
Facilitating the Specification Capture and
Transformation Process in the Development of

Multi-Agent Systems

Aluizio Haendchen Filho', Nuno Caminada', Edward Hermann Haeusler',
Arndt von Staa'

PUC-Rio' - Pontificia Universidade Catdica do Rio de Janeiro, Departamento de
Informitica, Rua Marquss de S I 0 Vicente 225, CEP 22453-900, Rio de Janeiro, RJ, Brasil

{aluizio,hermann,arndt)@inf.puc-rio.br
UniverCidade2 - Centro-Universitrlrio da Cidade do Rio de Janeiro (UniverCidadeNPAC)

caminada@atividade.com.br

Abstract. To support the development of flexible and reusable MAS, we have
built a framework designated MAS-CF. MAS-CF is a component$-amework
that implements a layered architecture based on contextual composition.
Interaction rules, controlled by architecture mechanisms, ensure very low
coupling, making possible the sharing of distributed services in a transparent,
dynamic and independent way. These properties propitiate large-scale reuse,
since organizational abstractions can be reused and propagated to all instances
created from a framework. The objective is to reduce complexity and
development time of multi-agent systems through the reuse of generic
organizational abstractions.

1 Introduction

The characteristics and expectations of new application domains surrounding
distributed systems have lead to the development of dynamic and evolving structures.
After the advent of the Internet and with the recent emergence of new technologies,
the application domain of MASS is expanding and nowadays it is used in many areas,
such as e-business, web-services, knowledge management and now enterprise
information systems [Faulkner2001, Griss2003, Adam2004, Giorgini20041. Agent
technology represent an extraordinary opportunity for information systems and
corporate applications, because agents must be capable of managing and organizing
information, recognizing personal tastes and making increasingly important decisions
on behalf of their owners.

Nevertheless, the development of multi-agent systems is not trivial. To avoid the
task of designing each new system, we need tools to help in the MAS construction,
and by extension it is desirable to also have tools for reusing previous designed
architectures and their relationships. There is a considerable' research effort towards
the development of frameworks for agent-based systems [Sycaral999,
,Wooldridge2000, Evans2001, Bellifemine2001]. Each framework has different

application specific particularities, such as social capabilities, reasoning, flexibility
for dynamic compositions, interoperability and so on.

Most approaches, however, focus on the reuse of application-specific concepts at
the analysis, design and implementation levels (roles, protocols, agent architectures).
Little research is conducted towards generic (i.e, application-independent) models
[Faulkner2001, Zambonelli2002, Holvoet2003, Griss2003]. There is a large potential
of reusing generic “organizational abstractions” - such as structures and patterns - for
generic (i.e, application-independent) models [Zambonelli2002]. Reuse of generic
software is recognized within the object-oriented community and has lead to the
concepts such as design patterns and frameworks [Pree1999, Fayad19991.

The main focus of our work is the reuse of abstractional organizations applied to
the development of multi-agent systems. Reuse an abstract architecture allow us not
only to reuse the design and the implementation of the architectural software, but also
the reuse of important individual agent properties, such as interaction, adaptation and
collaboration, which can be completely or partially resolved at the architectural level.
On the other hand, by freeing the developer from the task of implementing these
complex properties on the agent, the work becomes simpler and can be better focused
on the maintenance of the knowledge structure and on the learning capabilities of the
agent.

This paper is structured as follows: the next section briefly describes the state-of-
the art regarding agents and multi-agent systems. Section 3 describes the abstract
architectural model, the communication model and interface specification. Section 4
describes the interaction model, fomalized by means of service ontology. Section 5
describes how the architecture behavior has been formalized and how the
specifications are being stored and transformed into reliable code. Related works are
discussed in Section 6 and Contributions are listed in Section 7.

2 Agent and Multi-Agent Systems

We have examined and identified through the literature the essential aspects
surrounding agent-based technology. This section briefly presents some important
concepts that will be used on the course of this work, namely agents and multi-agent
systems.

2.1 Agents

There is no universally accepted definition of the term agent. Part of the difficulty to
define agent arise from the fact that for different domains of applications, the
properties associated with the agent concept assumes different levels of importance.
There are many types of software agents with different characteristics such as
mobility, autonomy, collaboration, persistence and intelligence.

The behavior of an agent depends on, and is affected by, the incorporated agency
properties: interaction, adaptation, autonomy, learning, mobility and collaboration.
Such properties were based on previous studies [Kendalll999, OMG2000,
Garcia20011. We have use the properties as follows, based on [Garcia2001]:

Interaction: an agent communicates with the environment and other agents by
means of sensors and effectors. These.are available via the agent’s provided
and required interfaces;
Adaptation: an agent should adapt its state and behavior according to new
environmental conditions;
Autonomy: an agent has its own control thread and can accept or refuse a
request; in other words, by autonomy we understand the capacity of the agent
to execute its activities without human intervention;
Learning: an agent can learn on previous experience while interacting with its
environment;
Mobiliiy: an agent is able to transport itself from one environment to another
to achieve its goals;
Collaboration: an agent can cooperate with other agents in order to achieve its
goals and the system goals.

I

According OMG [OMG2000], autonomy, interaction and adaptation can be
considered as fundamental properties of software agents, while learning, mobility and
collaboration are neither a necessary nor sufficient condition for agenthood. There are
several types of software agents, including information agents, user agents, interface
agents and mobile agents. Each agent type has different application specific
capabilities and agency properties. In order to have autonomy, an agent must possess
a certain degree of intelligence allowing it to survive in a dynamic and heterogeneous
environment [Correa1994]. Therefore, there is general consensus that autonomy is
one of the central properties to the notion of agent.

