
Verifying Multi-agent Systems via Unbounded
Model Checking"

M. Kacprzakl, A. Lamuscio2, T. Lasica3, W. Penczek3i4, and M. Szreterfc3

Bialy&k University of Technology
Institute of Matheinatics and Physics

15351 Bialystok, ul. Wiejska 45A, Poland
email: mdkacprzakQwp.pl

* Department of Computer Science
King's College London, London WC2R 2LS, United Kingdom

email: alessio@dcs.kcl. ac.uk
' Ihstitute of Computer Science, PAS
01-237 Warsaw, ul. Ordona 21, Poland

email: (tlasica,penczek,meter}@ipipan.waw.pl
* Podlasie Academy

Institute of Informatics, Siedlce, Poland

Abstract. We present an approach to the problem of verification of
epistemic properties in multi-agent systems by means of symbolic model
checking. In particular, it is shown how to extend the technique of un-
bounded model checking from a purely temporal setting to a temporal-
epistemic one. In order to achieve this, we base our discussion on in-
terpreted systems semantics, a popular semantics used in multi-agent
systems literature. We give details of the technique and show how it can
be applied to the well known train, gate and controller problem.
Keywords: model checking, unbounded model checking, multi-agent
systems

1 Introduction

Verification of reactive systems by means of model-checking techniques [3] is
now a well-established area of research. In this paradigm one typically models
a system S in terms of automata (or by a simiiar transition-based formalism),
builds an implementation Ps of the system by means of a model-checker friendly
language such as the input for S M V or PROMELA, and finally uses a model-
checker such as S M V or SPIN to verlfy some temporal property + the system:
Mp 4, where M p is a temporal model representing the executions of Ps.
As it is well known, there are intrinsic difEculties with the naive approach of

The authors acknowledge support from the Polish National Committee for Scientifk
h e a r c h (grant No 4TllC 01325, a special grant supporting ALFEBIITE), the
NufEeld Foundation (grant NAL/00690/G), and EPSRC (GR/S49353/01).

** M. Szreter acknowledges support from the US Navy via grant N00014-041-4063
issued by the Office of Naval Research International Field Office.

performing this operation on an explicit representation of the states, and refine-
ments of symbolic techniques (based on OBDD’s, and SAT [l] translations) are
being investigated to overcome these hurdles. Formal results and corresponding
applications now allow for the verification of complex systems that generate tens
of thousands of states.

The field of multi-agent systems (MAS) has also recently become interested
in the problem of verifying complex systems. In MAS the emphasis is on the
autonomy, and rationality of the components, or agents [22]. In this area, modal
logics representing concepts such as knowledge, beliefs, intentions, norms, and
the temporal evolution of these are used to specify high level properties of the
agents. Since these modalities are given interpretations that are different from
the ones of the standard temporal operators, it is not straightforward to ap-
ply existing model checking tools developed for standard Linear Temporal Logic
(LTL) (or Computation Tree Logic, CTL) temporal logic to the specification of
MAS. One further problem is the fact that the modalities that are of interest
are often not given a precise interpretation in terms of the computational states
of the system, but simply interpreted on classes of Kripke models that guaran-
tee (via frame-correspondence) that some intuitive properties of the system are
preserved1. This makes it hard to use the semantics to model any actual com-
putation performed by the system [21]. For the case of knowledge, the semantics
of interpreted systems [8], popularized by Halpern and colleagues in the go’s,
can be used to give an interpretation to the modalities that maintains the tradi-
tional S5 properties, while, at the same time, is appropriate for model checking
[9]. Indeed, a considerable amount of literature now exists on the application
of interpreted systems and epistemic logic to the application areas of security,
modelling of synchronous, asynchronous systems, digital rights, etc. It is fair to
say that this area constitutes the most thoroughly explored, and technically ad-
vanced sub-discipline among the formal studies of multi-agent systems available
a t the moment.

.

1.1

The recent developments in the area of model checking MAS can broadly be
divided into streams: in the first category standard predicates are used to inter-
pret the various intensional notions and these are paired with standard model
checking techniques based on temporal logic. Following this line is for example
[23] and related papers. In the other category we can place techniques that make
a genuine attempt at extending the model checking techniques by adding other
operators. Works along these lines include [19,20,12,17,16,15,14, lo].

In [19] local propositions are used to translate knowledge modalities on LTL
structures. Once this process is done, the result can be fed into a SPIN model

For example, in epistemic logic it is customary to use equivalence models to interpret
a knowledge modality K SO that it inherits the properties of the logical systems S5
[2]; in particular axioms T, 4, and 5 (which are considered to be intuitively correct
for knowledge) result valid.

State of the art and related l i te ra ture

2

checker. Unfortunately, in this approach local propositions need to be computed
by the user.

These works were preceded by [12], where van der Meyden and Shilov pre-
sented theoretical properties of the model checking problems for epistemic lin-
ear temporal logics for interpreted systems with perfect recall. In particular, it
was shown that the problem of checking a language that includes “until” and
“common knowledge” on perfect recall systems is undecidable, and decidable
fra,gments were identified.

In [17,16,15] an extension of standard temporal verification via model check-
ing on obdd’s to epistemic and deontic operators is presented and studied.

In [14,10] an extension of the method of bounded model checking (one of the
main SAT-based techniques) to CTLK a language comprising both CTL and
knowledge operators, was defined, implemented, and evaluated. While prelimi-
nary results appear largely positive, any bounded model checking algorithm is
mostly of use when the task is either to check whether a universal CTLK for-
mula is actually false on a model, or to check that an existential CTLK formula
is valid. This is a severe limitation in MAS as it turns out that many of the
most interesting properties one is interested in checking actually involve univer-
sal formulas. For example, in a security setting one may want to check whether
it is true that forever in the future a particular secret, perhaps a key, is mutually
known by two participants.

1.2 Aim of this paper

The aim of this paper is to contribute to the line of SAT-based techniques, by
overcoming the intrinsic limitation of any bounded model checking algorithm,
and provide a method for model checking the full language of CTLK. The SAT-
based method we introduce and discuss here is an extension to knowledge and
time of a technique introduced by McMillan [ll] called unbounded model checking
(UMC). A byproduct of the work presented here is the definition of fixed point
semantics for a logic CTL,K, which extends CTLK by past operators.

Like any SAT-based method, UMC consists in translating the model checking
problem of what is in this case a CTL,K formula into the problem of satisfia-
bility of a propositional formula. UMC exploits the characterization of the basic
modalities in terms of Quantzfied Boolean Fonnulm (QBF), and the algorithms
that translate QBF and k e d point equations over QBF into propositional for-
mula. In order to adapt UMC for checking CTL,K, we use three algorithms.
The first one, implemented by the procedure forall [ll] (based on the Davis-
?-tz..-Lngm_~-~~v~lsnc! approach [4]) eliminates the universal quantifier
from a QBF formula representing a CTL,K formula, and returns the result in
conjunctive normal form (CNF). The remaining algorithms, implemented by the
procedures gfp and l f p calculate the greatest and the least fixed points for the
modal fcirmias iil use here. V!timattely, the technique allows for a CTL,K for-

3

* Note that w is a vector of propositional variables used to encode the states of the
model.

4

mula cr t o be translated into a propositional formula [a:](w) in GNF, which
characterizes all the states of the model, where a: holds.

For the case of CTL it was shown by McMillan [ll] that model checking via
UMC can be exponentially more efficient than approaches based on BDD’s in
two situations:

- whenever the resulting fixed points have compact representations in CNF,

- whenever the SAT-based image computation step proves to be faster than
but not via BDD’s;

the BDD-based one.

Although we do not prove it here, we expect a similar increase in efficiency for
model checking of CTL,K over interpreted systems.

