
Towards Timed Automata and Multi-Agent
Systems

.G. Hutzler, H. Klaudel and D.Y. Wang

LaMI, UMR 8042, Universit6 d'Emy-Val d'Essonne/CNRS
523, Place des Terrasses 91000 Evry, Rance

{name)aami.univ-evry.fr

Abstract. The design of reactive systems must comply with logical cor-
rectness (the system does what it is supposed to do) and timeliness (the
system has to s a t e a set of temporal constraints) criteria In this pa-
per, we propose a global approach for the design of adaptive reactive
systems, Le., systems that dynamically adapt their architecture depend-
ing on the context. We use the timed automata formalism for the design
of the agents' behavior. This allows evaluating beforehand the properties
of the system (regarding logical correctness and timeliness), thanks to
model-chdg and simulation techniques. This model is enhanced with
took that we developed for the automatic generation of code, allowing
to produce very quickly a iunning nxlti-agent prototype satisfying the
properties of the model.
Keywords. agent oriented software engineering, formal models, agent
oriented programming

1 Introduction

Real-time reactive systems are defined through their capability to continuously
react to the environment while respecting some time constraints. In a limited
amount of time, the system has to acquire and process data and events that
characterize its temporal evolution, make appropriate decisions and produce
actions. Thus, the robustness of the system relies on its capability to present
appropriate outputs (logical correctness) at an appropriate date (timeliness).
Such applications are often critical. Their hardware and software architectures
have to be specified, developed and validated with care. Then, they are set
in order for the system to have a determinist and predictable behavior. The
interest of multi-agent systems in this context may be considered as limited,
especially because of autonomy and proactivity properties generally attributed
to agents. In fact, the decision step in red-time systems is very often hidden and
exampies of usages or' muhi-ageni pauadig~ in tkis ied-tiic ==text f?,?] e q l d
the distributed aspects of multi-agent systems much more than the autonomy
aspects.

In this paper, we aim at addressing systems in which time constraints are
neither did (obtaining a x p m s e 8 little bit later than specified is accept-
able) nor strict (when a normal delay of response is exceeded, the result is not

2 G. Hutzler, H. Klaudel and D.Y. Wang

immediately worthless but its value decreases more or less quickly with time).
Another characteristic of such systems is the variability and unpredictability
of treatments to process and their priority, but also of the availability of ac-
tive entities (processors) in charge of processing. In such a context of dynamic
scheduling in distributed systems, there is no solution yet capable to guarantee
the respect of timing constraints. Our purpose is then to design this scheduling
so as to optimize the compromise between the respect of logical correctness and
timeliness, possibly by loosening some constraints when all of them cannot be
satisfied simultaneously.

More precisely, rather than scheduling in its classical understanding, our
concern here is the problem of adaptive reconfiguration of the processing chain
during the execution. This reconfiguration can occur according to the available
resources (sensors, processors, effectors), to the wished logical correctness, to
the measured timeliness and to the events occurring in the environment. But,
instead of doing this in a centralized manner, the agents will need to control the
reconfiguration themselves, in addition to their normal activity of data process-
ing.

Our objective here is to propose a complete approach, from a software engi-
neering point of view, for the design of adaptive multi-agent systems. It covers
all stages of software life cycle, from an abstract specification of the application
architecture to a testable implementation, including formal verification of prop-
erties and simulation. The method is based on the formalism of timed automata
[?I, which allows to express systems as a set of concurrent processes satisfymg
some time constraints (section ??). We show that this formalism may be used in
order to model a multi-agent system from the angle of data processing as well
as that of dynamic treatment chain reconfiguration (section ??). Then, we show
how model-checking and simulation may be used to verify selected properties of
the system and analyze a priori its behavior (section ??). Finally, we address the
problem of semi-automated translation from a timed automata specification to
executable agents (section ??). But before giving more details about this work,
it is necessary to give some words of explanation about our target application
and its specificities.