2.2 Multi-Agent Systems

There are several different ways to organize multi agent systems. In any given case,
the best way depends on the purpose and objectives of the system, thus there are
several types of multi-agent systems, each with its own particularities such as social
capabilities, reasoning, interoperability and so on. Jennings [Jennings 19961 proposes
a framework that provides a structure to analyze and classify the activities of multi-
agent systems according to two different perspectives: (i) the agent perspective:
focuses on the characteristics of the agent involved with the MAS, such as internal
architecture, structure and maintenance of knowledge, and abilities of reasoning and
learning; (ii) the group perspective: includes group aspects such as organization,
coordination, interaction and negotiation.

In MESSAGE [Evans2000], MAS architecture is defined through an
organizational model, focused on the structure of the organization and the relationship
between the agents it contains. The organizational model also describes mechanisms
for conflict resolution and rules that enable agent groups to function as a unit serving
a common purpose. Agents are identified based on a goal-oriented model, where
organizational goals are decomposed and associated with tasks. Goal decomposition
is carried out recursively, until the tasks associated with the goal can be completely
fdfilled by an isolated agent or in collaboration with other agents. Agents are
connected by organizational relationships (such as superior-subordinate and client-
provider), proceedings of control management, workflows and interactions. Internal
architecture and maintenance of the knowledge structure applies an approach similar
to BDI (Beliefs, Desires, Intentions).

On the design of interoperable agents, JADE [Bellifemine2001] is a framework
focused on interoperability based on the standardization of the language of
knowledge. JADE can be considered an agent middleware that implements a platform
and a development framework. The interaction model is implemented according to
FIPA [FIPA2000] protocols. FIPA provides a standard language of communication
based on protocols, an ontology necessary for the interaction between the agents from
the system and from other systems. JADE provides an AF'I to organize the system
starting with a set of generic system services and agents. Services are transported
through an interface mechanism to sendreceive messages tolfrom other agents.

RETSINA [Sycara19!99] focuses the agent architecture in a software infrastructure
that allows heterogeneous agents to interact on the Internet. The RETSINA
framework provides an abstract basic agent architecture consisting of, and integrating
with, reusable modules and each module of an agent operates asynchronously. The
RETSINA definition of multi-agent systems is driven by the vision that
heterogeneous agents that autonomously organize their own social stkctures should
populate multi-agent societies.

The descriptions show different ways to organize MAS. Nevertheless, most
approaches focus the reuse in specific application concepts and on the individual
properties of the agent, such as protocols, roles and internal architecture. Little
research on the domain of multi-agent systems has been conducted emphasizing the
reuse of generic organizational abstractions ~rtulkner2001, Zambonelli2002,
H01~0et.2003, Griss2003]. .

3 The Architectural Model

In this section we present the main models that compose the fbmework architecture,
this, %e abstract model, the stn?ctural mode!, the interface model and the logic model
are described and commented

3.1 The Abstract Model

The architecture of a multi-agent system can naturally be viewed as an organized
computational society of individuals. For this reason, organizational abstractions
should play a central role in the analysis and design of such systems. Zambonelli and
Wooldridge [Zambonelli2002] state that “the introduction of high-level organizational
abstractions can lead to cleaner and more manageable and reusable MAS design.”
Also according to Zambonelli, the organizational abstractions facilitate the design
process because it leads to a cleaner separation between the component level (Le.,
intra-agent) and system-level (Le., intra-system). Holvoet [Holvoet2003] argue that
“programming in the large” for reactive MASs should imply a reuse method that
allows two things: (i) to describe MASs in an abstract, application-independent way
and (ii) to reuse such abstract multi-agent system through application-specific
adoptions.

In order to address these necessities, a few basic requisites of the model must be
introduced. First we define MAS from an organizational view as a set of autonomous
agents (possibly pre-existent) which common objective is the solution of a given
problem [Jenningsl996]. Nevertheless, the designer does not have to be focused on
the solution of a specific problem. New problems may arise in the context of the
MAS, and the society must be able to solve these new problems in collaboration. This
can be achieved through the inclusion of new agents building compositions with pre-
existing agents or by replacing obsolete agents. Therefore, the abstract model must
provide an architecture that facilitates the inclusion of new agents at any given
moment as new problems arise. ’

During the analysis phase, an understanding of the system and its structure can be
done. In our case, this understood is captured in the system’s organization, via
architectural model. We view a organization as a coIlection of agents that provide and
perform services, and take part in systematic, institutionalized patterns of interactions
with other agents regulated by the architecture. Departing from the goals of the
organization, services can be identified and allocated to new agents or to pre-existing
ones.

-

3.2 Proposed Architecture

Our architecture was designed supported by the basic concepts present in component
frameworks [Szyperski2002]. A component framework is a set of interfaces and
interaction rules that govern how components “plugged into” the framework may
interact. In particular, a component framework forms a framework that composes
instances not based on directly declared connections or derivations (such as
inheritance of a class framework), but based on the creation of contexts and the
placement of instances in appropriate contexts [Szyperski20021. Beyond the similar
names, almost identical visions and superficially similar construction principles,
component frameworks are very different from class frameworks CBosch1999,

Fayad19991 since the inheritance implementation is not commonly used between a
component framework and the interfaces it supports.

Figure 2 illustrates the two main parts that compose our structural model: System
and Ifinrtructure. System defines a structural model for the domain-specific MASS.
We define domain according to [Sodhi2000, Tracz19941 as the space of the problem
for a family of applications with similar requirements. Infastructure defines a part
that contains components that provide generic services, such as database access,
translation services, Hl" services, GUI builders and others.

System Infrastructure

Figure 2 - The MAS-CFgeneric architecture

System can be seen in the left side of the Figure 2. It defines a three-tier
architecture composed by the elements Domain, MAS and Agent. Domain is a
component system, U A S is a component framework, and Agent is an abstract model
for the instances plugged on the MAS. The Domain tier implements a set of rules of
interaction that allows the communication and the sharing of services between
different MAS and allows the communication between systems located in different
domains. Different MAS located in a given domain can be plugged on the tier
Domain. Note that tiers are d e m i d side by side with each other, while layers sit on
top of each other. Traditional class framework merely structure individual
components, independent of the placement in a tiered architecture. In the same way
that MASS can be plugged on the Domain tier, agents can be plugged on the MAS
tier.

