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Abstract

To cope with air traffic growth and congested airports, two solutions are apparent on

the supply side: 1) use larger aircraft in the hub and spoke system; or 2) develop new

routes through secondary airports. An enlarged route system through secondary airports

may increase the proportion of route monopolies in the air transport market.The monopoly

optimal non linear pricing policy is well known in the case of one dimension (one instrument,

one characteristic) but not in the case of several dimensions. This paper explores the

robustness of the one dimensional screening model _ith respect to increasing the number

of instruments and the number of characteristics. The objective of this paper is then to

link and fil the gap in both literatures. One of the merits of the screening model has

been to show that a great varieD" of economic questions (non linear pricing, product line

choice, auction design, income taxation, regulation...) could be handled within the same

framework.VCe study a case of non linear pricing (2 instruments (2 routes on which the

airline pro_ddes customers with services), 2 characteristics (demand of services on these

routes) and two values per characteristic (low and high demand of services on these routes))

and we show that none of the conclusions of the one dimensional analysis remain valid. In

particular, upward incentive compatibility constraint may be binding at the optimum. As

a consequence, they may be distortion at the top of the distribution. In addition to this,

we show that the optimal solution often requires a kind of form of bundling, we explain

explicitly distortions and show that it is sometimes optimal for the monopolist to only

produce one good (instead of two) or to exclude some buyers from the market. Actually,

this means that the monopolist cannot fully apply his monopoly power and is better off

selling both goods independently.We then define all the possible solutions in the case of a

quadratic cost function for a uniform distribution of agent types and explain the implications
for airlines in terms of service diffenrentiation.



1 Introduction

To cope with air traffic growth and congested airports, two solutions are apparent on the supply

side: 1) use larger aircraft in the hub and spoke system; or 2) develop new routes through

secondary airports. An enlarged route system through secondary airports may increase the

proportion of route monopolies in the air transport market. Other solutions exist (slot auctions

for example) are out of the scope of this paper (see for example, M Raffarin (2003)).

Because large aircraft took years to develop, required enormous up-front investment and has

useful lives of more than 30 years, Airbus and Boeing had to generate long-term demand projec-

tions. To do so, they prepared 20-year forecasts for large commercial aircraft: Airbus published

its Global Market Forecast (GMF hereafter) while Boeing published its Current Market Outlook

(CMO hereafter). Eventhough these forecasts are produced according to 2 different models, both

manufacturers agreed that there would be a significant growth in the air transportation industry

(worldwide passenger traffic will almost triple by 2019; Airbus forecast an average annual gro_th

rate of 4.9% while Boeing estimates an average growth rate of 4.8%). They also agreed that Asia

would register the world's highest growth rates over the next 20 years (See Ref 1).

To produce GMF, Airbus predicted annual demand for new aircraft on each of the 10000

passenger routes linking almost 2000 airports assuming that passenger and cargo demand would

track the Growth Domestic Product (GDP hereafter) growth as they had over the past 50

years. For each airline, on each route pair, the model estimated the need for specific aircraft

and compared that number against the then existing supply of aircraft. The model calculated

maximum feasible frequency limits for each route based on assumptions about airport capacity,

airplane speed, distance and some other factors. It assumed that airlines would attempt to keep

their market share by adding capacity as demand increased and by increasing aircraft size when

it was no longer feasible to increase flight frequencies. Airbus forecast demand for 14661 new

passenger aircraft and 703 new are freighter over the next 20-year period by 2019. It forecast

demand for 727 new aircraft seating from 400 to 500 passengers (the mainstay of the 747 market)

and 1550 new aircraft seating more than 500 passengers (1235 passenger aircraft and 315 cargo

aircraft). The GMF also predicted that by 2019 , Asia-Pacific airlines would hold half of the

very large aircraft (VLA hereafter) passenger fleet and that 6 of the top 10 airports served by

VLA would be in Asia (See Ref 1).
In contrast, Boeing forecast economic growth in 12 regions in its CMO. It then used these

growth assumptions to forecast regional traffic flows in 51 intra- and inter-regional markets. For

example, travel within China would grow at an average annual rate of 9% compared to 2.8% in

North America. The CMO concluded there would be demand for 22315 new aircraft through
2019. One reason for this difference between the two forecasts was that the CMO included for

more than 4000 regional jets. Despite general agreement on overall growth, Boeing forecast a

much smaller VLA market. The CMO stated bluntly: "The demand for VLA is small" (See Ref
2). It forecast total demand for only 1010 new aircraft seating 400 passengers or more, 40% of

which would be 747-400's (410 new aircraft). Of the remaining 600 planes, 270 would be cargo

planes, leaving demand for only 330 aircraft seating 500 passengers or more. More importantly,

most of the demand for the larger planes would not materialize for at least 10 years (See Ref 2).

The disparity between these two forecasts could be traced to conflicting assumptions regarding

the relative importance of flight frequency, new route development and aircraft size. Airbus

believed that increased flight frequencies and new routes would provide only short term solutions



to the problemof growingdemand.Airport curfews,gateandrunawaycapacityandpassenger
arrivalpreferenceswouldlimit the ability to increase flight frequencies at many airports including

some of the world's busiest airports like London Heathrow, Tokyo Narito, Singapore and LA

International. As Airbus EVP John _ahy said "the trouble is that on these long distance

flights, nobody wants to arrive at 3.00AM and nobody wants to drive at the airport for a

2.30AM departure so that they can have more flights" (See Ref 3). At the same time Airbus

did not believe that development of new routes would prca_ide a long term solution. Adam

Bro_aa, VP for strategic planning and Forecasting, noted "the pace of new route development

has slowed sharply...between 1990 and 1995, the total number of route grew by less than 700, an

average increase of 1.7% per year. Part of the problem was the difficulty of opening new airports.

Tn fact, only I0 major mrports where scheduled to open within the next l0 years and only 18

airports had approved plans to grow (See Ref 3). An even bigger concern _nas the fact that new

routes would not solve the problem of growth at largest population centers, especially in Asia.
While Boeing and others cited the expansion of new routes in transatlantic markets as a model

for growth in transpacific travel, Airbus pointed out that Asia lacked secondary urban centers

to support new destinations(See Ref 4). Thus, hub-to-hub transport would remain the industry
standard in these markets.

Like Airbus, Boeing assumed that increasing flight frequency at existing airports would absorb

certain amount of growth, but that congestion at the largest hubs would require an alternative

solution, which according to Boeing would be new point-to-point routes using medium sized,

long-range aircraft like 777 or 340. In support of this view, a Boeing executive claimed "...60% of

the airlines bought 1000 or so 747s we've sold bought them for their range, not for their capacity"
(See Ref 5). To the extent, there was demand for VLA, the 747-400 would be sufficient for most
airlines.

Recent development in the airline industry supported this assertion. In the USA, following

airline deregulation in 1985, southwest airlines had prospered by introducing new services at

secondary airports such as Providence, Rhode Island and ]slip, N_(. In Europe Ireland based

Ryanair was copying Southwest 's model and had -achieved 25% annual passenger growth since

1989 by offering no-frills, economy service between secondary airports (See Ref 6). More recently
start-ups and buzz and easyjet had adopted similar business models. Transatlantic and to a

much lesser extent transpacific travel reflected this trend towards segmentation. Randy Base,

a Boeing Vice President explained "back in 1987, the only daily flight between Chicago and

Europe was a TWA to London. In those days, 60% of American carriers' transatlantic flights

were in 747s operated by Pan Am and TWA in and out of big East cost airports. In 2000,

United and American Airlines were operating from Chicago to 11 European destinations using

smaller 767 and 777 aircraft (See Ref 7). More recently, both Delta Airlines and American

Airlines had introduced new point-to-point service across the Pacific, the former from Portland,

Oregon , to Nagoya, Japan and the latter from San Jose, California, to Tokyo (See Ref 8).

Related to the opening of new routes was a decline in the average seating capacity in many

airline fleets. In fact, Boeing predicted that smaller jets such as its 777 or Airbus A330 would

provide 160 fragmentation across the Pacific(See Ref 7). Boeing assumed these trends would

continue because people seemed to favor timely and direct service over minimum cost as they

became wealthier (See Ref 2). Another factor _uld contribute to further fragmentation, though

one that was exceedingly difficult to predict, was entr T by new airlines. Nevertheless Boeing
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believedentrywaslikely.
Industry analystsmadeprojectionsthat felt somewherein betweenthe two. The Airline

Monitor, a leading industry journal, assumed that airlines would buy the A380 for its operating

ad_-antages and passenger appeal. Based on this assumption, the journal forecast total demand

for 735 A380 through 2019 (including Cargo planes) (See Ref 9). It is also predicted that the hub-

and-spoke system will remain the industry standard. Even if, new routes development through

secondary airports will not solve entirely the air traffic growth and congested airports issues, it

will enable airlines to lower their cost (low airport fees, city-, region- or government-support...)

and at the same time to have monopoly positions on these routes allowing positive profits (if

there is enough demand of course).

This paper does not intend to show that Airbus's or Boeing's predictions are right or false.