2 Target application and objectives

The context in which we develop our approach is the project that we call Dance
with Machine [?I. This project aims at staging a real-time dialogue between a
human dancer-actor and a multimodal multimedia distributed cognitive system.
The role of the latter is to achieve in real-time the captation and analysis of
the performance of the dancer, and to build a multimedia answer to it. This
answer may consist in visual animations projected on screens around the dancer,
musical sequences, or actions by robots or other physical objects. We consider
this application as a metaphorical transposition of the kind of interactions that
we may forecast between human users and communicating objects. This is called
Ambient Cognitive Environments (ACE), i.e. , physical environments in which

Towards Timed Automata and Multi-Agent Systems 3

perception, processing and action devices have to organize dynamically and in a
cooperative way in order to provide users with natural interaction and extended
services.

The computerized setup is composed of a set of processors equipped with
communication capabilities. They may also be connected to sensors (video cam-
eras, biometric sensors, localization sensors, etc.) or effectors (screens, loudspeak-
ers, engines, etc.). Each processor may run one or several agents, each of them
being specialized for a specific kind of treatment. Data retrieved from the sensors
must be handled by several agents before being converted into actions. Agents'
work is to analyze, spthesize md transform the data that they get. Data pro-
duced by an agent are then transmitted to other agents in order to continue the
processing. The data are finally used to generate pictures, sounds or actions,
either when the analysis is precise enough, or when the available time is too lim-
ited. Figure ?? shows a very simplised view of this process. Only one perception
modality is represented, which corresponds to a video camera.

Level 2 Q u a l i d posture

Quatities (opedclosed)

L e d 1

PrimibiRs

P i d U r e Multimedia Production Agent Rough Medium Fine

Agent

Level 0

Raw data

Fig. 1. Global architecture of the processing chain in the project "Dance with Machine".

The use of agents in this context is justified by the distributed nature of

4 G. Hutzler, H. Klaudel and D.Y. Wang

the application (captation, processing and action are distributed among several
objects and processors). But the main reason why we use agents is to make
the whole system adaptive in various contexts: when components are added
or removed, when the global behavior of the system must change, or when time
constraints are not met by the system. The main time constraint that the system
should respect is the latency, i.e., the time between the acquisition of data by
sensors, and the production of corresponding actions by the system, under one
form or another. This latency should of course be kept as low as possible SO that
the reaction of the system seems instantaneous (at least very quick). On the
other hand, the analysis of the dancer's performance should be kept as precise
and thorough as possible. These two constraints are potentially contradictory
since a precise and thorough analysis can take significantly more time than a
rough and superficial one. The quality of an analysis can be measured along two
complementary dimensions: the precision (for the measure of a parameter of the
performance) and the thoroughness (when optional treatments are possible, a
superficial processing will be limited to what is compulsory).

Our main purpose is to allow a very quick evaluation of various strategies in
the control of the processing chain, in order to produce an efficient agent-based
implementation of the system. We achieve it using a formal model of the SYS-
tem along with tools that we developed to automate the implementation of a
functional prototype. Model-checking allows to verify that the systems complies
to the specified constraints (latency, non-blocking, sequentiality of treatments,
etc.). Simulation, for its part, allows to evaluate the quality of the compromise
between logical correctness (is the quality of processing satisfactory?) and time-
liness (does the system comply to time constraints?).

3 Introduction to timed automata

Real-time systems may be specified using numerous dedicated methods and for-
malism. Most of them are graphical semi-formal notations allowing a state ma-
chine representation of the behavior of the system. Among the most popular
formalisms, we may quote Grafcet I?], SA/RT [?I, Statecharts [?I, UML/RT I?].
Such visual representations do not enable to verify the properties of systems and
it is necessary to associate a formal semantics t o them, based in general on pro-
cess algebras [?], Petri nets [?] or temporal logics [?]. Proposing a new formalism
is not our intention here. On the contrary, we prefer to examine the potential
benefit of real-time specification and verification techniques in the design and
the programming of agent-based reactive systems. We chose for this purpose to
use timed automata [?I. This formalism has the advantage to be relatively sim-
ple to manipulate and to possess adequate expressivity in order t o model time
constrained concurrent system. Moreover, there exists for this model powerful
implemented tools (e.g., UPPAAL [?I) allowing model-checking and simulation.