Represented on the right side of the Figure 2, Infiastnrcture is a two-tier
architecture where the Infra is a componcni h i i C w O i k z i iA t!is gsx& 1n-f-
Components are instances of the Infra component ffamework The communication
between the System and Idkastructure is supported by an ontology, which describes
the services and how they can be accessed. Details will be shown in the Section 4.

3.3 Communication Model

Based on fundamental principles present in component frameworks, we have defined
the communication model considering that the exchange of information between
agents will be implemented as connections between agents and the architecture. The
objective is to allow the sharing and distribution of services in a transparent,
independent and autonomous way. An agent or component is visible to the
architecture and can communicate generating event's, which trigger connections rules
in the architecture. The communication is indirect, via a component framework that
mediates and regulates component interactions. Figure 3 shows the communication
model on the proposed architecture.

0 Required interface

I to I delegate

0 lo 0 subsume

0 to I bund

-0- -.- - r s . - .

Figure 3 - The communication model

We use similar notation to SOFA [Plasi12002] to describe the communication
between interfaces. Three different types of connections are distinguished (i)
delegate: a connection between a provided interface of a component and a provided
interface of a subcomponent; (ii) subsume: a connection between a required interface
of a subcomponent and a required interface of a component and (iii) bind: a
connection between a required-interface and a provided-interface between two
subcomponents. We have considered that the information flow between connections
in bi-directional. The Java Virtual Machine places call returns in a stack. After the
execution of an event, the system returns to the caller.

Services requests amve from the environment through the interface Domaidn.
These requests are decoded by the DomainController - which acts as an abstract
fuctoly [Gamma19951 - and are sent by the service to the responsible agent. Just as

the DomainControlkr, U4SController and InfraController work as abstruct
factories. They encapsulate knowledge about which concrete classes are used for the
system, and conceal the way that the instances of these classes are created and joined.
It permits the configuration of the system with agents “product” that can vary widely
in structure and functionality. As seen in the previous subsection, the concept of
component framework can be applied in such a way that component frameworks are
themselves components “plugged” into higher-tier component frameworks. Thus, by
construction, a component framework accepts the insertion of instances at run-time.
Agents and Infra Components can be dynamically registered and plugged on the
framework.

3.4 Interface Model

One of the main ideas underlying frameworks is that semi finished components can be
represented by abstract classes. Their purpose is to standardize the class intqhce for
all instances or subclasses. Subclasses and instances can only augment the interface,
and not change the names and paxameters of methods defined in a superclass
pree19991. The term contract [Pree1999, Szyperski2002] is used for this
standardization property: instances of subclasses of a class A support the same
contract as supported by instances of A. A contract is a specification attached to an
interface that mutually binds the client and the providers (implementers) of that
interface. Thus, the semi-finished or ready-to-use components and agents of our
framework can be implemented based on the contract of the abstract class.

On the lowest level tiers, the abstract class Agent provides two interfaces: a
provided interface designated AgentZn and a required interface designated AgentOut.
Agentln provides a channel of communication through which agents can absorb
events and is a flexible hot-spot [hee1999]. The AgentOut interface establishes a
communication channel from where services from other systems, agents or
components may be requested. To this end, it is only necessary to agree to the
cantmct established by the interface. The AgentOut interface is a frozen-spot. Note
that Agent here represents a generic term. In practice, the interface assumes as prefix
the name of the agent and as suffix the expressions In and Out. The two interfaces are
encapsulated into the semi-finished abstract class Agent when instanced through the
fiamework The basic syntax of the contract is as follows:

public void Agentln(String service, Vector in, Vector out)
public void AgentOut(String service, Vector in, Vector out) + effectors

+ sensors

The parameter service (String) defines the name of the requested service. The
parameters possess semantic meaning similar to IDL CORBA. They can be of type in
(flow from client to object) or out (flow from object to client). The operation result,
whenever there is one, is essentially a distinguished out parameter. The specification
of highly structured messages introduces a level of complexity, since the parameters
frequently represent complex types or data structures, such as vectors of objects. The

type Vector used on the in and out parameters make possible to use heterogeneous
types of fields, such as Objects, arrays, Strings, and so on.

For the components of the Infra tier, only the provided-interface is instanced.
Contrary to agents, components do not communicate among each other. As
independent processing units, they do not request external services from other
components or agents.

+ getstate
+ setstate

+ gelPammeter
+ seParameter
+s howhkssage

3.5 Logical Model

The UML provides the package mechanism [Laman19971 for the purpose of
-illustrating groups of elements or subsystems. Such a diagram may be called an

architecture package design. A package defines a nested name space, so elements
with the same name may be duplicated within different packages. Graphically, a
package is shown as a tabbed folder; subordinate packages or classes may be within
it. Figure 4 illustrates a more detailed breakdown. of common packages in the
architecture of the framework.

- M4SController
t IMASCreator
- MASParser

i I port

I
<<lays->
Domain p

- DomainContoller
+ IDomainCreator
- Domainparser
- DornainSecurity

Ir

<<layer=

(from Logical View)

+ llnfra
- Infi-aParser

import
/

(from Logical Mew)
t MCFGeGui
+ MCFSeGui
+MCFE&ui
t MCFParser

+ MCFGeneralor
+'MCWnu

Figure 4 -Architectural units expressed in terms of UML packages

The framework contains a set of five packages: Domain, MAS, Infra, Library and
MCFTools. Inside each package the encapsulated classes are listed. The three
packages shown on the top represent the main tiers of the framework: Domain, MAS
and Infra. Note that the three packages contain classes with the suffixes Controller,
Creator and Parser. As seen on previous sections, the classes sporting the suffix

ControlIer represent abstract factories, responsible for the dynamic creation of
instances. The Creator interfaces (swing with the letter I) define a standard signature
for the instances that can be created dynamically, establishing a plug-and-play
structure. The classes sporting the Purser suffix implement programs that parse
service catalogs (detailed in the next section) to retrieve the specification of the agent
or component responsible for the execution of the service. When the agent is
retrieved, it is delivered in the form of a Sm-ng from the Purser class to the Controller
class, which implements a factory method [Gamma19951 for the dynamic creation of
instances.