The rest of the paper is structured in the following manner. Section 2 in-
troduces interpreted systems semantics, the semantics on which we ground our
investigation. The logic CTL,K is defined in Section 3. Section 4 summarize the
basic definitions that we need for CNF and QBF formulas, and fixes the notation
we use throughout the paper. A k e d point characterization of CTL,K formulas
is presented in Section 5. The main idea of symbolic model checking CTL,K is
described in section 6, where algorithms for computing propositional formulas
equivalent to CTL,K formulas are also given. Two examples on the use of the
algorithms of this paper are given in Section 7. Preliminary experimental results
are shown in Section 8, whereas conclusions are given in Section 9.

2 Interpreted systems semantics

Any transition-based semantics allows for the representation of temporal flows
of time by means of the successor relation. For example, UMC for CTL uses
plain Kripke models [Ill. To work on a temporal epistemic language, we need to
consider a semantics that allows for an automatic representation of the epistemic
relations between computational states [21]. The mainstream semantics that
allows to do so is the one of interpreted systems [8].

Interpreted systems can be succinctly defined as follows (we refer to [8] for
more details). Assume a set of agents A = (1,. . . , n}, a set of local states Li
and possible actions Ad, for each agent i E A, and a set Le and Act, of local
states and actions for the environment. The set of possible global states for the
system is defined as G = L1 x . . . x L, x Le, where each element (ZI, . . . , Z,, l e)
of G represents a computational state for the whole system (note that, as it
will be clear below, some states in G may actually be never reached by any
computation of the system). Further assume a set of protocols Pi : Li -+ 2Acta1
for i = 1 , . . . , n, representing the functioning behaviour of every agent, and a
function P, : Le ---t 2Acte for the environment. We can model the computation
taking place in the system by means of a transition function t : G x Act -+ G,

where Act Ad1 x . . . x Ad, x Ad, is the set of joint actions. Intuitively, given
an initial state L , the sets of protocols, and the transition function, we can build
a (possibly infinite) structure that represents all the possible computations of
the system. Many representations can be given to this structure; since in this
paper we are only concerned with temporal epistemic properties, we shall find
the following to be a useful one.

Definition 1 (Models). Given a set of agents A = (1,. . . , n } , a temporal
epistemic model (or simply a model) is a pair M = (K, V) with K = (G, W, T , -1,
. . . , -,,, L), where

G is the set of the global states f o r the system (henceforth called simply
states);
T 2 G x G is a total binary (successor) relation o n G;
W is a set of reachable global states from L , i.e., W = { s E G I (L, s) E T*}3,
-i C G x G (i E A) is an epistemic accessibility relation for each agent
i E A defined by s -% s’ 28 Zi(s’) = li(s), where the function 1, : G --+ Li
returns the local state of agent i from a global state s; obviously mi is an
equivalence relation,
L E W is the initial state;
V : G - 2pvK is a valuation function for a set of propositional variables
PV, such that true E V (s) for all s E G. V assigns to each state a set of
propositional variables that are assumed t o be true at that state.

Note that in the definition above we include both all possible states and the
subset of reachable states. The reason for this follows from having past modalities
in the language (see the next section), which are defined over any possible global
state so that a simple k e d point semantics for them can be given. Still, note
that, if required, it is possible to restrict the range of the past modalities to
reachable states only by insisting that the target state is itself reachable from
the initial state.

By]MI we denote the number of states of M, by N = {0,1,2, . . .} the set of
natural numbers and by N+ = { 1,2, - . .} the set of positive natural numbers.

Epistemic relations. When we consider a group of agents, we are often interested
in situations in which eve y o n e in the group knows a fact a. In addition to this it
is sometimes usehl to consider other kinds of group knowledge. One of these is
the one of common knowledge. A group of agents has common knowledge about
a if everyone knows that a, and everyone knows that everyone knows a, and
everyone knows that everyone knows that everyone knows that a, and so on.
For example common knowledge is achieved following information broadcasting
with no faults. A different notion is the one of distributed knowledge (some-
times referred to as “implicit kn~wledge”, or “wise-mad’ knowledge). A fact a
is distributed howiedge m a group of agents if it codd be inferred by p u u k g
together the information the agents have. We refer to [8] for an introduction to
these concepts.

.

T’ deriotcs the reflexiw and transitive closure of T.

5

Let r C A. Given the epistemic relations for the agents in T , the union
of P s accessibility relations defines the epistemic relation corresponding to the
modality of everybody knows: N:= UiEr ~ i . -5 denotes the transitive closure
of w?, and corresponds to the relation used to interpret the modality of common
knowledge. Notice that from reflexivity of -: follows that -$ is, in fact, the
transitive and reflexive closure of -?. The relation used to interpret the modal-
ity of distributed knowledge is given by taking the intersection of the relations
corresponding to the agents in T.

Computations. A computatzon in M is a possibly infinite sequence of states
T = (so, SI, . . .) such that (s,, s , + ~) E T for each i E IN. Specifically, we assume
that (s,, s,+I) E T iff sZ+l = t (s z , act,), i.e., s,+1 is the result of applying the
transition function t to the global state s,, and a joint action act,. All the com-
ponents of act, are prescribed by the corresponding protocols P3 for the agents
a t st. In the following we abstract from the transition function, the actions, and
the protocols, and simply use T , but it should be clear that this is uniquely de-
termined by the interpreted system under consideration. Indeed, these are given
explicitly in the example in the last section of this paper. In interpreted systems
terminology a computation is a part of a run; note that we do not require SO

to be an initial state. For a computation 7r = (so, SI,. . .), let n (k) = s k , and
7rk = (so,. . . , s k) , for each k E IN. By n (s) we denote the set of all the infinite
computations starting at s in M.

3 Computation Tree Logic of Knowledge with Past
(CTLPK)

Interpreted systems are traditionally used to give a semantics to an epistemic
language enriched with'temporal connectives based on linear time [8]. Here we
use Computation Dee Logic (CTL) by Emerson and Clarke [7] as our basic
temporal language and add an epistemic and past component to it. We call the
resulting logic Computation Tree Logic of Knowledge with Past (CTL,K).

Definition 2 (Syntax of CTL,K). Let PV, be a set of propositional variables
containing the symbol t rue . The set of CTL,K formulas 3 0 R M is defined
inductively by using the following rules only:

every member p of PVK is a formula,
i f CY and
i f CY and ,f3 are formulas, then so are AXa, AGa, and A(aUP),
i f CY i s formula, then so are AYa and AHcY,
if CY is formula, then so is K i a , for i E A,
if CY i s formula, then so are D r a , Cra, and Era , f o r r C A.

are formulas, then so are -a, CY A p and a V p,

The other modalities are defined by duality as follows:

d ef - E F ~ = 7 ~ ~ l a , E P ~ 2! l ~ ~ 7 a , E Z ~ 5 7 ~ ~ l a , for z E {x,~),

6

def Moreover, a + P %f ~ c Y V P , a -S P = (a j P) A (P + a), and false ‘?? Ttrue.
We omit the subscript r for the epistemic modalities if r = A, i.e., r is the set
of all the agents. As customary X, G stand for respectively “at the next step”,
and “forever in the future”. Y,H are their past counterparts “at the previous
step”, and “forever in the past”. The Until operator U, precisely aUg, expresses
that B occurs eventually and Q holds continuously until then.