The above comments show that the hub-and-spoke system will remain the industry standard and

also that new route development through secondary airports will be one of the key' feature of

the 21 st century air transport industry. Assuming the above statement, new route development

through secondary airports will also give birth to route monopolies (as it is often the case for

low cost airlines). In addition to being new market shares for airlines, these new point-to-point

services through secondary airports will also enable airlines, at least for a certain period of time,

to have monopoly positions on these routes and as a consequence, to make positive profits.

We assume monopolistic positions for the carrier as the products (point-to-point routes) are so

differentiated from the other products of the market (routes through the hub-and spoke system)

that they are assume to be different. Example: direct flight from Toulouse (France) to Vancouver

(Canada) is different from flying from Toulouse to Amsterdam, then from Amsterdam to Seattle
and then from Seattle to Vancouver.

The objective of this paper is to study the optimal pricing policy' of a monopolist facing a

population of heterogenous buyers. In the air transport literature, on the one hand, after airline

industry deregulation, pricing policy in the hub-and-spoke system, airport dominance (...) has

been largely reviewed (for examples, Graham et al. (1983), Berry (1990), Borenstein (1989,

1990), Bruekner et al. (1992)) but on the other hand, the monopolist's optimal pricing policy

has been put aside even if 60% of the routes in the world are operated through a monopolistic

position. In Economics, the analysis of optimal screening has been subject of a large literature,

partly justified by the great variety of contexts to which such an analysis can be applied: non

linear pricing, product lines design, optimal taxation, regulations, auctions. Although it is often

recognized that agents have several characteristics and principal have several instruments, this

problem is often studied under the assumption of a unique characteristic and a unique instrument.

The case of several characteristics and several instruments has been studied and the qualitative

features of the optimal pricing policy have been established (_Tilson (1993), Armstrong (1996),

Rochet-Chon6 (1998). Nevertheless, only few examples were solved (Wilson (1993), Rochet

(1995)).

The objective of this paper is to link and fill the gap in both literatures. This paper studies the

optimal pricing policy of a monopolist (airline) who produces two goods (operates 2 routes) and

faces a heterogenous population of buyers. The buyers (travel agencies) have two characteristics

(one for each good), two possible values per characteristic and therefore four possible types of

buyer. After a brief survey in section 2, where we recall the qualitative features of the solution

to the monopolist's problem where agents are represented by a single characteristic and the
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principalhasonly oneinstrument,section3 focusesonthe specificproblemof nonlinearpricing
by a monopolistin the simplestpossiblemultidimensionalmodel. Section4 givesthesolution
and showsthat resultsobtain in one-dimensionmodelarenot robustto increasesin numbers
of characteristics and instruments (some upward incentive compatibility constraints are binding
at the optimum). For example, it is sometimes optimal for the airline to pro_dde services above

the first best level to some of its customers. Section 5 studies the problem in a different but

equivalent way and enables to explain distortions in resource Mlocations. Section 5 studies the

general solutions and section 6 defines several sets of solutions and implications for airline in
terms of service differentiation. Section 7 concludes.

2 A brief Survey

2.1 Airline pricing policy

Airline deregulation has led to profound changes in the structure of the industry. In addition

to gi_fing airlines the freedom to set fares, deregulation removed restrictions on entry and exit,

allowing the carriers to expand and rationalize their route structures. This flexibility led in the

1980s to a dramatic expansion of hub-and-spoke net_a_orks, where passengers change planes at

a hub airport on the way to their eventual destination. By funneling all passengers into a hub,
such a system generates high traffic densities on its "spoke" routes. This allows the airline to

exploit economies of density, yielding lower cost per passenger. These economies arise partly

because high traffic density on a route allows the airline to use larger and more efficient aircraft

and to operate this equipment more intensively (at a higher load factor).
Restructuring of the industry in response to deregulation has also led to renewed interest

among economists in the determinants of airfares in individual city-pair markets. This line of

research contains notable contributions by Graham-Kaplan-Sibley (1983), Borenstein (1989),
Morisson-V_ston (1990). These studies typically explore the connection between atrfares and

market-specific measures of demand (city populations and incomes, tourism potential...), cost

(flight distance, load factors...)and competition (number of competitors, market share...) _dthout

paving much attention to network characteristics. Bruekner et al. (1992) shows the impact of

network characteristics in airfares determination by proxdding first evidence linking airfares to

the structure of airline hub-and-spoke networks. When a hub-and-spoke successfully raises traffic

density, ticket prices are likely to reflect the resulting lower cost per passenger. Any force that

increases the traffic volume on the spokes of a network _fill reduce fares in the market it serves.

This effect arises because of economies of density on the spokes. For example, since a large

network (as measured by the number of city pairs it connects) offers many potential destinations

to the residents of an endpoint city, its spoke should have higher traffic densities than the spokes

of a smaller network. With costs correspondingly lo_er, fares in the indi_fidual markets served

should be lower in the large network, other things equal. Similarly, holding size fixed, a network

that connects large cities should have higher traffic densities on its spoke (and thus lower fares

in individual markets) than one serving small cities.

The case of fare determination in the case of route monopolies has received little attention.

With these hard times and cut-throat competition in the hub-and-spoke system, this could be
serious omission.

In addition to being new markets shares for airlines, new routes through secondary airports
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(secondarypopulationcenters),point-to-pointservice,canalsobe seenas a businessmodel.
"Lowcost"airlinesoftenusethis model.Underthe "lowcost"label,wecaneasilysaythat these
carriershavemonopolisticpositiononsomeroutes(Ryanairin Europe,SouthWestin the United
Statesof Americaforexamples).Evenif theyare "lowcost" airlinesandareableto providelow
faretickets,this doesnot meansthat donot usetheir monopolyon their marketniches(they
probablydoto reachsuchoperatingmargin)._rhat weproposein this paperis to assumethat
anairlinemayhaveincentivesto useapart of the "lowcost"businessmodel(secondaryairports)
but onanotherbusinessmodel.Thanksto low "airport costs",point-to-pointser_dcethe airline
is ableto proposeattractivepricesandalsoto apply its monopolypoweron its marketniche.
Moreover,the airlinemayalsobesupportedby cities,regions,or governmentsfor the impact
of a routeopeningon theeconomicdevelopmentof a populationcenter.To doso,weassume
that thereexistscity pairs, populationcenterswherethe macro-economicenvironmentallows
an airlineto operatesuccessfullya newroute. Insteadof providingcustomerswith singleclass
flights,theairlineproposesseverallevelsof services(economy,businessandfirst forexample)to
applypricediscriminationthroughits monopolypower.If an airlinecanoperateonerouteon
suchacity pair,theoptimalnonlinearpricingpolicy isdescribedinsectionastheone-dimension
case. If anairlinecanoperatetwo routeson two suchcity pairs or throughthreepopulation
centers,theoptimalpricingpolicy is describedandexplainedin theremainingpart of thepaper.

2.2 Mechanism design and non linear pricing

The analysis of optimal screening has been the subject of a large literature, partly justified by

the great variety of contexts to which such an analysis can be applied: nonlinear pricing, product

lines design, optimal taxation, regulation, auctions...

Although it is often recognized that agents have several characteristics and principals have

several instruments, this problem is often studied under the assumption of a unique characteristic

and a unique instrument. In this case we obtain the following results:

the set of self selection constraints that are binding at the optimum is typically the same:

the Individual Rationality Constraints (IRC hereafter) at the lower extreme of the distri-

bution of types, and downward local Incentive Compatibility Constraints (ICC hereafter)

everywhere.

we decompose the problem in two parts: first, find the system of transfers that minimizes

the expected informational rent for a given allocation of goods; second, find the allocation

of goods that maximizes the profit of the principal.

because of the informational rent, second best allocation is distorted below, except at the

upper extreme of the distribution of types where it coincides with the first best allocation.

Considering the multiplicity of characteristics and instruments in most applications, it is

important to know if those results are still valid in the multidimensional context.

In the screening literature, the question has been essentially considered in two polar cases:

• one instrument-several characteristics: in this case, it is impossible to obtain perfect screen-

ing among agents. The same level of the instrument is chosen by many different agents



(in Lewis-Sappington(88)_thiscorrespondsto firmshavingdifferentcostsanddemands).
HoweverLaffont-Maskin-Rochet(87)and Lewis-Sappington (88) shorn, it is possible to ag-

gregate these types and reason in terms of the average cost mnc_,uu of all firms ha_ug

chosen the same level of production. Nevertheless, several qualitative properties persist:

for instance, Lewis-Sappington (88) show that price exceeds expected marginal cost, except

at the top of the distribution where they are equal.

several instruments-one characteristic: the situation is very different. Matthews-Moore

(87) extend the Mussa-Rosen's model by allowing the monopolist to offer different levels

of warranties as well as qualities. One of their most striking result is that the allocation of

qualities is not necessarily monotonic with respect to types. As a consequence, non local

ICC may be binding at the optimum.

The most interesting case is the one with several characteristics and several instruments,
because it is the most realistic but also the most difficult.

Seade (79) has studied the optimal taxation problem for multidimensional consumers and

has shown that it _as equivalent to a variation calculus problem with several _riables. McAfee-

McMillan (88) make a decisive step in the study of monopoly pricing under multidimensional

uncertainty. They introduce a General Single Crossing Condition under which ICC can be

replaced by the local conditions of the agents' decision problems. They also show that the optimal

screening mechanism can be obtained as the solution of a variations calculus problem. In 92,

Armstrong provides a very clear treatment of the difficulties involved in the multidimensional

extension of the Mussa-Rosen's problem of optimal product lines design by a monopolist. _rflson

(93) contains a very original and almost exhaustive treatment of nonlinear pricing models: several
multidimensional examples are solved.