The two packages shown bellow on Figure 4, Library and MCFTools, supply
generic support services to the main packages of the framework. Library contains
some classes that supply important generic services to the programs that control the
interaction flux and the synchronism between processes. The classes setstate and
geiStute are responsible for the synchronism between processes. Class setstate
(producer) stores in a hashtable the next state for the action to be executed during the
transition. The data is indexed based on a ID created for each instance, and associated
to the state and corresponding action. Class getstate (consumer) whenever called
upon, retrieves the state stored in the hashtable and delivers to the process the instance
and the action to be executed.

The MCFTooIs package provides a public interface to support the tasks of
instancing the architecture and the elements, along with the necessary support for the
specification of the service catalog. To this end, it makes a set of GUI classes
available, such as MCFMenu, MCFGeGuj, MCFSeGui. MCFMenu is the class that
provides a common interface to a group of other components of the package and
system, implementing a pattern facade [Gamma1995, hrman19971. The disparate
elements may be the classes in a package, a hmework or a subsystem (local or
remote). Along with the GUI classes, the package maintains a class called
MCFPmer that captures (when the architectural elements are instanced) the
specifications described by the GUIs and stores it in the XML file. Finally, the
MCFGenerutor class is responsible for code generation, working inside the standards
established by the standard code structure used by the framework (as per Section 5.2)

4 Interoperability

Consider the high level component Infia New components, which implement generic
~~F,<cPP, P" hp p!uggerl at nin time; new services must be available to agents at run
time. How to make new services available to the agents? How to allow agents to
interact with each other without knowing in advance which services are available?
The representations of the architecture were not sufficient to serve as a listing of all
services provided When a new agent is registered or instantiated by the framework,
its services are registered in a XML ontology in the form of a services catalog.

The use of ontology serves us as a formal specification of the catalog of services
provided. Every agentkomponent operating within the System or Infra part must
abide to the specifications dictated by the services ontology. The same is true for
components. Figure 5 shows how services registered on the catalog may be accessed
through the controller components present on the layers. Different components access
specific sections of the catalog and obtain information such as component instances,
location of services and descriptions of the communication protocols.

1 r - - - G q
Controller

IT
Figure 5 - Relationship between components and XUC ontology

List 1 shows an example of how a services catalog can be structured in the form of
an ontology. The tags name and description supply basic information about services
provided by agents or by components. The initiator tag indicated the agent
responsible for the execution of the service and the path tag indicates the physical
location of the agent. It may be a physical address or a URL. The fype tag indicates
the type of protocol being‘used by the agent to deliver the message, initiate a
conversation or supply a service.

- <Services>
- <service>

<name> Advising Receive</name>
<description> ... </description>
< inltlator>Adyisor</ini tiator>
<type>MAS-CF</type>
<path>D\AcadernicApplication\Advisement</path>
<domain>Acadernic Applications</dornain>
<mas>Electronic Adbisernentc/mas>
<message>Contract MAS-CF</message> I

</service>
</Services>

List I - XML specification of the catalog of services

The Znitiator is the agent responsible for starting the execution of the service. The
Type indicates the type of protocol used to deliver the message and to supply a speech
act or a service. In this case, all tags are automatically retrieved from the specification
and stored in XML format. Also present are the name and description tags, which
supply basic information about the service. The XML catalog is critical to the system
and during use a working copy is made to ensure system reliability. If the working

copy fails a new copy is reconstituted from the original. Besides, the infomation
contained on the XML catalog can be reconstituted from the interfaces on the o r i g i ~ l
X M L system specification through the use of special tools.

Semantic heterogeneity is one of the chief focus of any multi-agent system, this
heterogeneity expresses the issue that any two interoperating agents must be certain
when using a vocabulary of terms, or translations thereof, that they are using the same
concepts with the same relevant inferences o f relations as the other communicating
agent [Sycara2003]. Two heterogeneous interoperating agents must be certain when
using a vocabulary of terms or translations (FIPA to MAS-MF, for example) that they
are using the same concepts with the same relevant inferences of relations as the other
communicating agent. We argue that ontology, commonly defined in the literature as
a specifcation of a conceptualization, is the representation that will provide this
requirement [Gruber1998].

A conceptualization can be concretely implemented, for example, in a software
component. Different types of ACL (Agent Communication Language) can be
identified via Type tag and services are provided by adapter components to translate
the MAS-CF messages to/from KQML Finin19971, FIPA, UCL [Montesco2001]
and other ACLs. It decodes the calls that arrive from the environment and identifies
the language spoken by the agent, for example KQML or FIPA. These components
can be registered and plugged into the Infra tier.

5 Describing and Transforming the Specifications

In this section we describe how the behavior of the h e w o r k is formalized through
the use of FTS (Finite Transition System) [Arnold1994]. In the sequence, we show
how the specification is described and transformed into reliable code.

5.1 The Behavior of the Framework

Most work on the semantics of parallel, communicating, concurrent or interacting
processes is based on the concept of automaton. More generally, a finite state
automaton formed of states and labeled transitions between those states, can describe
a system whose state evolves over time [Amold1994]. An agent is a computational
entity handling sequences of events. To handle events, agents can emit events, absorb
events, E E ~ pclcess internal events [Pl~d2002j. Method calls on interfaces turn into
event, and the architecture’s behavior is modeled via the event sequences (traces) on
the architecture. The behavior of the architecture can be approximated and
represented by FTS. A transition system consists of a set of possible states for the
system and a set of transitions - or state changes - which the system can effect
[Amoldl994].