Definition 3 (Interpretation of CTL,K). Let M = (K , V) be a model with
K = (G, W,T, ~ 1 , . . . , N,,, L) , s E G a state, T a computation, and a,/? formulas
of CTL,K. M, s + CY denotes that a is true at the state s in the model M. M is
omitted, if it is implicitly understood. The relation + is defined inductively as
follows:

s l=P i f f P E W S) ,
s + = a i f f ska ,
s + a v P i f f s k a or s + P ,
s F a A r \ P f l s + o and S ~ P ,
s + Axa
s + AGa iff VT E n (s) Vm20 ~ (m) + CY,
s I= A(aUP) i f f VT E n (s) (%LO [r(m) + P and Vj;-<m ~ (j) I= 41,
s + AYa i f f Vs‘ E G (if (s’,s) E T, t h e n s’ + a),
s + AHa i f f Vs’ E G (i f (s’,s) E T*, t h e n s’ + a) ,
s + K i a iff Vs‘ E W (i f s -i s’, t h e n s’ + a),
s D r a i f f Vs’ E W (i f s -; s’, t h e n s’ + a),
s + Era i f f Vs’ E W (i f s -; s’, t h e n s’ + a),
s Cra if f Vs‘ E W (i f s -: s’, t h e n s’ CY).

i f f v7r E n (s) T(1) + a,

Definition 4. (Validity) A CTL,K f o n u l a cp is valid in M (denoted M + cp)
i f f M, L I= cp, Le., cp is true at the initial state of the model M .

Notice that the past component of CTL,K does not contain the modality Since,
which is a past counterpart of the modality Until denoted by U. Extending the
logic by Since is possible, but complicates the semantics, so this is not discussed
in this paper.

4 Formulas in Conjunctive Normal Form and Quantified
Boolean Formulas

In this section, we shortly describe Davis-Putnam-Logemann-loveland approach
141 ts &e&&g s&isfi.hijity ~f f c ~ ~ i & s in mnjiinctive norma3 form (CNF). and
show how t o construct a CNF’ formula that is unsatisfiable exactly when a propo-
sitional formula a is valid. Having done so, we apply these two methods to com-
pute a propositional formula equivalent to the quantified boolean formula Vv.a,
where u is a vector of propositions. h order to do this we first give sone basic

7

definitions. The formalism in this section is from [11] and is reported here for
completeness.

Let PV be a finite set of propositional variables. A literal is a propositional
variable p E PV or the negation of one: i p , p E PV. A clause is a disjunction
of a set of zero or more literals 1[1] V . . . V l [n] . A disjunction of zero literals is
taken to mean the constant false. A formula is in a conjunctive normal f o r m
(CNF) if it is a conjunction of a set of zero or more clauses c[l] A . . . A c[n]. A
conjunction of zero clauses is taken to mean the constant t rue. An assignment
is a partial function from PV to {true,false}. An assignment is said to be
total when its domain is PV. A total assignment A is said to be satisfying for
a formula cy when a(A) = true, i.e., the value of a given by A is true (under
the usual interpretation of the boolean connectives). We equate an assignment
A with the conjunction of a set of literals, specifically the set containing i p for
all p E dom(A) such that A(p) = false, and p for all p E dom(A) such that
A (p) = true.

For a given CNF formula cy and an assignment A, an implication graph
IG(A, a) is a maximal directed acyclic graph (V, E), where V is a set of ver-
tices, and E is a set of edges, such that:

- V is a set of literals,
- every literal in A is a root,
- for every vertex 1 not in A, the CNF formula cy contains the clause

def

- for all p E PV, V does not contain both p and i p .
C l (4 A , a) = 1 v V m E (l ’ E V : (l ’ , I) E E) -n,

Notice that the above conditions do not uniquely define the implication graph.
We denote by A, the assignment induced by the implication graph IG(A,cy),
i.e., A, = AVEV v , where V is a set of vertices of IG(A, cy). Observe that A, is
an extension of A. Furthermore, cy A A implies A,.

Given two clauses of the form c [l] = p V C1 and c[2] = i p V C2, where Ci
and Cz are disjunctions of literals, we say that the resolvent of c[l] and c[2] is
C1 V C2, provided that C1 V C2 contains no contradictory literals, i.e., it does
not contain a variable p and its negation ~ p . If this happens, the resolvent does
not exist. Note that the resolvent of c[l] and c[2] is a clause that is implied by
c [l] A c[2].

CNF formulas satisfy useful properties to check their satisfiability. Indeed,
notice that a CNF formula is satisfied only when each of its clauses is satisfied
individually. Thus, given a CNF formula cy and an assignment A, if a clause
in a has all its literals assigned value false, then A cannot be extended to a
satisfying assignment. A clause that has all its literals assigned to value false
is called a conflicting clause. We also say that a clause is in conflict when all
of its literals are assigned the value false under A,. I f there exists a clause in
cy such that the all but one of its literals have been assigned the value false,
then the remaining literal must be assigned the value t r u e for this clause to
be satisfied. In particular, in every satisfying assignment which is an extension

8

of the assignment A, the unassigned literal must be true. Such an unassigned
literal is called' unit Ziterul, and the clause it belongs to is called a unit clause.

There are several algorithms for determining satisfiability of CNF formulas.
Here, we use the algorithm proposed by Davis and Putnam and later modiiied
by Davis, Logemann and Loveland [4]. The algorithm is based on the methods of
Boolean constraint propagation (BCP) and conflict-based learning (CBL) and it
is aimed at building a satisfying assignment for a given formula CY in an incremen-
tal manner. The BCP technique is the most important part of the algorithm; it
determines a logical consequence of the current assignment by building an impli-
cation graph and detecting unit clauses, and conflicting clauses. When a conflict
is detected, as we mentioned above, the current assignment cannot be extended
to a satisfying one. In this case, the technique of conflict-based learning is used
to deduce a new clause that prevents similar conflicts from reoccurring. This
new clause is called a conflict clause and is deduced by resolving the existing
clauses using the implication graph a s a guide.

The following is a generic conflict-based learning procedure that takes an
assignment A, a CNF formula CY, and a conflicting clause c and produces a
conflict clause by repeatedly applying resolution steps until either a termination
condition T is satisfied, or no further steps are possible. We elaborate on the
condition T below when we discuss how the procedure deduce is used by the
procedure forall.

procedure deduce(c, A, a) ,
uhile 7T and exists I E c such that -1 fk A

return c
let c = resolvent of d(yZ,A, a) and c

The resulting clause c is implied by CY. Thus it can be added to a without
changing its satisfiability.

In the following we show a polynomial-time algorithm that, given a proposi-
tional formula CY, constructs a CNF formula which is unsatisfiable exactly when
Q is valid. The procedure works as follows. First, for every p subformula of
the formula CY (including CY itself) we introduce a distinct variable Zp. If p is a
propositional variable, then 18 = p. Next we assign a formula CNF(p) to every
subformula ,B according to the following rules:

9

It can be shown [ll] that the formula CY is valid when the CNF formula CAfF(a)A
-1, is unsatisfiable. This follows from the fact that there is a unique satisfying
assignment A’ of CNF(a) consistent with A such that A’&) = CY(A).

In our method, in order to have a more succinct notation for complex o p
erations on boolean formulas, we also use Quantijied Boolean Formulas (QBF),
an extension of propositional logic by means of quantifiers ranging over proposi-
tions. In BNF’: a ::= p I --a I a ~ a I 3p.a I V p a . The semantics of the quantifiers
is defined as follows:

0 3p.a iff a(p +- true) v a(p + fake),
Vp.a iff a(p +- true) A a(p +- fake),

where a 6 QBF, p E PV and a (p t +) denotes substitution with the formula
?,b of every occurrence of the variable p in formula a.

We will use the notation Vw.a, where v = (v[l], . . . ,v[m]) is a vector of
propositional variables, to denote Vu[l].Vv[2] . . . Vv[rn].a.