Focus can now be made on bidimensional problems: Rochet (84) studies an extension of

Baron-_,yerson r%o_lation problem in a bidime__ional context where both marginal and fixed

costs are unknown to the regulator. Contrarily to Lewis-Sappington, Rochet allows for stochastic

mechanisms (as Baron-Myerson did): this provides a second instrument to the regulator. On

a particular example, Rochet (84) shows that the optimal mechanism can indeed be stochastic,

as conjectured by Baron-Myerson. Following Spence's early(80) and deep contribution, Dana

(93) gives in a different context a partial solution of the discrete screening model with two t3_pes

and two attributes, and finds two solutions depending on the correlation of types' characteristics.

Armstrong-Rochet (98) study a bidimensional scTeening model in which four types of agents, who

are discretely distributed, can undertake two kinds of activities. Each activity can be undertaken

at a high or low level. They consider two ways to solve the problem:

• The relaxed problem: they only consider the five downward ICC. They show that three

types of solution can occur ( cases C and D are in fact identical if one permutes activity A

and B). Those solutions change according to the correlation bet_een activities. The binding

constraints are in those cases are the IRC of the lowest type and a set of do_mward ICC.

The highest type always gets his first allocation and there is no distortion at the top. This

can be explained by the considered ICC: when only do_-n_-ard ICC are considered, rents

do not depend on the high type activity levels and therefore do not need to be distorted.
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• Thefully constrainedproblem:they considerthe wholesetof ICC. This gives rise to a

fourth solution ( actually there are two, but they are symmetric): one upward ICC and

the transverse ICC are binding. As a consequence, an "intermediary type" gets his first

best allocation and the highest gets an allocation above the first best level.

2.3 A Brief Recall of the Unidimensional Case

Consider an economy in which a monopolist, an airline, sells his production (travel on this route)

to a heterogenous population of two types (t = {t z, th}), customers haxdng low (l) or high (h)

demand of services on this route, who are represented in proportion _ and 7rh (Trt ÷ 7rh = 1). As

the airline operates through secondary airports, it can lower its airport fees and thus proposes

point-to-point service, attractive prices and can fully apply its monopoly power. The monopolist

wants to maximize his profit:

i

=maxqZ[u'(t, q)- u'(t, q)- C(q')],
i

where ui(t ', qi) = t_q_ and Ui(t _, q_) = u(t _, q') -p_q_. This maximization problem is subject to

the Individual Rationality and the Incentive Compatibility constraints:

IRC : U(t i, qi) >_ O,

zcc: u(t', q') - u(t', ¢) > _(t', q_)- u(tJ, qJ).

We then obtain:

U t = u(t z, qZ) _ plq_,

U h _ ul= (t h - tl)q l,

U l _ U h > (t t - th)q h.

As a consequence buyers of type h get their first best allocation whereas types l receive a down-
ward distorted allocation.

Writing the Lagrangian and computing the solution gives:

L= Z[ui(t, q) - Ui(t, q) - C(q')] - _ #q(Y(ti, q') - U(t', qJ) - u(t', qJ) + u(t j, qJ) )
i i,j

- _ 3,i U i"

The first order conditions give:

At = -1,

]_h/_ --71"h,

71"h h tl),
pZ= C,(qZ) + lr__F(t _

ph= C,(qh).



This means that the airline is able to find the optimal pricing mechanism and service alloca-

tion that enables its profit maximization. Customers with high demand of services will receive

the_ first k^_.o=,_allocation (price _uals marg_mal _ *_cos_j whereas _"_*_,_u_=_ with I_, _=_,_,__ .... _ of

services will receive a downward distorted allocation of services (below the first best level of

course). Airlines pro_4de sela_ices below the first best level on low fare tickets to give incentives

to customers with high demand of services to buy high fare tickets instead of bu3dng low fare

tickets. They just, propose "minLmum" se_dces to "poor customers" and offer "superfiuit3," to
"rich travellers".

Focus can now be made on the bidimensional case.

3 Statement of the Problem

We focus here on the specific problem of nonlinear pricing by a monopolist in the simplest possible

model (two characteristics, two possible values per characteristic and therefore four possible

types), and first give the solution which has the same qualitative features than in dimension one,

in the case of a linear quadratic cost function( in a previous version of his paper with Chon_,

Rochet (95), alone, studies this problem, where production is a level of quality, and we study the

case of quantity with a non zero cross cost) whereas Armstrong-Rochet (98) study the case of
constant marginal costs. Such a solution appears when the correlation between characteristics is

near zero and the cross cost parameter is not too big: in such a case, only downward local .ICC

and IRC of the lowest type are binding but according to the value of the cross cost parameter,

the quantities can be distorted downwards or upwards. This differs from dimension one (except
when there is no cross cost parameter) and the highest type receives his first best allocation of

goods. We call it the regular case. Matthews and Moore (87) study a standard model (Mussa-

Rosen (78)), taking three types into account, the I.RC is only effective for type 3. In this case

type 1 faces undimzrted quality while the other two receive degraded quality (unidirectional

downward distortion), but allocations are not monotonic. In Dolmenfeld-%_hite (88) there is

unidirectional upward distortion. But Srinagesh-Bradburg (89) find bidirectional distortions(one
upwards, one downa_rds). We then define the complete solution in three different situations,

first, where there is no cross cost and a discrete uniform distribution of types, where we obtain

the same four solutions as in Rochet (95), second, where there is no cross cost and a general

discrete distribution of t3q_es and also in the case of a dis_ete uniform distribution, with a non

zero cross c_ parameter, where we obtain ten other solutions.

3.1 The Model

We consider a natural bidimensional extension of the Mussa-Rosen's (1978) model, in which a

multiproduct monopolist sells two goods to a heterogenous population of four types of discretely

distributed buyers. The model is different from Mussa-Rosen's because production represents

quantities and not qualities. The airline operates two routes, route 1 and route 2 and provides

her customers with quantities of services on route 1, ql, and on route 2, q2. Customers are

characterized by their type, t = (tl, t2), their demand for services on route 1 and 2 (distance,

departure time, arrival time, number of possible changes, on-board space, ...).

Buyers utilities are quasilinear:
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U i = u(t i, ql, q2) - P(ql, q2) - E,

u(t i, ql, q2) i i + t i _i---- tlq 1 2(/2;

piqi i i i i= Plql +P2q2,

where # is a bidimensional vector of characteristics of the consumers (his type), q is a bidimen-

sional vector of the quantities of the goods and p is the unit price of the goods, u(t, q) represents

the monetary equi_-alent of the goods, with characteristic vector q for a consumer of type t.

Notice that q and t have the same dimensionality so that perfect screening (in the sense

that consumers with different types always buy different quantities of goods) is possible, i.e.,

we assume that the (full information) optimal resource allocation q(') involves perfect screening.

0(') is defined as follows:

Vt • T, _(t)= arg maxq[S(t, q)],

where S(t, q) = u(t, q) - C(q), and T represents the set of possible types and C(q) is the cost

function of the monopolist:

1 2

C(ql, q2) = "_(ql + q22)+ pqlq2.

We use such a cost function, as we assume that for a low quantity of services, the necessary

services are served first (the flight itself) and as the number of services increases, the services

become more and more superfluous and as a consequence, more and expansive, p is used for

positive or negative production synergies. We also assume that the surplus function S(t, q) is

strictly concave, differentiable in q and has, for all t, a unique maximum 0(t). The set of 0(')

will be used as a benchmark for evaluating the distortions of resource allocations entailed by the

monopoly power under bidimensional adverse selection.

3.2 The Monopolist% Problem

We describe the strategy of the monopolist as a set of price-quantity allocations (/, qi) satisfying
ICC and IRC :

IR:U i >_O, for all i,

IC: u(V,q i) _piqi _ E _ >_ u(V, qi) _piqJ _ E', for all i,j.

The airline has to define the price of a ticket and the associated quantity of services for each

type of agent that satisfy his or her IRC and the ICC.

They are equivalent to:

IR:U i >_O,

u' - us >_u(t qJ)- u(tJ, ¢).
Finally, _ri denotes for all i the proportion of agents of type i in the population of potential

buyers. The monopolist's optimal strategy is obtained by maximizing his profit:
71-i i iMax E, (Pq - C(¢) +

which is equivalent to:

Max Y'_i7ri(u( ti, qi) _ U i _ C(qi) ) under the above constraints.

Note: we write this expected profit as:

Max E 7ri(piqi - C(qi) + Ei)'
i
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insteadof the commonlyusedexpression:

Max _ 7ri(piq _+ E-) - _e_" __a
i i

We choose the first formulation because C(q) is convex. As a consequence, C(_-_., q_) > __,_ C(q').
With a technology that generates such a cost function, it is less costly for the monopolist to use

"just in time production" and to maximize profit as previously mentioned. This is the case for
services.

There are two characteristics and two possible values for each characteristic. Therefore there

are four possible types of consumers. We denote these types by letter i = A, B, C, D.