Towards Timed Automata and Multi-Agent Systems 5

3.1 Standard model

A timed automaton is a finite state automaton provided with a continuous time
representation through real-valuated variables, called cIocks, allowing to express
time constraints. Generally, a timed automaton is represented by an oriented
graph, where the nodes correspond to states of the system while the arcs corre-
spond to the transitions between these states. The time constraints are expressed
through clock constraints and may be attached to states as well as to transitions.
A clock constraint is a conjunction of atomic constraints which compare the value
of a clock z, belonging to a finite set of clocks, to a rational constant c. Each
timed automaton has a h i t e number of states (locations), one of them being dis-
tinguished as inztzaL In each state, the time progression is expressed by a uniform
growth of the clock values. In that way, in a state at each instant, the value of the
clock z corresponds to time passed since the last reset of z. A clock constraint,
called an invariant, is associated to each state. It has to be satisfied in order for
the system to be allowed to stay in this state. Transitions between states are in-
stantaneous. They are conditioned by clock constraints, called guards, and may
also reset some clocks. They may also carry labels allowing synchronization. An
example of timed automaton and a corresponding possible execution is shown
in figure ??.

unr -
Fig. 2. Example of a t i e d automaton, where z is a clock. The guard z 2 2 and the
invariant z 5 3 imply that the transition will fire after 2 and before 3 time units passed
in the state,

The behavior of a complex system may be represented by a single timed
automaton being a product of a number of other timed automata. The set of
states of this resulting automaton is the Cartesian product of states of the com-
ponent automata, the set of clocks is the union of clocks, and similarly for the
labels. Each inwuiant in the resulting automaton i s the conjunction of the in-
variants of the states of the component automata, and the arcs correspond to
the synchronization guided by the labels of the corresponding arcs.

3.2 Extensions in UPPAAL

We use UPPAAL for our modelling; a detailed presentation of this tool may be
found in (?I. We remind here only the inain characteristics and extensions with
respect to the standard model I?]. In UPPAAL, a timed automaton is a finite

6 G. Hutzler, H. Klaudel and D.Y. Wang

structure handling, in addition to a finite set of clocks evolving synchronously
with time, a finite set of integer-valuated and Boolean variables. A model is
composed of a set of timed automata, which communicate using binary synchro-
nization through transition labels and a syntax of emission/reception. By con-
vention, a label k! indicates the emission of a signal on a channel k. It is supposed
to be synchronized with the signal of reception, represented by a complementary
label IC?. Absence of synchronization labels indicates an internal action of the
automaton. The execution of the model starts in the initial configuration (cor-
responding to the initial state of each automaton with all variabIe values set to
zero), and is a succession of reachable configurations. The configuration change
may occur for three reasons:

- by time progression corresponding to d time units in the states of the com-
ponents, provided that all the state invariants are satisfied. In the new con-
figuration, the clock values are increased by d and the integer variables do
not change;

- by a synchronization if two complementary actions in two distinct compo-
nents are possible, and if the corresponding guards are satisfied. In the new
configuration, the corresponding states are changed and the values of clocks
and of integer variables are modified according to the reset and update in-
dicat ions;

- by an internal action if such an action of a component is possible, it may be
executed independently of the other components: the state and the variables
of the component are modified as above.

Another peculiarity of UPPAAL, useful in expressing a kind of synchronicity
of moves, is the notion of “committed” states, labelled in the figures by a special
label C; see, for instance, the state Choice in the first automaton of figure ??.
In such a state, no delay is permitted. This implies an immediate move of the
concerned component. Thus, two consecutive transitions sharing a committed
state are executed without any intermediate delay.

UPPAAL allows simulating systems specified in this way, detecting deadlocks
and to verify, through model-checking, various reachability properties. Typically,
it can answer the questions like “starting from its initial state, does the system
reach a state where a given property is satisfied?”, “starting from its initial state,
is a given property always true?”, or “starting from its initial state, can the
system reach a given state in a given delay?”.

4 Modelling a decentralized reactive system

As stated earlier, timed automata allow to model systems as a set of concurrent
processes. We will detail gradualiy in the sequel the way they may be applied
to our case study. The behavior of our agents consists in receiving and pro-
cessing input data in order to generate and send new outputs. The processing
has a duration, considered as fixed, and has to be performed repeatedly. The
corresponding -model is shown in figure ??.

Towards Timed Automata and Multi-Agent Systems 7

lost-dataii agent-clk >= min-rimc
WorLForAgcotNl !