What is important here, is that for a given QBF formula Vv.a, we can con-
struct a CNF formula equivalent to it by using the algorithm forall [ll].

procedure foraZZ(v, a) , where v = (v[l], ..., v[m]) and a is a proposi t io-
nal formula
l e t 4 = CAfF(a) A -&, x = true, and A = 0
repea t

if 4 contains false, r e tu rn x
else i f some c i n is i n conf l i c t

add clause deduce(c,A,+) t o q!J
remove some l i t e r a l s f rom A

choose a blocking clause d
remove l i terals of form v[Z] o r -w[i] from c’
add c‘ t o 4 and x
choose a l i teral 1 such t h a t 1 # A and 4 # A
add 1 t o A

else i f A+ is t o t a l

.

e l s e

The procedure works as follows. Initially it assumes an empty assignment
A, a formula x to be true and q5 to be a CNF formula CNF(a) A -I,. The
algorithm aims at building a satisfying assi,o;nment for the formula 4, Le., an
assignment that falsifies a. The search for an appropriate assignment is based
on the DavisPutnam-Logemann-Loveland approach. The following three cases
may happen:

- A conflict is detected, i.e., there exists a clause in q!J such that all of its literals
are false in A+ So, the assignment A can not be extended to a satisfying
one. Then, the procedure deduce is called to generate a conflict ciause, which

10

is added to 4, and the algorithm backtracks, i.e., it changes the assignment
A by withdrawing one of the previously assigned literals.

- A conflict does not exist and Ad is total, i.e., the satisfying assignment is
obtained. In this case we generate a new clause which is false in the current
assignment Ab and whose complement characterizes a set of assignments
falsifying the formula cy. This clause is called a blocking clause and it must
have the following properties:

it contains only input variables, i.e., the variables over which the input

it is false in the current assignment,
it is implied by I , A CNF(cy).

formula cy is built,

A blocking clause could be generated using the conflict-based learning proce-
dure, but we require the blocking clause to contain only input variables. TO
do this we use an implication graph, in which all the roots are input literals.
Such a graph can be generated in the following way. Let A+ be a satisfying
assignment for 4, A' = Ab 1 V, i.e., A' is the projection of A+ onto the input
variables and let 4' = CNF(cy) A X . It is not difficult to show that A:, = A+,
i.e., both the graphs IG(A', 4') and IG(A, 4) induce the same assignments.
Furthermore, the variable 1, is in conflict in IG(A', 4')) since 4 contains the
clause -1,. Thus, a clause deduce(l,, A', 6') is a blocking clause providing
that it contains only input variables, what can be ensured by a termination
condition T .
Next, in order to quantify universally over the variables v[l] , . . . , w [r n] , the
blocking clause is deprived of the variables either of the form w [i] or the
negation of these. This is sufficient as the blocking clause is a formula in
CNF. Then, what remains is added to the formulas 4 and x and the algorithm
continues, i.e., again finds a satisfying assignment for 4.

- The first two cases do not apply. Then, the procedure makes a new assign-
ment A by giving a value to a selected variable.

On termination, when # becomes unsatisfiable, x is a conjunction of the
blocking clauses and precisely characterizes 'v'w .cy.

Theorem 1. Let cy be a propositional formula and w = (v[l], . . . , v[rn]) be a
vector of propositions, then the QBF formula Vu.cy\is logically equivalent t o the
CNF formula forall(v, a) .

The proof of the above theorem follows from the correctness of the algorithm
forall (see [Ill).

Example 1. We illustrate in a quite detailed way (as performed by a solver) some
basic operations of the procedure forall. To make it simple, we explain these
operations for a formula in CNF. So, let 4 = (~ 1) A (211 V 214 V - w g) A (-7212 V
v3) A (04 V v5) and assume that 4 = CNF(cy) A -1, for some formula cy. The aim
of the procedure fora lZ(v l , c y) is to find a formula in CNF equivalent to ' v 'v i .~~.
We will only show how one blocking clause is generated and added to 4 and
x. Notice that a t the start of the procedure the assignment of w1 is implied as

11

this variable is the only literal in a clause of 4 and must be followed in order
for the clause to be satisfied. Thus, we have A = (-211). Now, the algorithm
decides the assipment for another unassigned variable, say A(v2) = true. This
implies the assignment of v3, namely A(v3) = t rue, so that the clause (7212 V213)

is satisfied. Next, an assignment A(v4) = false is decided, but notice that this
implies both 215 (because of the clause (214 V v5)) and -us (because of the clause
(211 V V ~ V - V ~)) - a Conflict. The implication graph is analysed (several algorithms
can be applied [13]) and a learned clause (vl v u4) is generated and added to
the working set of clauses (Le., 4). Notice, that the variables 212 and 213 are not
responsible for this conflict. The learned clause greatly reduces the number of
assi,ments to be examined as the partial assignment { - w 1 , ~ 4 } is excluded
from the future search irrespectively on valuations of the remaining variables.
Next, the algorithm withdraws from the assi,&ent of 214. Notice that the learned
clause implies A(v4) = true. Thus, a satisfying assignment that is found is

A blocking clause (VI V - 1 7 4 is generated and the literal 211 is removed from
this clause. We obtain the blocking clause d = (7714) and c' is added to 4 and x.
The procedure keeps on going until 4 does not contain false .

A, = { l V 1 , 2 1 2 , V 3 , v4,v5}-

5

In this section we show how the set of states satisfying any CTL,K formula
can be characterized by a fixed point of an appropriate function. We follow and
adapt, when necessary, the definitions given in [3].

Let M = ((G, W,T, ml,. . . , -,.,,L), V) be a model. Notice that the set 2G of
all subsets of G forms a lattice under the set inclusion ordering. Each element
G' C Q of the lattice can also be thought of as a predicate on G, where the
predicate is viewed as being true for exactly the states in G'. The least element
in the lattice is the empty set, which corresponds to the predicate false, and
the greatest element in the lattice is the set G, which corresponds to true. A
function T mapping 2G to 2G is called a predicate transformer. A set G' G is
a fized point of a function T : 2G -+ 2G if r(G') = G'.

Q implies T (P) C T(&)), T has
a least fixed point denoted by ~Z.T(Z), and a greatest fixed point, denoted
by vZ.T(Z). When T is monotonic and U-continuous (Le., when PI C P2 C
. . - implies .(Ui Pz) = Ui ~ (p ;)) , then ~ Z . T (Z) = ui,o Ti(false). When 7- is
monotonic and ncontinuous (Le., when PI 2 P2 2-. .. implies T(niPi) =
ni .(Pi)), then vZ.T(Z) = n,, ?(true) (see [18]).

In order to obtain fixed p6int characterizations of the modal operators, we
identify each CTL,K formula CY with the set (a) ~ of states in M at which this for-
E-& % t r ~ , fnrmally { N) ~ C = (s E G I M , s + a). If M is clear from the context
we omit the subscript M. F'urthermore, we define functions AX, AY, K;, ET, Ur
&om zG to 2G as folIows:

Fixed point characterization of CTL,K

'

Whenever T is monotonic (i.e., when P

- AX(2) = {s E G I for every s' E G if (s, s') E T , then s' E Z},
- AY(Z) = {s E G I for every s' E G if is', s) E T, then s' E 21,

12

- K,(Z) = {s E G I for every s’ E G if (L , s’) E T’ and s N s’, then s’ E Z},
- Er(2) = {s E G I for every s’ E G if (L , s’) E T‘ and s -: s’, then s’ E Z},
- Dr(Z) = (s E G I for every s’ E G if (L , s’) E T* and s ~p s’, then s‘ E Z} .

Observe that (OQ) = ~((cI)), for 0 E (AX,AY,K,,Er,Dr}. Then, the
following temporal and epistemic operators may be characterized as the least
or the greatest fixed point of an appropriate monotonic (n-continuous or u-
continuous) predicate transformer .
- (AGa) = vZ.(CZ) n AX(Z),

- (AHcz) vZ.(Q) n AY(Z),
- (A(aUP)) = PZ.(P) u ((4 n AX(Z)),

- (era) = vZ.Er(Zn (a))

The first three equations are standard (see [6], [3]), whereas the fourth one
is defined analogously taking account that n~: is the transitive, and reflexive
closure of +.
6

Let M = (K, V) with K = (G, W,T, -1, ..., N,, L) . Recall that the set of global
states G = x Z l L i is the Cartesian product of the set of local states (without
loss of generality we treat the environment as one of the agents).