= (e,,e=),
tB = (tlh,_), (TrB),

tc=
tD=

To avoid symmetric problem and to better differentiate B and D, we assume:

- > - D,

which means for example that route 2 is shorter that route 1.

The specified a quadratic cost function is:

°

C(ql, q2) = _(_ + _) + Pqlq_, P • ]-1, 1[.

This implies that _ is linear:

The Lagrangian of the problem :

L(U, q) = _-_.i7ri(u( #, q') - V' - C(¢)) - _,_ p,j(U i - Uj - u(t', qJ) + u(t j, qJ) ) - _", _iUi

where/zij and _' represent respectively the (non positive) multipliers associated to ICC(i, 3) and

1RC(i). The first order conditions ( which are necessary and sufficient for the linear program)

give:V/, &L/SU' = -rr' - Ej(iz,j - izj,) - A' = O,

rr_+ ,_ = _j(/_j_ - #,j) and adding these equations on i gives:

E,r' =-E,_'= 1,

+-*Vi, 7r' < _-_i(/_j, -/_), with = if U' > 0 (equivalent to A_ = 0).
This is equivalent to say that at least for one i, the IRC is binding. This is economically clear

since adding a uniform fee to a price schedule does not alter ICC, and increases the monopolist's
profit.

Following Border-Sobel (87), we say that j attracts i when IC(ij) is binding. These relations

(who attracts whom?) are crucial for determining distortions in resource allocation. Therefore

if i attracts no one (#ij = 0, Vj), i receives his first best allocation.

V_qaen U i > 0: 7ri = _-_d(/_ji - p,j). This condition explains the trade off faced by the

monopolist in the choice of unit price pi price paid by types t i. A small increase for pi to pi + e

11



hasa directeffectonprofit: it increasesit by eTri per unit, where 7ri is the proportion of types t i.

However this marginal increase also has a complex, indirect effect on profit: for all js who are

attracted by i (-#j_ > 0), prices have to be decreased by c, otherwise IC(ij) would no longer be

satisfied anymore, which decreases the profit per unit by e#_j. Symmetrically, for all js such that

i is attracted to j (#ij < 0) prices can be increased by e so that IC(ij) still binds. This increases

the profit per unit by -e_i j. This condition shows that these effects are exactly compensated
when prices are optimally chosen.

4 The Solution (1)

To solve the problem, the question is to guess what constraints are binding and then check that

is indeed the case. Intuitively for tz large enough (the lowest level of service that the airline offers

is the travel itself) and p not too big, all quantities served will be strictly positive, which implies

that IR(A) will be the IRC that binds. In this case:

4.1 The regular symmetric case

By analogy with the one dimensional case, it is tempting to assume that only downward or

leftward ICC _4ll be binding. This is what _e call the Regular Case ( Regular because only

downward or leftward ICC can be binding). If, moreover, all such constraints are binding, we

obtain what we call the Regular Symmetric Case, represented on diagram 1 (see diagram 1),

where an arrow between i and j means that IC(i,j) is binding (j attracts i), and a circle around

point i means that IR(i) is binding (U _ = 0).

We assume now that: AtlTr B > At21r D. This assumption allows to better differentiate the

market of good 1 from the market of good 2.

We look for the regular symmetric solution of the monopolist's problem.

Applying the first order conditions, we get:

_BA -_- #DA = 71"A -- 1, (AA = -1)

--_BA -_-_CB -_ 7_B,

--_CB -- _CD = 7_C,

_CD -- _DA = _D,

and the otherLagrange multipliersare equalto 0.

We then obtain the optimal quantities (substituting ql in q_ and vice and versa) as functions

of #BA:

12



q_l

_=
qC=

_=
4=
_=
_=
_=

In this case, agents utilities are:

U A = 0,

u" = Ah_,
UD = Z_t2_,
uc =z_t_¢+ At_d =At_ + At_,

where Ati = t_ - _.

We have 4 unknowns (#ijs) and 3 equations. The missing equation is obtained by examining

diagram 1. The difference of utility between C and A can be computed along two paths (through
B or through D):

uc - u_ = At_ + At_ =At_ + At_.
Replacing the expressions of qis in the above equation and solving the system of four equations

with four unknowns, we obtain:

[Af:2((TrB 4- 7rC)/TrD) + A_(1/_ A) - pAtlAt_((Tr A - 1)/TrA)]

#BA = [((1/_A) + (1/:rD))A_ + ((1/_rA) + (1/:rB))A_ + 2pAt,At2/_rA ].

This defines a solution for the problem only if all #,is are non positive, which is equi_-alent
to:

RSC0:#BA _< -_r B
<:_ 7_A7_ C -- 7_B7_ D > --'%_(_rD(_rC +_'D))+PwD(1--_rA--2v:B)Atl At2

-- z,_

RSCI:#_A > -:r B _ _rc
7rATr C -- 7,1-B7£D _ --'_I (_B(_C'_'_'B) )+P'EB(I--_rA--2TB--2WC)Atl /kf_2

-

_Ve then look for the other conditions that must be checked by the parameters of the model

for the RSC to be solution (see appendix 1) and we obtain conditions on q_s and/,_is.
These conditions can be written as functions of ]ZBA:

RSC0:#BA _< -'n B,
RSCI:_BA > _Trs _ _c

RSC_:_< _,

RSCa:_< _,

13



At At Ah(1--'_A) > O.

RSC4:q_ < q_,
A._ 11-A -b-/r B A¢,-, - p_t_(_--a_-)] o._BA[-_ +At_--p_ >_

RSC_:_ < qf,
_-,).. FA t [lrA"_TrB'_ At_'BAt 2_ _--_-_-_J+ P_--_]+ _' -- pAh > O.
nsc6:_ < q_,

p_]+_ _,_ >o.
asCT:qg< q:',

Ah(_B+_ c)
eO _BA[_--_ -_- pAtl(_) ] -1- _ "4- P _rI) _ O.

RSCS:q_ _<qC,

#BA --<0.

RSC9:q_ < qlc,
#BA "_-1 - _rA >_ O.

For 0 = 0, notice that the solution exists only when:

- ]- _B_D [ (see conditions RSC1, and RSC2 or(_c _rB_rD) e \at1)

RSC5).
The optimal strategy of the monopolist is defined as a set of price-quantity allocations satis-

fying IRC and ICC. With fixed quantities as defined previously, optimal prices are determined

by the following equation:

pi _(ff qi) __ oc, i, _ ___(_(t j _i_ _rti _i_

We can notice that the unit prices paid by buyers of type i are a convex combination of the

marginal cost and of the marginal utilities of buyers that are attracted to i (his quantity vector

qi). In our case, with linear preferences, we get:

pi OC ," ix= _tq _- E, _(t3 - t').
When i attracts no one (#j_ = 0 for all i,j), i pays prices equal to the marginal costs and

gets his first best allocation. In the other case, (#j_ < 0) prices are always superior to marginal

costs, because only downwards local ICC bind: as a consequence, in the R.S.C, #ji ( 0 implies
that tJ is superior to ff.

Proposition 1 In the regular symmetric case, prices are superior to marginal costs except for

the highest type who is charged with a price equal to marginal cost and gets his first best allocation

in quantity. The price charged on a good depends on the consumed quantity of the other good:

p_ depends on q_. The optimal nonlinear pricing requires a kind of form of bundling.

To show the second part of the proposition, we consider types A and D for the good 1: we

know that tA = tD and the solution gives the following result: pA > pD and @ < qD and this

comes fxom the fact that qA < qD as t A < t2D. Symmetrically we obtain the same result on good

2 for types A and B.

When p = 0, we have the following solution for prices in the R.S.C:

OC z -i _ i
tia = th_ 4==_ Pia = -_q(q_] _ % = q,

• OCz ix i
t'_ = t _ .=:v p_ > -_q tqi_) e:=. q_ < gl,

=> no upward distortion.
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Asin Lewis-Sappington(88),pricesal_ys exceedmarginalcosts,exceptfor thehighesttype
wherethey areequal.

4.2 Complete solution: the case of a general discrete distribution and

p-O

4.2.1 The Reg-l__ar Symmetric Case

We have previously seen that, the regular symmetric case does not exist for all distributions. This

solution is defined by its two frontiers: #cB -< 0, and _ > q_l (or q_2 > q_2, see figures 1 and 2).
These two frontiers give the following conditions:

__ ( A$2 _27rD ( C 77/)),[icB < 0 ¢=. _c _ _ro > -'S_" : +

7TB TfD

_ >-_ ¢=_ _ : - :r° <- _--7-

[ (-_!_27£D(7[C_-7[D_ _rBTrD]Proposition 2 If ,'raTrC-7_rr D £ t-_ A,a / _ /, _-gr-j the solution is regular symmetric.

Types C get their first best allocation and qD q_l, q_2, q_2 are do_tmwards distorted. There is no

upward distortion.

4.2.2 The Separable Case

Now we assume that One of these two conditions is no longer satisfied anymore: if 7raTrc --TrBTr 1) _>
7rB_D

this means that C is also directly attracted by A. Thus, the non local downward ICC is

binding. As a consequence, _ = q_l, q_2 = q_2and the solution is now separable (see diagram 2).
q_:t,qff, q2c:q_2 are equal to the first best allocation.