The previously presented architecture (Figure 3) can be described as a concurrent
FTS, as shown in Figure 6. The fibwe shows each tier represented as a FTS, working
concurrently with other tiers. The label h indicates the target action or event, when the
state triggers the transition. The set represented by the states (S I , S2} encapsulate the
provided- and required-interfaces DomainIn and Domainout of the Domain tier,
respectively. In a similar way, the set IS,, S,}, {SI1, S12} and compose the
provided- and required-interfaces of the MAS, Agent and Infra tiers respectively. The
states S3, S6, resp. SS2 represent a set of nested states composed by the classes with the
suffixes Controller, Creator and Parser of the Domain, MAS and Infra tiers, as seen
on section 3.5.

Figure 6 - The architectural model as FTS

Asynchronous behavior between states is represented through self-transition. A
self-transition may represent a, asynchronous communication channel between two
tiers ((SI to S4, for example) or a recursive decomposition to nested states, as seen on
S3, s 6 e SII. On the expressions that label the transitions, the character h represent the
target action to be executed by the transition. The suffixes {!, ?} represent the action
emitted or absorbed. Besides actions, variables are also described. Basically, the
variables represent services (sen) , instances (mas, agt, and comp) and results or data
(res) modified by the states or processes.

In run-time, the program directs the flow via switch for the current state, evaluates
the predicates and changes for the target state, performing the associated action. This
can be seen in the code fragment presented on Figure 7 of the next subsection. ECA
rules specifies how the architecture receives messages from the environment and from
agents, how it verifies the service, direct services, sends messages and create
instances of the architectural entities. The synchronism between tiers (considered as
concurrent processes) is provided through CCS (Calculus for Communicating
Systems) [Milner1985] expressions.

CCS expressions generate a set of truces over the architecture and the agents
establish the restrictions, the sequence of execution and the synchronism between the
concurrent tiers. The basic operators are the classic regular expressions sequence,
alternative and repetition. The enhanced operators provide a notation to describe
concurrency, using the known operators or-paralIel, and-parallel and restriction.
Several transitions can have the Same source and target, i.e., the product mapping is
not necessarily injective. The sequence of actions S(c) = Yt,) X(t& is called the trace
of the path. Intuitively, the label of a transition indicates the action or the event, which
triggers the transition.'

5.2 Code Generation

When instancing MASS, agents or Infra components, the specifications captured and
stored in XML file are transformed into reliable code using parser and generator
programs. The parsers can read the specifications from the XML file using the
standard X M L document object model O M) . DOM essentially maps every element
of an XML document to an object. Such an object has methods to access the
element's attributes, and DOM also supplies methods to navigate through documents
and to locate the parent element and enumerate the child elements. After being parsed
through the DOM, the information is supplied to the generator program, which
transforms the parsed information into source code based on templates of MAS-CF
entities.

During the implementation phase, code generation occurs at two separate times.
First upon the instantiation of the architectural elements by the framework, when the
code of the structural model is automatically generated. At this stage, the MAS (if it
has not been instantiated), the agents and the internal layers of the agents can be.
instantiated. Afterwards, only the abstract method of semi-finished component can be
implemented or plugged Thus, the implementation of the internal architecture of the
agent becomes independent from the kamework 1 he mtemd impiementanon of rhe
agents is free, and therefore any type of agent architecture or implementation model
may be used

In the design of rational agents, the role piayea by attimies such as beliefs, desires
(or goals) and intentions have been well recognized in the AI and agents literature.
Systems and formalisms that give primary importance to intentions are often referred
to as BDI (Belief, Desire, Intention) architectures. BDI-like architectures model the

agent’s behavior using a set of mental categories evolving in a mental cycle that
allows the agent to make decisions and to act on the environment. These architectures
raise from the process of deciding, moment by moment, which action to take towards
its objectives.

Figure 7 shows a partial view of the generated Java code for the Mas (here Mas is
an instance of the abstract model MAS) class. The interface MasZn (line 32), the
parameters and the pre-condition (line 34) are supplied from the specification of the
interface and the remaining items - states, transitions and actions - can be retrieved
from the XML service specification. On line 36, the method run0 of the library class
getstate retrieves the current state of this specific instance. Line 38 performs the
transition via switch for the case that corresponds to the current state. Inside each
case, the method instanciaAgent() of the abstract factory MasController is called and
returns the instance responsible for forwarding or executing the requested service. On
line 44, the target state is defined and stored using the method run() of our library
class setstate (line 45). On line 46, the agent returned in thepame instance performs
the action associated with the transition.

24 private
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
33
3 4
3 5
3 6
3 7
3 8
3 9
4 0
4 1
42
43
44
4 5
4 6
4 1
48
4 9
5 0
5 1
5 2

states I- final static int HasServiceRcceive - 6:
final statia int HasServiceRequesc - 5:
final static int DomainServiceReceive - 1;
final statio int DomainServiceRequest - 2;
final static Int AgencServiceReccive - 10:
final statio int IniraScrviceRequesc - 20;

public v o i d HasIn[Scring service, Vector in, VecCor ouc) --t
{

if ((service.lengCh()>o) rc[in!-nuu)) we condltion
(

_.c current state - tramition int scace - gerscace.run[):
switch (scace) <

case HasServiceReceivc:
try
I

IFrameCrcator frame - (IFrMhCreacor)
stare - AgentServiceReceive: __+ target State
setScaCe.run(sCate) :
frame.run[servicc, in, out): action
break;

HesConccoller. imcancialgente [service, in, oUC) :

1
catcti (Exccpcion e)
I shorHcssage.run(e) ;

1
break;

Figure 7 - Partial view of the generated code for the Mas class

The code of the Mas class presented above is almost completely frozen (except the
name of the interface In - MaZn - on line 32, the name of the interface Out - Masout
- and the class name are hot-spots). It is completely generated when elements of the
framework are instanced for the first time. The same happens for the classes Domain
(through which different domains can be instanced) and Infra. The framework also
generate the code for the abstract classes Agent and Component every time new

agents or components are instanced. Specific implementation can be added on the hot-
spots provided by the abstract classes of the last level.