Fig. 3. A model of a simple agent.

Initially, the agent is waiting for new data in the state Idle. It starts processing
on reception of the signal WorkForAgentIVpassing to the state Processing. It
comes back to the state Idle at the end of its treatment, which takes a time
comprised between min- time and mm- time. The following agent is informed
then (through the synchronisation on the channel WorkForAgentNl), that it can
start processing.

This simple model presents however the following drawback: if a new treat-
ment request comes to an agent when it is already processing, the corresponding
data is lost. The number of such events is counted by incrementing the variable
lost-data. Nevertheless, the loop at the state Processing is necessary to avoid
deadlocks which may occur if the situation described above happens. A solution
can be to introduce an additional state playing the role of a buffer (see figure ??).

I \ 1 // WorkForAgentN?
lost-&ta++

agent-Clk >= min_dm
WOrkForAgcntNl ! WorkForAgentNl !

ageat-clk >= min-timc

agent-clk F 0

Fig. 4. A model of an agent with a buffer.

Now, if a new request arrives to the agent while it is in the state Processing, it
passes to the staze &@r. TUCU, it, coiiis bzik to thc st& Pmcessir?,. zt the en?
of the treatment, in order to start a next one. If a new request comes when the
agent is already in the state Bufler, then the Corresponding data is lost. At this
stage, we shall still take into account the fact that a few modules (corresponding
to -vaiious precisims of the prccasGng) are available and may be used to analyze
the dancer's posture. A first approach consists in duplicating the agent in charge

8 G. Hutzler, H. Klaudel and D.Y. Wmg

of the corresponding treatment by associating to each copy a different duration
constant. However, when a new data is available, it is transmitted to one of the
agents chosen in a non-deterministic way. Thus, it is necessary to incorporate
in the agent a controller responsible for choosing between different treatment
modules. This solution is represented in figure ??.

Free?
1 I

condition-on-agent-clk
WorkForModulel ! 7 C h q - 7 Choice

!conditionpn-agent-clk
WorkForModuleZ!

Control?

EndGnml!

WorkForMcdulel?

ModulelProcessing

module-elk c= rnaxtime
ModulelFree

Free 1 module-clk >= rmn-time
WorkForAgenN’

WorkForModuleZ?

ModuleZProcessing

module-clk c= max-time
Module2Free

Ft-CC! module-clk >= min-time
WorkForAgcntNl !

Fig. 5 . A model composed of a generic agent, a controller module and two treatment
modules.

When some data is ready to be processed, the controller module passes in the
state Choice. The agent chooses to execute a treatment module depending on

Towards Timed Automata and Multi-Agent Systems 9

the value of the boolean expression condition- on- agent- clk. When the chosen
module achieves processing, it informs about it the next agent in the processing
chain, then it informs the controller by sending the signal Free.

5 Verification and simulation

The controller presented in the previous section needs of course to be instanti-
ated by fixing explicitly the criteria determining the choice between treatment
modules. We present three different strategies that may be considered and ad-
dress verification and simulation experiences which may be accomplished for
some interesting properties. The particular context considered for this study is
explained in figure ??.

.,., ...-
Module 1 I D ms '

FUII analysis
Analysis Multimedia

-b module production
controller Module 2

Limited analysis

Fig. 6. A simplified scheme of the processing chain.

The extraction agent produces an image every 50 ms, which has to be treated
by the agent in charge of the analysis. This treatment should be performed either
by a module capable to accomplish a complete analysis or by a module which
can do only a partial one but taking less time (&reamenta < tcreatme,,tl). The
controller has to be designed in such a way that it could be possible to conciliate
two potentially contradictory criteria: analyzing all images or, in other words,
avoiding loosing too many of them (timeliness) and performing a maximum of
complete analyzes (logical correctness).

5.1 Different strategies of choice

The i3-d proposal is not really a strategy but we give it as a reference. It consists
only in systematically alternating the two treatment modules.

In order to minimize the loss of images, the idea is to anticipate, when the
agent performs the choice (t C h e C F) . the date when the agent will receive a new
image to analyze while it has already an image in its buffer and has not termi-
nated its current analysis @loss) . This is possible since the frequency of arrivals
of new images is constant. Thus, in the second strategy, the module 1 will be
chosen if and only if ttreatmmtl < tioss - tchoice.