Diagram 2 enables to compute the indirect utility levels and we get:

U A = O,

U B = Atlq¢l,

U° = _t2_,

The F.O.C and the conditions on quantities give:

[IBA _" #DA _--" 71"4 -- 1, (AA -- -1),

--PBA -F [ICB ----7t'B,

--[ICA -- PCB -- PCD = 77C,

]_CD -- [IDA = 7[D_

4=W.
We get the followingresults:
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7rB 7r D

PCB = 7[B "_- _BA < O, ],,LED = 7rD -}- _DA < O,

_CA _- 7rB -t- 7r C -_- 7r D -_- _BA Jr- ]_DA < O.

Proposition 3 When, there is a strong positive correlation between types (T:ATr C -- 7rB Tr D > _B_--I_-
), the non local downward ICC is binding, and the solution is separable: qD A B'-- _A----ql,q2 ---- ¢/2,
qC = qf , qC = q2D. C gets his first best allocation and qD, qA, q_, qA are downwards distorted.

The optimal quantities are:

qD= =

= qlc = th,

qD= q2c :

We have to check that all the Lagrange multipliers are negative under the condition

7rBTr D
7[A7[C -- 7[B7[ D > --

-- 7[A

and itisindeedthe case.Conditionson quantitiesto satisfythe ICC arealwaystrueinthiscase.

For such a distribution,the optimal solutiondoes not generate perfectscreeningand the

allocationsdo not requirethe kind of form of bundling mentioned pre_dously:for each type,

the unitpricechargedon a good does not depend on the consumed quantityof the other good.

Optimal quantitiesdepend on the marginal distributionof types. But we stillhave the usual

unidimensionalresult:pricesaregreaterthan marginal costs,exceptatthe top ofthedistribution

where they are equal.

4.2.3 The Regular Asymmetric Case

Now we assume that the other condition for R.S.C to be solution( 7rATrC--TrB_r D > --{&t2_2arD{arC-_"-- k Atl ] "' \" J

_rD) , i.e.,/_cs < 0) is no longer satisfied. In this case, we obtain a solution in which C is not

attracted to B (_CB = 0). We call it the regular asymmetric case (Regular because only down-

ward or leftward ICC can be binding and Asymmetric because there is no attraction between

B and C, whereas D attracts C)(see diagram 3) .

Diagram 3 enables to compute the indirect utility levels and we get:

U A = 0,

U B = Atxq_,

Uv = At2q A,

U c = Atlqlgl + At_cfi42.
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TheF.O.Cgive:

Weget the follo_/ngresults:

--_tDA -+-#CD = 76D,

_tCD = --7;C.

_tBA _ --TrB

_t DA --_ -- TffD -- 7[ C

#CD = __C

Now we have to check thatB isnot attractedby C. _ iseq-ivalentto:

_t_(_ -_) < m__(q_-_),

and this condition implies after computations that:

.At2 _27rD(TrA 7rc

The same condition applies to show that B is not attracted to D.

_t2 2 A 7rC 9rD_ __( Zit2 _2vrD [ vrCProposition 4 When 7rATrc -- 7rB_ D 6 [--(ml ) 7rD(Tr + + ,' ,z_tl, - ,- + _rD)] the

solution is regular asymmetric: B and C receive their first best allocation, whereas q_, , q_ , q_2 are
distorted downwards.

The optimal quantities are:

H

4=_ _+_
7rA At2,

7rC

qf=6 - V_t_,

q_=_,

qC=th,

q_=_.

Note that D is not attracted to B if:

__ _B_.D _>_ __(_!1 )2_.B(,.TA "4- T "C "4-_=c _).
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If wehadnot assumedthat Atlr, B > At2:r D, we would have obtained the same condition for

B and D to not attract each other.

In this case the unidimensiona/qualitative properties are almost satisfied. For the good 1, the

usual results axe satisfied in the sense that the downward local ICC are binding ( C is attracted

to D, and B is attracted to A). This is not the case on the market of good 2: D is attracted to

A, but C is not attracted to B. We also have to notice that two different types get their first

best allocation(these types pay prices equal to marginal costs) and perfect screening is obtained

in this optima/solution.

__ (Z_t2)27[D(TrC "+" 7/'9), the Lagrange multipliers are allUnder this condition, r,ATrc -- 7rBrcD > --_z_tl
non positive, and conditions on quantities are all satisfied.

4.2.4 The Singular Case

Now we assume that rcAlrC-- :rBrcD < --(-_t_ )2rrD (_rA+ :rC+ lrD), i.e., (Atl (qD--q A) < At2( qC--q2 A)
is not satisfied anymore), and B is now attracted to C and D.This condition also means that

/kt 1 7rATr C At 2
_S > -t-

-- /kt 1 +At2 7[D Atl +At2"

In this case the solution is singular: surprisingly, the transverse and an upward ICC are binding

(see diagram 4).

Diagram 4 enables to compute the indirect utility levels and we get:

U A = O,

U B = Atlq A = Atlq D -- Atlq D + U D:

U D -- Atzq_2,

u = z t,q + = +

The F.0.C and the conditions on quantities give:

We get the following results:

_BD "]-]_CD -- #DA = 7rD,

--#BA -- _BC -- _BD -_-.fiB,

#BC -- I_CD = 7[C,

qC = qD,

Atl(qD _ qA) = At2(qD _ qA).

We check the sign of #ijs:

#sc = IZB___9_D---.
7[C 9TD #Be = --0_C and #BD = --8TgD,

#cm _- --(1 + 0)7rC and #DA ----" --(1 -J- 0)(7[ C + 7[m),

and #BA = --TrB + O(_C + _m).

#CD j- #BD #BA ] [_BD PDA ]
71.m @ -- = (At2) 2 "_--- gives the following for 0,71.A t'-_ 71.A

O= (_rBrcD -- lrA_rC)At_ -- At_rD(1 -- _rB) <_ 0 by assumption.
At21(Tr C 2t- 7rD)(7[ A -_- 7[ D _- At27cD(1 -- 7rB)
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_,,_en _TBTrD< t_._2_D/_A + _rC + r,D) the o.1o,+_., is o_._.,,7._ BProposition 5 "_ _A_c - -_1 J " _"

gets his first best allocation and C attracts B. As a consequence qC is distorted upwards. D also

attracts B and consequently q_2 is distorted upwards.

All the conditions on the quantities are always satisfied for such distributions.

In this solution, it is optimal, for the monopolist, to price below the marginal cost on good 2

for types C and D and to give the first best allocation to an '%utermediary" type, t3_pe B.

The intuition for upward distortions is as follows: proportion of type B is so high that it

is in the seller's interest to extract maximum surplus from them and thus sell them their first

best a/location. But the seller has also to prevent types B from choosing the a/locations offered

to other types, in particular type C. In order to reduce competition between qC and qD, it is

therefore optimal to increase q_2 above the first best level.

To sum up, here are the four solutions of the monopolist's problem:

• rcA_rc- 7rs7rD 6 [_!, --(_-_,_)27rD(TrA + 7rc + _rD)] : Singular Solution.

• _A_c_ :_D e [_(_)2_(_ + _c+ _ _:_D:_c,, '_*,, , + _D)]: Regular Asymmetric
Solution.

• 9TA_ "C -- _BTrD e [--(_---_,)2_D(71"C---D'_ "B'D'I-,- _ ), _-'-;:r-] : Regular Symmetric Solution.

[_BTrD

• wATF c -- 7FB_ D 6 [ _--_X--, 1] :Separable Solution.

We have seen that, in our problem, four possible solutions exist depending on the correlation

of types. Dana (1993) a/so finds solutions depending on the correlation of types but only gets
two since he assumes that At_ = At2 and 7rB = 7rD.

4.3 Complete Solution: the case of a Uniform Discrete Distribution

and p6 ]-1, 1[

We assume:

7rA = _.C = _C

2'

Ws=_ m= (l-e)
2

See Appendix 2 and figure 4.

We have obtained four solutions in the previous section: we call respectively A,C,D,E the

singular case, the regular asymmetric case, the regular symmetric case and the separable case.

We obtain ten other solutions (see diagrams) depicted in figure 4. Two constraints are always

binding: for all (e, p) the individual rationality constraint of types A (not surprising) and IC(AD)

that is D is al_ys attracted to A. Two other constraints never bind: IC(CA) and IC(CD).
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Therearetwosolutions(GandN) wherethesellerneveroffersafirst bestallocation.V_rhat-
everthetype is,the allocationis distorted.

Wego fromD to C when _cB becomes positive, then IC(BC) is not binding anymore.

We go from C to A when IC(CB), IC(DB) fail, then they are binding.

We go from A to B when _BD becomes positive.

We go from D to E when IC(AC) fails.

We go from E to F when #cs becomes positive.

We go from F to G when IC(CB), IC(BC) fail.

We go from G to H when #CB becomes positive.

We go from H to M when #SA becomes positive.

We go from M to N when IC(BC) fails.

We go from D to K when IC(DB) fails.

We go from K to J when #co becomes positive.

We go from J to I when _BA becomes positive.

4.3.1 Case B

An upward ICC is binding (B is attracted to C). As a consequence, qC is distorted upwards for

the same reasons than in case A. B gets his first best allocation.