We argue that the reuse of organizational abstractions, as well as the interaction
facilities provided by the architecture reduces the complexity and facilitates the
development of the cognitive capacities of the agents (learning and autonomy), since
complex properties such as interaction, adaptation and collaboration can be addressed
separately by the architecture. In this fashion, agent implementation can be better
focused on the maintenance of its structures of knowledge gathering and on its
mechanisms of learning.

6 Discussion and Related Works

The concept of connection as an architectural entity was established on the first
ADLs, such as Darwin magee1997], UniCon [Shaw-Garlanl996J, Wright
[Allen1997] and ACME [Garlangl997] among others. The idea is to deal with
aspects and system qualities in connectors, not in components. According to
Szyperski [Szyperski2002], one of the problems with these approaches is that by
inlmducing a pure connection-oriented approach, all components are restricted to ody
interact with other components if appropriately connected. On the other hand, a
connector, when detailed, can easily heave substantial complexity and display a need
to be partitioned into components itself. Thus, “connectors” turn into regular
components and no special actions can be performed on the connections as such.

The concept of explicit connector has been loosing ground as time passes. Some
ADLs, such as Rapide, have a very weak notion of connectors. Connections are
specified with bindings between the provided service of a component and the required
service of another component. Fadkner [Faulkner2001] proposed an ADL for mdti
agent systems using a similar concept. In his approach, Fadkner uses components,
interfaces and services as architectural entities, without connectors. Connections are
implemented as bindings between provided interfaces and services. Szyperski
[Szyperski2002] states “contextual component fiameworks can be used to reintroduce
the intercepting behavior of connectors, but this time at the level of context
boundaries.” Contexts provide the generic-aspects, while components andor agents
provide the non-generic aspects of contexts by parametrizing generic contexts.

Our approach has a very weak notion of connector. The interaction rules are
managed and performed by the architecture, resuiting in caiis to &e o&er agcn’w dud
services inside or outside of the organization. Its semantics consists of the rules
defining the subtype (and supertype) relationship between tiers, and the services
ontology providing the necessary mechanisms to interoperability support. Wooldridge
[Wooldridge2000] states that agents are not built co&;.,de&g the eristence of ~ther
specific agents; the idea is that interdependencies are likely to be reduced to make the
system more flexibIe and reusable.

The preference for implicit connections, as opposed to explicit ones, is one of the
key points in our approach, using a very weak notion of connector. Interaction rules
are regulated and executed by the architecture, resulting in calls to other agents and
components inside and outside the organization. The semantics consists of rules
defining the relationship between superior and inferior layers and the ontology service
providing support mechanisms necessary to interoperability. We share a concept
introduced in [Wooldridge2000], whereas agents should not be built assuming the
existence of other specific agents; the idea is that interdependencies may be reduced
to make the systems more flexible and reusable.

Current frameworks for multi-agent systems such as JADE [Bellifemine2001],
RETSINA [Sycara1999, Sycara2003], MESSAGE [Evans20021 and ZEUS
[Azarmi2000] work with a structure much more focused on the individual properties
of agents than on MAS architecture. These approaches provide an implementation
that reinforces only partially the rules of interaction in the architecture. Unlike most
frameworks for multi-agent systems, our framework focuses on the reuse of generic
abstractional organizations instead on the individual agent properties such as roles,
protocols and internal architecture.

7 Contribution and Practical Results

Our key contribution is to describe a MAS in an abstract and application-independent
way, allowing large-scale reuse of the abstractional organizations. We were able to
show, throughout the work, the support to architectural principles and the use of
contextual compositions, allowing the reinforcement or solution at an architectural
level, of some of the fundamental agency properties cited on Section 2 such as
interaction, adaptation and collaboration. This makes the implementation of the
agent much simpler since such aspects are addressed separately from the object’s
functional implementation. The following properties were directly or indirectly
addressed at an architectural level:

interaction: the rules of interaction established by the communication model
forcing the instance of an agent to communicate via a control mechanism of
the architecture makes possible the distribution and sharing of services in a
transparent and independent way.
adaptation: the abstract factories of the Domain, MAS and Infra tiers allow
new agents or new version of agents replacing obsolete ones to be easily
‘plugged” in OUT framework, ensuring high flexibility and adaptability since
the agents can easily adapt its state and behavior in run-time to new
environment conditions.
collaboration: the formalization of services through ontologies and catalogs
communicate the semantics of the services provided by the agents and
generic components, facilitating the assembly of composition and
collaboration between agents via required- and provide-services. Forcing all
agents to use a common vocabulary defined in one or more shared ontologies

is an oversimplified solution especially when these agents are designed and
deployed independently from each other.

Reusing an abstract architecture allows the reuse of not only architectural software
design and implementation, but also of some agent properties that can be controlled
via architecture mechanisms. Those benefits allow large-scale reuse reducing the time
of system development and for system readiness.

We have instantiated a medical application for behavioral therapy using our
framework We were able to venfy the facilities provided by the framework and at the
same time evaluate certain non-functional requirements such as applicability,
usability and performance among others. The system, called UAS-CF 7herupp
[Caminada2004] provides services for a larger application that uses Virtual Reality on
the therapy of autistic children and children with a psychosis diagnosis. The system
works in a distributed web environment, through the "ITP and TCPmP protocols
using JavdJSP/Seervlet technology in conjunction with a JavaRomcat server-

For the first time our MAS-CF framework could be evaluated in a real world
application. From the viewpoint of practical applicability and use of the described
techniques, the following could be evaluated

the contextual paradigm tiers of MAS-CF;
the interaction model used by the framework;
the viability of using MAS as well as the interaction with Virtual Reality
techniques in such a way as to aid and support behavior therapy.