We assume L, C_ (0, l}ni, where ni = [log,((Lil)l and let n1+ . . . + n, = m,
i.e., every local state is represented by a sequence consisting of 0’s and 1’s.
Moreover, let Di be a set of the indexes of the bits of the local states of each
agent i of the global states, i.e., D1 = (1,. . . , n l) , . . . , D, = (m-n,+l, . . . , m}.

Let PV be a set of fresh propositional variables such that PV n PVK = 8,
Fpv be a set of propositional formulas over PV, and l i t : (0 , l) x PV Fpv
be a function defined as follows: l i t (0 ,p) = -y and l i t (1 , p) = p . Furthermore,
let w = (~ [l] , . . . ,w[m]), where w[i] E PV for each i = 1,. . . , m, be a global
state variable. We use elements of G as valuations4 of global state variables in
formulas of F p v . For example w[l] A w[2] evaluates to t rue for the valuation
q = (1,. . . , l), and it evaluates to fa l se for the valuation q = (0,. . . , O) .

Now, the idea consists in using propositional formulas of Fpv to encode sets
of states of G. For example, the formula w[1] A . . . A w[m] encodes the state
represented by (1 , . . . , l), whereas the formula w[l] encodes all the states, the
first bit of which is equal t o 1.

Symbolic model checking on CTL,K

.

Next, the following propositional formulas are defined:

- IS(w) := AZl lit(si, ~ [i]) .
This formula encodes the state s 2 (SI,. . . , sm) of the model, i.e., si = 1 is
encoded by w[i], and si = 0 is encoded by lw[i] .

This formula represents logical equivalence between global state encodings,
representing the fact that they represent the same state.

- H(w,zI) := AZl ~ [i] H ~ [i] .

We identify 1 with t rue and 0 with false.

13

- T(w, w) is a formula, which is true for a valuation (SI,. . . , s,) of
(w[l], . . . ,w[m]) and a valuation (si,. . . , s&,) of (411,. . . ,vim]) ifT
((Sl,. . . , sm), (4,. . f , s 3) E T .

Our aim is to translate CTL,K formulas into propositional formulas. Specifi-
cally, for a given CTL,K formula p we compute a corresponding propositional
formula [p](w), which encodes those states of the system that satisfy the for-
mula. Operationally, we work outwards from the most nested subformulas, Le.,
the atoms. In other words, to compute [OQ](W), where 0 is a modality, we work
under the assumption of already having computed [a](w). To calculate the ac-
tual translations we use either the h e d point or the QBF characterization of
CTL,K formulas. For example, the formula [AXcr](w) is equivalent to the QBF
formula Vw.(T(w,v) =+. [Q](v)). We can use similar equivalences for formulas
A Y a , K l a , D r a , E ~ a . More specifically, we use the following three basic d@-
rithms. The first one, implemented by the procedure forall, is used for formulas
OQ such that 0 E (AX, AY, K,, Dr , Er}. This procedure eliminates the Univer-
sal quantifier from a QBF formula representing a CTL,K formula, and returns
the result in a conjunctive normal form. The second algorithm, implemented by
the procedure gfpo, is applied to formulas Oa such that 0 E {AG,AH,Cr}.
This procedure computes the greatest fixed point. For the formulas of the form
A(aUP) we use a third procedure, called &JAW, which computes the least fixed
point. In so doing, given a formula B we obtain a propositional formula [p](w)
such that ,f3 is valid in the model M 8 the conjunction [p](w) AIL(w) is satisfiable,
i.e., L E (B). Below, we formalize the above discussion.

Defkition 5 (Translation for UMC). Given a CTL,K formula cp, the propo-
sitional translation [cp](w) is inductively defined as follows:

b] (w) := v s e (p) 1 s (w) 7 for P f PVK J

[7a](w) := -I[Q](W>,

[a A Pl(w) := [QI(W) A [PI(w),
[a v PKw) := [al(w) v [PI(w),
[J=~I (W) := fomll(v, (T(w, =+ lQl(4)),
[AYa](w) := fomll(v, (T(v, W) =+ [c~](v))),
[Kia](w) := forall(v, ((Hi(w,v) A

[Dra](W) := fOrall(V, ((A t ~ r Ht(w,V) A gfpAH(-IL(w))) * [aI(v))),
[ErQ](w) := forall(v, ((V t ~ r Hz(w, v) A -I gfpAH(-I&(V))) * [a](w))) 7

[AGaI(w) :=gfpAG([aI(w)),
[A(auP)](w) :=lfpAV([a](w), [pI(w)),
[m a I (w) :'gfpAH([aI(w)),

gfpAH(71L(u))) * [a](v))),

Icral(w> :=gfpcr (14(w)).

The aigorrthms gip and lip are Lased oii ih stai&xl pr=ced?xe coEpntinz
fixed points.

procedure gfpAG([a](W)), uhere Q is an CTL,K formula
let Q(w) = [true](w), Z(w) = [aj(w)

14

while -(Q(w) + Z(w)) is sat isf iable
l e t Q(w) = Z(w),
l e t Z(w) =forall(v, (T(w, v) + Z(v))) A [Q](w)

return Q(w)

The procedure gfpAH is obtained by replacing in the above forall(v, (T(w, w) 3

Z(v))) with foraZl(v, (T(w, w) + Z (v))) .

procedure lfp~u([cr](w), [p](w)), where Q , P are CTL,K formulas
l e t Q(w) = [false](w), Z(w) = [P)(w)
while -(Z(w) + Q(w)) i s sat isf iable

l e t &(w) = Q(w) V Z(w),
l e t Z(w) =foralZ(v, (T(w, v) + Q(w))) A [a](w)

return Q(w)

We now have all the ingredients in place to state the main result of this
paper: modal satisfaction of a CTL,K formula can be rephrased as propositional
satisfaction of an appropriate conjunction. Note that the translation is sound and
complete (details of the proof are not given here).

Theorem 2 (UMC fo r CTL,K). Let M be a model and cp be a CTL,K fornula .
Then, M 'p iff [p](w) A IL(w) is satisfiable.

Proof. Notice that lTL(w) is satisfied only by the valuation L = (~ 1 , . . . , L,) of
w = (w[l], . . . , w[m]). Thus [p](w) A IL(w) is satisfiable iff ['p](w) is true for the
valuation L of w. On the other hand for a model M, M cp, Le.,
L E (cp). Hence, we have to prove that L E (cp) iff ['p](w) is true for the valuation
L of w. The proof is by induction on the complexity of p. The theorem f o l l o ~ s
directly for the propositional variables. Next, assume that the hypothesis holds
for all the proper sub-formulas of 'p. If cp is equal to either -a, a A p, or CY V p,
then it is easy to check that the theorem holds.

For the modal formulas, let P be a set of states and CYP(W) a propositional
formula such that a p (w) is true for the valuation s = (SI , . . . , s,) of w =
(~ [1] , . . . , ~ [m]) iff s E P. Note that given any P , ap is well defined: since the
set G of all states is finite, and one can take VsEP Is(w) as ap (w) . Consider cp
to be of the following forms:

'p iff M, L

15

'p = AYa. We will prove that L E (AYcu) 8 the formula [AYa](w) is true for
, the valuation L of w.
First we prove that:
(*) s E AY(P) iff the formula Vw.(T(v, w) j c y p (v)) is true for the valuation
s of w.
s E AY(P) iff s E {s' E GI for every sff E G if (s",s') E T , then sf' E P}.
On the one hand, (s f f , s f) E T ifT T(v, w) is true for the valuation SI of w and
the valuation sff of v. Moreover, s" E P 8 the formula cup(v) is true for the
valuation s" of v. Thus s E AY(P) if€ the formula T (v , w) + ap(v) is true
for the valuation s of w and every valuation sf' of v. Hence, s E AY(P) iff
the QBF formula Vv.(T(v,w) 3 cup(v)) is true for the valuation s of w.
Therefore, L E (AYcu) iff L E AY((a)) if€ (by the inductive assumption and
(*)) the formula (Qv.(T(v,w) + [a](v))) is true for the valuation L of w 8
(by Theorem 1) the propositional formula foraZZ(v, T(v, w) + [a](v)) is true
for the valuation L of w 8 [AYo](w) is true for the valuation L of w.