4.3.2 Case F

B and C get their first best allocation, qD is not distorted, whereas q_l, qD, qA are distorted

downwards. The solution is separable on the market of good 1 (the solution is separable on the

market of good _ means: t_ = tj -_ q_ = _): q_l = qD < qB = qC.

4.3.3 Case G

This solution is similar to the case E solution, but B is attracted to C. This means that

qA _ q2_ = q2e whereas qD is optimal. The solution is not globally separable anymore, but it is

still separable on the market of good 1. In this case, the seller never offers a first best allocation.

4.3.4 Case H

B does not attract C, but is attracted to C. As a consequence qC is distorted upwards and the

solution is separable for the good 1. B gets his first best allocation even if rB becomes relatively
small (when e increases).

4.3.5 Case I

The downward local ICC are only binding on the market of good 2: C is attracted to B and D

is attracted to A. The transverse ICC is also binding (B is attracted to D). As a consequence
we obtain this condition on the quantities obtained by types B and D :

C gets his first best allocation.

4.3.6 Case J

C gets his first best allocation and we obtain the following conditions on quantities:

At,(qf - ¢)= - ¢),
Atl( - > At (q -
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4.3.7 Case K

This solution is similar to the regular symmetric case but the transverse ICC is binding. This
solution differs from the case D solution because we obtain:

q_l <q D <q_l <qC,

B and D receive the same quantity of good 2.

4.3.8 Case L

.Thp so_!uti__n differs from the case K one because q_2 > _ and B gets his first best, allocation.

As in case C, the proportion of type B is so high that it is in the seller's interest to offer them

their first best allocation to extract the maximum surplus from them.

4.3.9 Case M

B gets his first best allocation whereas C receives an upwards distorted allocation. It is surprising

in this case, as in the case H (especially the South-East of the H area), because the proportion

of buyers of type B is relatively small. The solution is separable for the good 1.

4.3.10 Case N

The seller does not offer any first best allocation. The solution is separable for the good 1. For

the market of good 2, D receives his first best allocation and

q_2= q_2.

5 The Equivalent Approach

In our simple model (discrete distribution of four _2aes of buyers, 1Anear utilities in money), _

defined the global solution to the monopolist's problem: we defined the allocations and rents for

each solution. To do so, following Spence (80)we maximize the expected profit of the seller under

Individual Rationality Constraints (IRC) and Incentive Compatibility Constraints (ICC); we

decompose the problem into two subproblems:

• minimize the agents's expected utilities for fixed allocations

• Choose the allocation so as to maximize the expected surplus minus the expected utilities

Rents are defined so that IRC and ICC are satisfied and computed according to the binding

constraints (or attractions, see Border-Sobel (87)).

These attractions allow us to define optimal paths from a D'pe of agent to a dummy type

(the '_owest type", type A in chapter 2 ) that enable to compute these rents. Thanks to Rochet

(87) that shows that closed paths (from a type of agents to himself) do not increase expected

utility (and axe thus non optimal), _e know that the rents defined by optimal paths from a tTpe

to the dummy type axe optimal.

Once we know the solution and the optimal rents _ can write the monopolist's problem as:

• Compute the optimal rents according to binding constraints.
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• maximizetheexpectedprofit of the sellerunderthe constraintsthat eachtype of agents
getshisoptimalrent.

Thisnewformulationoftheseller'sproblem,theequivalentproblemhereafter,whichofcourse
leadsto the samesolution,enablesto explaindistortionsin resourceallocation. Distortions
dependonoptimalpathsandmoreespeciallyof the length(the numberof type involvedin the
path) andthe numberof theseoptimalpathsthat definea solution.

After somebriefremarkson the aboveresults,westudythe equivalentproblemandexplain
the wayallocationsaredistorted. WeconfirmRochet-Chone(1998)that definesthe setsof
agentswhodo participateas: i) a set of types who get no rent: this set is in fact reduced to a

singleton, ii) a set of types who get strictly positive rents and iii) a set of types who get strictly

positive rents and their first best allocations. Wethen study the Regular Symmetric Case (
see case D in section 4) to show the equivalence of the two problems and to explain distortions

in resource allocations. V_re also study the general solution ( defined in section 4) and define
several sets of solutions: ordered types, called Pure Cases ( solutions that enables to define

a complete type ordering implying uniqueness of rents), single optimum, called Almost Pure

Cases( uniqueness of rents and partial type ordering), several optima, regular solutions ( only

downward binding ICC), singular solutions ( some upward or transverse ICC are binding). We

also exhibit two special cases in which the monopolist only produces one good and this is closed,

but not equivalent, to Armstrong (96) who shows that it is sometimes optimal for the monopolist

to exclude some customers from its products in order to extract more revenue from other higher
value consumers.

5.1 Remarks

As defined in Border-Sobel (87), we say that j attracts i when IC(i, j) is binding. These attrac-
tions (who attracts whom?) are crucial for determining distortions in resource allocation and

also to compute rents. If j attracts i we can define Ui as a function of U j and q/. If j is attracted

by another type, say k, we can define his rent as a function of U k and qk and so on. If j is not

attracted by any other type, this means that j is the dummy type or lowest type and his IRC
is binding (see section 4).

A path is defined as a way to reach the dummy type from another type ( _dth one or several

steps from type to type). An optimal path from one type to another is defined as a succession of

attractions from one type to the dummy. As successions of attractions always lead to the dummy
type (see section 4), we can compute the set of rents using backward induction. This means that

the set of possible paths defines the set of possible rents and the set of optimal paths defines a
solution and the optimal rents associated to this solution.

Example: i is attracted to j and j is attracted to the dummy type, say k. This defines the

optimal paths Vi = {i _ j ---, k}, 9,j = {j --, k} . Then, we have:

u' = uJ + u(t', ¢) - u(t , qJ)
uJ = u k+  (tJ, ¢) - u(t ¢)
U k = 0
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then,weobtain:

U_ = u(t i, qJ) - u(t j, qJ) + u(tfi, qk) _ u(t.e, fie)

Uj = u(t j, qk) _ u(tk, q_)

Uk=0.

This enables to solve the first subproblem of the monopolist's problem: "minirniT_ expected

utilities". We can then define a set of rents U(q) such that ICC are satisfied for all i,j and the

rent of the lowest type is zero. According to these attractions, we can say that j is an immediate

successor of i and also an immediate predecessor of j. This also means that for any optimal path

we are able to define an ordered type subset where {i --* j -* k} is equivalent to:

i_j_'k.

Consequently for any solution, _e can reorganize T into a partition of ordered subsets T.

We define as closed paths, successions of attractions that leads one type to himself. Using

Lemmas from Rochet (87): considering arbitrary paths in the set of types T, a path from type t i

to tJ is denoted by a function 7. We denote the "length" of "y :{0, 1,.2}-* T. Finally, we say

that a path oflengthlis closed if: 7(0) = 7(I).

Lemma 1: U(q) is non-empty if and only if for every closed path "_ :

l--1

u(t,¢,+,, - q:¢,))< o.
k==O

Lemma 2: When the above condition is satisfied, U(q) has a unique element U , character-

ized for all i by:
1--1

U4_ = sup y_ u(t_(k+l), q_(k)) -- u(t_(k), q_(k))
"t k==O

where the sup is taken over all the possible open paths from type ti to the dummy type, whose

utility is zero.

This means that rents computed according to optimal paths from a type to the dummy one

are optimal. On the one hand, these rents do not depend on the distribution of types but only

on the set of types. On the other hand, quantities and distortions, on which depends these rents,

depend on the distribution of types (see section 4).

5.2 The Monopolist's Equivalent Problem

As we know how to compute the optimal rents according to optimal paths, we can now _u'ite the

monopolist's problem as:

Max E _ri(u(ti' qi) _ C(qi) _ U_i)
i

l-1

s/e-U_i= sup _ u(t,,(k+l),q_.,(k))- u(t,,(k),q_,,(k))for all i.
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Fromsection4, weknowthat whateverthe solution:

uA=o.

We can explain this as follows: at least for one type, A in our model, the IRC is binding. Since

adding a uniform fee in the price schedule does alter the ICC and increases the seller's profit,

it's optimal for the monopolist to give no rent to the dummy type.

We also know that there are usually several ways to compute the optimal rents of the other

types. There exists as many ways to compute these rents as the number of possible optimal

paths from one type to the dummy type.

For example, if there exists two possible optimal paths from type t c to t A, "71C through B and

_/Cthrough D, there are clearly two expressions for U c. In this particular example, the Regular

Symmetric Case, we have:
=

+
uc( c) = +

This means that in this particular case, there are two constraints on type t c : the constraint

U c = maxUC(3,c) for all _/c
-- .),C

is equivalent to:

u_C=uC(

or

u_ c= fuC( f) + ocuc( f),

considering _c like 'the probability that type t c chooses path r e to reach the dummy type".
Once we know the solutions, we are able to identify, for all types, all the possible expressions

of the optimal rents in each solution. To solve the monopolist's problem, we have to define for

all solutions, the set of possible optima/paths: for solution s E s*, we define -y(s) as the set of

possible paths. In _/(s), we define for all # all the possible paths to reach t A as "/i(s):

' '72-..'Y,} if there are n possible optimal paths from ti to t A.