During the development process we could verify the advantages provided by the
MAS-CF framework The implementation of the agents was widely facilitated since
the development was concentrated solely on the services provided and the
relationships between layers necessary to providing these services. More concrete
results will be obtained from hture applications to be instantiated.

Acknowledgement

I would like to thank Professor Carlos Lucena for his contribution in this work.

The Brazilian Ministry of Science and Technology provides financial support to this
research work through CNPq grants nu 140604/200i4.

References

[Adam20041 Adam E. and Mandiau R "Design of a MAS into a Human Organization: Application to an
Information Multi-Agent System" In h. 5th Agentaented Information Systans, p a g e s 1-15,
Chicago, IL, USA, October 13,2003. Springer Verlag, LNAI 3030,2004.

[Allen19971 R Allen and G. Garlan. “Formalizing Architechxal Connection.” In Proc. 16th International

[Amandi1997] Amandi A.A. “ProgramaqHo de Agentes Orientada a Objetos”. CPGCC UFRGS - Tese de

[Arnold941 Amold A. “Finite Transition Systems”. PrenticeHall, Masson, Paris, 1994.
[Azarmi2000] Azarmi N., Thompson S. “ZEUS: A Toolkit for Building Multi-Agent Systems”.

Proceedings of Fifth Annual Embracing Complexity Conference, Paris April 2000.
para19971 Baral, C., Lobo J., Trajcevski G. “Formalizing Workflows as Collections of Condition-Action

Rules”. Dept of Computer Science, University of Texas at El Paso. El Paso, Texas, USA,1997.
[Bellifemine2001] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa: JADE: a FIPA2000 compliant

agent development environment. Agents 2001: 2 16-2 17.
[Berners-Lee2001] Bemers-Lee, T.; Lassila, 0. Hendler, J. - The Semantic Web - Scientific American -

http://www.scientificamerican.com/200 1/0501 issue/050 lbemers-1ee.html
pond1988] Bond A.H. et al. “Readings in Distributed Artificial Intelligence.” San Mateo, Morgan and

Kauhann, 1988.
[Bosch1999] Bosch, J.,.Molin P., Mattsson M.; Bengtsson P.; Fayad M. “Framework problem and

experiences” in M. Fayad, Building Application Frameworks, John Willey and Sons, p. 55-82, 1999.
[Breitman2004] Breitman K, Haendchen Filho A,, Haeusler E. H., Staa, A. V. ‘Wsing Ontologies to

Formalize Service Specification in Multi-Agent Systems”. Proceedings Of Third NASA/ IEEE
Workshop on Formal Approaches to Agent Based Systems, Los Alamitos, California USA. To appear
as LNCS, Springer-Verlag.

[Brusse11999] Hendrik Van Brussel , Jo Wyns , Paul Valckenaers , Luc Bongaerts , Patrick Peeters,
Reference architecture for holonic manufacturing systems: PROSA, Computers in Industry, v.37 n.3,

[Caminada2004] Caminada, Nuno. “Uma Aplicaqio Terapiutica de Realidade Virtual Utilizando
Tecnologia Baseada em Agentzs de Software”. Projeto Final de ConclusHo do curso de GraduaGHo em
Ciencia da ComputaqHo. UniverCidade - Unidade Ipanema. Junho 2004, Rio de Janeiro, Brasil.

[ConnollyZOOO] Connolly D. “Extensible Markup Language (XML).” February 2000. Available on-line:
http://www.w3.org.XM.

[Correal9941 Correa Filho M. “A Arquitetura de Dialogos entre Agentes Cognitivos Distribuidos”.
COPPE da UFRJ. Tese de Doutorado, 1994.

pashofy2001] Dashofy, E.M.,Hoek, A.v.d., and Taylor, R.N. “A Highly-Extensible, XMLBased
Architecture Description Language.” In Proceedings of the Working EEWIFP Conference on
Software Architecture (WICSA 2001). Amsterdam, The Netherlands, August 28-3 1,2001.

[Evans2000] Evans R (Editor). “MESSAGE Methodology for Engineering Systems of Software
Agents”. Deliverable 1, July 2000.

FauIkner2001] Faulkner S. “Towards an Agent Architectural Description Language for Information
Systems”. Technical Report, University of Louvain, Belgium, 2001.

[Fayad19991 Fayad M.E. et al. “Building Application Frameworks”. John Wiley & Sons, Inc. New York,
1999.

[Fense12003] Fensel, D.; Wahlster, W.; Berners-Lee, T.; editors - “Spinning the Semantic Web” - MIT
Press, Cambridge Massachusetts, 2003.

Finin19971 Finin T. “KQML as an agent communication lan,wge.” Proceedings of the Third
International Conference on Information and Knowledge Management”. CLKM-94, ACM Press,
november 1994.

PIPA19971 Reference FJPA-OS V2.1.0. Nortel Networks Corporation, Ontario, Canada, 2000. FIPA-OS
site http://www.emorphia.comlhome.htm.

[Gamma19951 Gamma E. et al. “Design patterns - elements of reusable object-oriented software.”
Addison-Wesley Longman, Inc., 1995.

[Garcia20031 Garcia A., Lucena C.J.P. et al. (Eds.) “Software Engineering for Large-Scale Multi-Agent
Systems”. Lecture Notes in Computer Science - LNCS 2603, Springer Verlag, Gemany, 2003.

[Garcia20011 Garcia A., Torres V. In: “Sistemas Multi-Agentes”. Editores: Carlos Lucena e RUY Milidid.
Editora Papel Virtual, Rio de Janeiro, 2001.

[GarIan19971 D. Garlan, R. T. Monroe, and D. Wile. “ACME An architecture description interchange
language.” In Proc. CASCON’97, pages 169-183, Toronto, Canada, Nov. 1997.