0 p = AXa. The proof is analogous to the former case.
p = AHa We wiU show that L E (AHa) iff formula [AHor](w) is true for the
valuation L of w.
First we prove that:
(*) s E uZ.PnAY(Z) iff the formula g f p A H (a p (W)) is true for the valuation
s of w.
Let ~(2) = P n AY(Z), then s E YZ-T(Z) iff s E ni,oTi(G) (as s E
ni,oTi(true)). Thus, s E vZ.T(Z) iff s E T ~ (G) for theleast i such that
T*(G) C_ TZ++'(G) since for every i 2 0 we have T~+ ' (G) T ~ (G) . On the other
hand, s E ~ (2) if€ formula cyp(1u) AVv.(T(v, w) 3 az(v)) is true for the val-
uation s of 20 i€€ (by Theorem 1) formula c u p (w) A f o r a Z Z (v , T(v, w) =+ az(v))
is true for the valuation s of w.
Let P (w) = ap(w) and Z'(u) = ap(2u) A fmaZZ(v, (T(v,w) =+ Z"-'(v)))
for i > 0. Notice that s E T ~ (G) iff Zi(w) is true for the valuation s
of w. Moreover, Qi(w) = Zi-l(w) and Zi(w) = Z'(w) are invariants of
the whileloop of the procedure g f p A H (Q p (W)) . Hence on the termination,
when Qi,(w) =+ Zi,(w), where io is the least a such that Qi(w) + &(to),
gfpAH(cyp(w)) = Q G (w) is a formula that is true for the valuation s of w ifE

Therefore, L E (AHcu) if€ L E vZ.(a)nAY(Z) 8 (by the inductive assumption
and (*)) the propositional formula g f p ~ ~ ([a] (w)) is true for the valuation L

of w ifE propositional formula [AHa](w) is true for the valuation L of w.

s E VZ.T(Z).

0 ' cp = AGcu 1 Cra 1 A(aUD). The proof is analogous to the former case.
0 p = Kia. In order to show that L E (Kia) ifE formula [Kia](w) is true for

the valuation L of w, first we prove that:
(*) s E &(P) iff the formula vv . (7gfpAH(71L(v)) A Hi(W,V) 3 ~ P (V)) is
true for the valuation s of w.
To this aim we prove the following two facts:
(**) (L, sf') E T* 8 l g f p A H (l I L (2 1)) is true for the valuation s" of v.
Observe that S" E G\{L) if€ -JL(v) is true for the valuation S" of v. On the
other hand (L , s") # 1'- iff s" E vZ.(G\{L)) n A\'(Z). H e x e (L , s f f) E T* iff

16

s” ~ Z . (G \ { L }) n AY(2) iff gfpAH(dL(v)) is false for the valuation S” of 21
iff l g f p A H (+ L (v)) is true for the valuation s” of w.
(***) S’ w2 S” iff H,(W, v) is true for the valuation s’ of w and the valuation
s“ of v.
s’ N, s” iff I,(s’) = Iz(s”) iff A 3 E D , s: = sy iff formula A 1 e D 2 w[j] @ v[j] is
true for the valuation s’ of w and the valuation s” of v iff H,(w, v) is true
for the valuation s‘ of w and the valuation s‘‘ of v.
Thus by (**) and (***), s E K,(P) iff for the valuation s of w and every
valuation s” of v formula -3g fpAH(-711(t I)) A H,(w,v) + ap(v) is true iff
the QBF formula v ’ v . (7 g f p A H (- d l (Z))) A H,(w,v) + ap(w)) is true for the
valuation s of w.
Therefore, L E (K ,a) iff L E K,((a)) iff (by the inductive assumption and
(*)) the formula V ’ u . (l g f p A H (7 1 1 (2 1)) ~ H ~ (w , w) + [a](.)) is true for the
valuation L of w iff (by Theorem 1) the propositional formula
fora l l (v , (- g f p A H (l I , (w)) AH,(w, v) 3 [a] (v))) is true for the valuation L of
w iff [K,a](w) is true for the valuation L of w.

0 cp = Drcv I E ~ Q : . The proof is analogous to the former case.

6.1 Optimizations of algorithms

In our implementation we apply some optimizations to the fixed point computing
algorithms described above. Precisely, we compute [AGa] (w) and [AHa](w) by
using the following frontier set simplification method [l l] . Define the formula
(Vu..) 1 6, representing some propositional formula such that b A (Vw.0) 1 b is
equivalent to 6 A Vv.a. The formula (Vu..) 1 6 is computed using the procedure
forall with a slight.modification. Next, we compute [AGa](w) as the conjunction
of the following sequence: Zl(w) = [a](w) , Zit1(w) = (Vw.(T(w,v) + Zi(v))) 1

Zj(w) =+- foralZ(v, (T(w,v) +
zz(v))), in which case &+l(w) is the constant t rue. The procedure f . s m A G for
computing [AGcu](w) is as follows.

Zj(w). The sequence converges when

procedure fssmAG([a](w)) , where Q: is a n CTL,K formula
let Z(w) = Q(w) = [a](w)
while Z(w) # true

let Z (w) = (Vw.(T(w,v)
let Q(w) = Q(w) A Z(w)

Z (v))) 1 Q(w)

return Q(w)

The procedure f s s m A H for computing [AHa](w) is obtained by replacing in the
above (Vv.(T(w, v) + Z(v))) 1 Q(w) with (Vv.(T(v, w) + Z (v))) 3. Q(w). Simi-
lar procedure can be obtained for computing formulas [Cra](w).

7 Example of Train, Gate and Controller

In this section we exemplify the procedure above by discussing the scenario of
the train controller system (adapted from [20]). The system consists of three

17

agents: two trains (agents 1 and 3), and a controller (agent 2). The trains, one
Eastbound, the other Westbound, occupy a circular track. At one point, both
tracks pass through a narrow tunnel. There is no room for both trains to be in
the tunnel at the same time. Therefore the trains must avoid this to happen.
There are traffic lights on both sides of the tunnel, which can be either red or
green. Both trains are equipped wit6 a signaller, that they use to send a signal
when they approach the tunnel. The controller can receive signals &om both
trains, and controls the colour of the tr&c lights. The task of the controller is
to ensure that the trains are never both in the tunnel at the same time. The
trains follow the traffic lights signals diligently, Le., they stop on red.

Fig. 1. The local transition structures for the two trains and the controller

We can model the example above with an interpreted system as follows. The
local states for the agents are:

Ltrainl = {awayl, waitl, tunnell},
Lcontroller = {red, green},
Ltrainz = {aways, waits, tunnel2).

The set of global states is defined as G = Ltrarnl x Lcmtroller x Ltrama. Let
L = (awayl, green, awayz) be the initial state. We assume that the local states
are numbered in the following way: away1 := 1, wait1 := 2, tunnel1 := 3,
red;= 4, green := 5, away2 := 6 , wait2 := 7, tunnel2 := 8 and the agents are
numbered as follows: train1 := 1, controller := 2, train2 := 3. Thus we assume
a set of agents A to be the set {1,2,3}.

Let Act = {al , ..., Q) be a set of joint actions. ZJL o E A d xs & h e the
preconditions pre(a), postconditions post(a), and the set agent(a) containing
the numbers of the agents that may change local states by executing a.