7(s) = {'_'_, for all i, for all possible optimal paths p}.

i from t _Notice that if type t_ _ t i belongs to one of the optimal paths _/v to t A, this means
i between t j and t A defines an optimal path between these two types andthat the truncation of "_p

also an expression of the optimal rent of type tj. From the above example, this means that an

expression of U_B is:

U B = AtxqA,
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sinceB belongs to 7 C and an expression of U_D is:

since D belongs to .yC.

To refer to the above formulation of the monopolist's problem, we define a type ordering for
e2zh optimal path. _,_ defines the follo_ng t_pe ordering:

C_B_A

this means that in this optimal paths B is the immediate successor of C and A is the immediate

successor of B and _ defines the ,,_uique 32; 7_ defines the foLlo_q_ng b_pe_ ordering:

C_D_A

this means that in this optimal paths D is the immediate successor of C and A is the immediate

successor of D and this defines the unique ._.D. We can reorganize T into a partition of ordered
subsets T :

TI={C,B,A},

T2={C,D,A}.

As _/c is of length 2 (l = 2), we can define:

l--1

k==O

where k = 2 represents the highest type, C in this example, k = 1 represents the immediate

successor to the highest type in the optimal path 7 c, B and k = 0 represents the dummy type,
A. We also define:

l--1

U c(_,c)= Z u(t_(k+1),q,_(k))- u(t_._(k),q,_(k)(k))
k=O

where k = 2 representsthe highesttype, C in thisexample, k = 1 representsthe immediate

successorto the highesttype inthe optimal path 7,c, D and k = 0 representsthe dummy _'pe,
A.

The Lagrangian of the problem can now be written as:

L(U, q)= Z{_r'(u(t', q') - C(q') - U_') - Z A_-(U_' - D"(')_)}
i j

= Z{cr'(u(t" qi) _ C(q')- U')
i

l-1

- - -
j k==0

where A_.represents the non positive multipliers associated to the constraints on the optimal rent

of type t i computed along the optimal path -y_.
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Thefirst orderconditions(whicharenecessaryandsufficientfor this linearprogram)give:

OL
= -Td-_-_&}=0, for alli,

OU _
J

,_ = - _ _, for a_4==:_ i,

J

and:

cOqicO-Li= 7riOS(ti,Oqiq') + Y_k#i_a AjkcOUk(7_)_q/= O, for8/Ii,

as(#,¢) 1 auk(._)
Oqi lr' = for all i.

_,ai j

We make the sum for all k # i as closed paths are not optimal. This means that there exists

no (classical) solution when two types attract each other (see special cases in section 6, in which

the monopolist only produces good 1). We also have:

°uk('Y_)= (<1 _ t,), for alli.
Oqi

%¥e can also write the Lagrangian of the problem as:

L(U, q)= _ {rri(u(t i, q_) - C(q _) - U_ i) - Ai Z a} (U-i - Ui(7_ )}
j

=_ {.'(_(t', ¢) - c(¢) - u_ i)
i

l-1

-_' _ o}[u_i - (___,u%(k+,, %,k))- u%(k), q,_(k)(_)))]),
j k=0

where Ai is the Lagrange multiplier of the constraint: the optimal rent of type t i is a combination

of all the possible rents U i ("/_) which can be chosen by types t _ who reach t A along the optimal

path 7_with probability a_ :

U _=_--_ a}(U_ _ i_ - U (7_.1,
J

J

for all i and j,

In this case we obtain as first order conditions:

OL
= -:,r'-)d_-_'e_ O, for alli,

OU _
J

_ri = -Aifor all i,
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and:

OL i OS(t i, qi) arTkl_.k_
W _i j 7r oj _ =0, foralli,

k ,kOS(e,¢) 1 x-. k _OU (_j)
*=* W -7 2 =for= L_, _ a_i.

5.3 Optimal Resource Allocations

The first order conditions with respect to qi give:

os(¢,¢) I ._ou_(_)
0q, ,fo an ,

where i belongs to one of the optimal paths that links t3_pes t k to the dummy type. If types t i

do not belong to an)" optimal paths, this means that it does not attract an3" types. In this case,

._ou_(_)
=o

and the first order condition gives:

OS(t i, qi) = 0
0¢

and Wpes P obtain their first best allocation.

In our setting, when p = O, the first order conditions can be written as:

OS(t i, qi) rk ,__o_ (%)
= rri Oq i +Y_E$; 0---_ =0, forallianda=l,2,

J

• OUk(_.k_
.=. _,(ti _ qi ) + y_ E Ak _ ' '_' = O,for all i and a = 1.2,

_¢i j 3 Oqi

e=_rri(t i, _ _ qi) + .._, _ - t_) = O.for, all i and a = 1,2,
J

_ y_E _k(t '+1 '*=*q_ = t_+ .._._. -- t_),for all i and a = 1,2,

¢=_qi = ti + -, oit % - t_),for all i and a = 1,2
k¢_ j

The surplus function is assumed to be convex, differentiable in q and has, for all t, a unique

maximum _(t). The set of O(t) will be used as a benctmaark for evaluating the distortions in

resource allocations entailed by the monopoly power under bidimensional adverse selection; the
first best allocation is:

O(t_) = ti., for all i and a = 1, 2,
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anddistortions:

ti ^ i- q(t ..j___ - t_),for all i and a = 1,2,

*=*q(t_) A , A(q,t') -t'-q(t_) = ----fi (t_+1 _), for all i and a = 1, 2

where:

k

k#i j

=- _r aj <_O
k¢i j

which depends on q (see section 4).

The distortion in q(t_) can be seen as a ratio between the weighted sum of the differences

between P's predecessor and t / and the proportion of types ti in the population. The weights are

represented by A_, Langrange multiplier associated to the constraint:

u_ k - = o.

Even if ),(q, t _) is always negative, the sign of the distortion depends on the sign of It_+1 -P]:

upwards distortion if it is positive, downwards otherwise. The sign of the distortion of type

ti's allocation only depends on its predecessor's type. If type t is attracted to type # (t i is Ps

immediate successor) and if there exists a good a such t_ - t / < 0, then:

=
^ i

q(ti_) > q(t,).

This generalizes the result of no distortion at. the top of the distribution: the highest type

who attracts no other type, gets his first best allocation. The intuition for upward distortion:

if the proportion of type t is high it might be interesting for the monopolist's to extract the

maximum surplus from type t _ and thus sell them their first best allocation. In this case, the

seller has also to prevent type t from choosing the other types's allocations and especially his

immediate successor's allocation, q(t-1). To reduce competition between q(t-) and q(t-_) it might

be therefore optimal for the seller to increase q(f21) above the first best level and this is the case
when:

t-_'l > ta.

• We call Pure Case a solution such that there is for the highest type an optimal path

which runs through all of the types (and also unique since no closed paths are optimal),

this means that we can define a unique ordered subset T E T. We can then rank these

types from t °, the dummy type to t-, the highest type:

T= {t°,P...,t-}.
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This also means that if there are T types, the longest optimal path, from t to t o is of length

T - 1. And for all optimal path of length I _e have:

_(l- 1) c _,(z),foran z= {1,...,T- 1}

In this particular case, the first order conditions give:

OL

OU_
= -or i - Ai = 0, for all i,

¢==_ Ai = __ri, for all i,

1 _(t':'- t_),for an_=d _= 1,2,q(t_) - 4(t2) = _r_
k>i

¢=_q(t i_) _ ^ i 1 -- _-_k<i_¢rk (t_+l ti =
q(t_) = lri - _), for all i and a 1, 2.

As a consequence,

S_(t i, qi):

In this particular case, as in the classic one-dimensional case, $(q, t i) does not depend on

q,

)_(q, ti ) = 1 - )-_'_<i _rk, for all i.
7r i

the subproblem 2 can be solved by maximizing the virtual surplus

&(t',qi)=S(ti, qi) - $(q,t')[u(t'+l,q ') - u(t',qi)], for all i,

S.(t i, q,) = S(t i, qi) 1 - _k<, Irk [ti+l _ t,]qi, for all i
7£i

&({, q)= s({,q).

where { is the highest type, nobody's successor. This generalizes the result of no distortion

at the top of the distribution. But this does not imply that allocations are only downward
distorted.

• _re call Almost Pure Case a solution such that there is a single optimal path to compute

the rent of each type, this does not mean, as above, that there exists a single optimal path

running through all the types. This means that we can define several ordered subsets, say
J:

T = {T1, T2...Ta},

and for every Tj we can rank its types from t°, the dummy type in Tj to [j, the highest

type in Tj. t ° = t o for all j. T is such that :

T_n T_n... n Tj = {t°}.

This shows an important result (which is valid for all solutions, not only almost pure cases):

Proposition 6 whatever the solution, the set of types that participate and get no rent is

always a singleton, the dummy type, if all the quantities served by the monopolist are strictly

positive.
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o the lowesttype in Tj and t o the lowestTo show this, imagine there are two such types, tj

type in Tj, as nobody attracts them, we have (which is also equivalent to say that attract each

other, i.e, a closed path exists between to and to):

We also have:

for all i, i + 1, k

- q(t°) =

for all i, i + l,k E janda=l,2.

As above, )_(q, #) does not depend on q

(to o o" = ti)qi = O,

uo_ (to_ o 0= tj)qj = 0,

t oqjO = qiO = 0 for all (ti° - 5-) # 0.