In order to maximize the number of complete analyzes, one can loosen the

10 G. Hutzler, H. Klaudel and D.Y. Wang

previous constraint by allowing to use the module 1 even if its execution will
necessarily entail a loss of an image. In the third strategy, the module 1 will be
chosen if and only if ttreatmentl < (tloss - tchoice) * coef, where coef fixes the
limits of allowance.

5.2 Results

For each strategy, it is possible to check with UPPAAL that the system satisfies
certain properties. In particular, we checked that:

- there is no deadlock: A[] not deadlock;
- there is no image lost: A[] lost-data == 0;
- the ratio of the choice of module 1 is grater than a given threshold:

A[] (n b l * 100 / (nbl + nb2 + lost-data)) > 50).

Moreover, it i s possible to simulate the system during a given number of cycles
and t o check experimentally the ratio of lost images and images which could be
analyzed completely versus treatment times ttreatmentl and ttreatmentz) as shown
in figure ??.

Model-checking techniques allow to verify formally and automatically if some
properties of the system, considered as important, are satisfied in all possible SYS-

tem evolutions. On the other hand, simulation permits to obtain some empirical
evaluation of performances of the system in terms of logical correctness and
timeliness, depending on the characteristics of treatment modules and on the
applied strategy. This allows also envisaging a supplementary control level for
the agent in charge of the image analysis..This corresponds to a kind of "meta-
strategy" which could adapt dynamically the strategy of choice depending on
various constraints and fixed objectives.

6 Automated code generation

After having validated the model of the multi-agent system, both formally and
experimentally, the next stage of development corresponds to translating it into
an executable prototype. In order to do so, a naive idea could consist in imple-
menting each timed automaton by a thread, since they are models of concurrent
processes. Nevertheless, for a same agent modelled by several automata, it could
involve several synchronization and lead to decline sensibly its performances,
which could be awkward for a reactive system. Thus, a first step consists in per-
forming first a synchronized product of all automata describing the same agent
in order to transform it next into a skeleton of an application. The compiler that
we developed produces this synchronized product by performing also a number
of optimizations in order to minimize the size of the resulting automaton. Each
agent is modelled consequently by a unique timed automaton, which can be
translated into an executable form in several steps. First, only the finite state
automaton aspects of the given timed automaton are considered. The states
where it is necessary to let the time progress are assumed to correspond to some

Towrtrds Timed Automata and Multi-Agent Systems 11

I - 8 - 8 ' t

70.00 , I

60.00

a. 50.00
m
3 40.00
a.
2 30.00

20.00 n

1o.m

(D

X bst data - sirategy 1
-% module 1 - -2

% lost data - strategy 2

-%module 1 -sbategy3

_ . u-
0.w I I . . - - . . . I . , , 5 , .I

0 5 10 15 20 25 30 35 40 45 50 55 MI 65 70 75 80

L

Fig. 7. The ratio of images analyzed with the module 1 (on the left) and the ratio of
lost images (on the. right), obtained for the second strategy and Various values of time
of treatment for modules 1 and 2. On the bottom, a comparison of the three strategies
for ttreatmelltl = 80ms and c~ef= 1.25, for &OUS values of ttreatmentz.

treatments. Our compiler translates it in terms of'a state in which the agent does
a break (which is supposed to be replaced by the corresponding treatment mod-
ule when it is available). Finally, the synchronization signals between automata
are associated to communications between the corresponding agents.

7 Conclusion

We presented in this paper a complete approach, from the software engineer-
ing point of view, for the modelling of adaptive real-time systems based on the
multi-agent paradigm. The usage of timed automata specification and verifica-
tion technique play& a c~$id ~2 - d f k g :de. w e s h w d hnw this
formalism, thanks to its capabilities to model concurrent processes having time
constraints, can be adapted in order to represent multi-agent system. Moreover,
we demonstrated that it could be possible to model in a modular way an agent
contrdler, capzble to m&e dec%.om depending on some fixed objectives.