18

pre(a2) = {2,5},post(az) = {3,4}, agent(a2) = {1,2},
pre(a3) = {3,4},post(a3) = {1,5}, agent(a3) = {1,2},
pre(a4) = {6},post(a4) = {7}, agent(a4) = {3},
Pre(a5) = {5,7),post(%) = {4,8}, agent(%) = {2,3},
pre(a6) = {4,8},post(a6) = { 5 , 6 } , agent(%) = {2,3}.

In our formulas we use the following two propositional variables in-tunnel1 and
in-tunnel2 such that in-tunnel1 E V (s) iff Ztrainl(s) = tunnel l , in-tunnel2 E
V (s) iff ltrainz(s) = tunneZ2, for s E G.

We now encode the local states in binary form in order to use them in the
model checking technique. Given that agent trainl can be in 3 different lo-
cal states we shall need 2 bits to encode its state; in particular we shall take:
(0,O) = a w a y ~ , (1 , O) = wai t l , (0 , l) = tunnel l . Similarly for the agent train2:
(0,O) = awayz, (1 , O) = wait2, (0 , l) = tunnel:!. The modelling of the lo-
cal states of the controller requires only one bit: (0) = green, (1) = red. In
view of this a global state is modelled by 5 bits. For instance the initial state
L = (awayl, green, away2) is represented as a tuple of 5 0's. Notice that the first
two bits of a global state.encode the local state of agent 1, the third bit encodes
the local state of agent 2, and two remaining bits encode the local state of agent
3. We represent this by taking: D1 = (1, a}, D2 = {3}, D3 = {4,5}.

Let w = (w[l], ..., w[5]), v = (v[l], ..., w[5]) be two global state variables. We
define the following propositional formulas over w and v:

IL(w) := A j E D 1 U D 2 U D 3 lw[j] ,

Hi(w, v) := l\jEDi w[j] * ~ [j] ,
this formula encodes the initial state,

the formula Hi(w,v), where i E A, represents logical equivalence between
local states of agent i at two global states represented by variables w and v ,
pl (u t) := 7w[l] A 1 ~ [2] , pz(w) := ~ [l] A 7 ~ [2] , p 3 (~) := l w [l] A w[2],
p 4 (W) := ~ [3] , p5(W) := - ~ [3] , ps(W) := - w [~] A - u J [~] , p 7 (W) := ~ [4] A l ~ [5] ,
p ~ (w) := - ~ [4] A ~ [5] ,
the formula pj(w), for j = 1,. . . ,8, encodes a particular local state of an
agent.

For a E Act, let B, := UiEA,agent ,) Di be the set of the labels of the bits that

T (w , v) := V a E A c t (AjEpre(.) pj(w)AAjEpost(a) ~j(v)AAjcB,(w[jl * vlil))"
 LA^^ Vjepre(a) (-pj(w)) A I I ~ E D ~ ~ D ~ ~ D ~ (wlil .=) v[jl))-
Intuitively, T(w,v) encodes the set of all couples of global states s and S'

represented by variables w and v respectively, such that s' is reachable from
s, Le., either there exists a joint action which is available a t s and s' is the
result of execution a at s or there is not such an action and s' equals s. Notice
that the above formula is composed of two parts. The first one encodes the
transition relation of the system whereas the second one adds self-loops to
all the states without successors. This is necessary in order to satisfy the
assumption that T is total.

are not changed by the action a, t 6 en

19

I

Consider now the following formulas:

0 a0 = -AX(-in-tunneZl),
0 a1 = AG(in-tunneZ1 =$ Ktrainl(iin-tunne12)),
0 a2 =AG(-&z-tunneZl+ (7Ktrainl in-tunnels A 7Ktrainl (?in-tunneh))),

where in-tunnel] (respectively in-tunneZ2) is a proposition true whenever the
local state of train1 is equal to tunnel1 (respectively the local state of train2 is
equal to tunneZ2).

The first formula states that agent train] may at the next step be in the
tunnel. The second formula expresses that when the agent train1 is in the tunnel,
it knows that agent train2 is not in the tunnel. The third formula expresses that
when agent trainl is away from the tunnel, it does not know whether o r not
agent train2 is in the tunnel.

is as follows:
As discussed above, the translation of propositions in-tunnel1 and in-tunneZ2

0 [in-tunnell](w) = -w[1] A w[2),
[Zn_tunne/2](w) = 720[4] A w[5].

Next, we show how to translate the formula 00:

[QO](W) = [-AX(dn-tunneZl)] (2 0) = ~[AX(iin-tzlnneZl)](20).
The formula [AX(-%n-tunneZl)](ur) is computed as follows:
[AX(dn-tunnel l)](w) = forall(v,T(zu, v) + [-in-tunneZl](v)) =
f c ~ d j v , T(w, V) + (7(7v[1] A v[2]))) = f c?d l (v , T(w: ?I) + (V [l] V -V[2])).
Consequently [ao](w) = ~foraZ l (v , T(v, V) =+ (v [l] V-w[2])) and [ao](w> A I, (w)
= i f o r d (v , T(w, V) =+ (v [l] V 1 v [2])) A I L (~) = ((w [l] A - ~ [2] A - w [3]) V (~ w [l] A
421 A - ~ [3] A - ~ [5]) V (7w[1] A w[2] A w[3] A - ~ [4]) V (-w[l] A w[2] A ~ w [3] A
-w[4] V w[5])) A IL(w) = false. Therefore a0 is not valid in the model.
But, both the formdas cyl and a2 are valid in the model since
[a1](w) A I,(w)=true A IL(w)= -w[1] A 7w[2) A -w[3] A - ~ [4] A -w[5] and
[CY~](W)A\,(W)= (-~[l]V720[2])r\1~(20)= - , [L] A ~ A [~] A ~ w (~] A ~ ~ U [~] A-20[5]-

This corresponds to our intuition.

8 Preliminary Experimental Results

In this section we describe an implementation of the UMC algorithm and present
some preliminary experimental results for selected benchmark examples.

Our tool, unbounded model checking for interpreted systems, is a new module
of the verscation environment VerICS [5]. The tool takes as input an interpreted
system and a CTL,K formula cp and produces a set of states (encoded symbol-
icaiiyj, in w'Z& iht: hiiiiiiki he!&. The ik~p!em~nt~tion rnnsists of two main
parts: the translation module and the fora11 module. According to the detailed
description in former sections, each subformula + of cp is encoded (by the trans-
lation module) by a QBF formula which characterizes all the states at which
+ holds. In case of checking a modd formula, the corrcspccdhg QBF formula

20

is then evaluated by the forall module, which is implemented on the top of the
SAT solver Zchaff [13]. The whole tool is written in C++ making intensive use
of STL libraries.

The tests presented below have been performed on a workstation equipped
with the AMD Athlon XP+ 2400 MHz processor and 2 GB RAW1 running under
Linux Redhat. For each of the results we present the time (in seconds) used by
VerICS and Zchaf f , and give RAM (in kB) consumed during the computation.

8.1

The first example we have tested is the train, gate and controller system pre-
sented in Section 7. In order to show how the algorithm copes with the com-
binatorial explosion, this example is parameterized with the number of trains
N . For a given N E {2,4,6}, we have generalized the property a2 of Section
7 to N trains: a2(N) = AG(+n-tunnell + (TKtrainl Ai=2,,N Tin-tunneli A
TKtraznl Vi=2.,N in-tunneli)).

The results (time and memory consumption) are presented in the Table 1.
SAT-time denotes the amount of time necessary to determine by means of un-
modified Zchaf f whether the obtained set of states contains an initial state (this
is a SAT problem).

Train, Gate and Controller - example parameterized

58489

Table 1. Experimental results for Train-Gate-Controller

8.2 Attacking Generals

The second analyzed example is a scenario of the coordinated attack problem,
often discussed in the area of MAS, distributed computing as well as epistemic
logic. It concerns coordination of agents in the presence of unreliable communi-
cation. It is also known as the coordinated attack problem [8].