[Grubs19981 Gruber, T. - “A translation approach to portable ontology specifications.” Knowledge
Acquisition, 5(2):21--66, 1998.

[GrissZOO3] Griss M.L., Kessler R.R. “Achieving &he Promise of Reuse with Agent Component.“ Software
Engineering for Large-Scale Multi-Agent Systems. Springer, LNCS 2603, Germany, 2003.

Conference on Software Engineering, pages 71-80, Sorrento, Italy, May 1997.

Doutorado, Port0 Alegre, 1997.

p.255-274, NOV. 1998.

[Haendchen2004] Haendchen Filho, A.; Staa, kv.; Lucena, C.J.P. “A Component-Based Model for
Building Reliable Multi-Agent Systems”. Proceedings of 28* SEW - NASAlIEEE Software
Engineering Workshop, Greenbelt, MD. IEEE Computer Society Press, Los Alamitos, CA, 2004, pg 41-
50.

~olvoet2003] T. Holvoet and E. Steegmans. “Application-Specific Reuse of A,- Roles.” Software
Enpineering for Large-Scale Multi-Agent Systems. Springer, LNCS 2603, Germany, 2003.

[Kendall1999] Kendall E. et al. “A Framework for Agent Systems”. In: hpl-ting Applications
Frameworks - ObjectOriented Framewoks at Work M.Fayadd et al. John Wiley & S m s , 1999.

[KotaWOO3] Kotak D. et at. “Agent-based holonic desig and operations environment for distributed
manuktminf. In: Computer in Industry, Volume 52, Issue 2, pg 95-108 -Elsevier Science Publishers
B. V. Amsterdam, The Netherlands, 2003.

[Kwangyeol2003] Kwangyeol R et al. “AgentBased Fractal Architecture and Modelling for Developing
Distributed Manhtur ing Systems.” International Journal of F‘rodwtion Research, vol. 42, NO. 17
(2003) 42334255.

Farman1997l Craig Larman . “Applying UML and Patterns.” Prentice Hall PTR, New Jersey, 1997.
wageel9991 Magee J., Kramer I. and GiaMalcopoulou D. ‘‘Behavim Analysis of Software

Architecture&” presented at the 1st Working IFIP Confixace on Software Architecture (WICSAl), San

[Milner1985] Miiner R ‘zectures on a Calculus for Communicatmg Systems”. Lectures Notes in
Computer Science, VoL 197 - Springer Verlag, 1985.

[MontescoUH)l] Montesco CAE. et al. ‘VCL - Universal Communication Language”. Universidade de
Siio Paulo, Instituto de Cihcias Matmdticas e da Computaq50. Technical Report, Siio Paulo, Brasil,
2002.

poriega1997l P. Noriega “Agent-mediated Auctions: THE Fislanarked Metaphor.” PHD Thesis,
Universitat Autonoma de Barcelona, Barcelona, 1997.

[OMC2OOO] Object Managanent Group. Agent Platform Special Interest Group. “Agent Technology -
Oreen Paper”, version 1.0, September 2000.

[PllSiluHIZ] P h i l F. et aL “J3ebavior Protcxols for Software Components”. IEEE Transactions on
Sohare Enginecling, VoL 28, N. 11, November 2002.

-1 Pree, W, “Hot-spotdriven development“ m M. Fayad, R Johnson, D. ’ Schmidt Building
Application Fmmeworks: Object-Oriented Foundations of Framework Design, John Willey & Sons,
1999.

[SOdhiOOO] Sodhi, J. et i. Software Reuse - Domain Analysis and Design Process. New Yo& MCOraw
Hill, 1998.344~.

[SrinivauoZOOl] Srinivasan P. “An Introduction to Microsoft .NET Remoting Framework”. Microsoft
corparatios July 2001.

[Sycara1999] Sycara, K ‘%Context Infomation Management though Adaptative Collaboration of
Intelligent Agents”. Intelligent Information Agents. Edited by Matthias Klusch. Springer-Verb
Berlin, 1999.

[Syearr2003] Sycan K et aL ‘The RETSINA MAS, a Case Study.” Software Engineering for Large-Scale
Multi-Agent Systems”. Lecture Notes in Computer Science - W C S 2603, Spring? Verlag, Germany,

[SzyperskiZ002] Szypaski C. “Component Software - Beyond Objectoriented Programming.” Addison-

[Todd2003] Todd N., Szolkowski M. “Java Server Pages’’. Elsevier Ed, 2003.
[Traczl994] W. T ~ a c z Domain-Specific Software Architecture (DSSA) Frequently Asked Questions

(FAQ. ACM Software Engineering Notes, 19(2):52-56, Apr. 1994.
pazquez2003] Vazguez J. ‘The HARMONIA fiamzwork the role of norms and electronic institutions m

m1lWagent systems applied to complex domains.” Technical University of Catalonia, Bmlona, Spain.

pitagNone2002] Vitaglione G., Quarta F., Cortese E. ‘3calability and Performance of JADE Message
TTansport System”. Proceedings of A4MAS Workshop on AgentCities, Bologna, 16th July, 2002.

[Znmbonelli2002] Zambonelli, F., Jennings, N.R, Wooldridge M. Organkational Abstractions for the
Analysis and Design of Mdti-agent Systems In P. Ciancarini, MJ. Wooldridge, Agentoriented
S o h Engineering, vol. 1957 WCS, 235-251. Springer-Vrriag: Berlin, S c m y 2!?!?!.

[WooldridgeZ000] Wooldridge M., Jennings N. and Kinny D. ‘The Gaia Methodology for Agentaented
Analysis and Design”. Proceedings of 3“ International Conference on Autonomous Agents, Seatle, W.4,
1999.

Antonio, TX, USA, 22-24 February 1999.

2003, p. 232-250.

Wesley and ACM Res, 2OOO.

~

ISSN 0921-7126,IOS Press, 2003.

