)). 

exceeds r + a. And the probability of reproducing grows linearly between these 
two points. A plot of the probability of reproducing is shown in Figure l(b). The 
threshold needs to be fuzzy to avoid undesirable oscillations in the system. 

If a small number of agents is desired on the network, it is possible for the 
system to go into an extinction mode - state with no agents on the network. In 
order to recover from this situation, we enable hosts to spawn new agents. The 
same fuzzy threshold rules apply to hosts as to agents. All of the experiments 
were performed on the completely connected network of statically placed hosts. 
All hosts grow food at the rate 1 unit per iteration. All experiments start with 
a single agent with initial food bank of 500 units. The reproduction threshold 
r was set to 800 resulting in 800 f 400 range for hosts and agents. Additional 
experiments were performed using the real agent system EMAA [13] over a wired 
local area network. 

4.2 System Behavior Over Time 

In this section, we investigate the changes in the number of agents over time. 
The consumption rate is set to 5 food units per iteration for all agents. Each 
experiment consists of 15 trials. A single trial consists of initializing the system 
and running it for 90,000 iterations. The number of agents is recorded every 10 
iterations. Data is averaged across all trials to obtain the plots. 
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Fig.  2. System behavior over time. 
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Fig. 3. Distribution of the number of agents for the network sizes of 8 (a), 15 (b), 23 
(c)  and 35 (d) hosts. 

Constant Number of Hosts. Experiments were repeated for graphs of 35,23, 
15 and 8 hosts on the Figure 2 (top to bottom). Horizontal bold lines represent 
the targeted number of agents 7.0, 4.6, 3.0 and 1.6 respectively and the actual 
number of agents on the system is plotted by the thinner lines. I t  is easy to see 
that in all of the experiments, the actual number of agents oscillates close to the 
target value, however oscillations are somewhat higher for the network of 8 hosts. 
Figure 3 demonstrates the actual distribution of the numbem of agents during the 
experiments for 8 (a), 15 (b), 23 (c) and 35 (d) hosts with a normal distribution 
curve fitted to the data. Distribution is close to normal for all experiments but 
the one with 8 hosts. Such system behavior can be explained by the fact that the 
system with the small number of agents is prone to extinction of the population. 
Whenever the system recovers, it usually overshoots the targeted number of 
agents and osclllates €or a whiie. These osciiiations are repeated every time the 
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Fig. 4. System behavior over time (a) and Standard deviation (b) 

system goes into extinction mode. More detailed analysis of this phenomenon is 
given in Section 4.3. 

Changing Number of Hosts. During this test we observed the system’s abil; 
ity to react to rapid unplanned changes in the number of hosts. Experiment was 
setup identically to the one described in Section 4.2 except that the number of 
hosts was changed every 30,000 iterations without reinitializing the system. The 
number of hosts was changed from 23 to 15 to 8 and back to 35 hosts. We feel 
that such drastic changes in the number of hosts approximate the process of 
islanding and merging in wireless mobile networks of lightweight devices carried 
on foot by police or military units. Whenever the hosts were shut down all of the 
agents on these hosts and agents traveling to these hosts were also shut down. 
Whenever brought back on line, hosts initiaIly had no food or agents on them. 
That type of change introduces a high level of disturbance into the system. The 
number of agents over time is plotted in Figure 4(a). The bold red line repre- 
sents the target number of agents at any given moment. The black thinner line 
shows the actual number of agents. One can see that the actual number of agents 
follows closely the target number in all segments of the plot except for the one 
that corresponds to 8 hosts. 

The standard deviation of the number of agents is plotted in Figure 4(b). 
Standard deviation peaks when we change the number of hosts on the network 
due to the highly disruptive nature for the agent community of shutting down 
(or starting up) several hosts. Also standard deviation is higher at the segment 
corresponding to 8 hosts. We believe that such high standard deviation is caused 
by temporary extinction of agents and the oscillations that occur during recovery 
from it. 