For the purpose of this paper, we choose a particular joint protocol for the
scenario and verify the truth and falsehood of particular formulas that capture
its key characteristics. The variant we analyse is the following (for more detailed
protocol description we refer t o [IO]) :

After having studied the opportunity of doing so, general A may issue a
request-to-attack order t o general B. A will then wait to receive an ac-
knowledgment from B, and will attack immediately after having received

21

it. General B will not issue request-to-attack orders himself, but if his
assistance is requested, he will acknowledge the request, and will attack
after a suitable time for his messenger to reach A (assuming n o delays)
has elapsed. A joint attack guarantees success, and any non-coordinated
attack causes defeat of the army involved (Fig. 2).

Figure 2 presents three scenarios for the agents involved in the coordinated
attack problem. The rounded boxes represent locations (local states), while the
arrows denote transitions between locations. The be,@nning location for each
agent is in bold. The transitions sharing labels are executed simultaneously (Le.,
synchronize). The local states for the agents are listed below:

LGeneralA = {wai tA ,orderA, ackA, W i n A } ,
LGenerale = {wa i tB ,wderB , readyB , winB, f a i l B) ,
LEnvrronrnent = {WUZtE, OTdeTE, UCkE, aCkAOStE}.

In our formulas we use the following propositional variables: UttUCkA and UttUCkB
meaning that corresponding General has made the decision of attacking the
enemy, successA and SucxessB meaning the victory of each General and finally
f d B which denotes the defeat of General B (and both Generals). For s E G:

UHUCkA E U (S) iff t!Genera[A (S) E (WZnA, ackA)
S W S s A E v (s) iff 1Generala(S) f {WinA}
at tackB E U (s) iff IGeneraie(s) E {OrderB, winB, readyB, f a i l B }
S U C C ~ S S B E U (S) iff lGenerals(S) E (winB}
f a i l B E Vjs) iff lGeneralB(S) E { f a i l B }

Below we present some properties we test for the coordinated model problem.
Results of the tests axe listed for each property in the same way as in the previous
example.

0 fl1 = AG(a t tackB =% KAKBat tackA)
f lz = EF(C{AB)(UMU€kA A UHUCkB))

The property fl1 states that if the general B decides to attack, then the general
A knows that B knows that A will attack the enemy. The property pZ expresses
that there is a possibility of achieving common knowledge about the decision of
attacking the enemy. The experimental results for this example are given in the
Table 2.

Property CNF clauses UMCmemory UMGtime
PI 917 1488 kl3 1.08 s
pz 971 2300 kB 1.54 s

SAT-time
0.02 s
0.01 s

22

order-losi

n
cwaiack

General A

order-rcv send-ack

wp-alack
General B

The Environment

Fig. 2. The attacking generals scenarios

9 Conclusions

Verification of multi-agent systems is quickly becoming an active area of research.
In the case of model checking, plain temporal verification is not sufficient because
of the variety of modalities that are commonly used to specify multi-agent sys-
tems. In this paper we have extended the state-of-the-art of the area by providing
a model checking theory to perform unbounded model checking on a temporal
epistemic language interpreted on interpreted systems. This surpasses the pos-
sibilities available already with other SAT-based approaches, namely bounded
model checking, in that it is possible to check the full CTLK language, not just
its existential fragment.

It should be noted that our tool provides only a preliminary implementation
of UMC. The major problem we found was that blocking clauses are defined
only over input variables V. This often seemed to be a too finer description
and lead to generating exponentially many clauses (as can be seen in Table 1).
We have found that the Alternative Implication Graph IG(A’, 4’) usually gives
shorter blocking clauses only for simple formulas, while formulas encoding “real”
UMC problems produce clauses over all literals of V . In future work we shall
investigate the conjecture of K. McMillan stating that by allowing in blocking
clauses literals corresponding not only to state vectors, but also to subformulas,
one could obtain a dramatic improvement in performance.

References

1. A. Biere, A. Cimatti, E. Clarke, and Y . Zhu. Symbolic model checking without
BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages 193-207. Springer-
Verlag, 1999.

2. P. Blackburn, M. de Rijke, and Y . Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

3. E. M. Clarke, 0. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

23

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Journal of the ACM, 5(7):394-397, 1962.

5. P. Dembiriski, A. Janowska, P. Janowski, W. Penczek, A. Pbkola, M. Szreter,
B. Woina, and A. Zbrzezny. VerIcs: A too1 for verifying Timed Automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’O3), volume 2619 of LNCS,
pages 278-283. Springer-Verlag, 2003.

6. E. A. Emerson and E. M. Clarke. Characterizing correctness properties of par-
allel programs using fixpoints. In Proc. of the 7th Int. Colloquium on Automata,
Languages and Programming (ICALP’BO), volume 85 of LNCS, pages 169-181.
Springer-Verlag, 1980.

7. E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

8. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

9. J. Halpern and M. Vardi. Model checking vs. theorem proving: a manifesto, pages
151-176. Artificial Intelligence and Mathematical Theory of Computation. Aca-
demic Press, Inc, 1991.

10. A. Lomuscio, T. Lasica, and W. Penczek. Bounded model checking for interpreted
systems: Preliminary experimental results. In Proc. of the 2nd NASA Workshop on
F o n d Approaches to Agent-Based Systems (FAABS’OZ), volume 2699 of LNAI,

, pages 11W125. Springer-Verlag, 2003.
11. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking.

In Proc. of the 14th Int. Conf. on Computer Aided Verification (CAV’OZ), volume
2404 of LNCS, pages 250-264. Springer-Verlag, 2002.

12. R. van der Meyden and H. S h i h . Model checking knowledge and time in systems
with perfect recall. In Proceedings of Proc. of FSTBTCS, volume 1738 of Lecture
Notes in Computer Science, pages 432-445, Hyderabad, India, 1999.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. of the 38th Design Automation Conference (DAC’OI),
pages 536-535, June 2001.

14. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fvndamenta Infomatime, 55(2):167-185, 2003.

15: F. Raimondi and A. Lomuscio. Symbolic model checking of deontic interpreted
systems via obdd’s. In Proceedings of DEONO4, Seventh International Workshop
on Deontic Logic an Computer Science, volume 3065 of Lecture Notes in Computer
Science. Springer Verlag, May 2004.

16. F. Raimondi and A. Lomuscio. Towards model checking for multiagent systems
via obdd’s. In Proceedings of the Third NASA Workshop on Formal Approaches to
Agent-Based Systems (FAABS III), Lecture Notes in Computer Science. Springer
Verlag, April 2004. This volume.

17. F. Raimondi and A. Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: an algorithm and its implementation. In Proceedings of ‘ the Third International Joint Conference on Autonomous Agents and Mdtiagent

18. A. Tarski. Paczfic
Journal of Mathematics, 5:285-309, 1955.

19. W. v& der Hoek and M. Wooldridge. Model checking knowledge and time. In
Pmc: of the 9th Int. SPIN Workshop (SPIN’O2), volume 2318 of LNCS, pages
95-111. Springer-Verlag, 2002.

J’yJCcfIhJ ”---J--- , I l l l l . A l l U / A A UlAC’n,!) --?,, .Tnlv - -~ 2m.

A latticetheoretical fixpoint theorem and its applications.

24

20. W. van der Hoek and M. Wooldridge. Tractable rnultiagent planning for epistemic
goals. In Proc. of the 1st Int. Conf on Autonomous Agents and Multi-Agent
Systems (AAMAS’O2), volume 111, pages 1167-1174. ACM, July 2002.

21. M. Wooldridge. Computationally grounded theories of agency. In E. Durfee, editor,
Proceedings of ICMAS, International Conference of Multi-Agent Systems. IEEE

’ Press, 2000.
22. M. Wooldridge. A n introduction t o multi-agent systems. John Wiley, England,

2002.
23. M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model checking multia-

gent systems with mable. In Proceedings of the First International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-O2), Bologna, Italy, July
2002.

25