The advantage one can take from this formal specification is twofold: First,

1 2 G. Hutzler, H. Klaudel and D.Y. Wang

it is possible to check the model against various kinds of deadlock (or timelock)
and more generally, against any property coming from a non-respect of time con-
straints, and avoid this way some problems at a very early stage of development.
Second, it is worthwhile to take advantage of timed automata representation of
the system in order t o generate automatically application skeletons. To do SO, we
developed a specific compiler which, taking an XML representation of the timed
automata specification, produces a skeleton based on the JADE multi-agent
platform [?I. This prototype is finally used to validate choices made previously,
during modelling and impIementation, and to review and modify some of them
if necessary.

Finally, the general purpose of this work consists in exploiting the approach
described in this paper, the design patterns and the composition tools, in order to
facilitate the design of an entire system. These design patterns could be coupled
with machine learning techniques for the exploration of parameter spaces, in
order to optimize agent behaviors when the model becomes more complex. Also,
it would be interesting to develop an experimental protocol in order to validate,
on the real prototype, the properties observed on the model. In this context, the
presented work, even if it is at a preliminary stage, demonstrates however the
feasibility of this approach and allows to foresee favorably the development of
powerful and complete tools dedicated to the implementation of reactive multi-
agent system.

References

1. Alur R., Dill D. L., A Theory of Timed Automata, in,Theoretical Computer sci-
ence, Vol. 126, No. 2, pp. 183-236, 1994.

2. Arai T., Stolzenburg F., Multiagent systems specification by UML statecharts aim-
ing at intelligent manufacturing, in AAMAS’2002, pp. 11-18, 2002.

3. Attoui A., Les systemes multi-agents et le temps-reel, Eyrolles, 1997.
4. Belleifemine F., Caire G., Poggi A., Rimasa G., JADE - A White Paper,

http://sharon.cselt.it/projects/jade/papers/WhitePaperJADEEXP.pdf, 2003.
5. Douglas B. P., Real-Time UML: Developing Efficient Objects for Embedded SYS-

tems, Addison-Wesley-Longman, Reading, MA, 1998.
6. Elmstrprm R., Lintulampi R., Pezze M., Giving Semantics to SA/RT by Means of

High-Level Timed Petri Nets, in RTSJ, Vol. 5 , No. 213, pp. 249-271, 1993.
7. Groupe AFCET Systemes Logiques. Pour une representation norma1isi.e du cahier

des charges d’un automatisme logique, in RAII, Vol. 61 & 62, 1977.
8. Harel D., Statecharts : A Visual Formalism for Complex Systems, in Science of

Computer Programming, Vol. 8, 1987.
9. Harel D., Pnueli A., Schmidt J. P., Sherman R., On the Formal Semantics of

Statecharts, LICS 1987, pp. 54-64, 1987.
10. Hatley D. J. , Pirbhai I., Strategies for Real Time System Specification, Dover

Press, 1987.
11. S. Horstmann and G. Cornell. Core Java 2, Vol. 1 & 2, Prentice Hall, 1999.
12. Hutzler G., Gortais B., Joly P., Orlarey Y . , Zucker J.-D., J’ai dam6 avec ma-

chine ou comment repenser les rapports entre l’homme et son environnement, in
JFIADSMA’ZOOP, pp.147-150, Hermes Science, 2002.

Towards Timed Automata and Multi-Agent Systems 13

13. Larsen K. G., Pettersson P., Yi W., UPPAAL in a Nutshell, in Springer Inter-
national Journal of Software Tools for Technology Transfer, l(1-2), pp. 134152,
1998.

14. Occello M., Demszeau Y., Baeijs C., Designing Organized Agents for Cooperation

15. Manna Z., Pnueli A., The Temporal Logic of Reactive and Concurrent Systems:

16. Soler J., Julian V., Rebollo M., Carrascosa C., Botti V., Towards a Real-Time

17. Ward P., Mellor S., Structured Development for Real-Time Systems, PrenticeHall,

18. Wolfe V. F., DiPippo L. C., Cooper G., Johnston R, Kortman P., Thuraisingham

. with Real-Time Constraints, in CRW98, pp. 25-37, Springer-Verlag, 1998.

Speciiication, Springer-Verlag, 1991.

Multi-Agent System Architecture, in COAS, AAMAS’2002, 2002.

1985.

B., Real-Time CORBA, in IEEE TPDS, Vol. 11, no. 10, 2000.

c