4.3 Dependency Between t h e  Number of Agents and t h e  Number  
of Hosts 

In this Section, a single trial consisted of 100,000 iterations of the simulator. 
The number of agents is recorded every iteration and averaged across the trial 



Fig. 5. Dependency between number of agents and number of hosts (a), between num- 
ber of hosts and standard deviation (b), number of agents and standard deviation 
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to obtain a singie data point. l t i a l s  were repeated for networks of sizes 3 to 35 
hosts (odd numbers of hosts only). Experiments are plotted in Figure 5(a) with 
consumption rates set to be 3 times, 5 times and 7 times the production rate from 
top to bottom. Although all 3 graphs appear to be linear, they are composed 
of 16 independently obtained data points. The experiment confirms that the 
system does what it is designed to do, namely maintain the given average ratio 
of hosts to agents, despite dynamic changes in the number of hosts. Figures 5(b) 
and 5(c) show the standard deviation of the number of agents in terms of the 
number of hosts and the number of agents respectively for all 3 experiments. 
Styles and colors of the plots correspond to the ones in figure 5(a). Although 
each is unique, the overall shape of the plots is similar. After the initial hump 
associated with the extinction mode and recovery horn it, the plots level off in 
the area of 3 - 4 agents and then increase slightly. The linear increase can be 
explained by the linear increase in the number of agents. The only disturbance 
to that scheme is the point with target d u e  of exactly 1 agent. For such systems 
it is possible to sustain a single agent for the duration of the whole experiment 
without ever going into the extinction mode resulting in no variance in the data. 

4.4 Dependency Between the Number of Agents and the Link 
Quality 

This set of experiments was set up exactly as the one described in Section 4.3 
except that the changing parameter was link quality. A link of 100% quality 

eration. Link of 0% quality means that maximum possible delay is introduced 
and migration takes 16 iterations (in simulator time). Figure 6(a) shows the 
target number of agents, actual number of agents and standard deviation of the 
mmber ~f zgents changing based on the link quality. Although the actual num- 
ber of agents slightly increases with decrease in link quality, it remains within 

&pi;- ihai ui, &iScid &&y is &.trc&c& md z i g z t t i n ~  nnly takes one it- 
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Fig. 6. Dependency between number of agents and standard deviation from liq speed 
(a), and distributions for 10% (b) and 90 % (c) link speed. 

10% of the target value. Standard deviation however increases significantly as 
the speed,of communication decreases. Some improvement of standard deviation 
at extremely low speeds can be explained by consistently poor performance of 
the system. Figure 6 (b) and (c) show the actual distribution of the number of 
agents for 10% and 90% respectively. The distribution for the higher link speeds 
is more compact and closer to normal. Such behavior of the system can be ex- 
plained by the fact that at the lower values, agents cannot move from one host 
to another fast enough to collect enough food to sustain their existence. This 
causes extinction of agents and forces the system to re-stabilize after it recovers 
from the state with no agents. 

5 Future Work and Conclusions 

5.1 Future Work 

In the future we are planning several extensions to this work. 

1. We are planning more extensive set of live experiments utilizing the Secure 
Wireless Agent Testbed (SWAT) [22]. 

2. We would also like to create a more detailed mathematical model of such 
systems to be able to predict and control the emergent behavior of an agent 
system. This model should be used for parameter fine tuning, something that 
was done manually during current experiments. 

3. We are also planning to introduce an on-line system for tuning such param- 
eters as consumption and production rates, thresholds and fuzzy intervals, 
etc. Some of the techniques we are planning to try include machine learning, 
swarm based techniques and genetic algorithms. 

4. It would be interesting to expand the model from plant - herbivore system 
to plant - herbivore - carnivore. That extension wilI allow us to create 
more complicated food chains resulting in more elaborate control over the 
populations of different types of agents. 
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All of these techniques promise to  improve on the current research and provide 
a more stable decentralized ways to control the number of agents on a wireless 
ad hoc network. 

5.2 Conclusions 

This paper developed an ecology-based model for managing the number of agents 
on ad hoc wireless networks. We have discovered that an ecosystem based model 
can provide decentralized distributed robust control of agents in dynamic and 
uncertain network environments. Our approach involves a novel exploitation of 
properties of ad hoc networks, enabling mobile agents to automatically adapt 
to changes that affect their communication and migration. The capability to 
dynamically adjust to the state of their network provides new possibilities for 
stable MAS. 
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