If (t,° -t_,) > 0, this means that _ is upwards distorted and qjO is downwards distorted, then
we have:

qiO > qi__0> _o > qjO,

which cannot be satisfied with:

q O=0qia.

As a consequence, qjO = qO = O(QED). Then we define by 13_the length of the optimal path
of type t _in subset Tj, _ the length of the longest one and by 7(lj) this optimal path from ti

to t°.This means that for all i # 0, there exists a unique -y(_) running through V. And for all

optimal path of length li we have:

7(lj - i) C _(Zj), for all t = {i, ...,_),

J

In this case, the first order conditions give:

OL
= -rr i-A i=0, for alli,

OU_

*==_ Ai " for all i,--71 -_ '

q(t_) ^ i 1 _-, rk(ti+l i- q(t_) = -- - t=),
7ri L...¢ _ a

k>i

E janda=l,2,

1 - Ek<i zrk (t2+1 t_)
7/.i

A(q,t i) = -(1 - Elrk)'f°r all i,i + 1, k • j.
k_<i

As a consequence, the subproblem 2 can be solved by maximizing the virtual surplus:

S_(ti, qi)=S(ti, qi) 1 - _;_k<i rk[u(ti+l,qi ) _ u(ti, qi)], for all i # tj,
T; i

S_(tj,qj)=S(tj, q3) for all j.
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• In a muchmorecomplexsolution,in whichsometypescanreachthe dummytype _,ith
severaloptimalpaths,wecanalso define several ordered subsets T1, T_...Tj but

T1 n T2 n... n ¢={t°},

the intersection of all these ordered subsets is not reduced to a singleton. In this case,

/,:6=i j

depends on q. Wre can notice that:

and

4 E_i -rr-=- a j, for all z,
J

J

_-_a} = 1, for all i
J

which means that:A} e [-Tri,O], for all i,j. a} can be seen as the probability that type

t i chooses the optimal path j to reach the dummy type. These constraints on Lagrange

multipliers are crucial to determine the general solution of the monopolist's problem. The

study of the Regular Symmetric Case in the following subsection is an example. We can
also notice that in this kind of solution:

_(q, t i) > --(1 -- y_ rrk), for all i, i + 1, k E rn,
k<i

A(q, ti) >- y_ y_ r_a_.
k_ j

Then the part of the distortions in resource allocations due to optimal paths starting from

t k is _rrk (Ak = _rrk). Then the part of the distortions in qi due to type t k is:

e 0].

As a consequence, we can write distortions as:

k¢_ j

where _a# E]0, 7rk[ if there exists at least two optimal paths from t k going through t i,
7rka_ = 7r_ if there is only one such path, and 7rk¢{ = 0 if no paths runs trough t i (in

• Z

this case there exists at ]east one J such that t' = t j). This generalizes the result of no
distortion at the top of the distribution in each Tj.

This confirms a result of Rochet-Chone (98) saying that for any solution we can define several

ordered subsets Ta defining several sets of agents (in our simple model we do not obtain as they

do the set of agents who do no participate and get nothing):
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asetT o (reduced to a singleton):

T o = {t °, for all j } = {t°}.

where t3° is the lowest type in subset T3. The element of T O gets a rent U_°.

U°=O.

a set T = {#} for all i such that:

U i>O,

q(ti)# O(#).

• asserT

_= {_j,for all/I,
• where tj is the highest type in subset Tj.Every element in T is such that:

U_ -j > O,

q(_-_)= O(_-j).

5.4 The Regular Symmetric Case in the Equivalent Problem

The monopolist produces two goods with the following cost function:

1

C(q) = _(_ + q_)

and wants to sells these two goods to a heterogenous population of four type: We denote these

types by letter i = A, B, C, D.

t_ = (tl, 4), (='_),
t s = (t),t[), (_rs),

t C = (t_,t_), (_rC),
t D l h= (tl, t2), @D),

and t h - t_ = Ate, for a = 1, 2. Buyers utilities are quasilinear:

u' = u(t',ql,q_)- p(ql,q_)- E,
u( ti, ql, q2) i i i i= tlq _ + t2q5,
piqi i i " "= Pl ql + P_2q_.

This solution is such that, C is attracted to B and D and A attracts B and D. We can then

define two optimal paths from C to A, one running through B, the other through D. This defines

7 c = {C --- B _ A} and 7 C = {C --- D --. A}. Consequently, we can define two ordered subsets

T1 = {t A, t B, t c} and T2 = {t A, tD, t C} and two expressions for U c .

U C (7 c) = At2q2BU_ B,

UC(Tc)=Atlq D +U D
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asB and D are immediate successor of C. As A is the immediate successor of B :

u_B = Atlq_,

and also the immediate successor of D :

U_ D = At2q_ .

Then:

gC(,_c) = at2_ + A4_,

U'_(3'2) = At_ + ,St2q_.

In this case the monopolist problem can be written as:

Max Z 7ri(u(ti' q') - C(q') - U ')
i

s/c :U_ A= O,(AA),

:U_B = _tx@, (A_),

:U_ D = _t2@, (AD),

:u_C = At,ff + At,@.(),[).

The constraint on U c can also be written as:

u_C=._LF(_f) + _2g_(_f),
O"1 -_-_2 = I_

G1 =0".

The first order conditions give:

OL

OU _ = -_-'- _ _,_= o, for_Ui,
i

AA = -n -A,

AB = -'r B,

¢=_ AD= __z,,
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and

OL

oq,.
_ lriOS(t_,q _) ,kOUk('Y_)

oq,. +_ Z__ _ - o,fo__l _and_= _,2

OL = _A(ff_ _) + (h" + h_)ZXtl= O,
Oq---(

Oz = _(t# - _) + (h_ + h°_)!,t_,
<==>_

OL =_.B(t f_qB) =0,
"¢==_Oq-----(

OL = rc'(t_ - qB) + (hC)At2 = 0,

OL = lrC(tc _ qC) = O,
¢:::::vOq--'_

OL = Irc (tC _ qC ) =0,
¢::=_ 0-'-_2

OL

Oq----_ = 7rD(tD1 --q£1:191)+ (h2C)Atl = 0,

OL

.<=_o---4p_= _(t_-_) = o.

To define the solution, we have to determine the value of the non positive Lagrange multipliers.

We still have two unknowns, h e, h e and only one equation hc+h C = -Tr C. The missing equation
is obtained by:

uC(_) = uc(_)
At2q_ + Atlq_l = Atlq D + At2q_2,

.=_ At,(q; - _) = At_(q_"- q¢)

We write quantity as functions of A1c and define its value with the above equation: if paths .yc
and .),c are both optimal they provide the same rent.

7rA

7( A

q_=t_+ h_A.

(___C __ AC) At1,

Solving Atl(q D - qA) = At2(q# -- qA) we obtain:

._r B _- lrc 1 1 1
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Thisdefinesasolutionif all A_ are non positive. We obtain the condition already found in chapter

2 according to the non positi_vy of the Lagrange multipliers:

A_ - c_A_rc -- _ > ---r-_¢(_ + _D).

The other conditions that must be checked by the model are such that: If type t i is attracted by.
its immediate successor t i-1 we have:

U i - U i-I = (t i - ti-1)q i-l,

and if t i-1 is n_ a_racted to t i _,'C h2.ve:

u_ _-_ - u__ _> (t'-1 - t')¢,

¢=* U_ i - u_i-1 < (t i _ ti-1)qi,

¢==_ (P - ti-1)q'-I < (t i - t'-l)q ',

and we obtain, as in chapter 2:

7r A

In this solution, q_l, qlc, qC q_2 are equal to the optimal resource allocation, q¢1,q_2,q_2, _ are
downward distorted. The distortions Dis are:

--7I" B(-_ + Af),_t_ (- "_ - _c)._t_,--_zxt_ ,D_l = 7r A E 7t.A

- f - e _-##=

-_-_'gAt2,

--Tr C

_r D •

and for all i = {.4, B, C, D} and _ = {1, 2}, D_ _< 0, since for every optimal path defining an
ordered subset, we always have:

t_+1 _> ti_, for all i,a.

We can explain distortions as follows:

• Type t s is attracted to t A, and only t A,

then the weight of the distortion on q_l due to type tB's attraction is

mTi-B"
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Type t D is attracted to t A, and only t A,

tDl = t A,
D A

t 2 > t 2 ,

then the weight of the distortion on qA (due to type tD's attraction is

--TT D.

• Type t c is attracted to t B, and also t D. Then the part of the distortion due to type tC's

attraction is
--Tf C.

This weight is split between distortions explained by 7 C and 7 c. This means that we can
define distortions as:

D¢- (__B _ a:rc) Atl
,irA

DA= (__D _ _rc(1 _ a)) At2,
_-A

--(711C .

= -7 xt2,
w_C _l

D ° = - ajAtl,
"ITD

where a E ]0, 1[ depends on q,

U_c = auC (TC) + (1 - o)UC('yc),

and can be seen as the "probability" that type tc chooses paths -yc={C --. B --_ A} to

reach the dummy type, (1 - a) for %c. This means that a weight -aTr c is dedicated to DeB

and D1A and a weight -(1 - a)_ c is dedicated to D D and D #. Types t B and t D have only

one path to reach t A, so the probability that they choose these paths is one. Consequently,

the weight -Tr B is totally dedicated to D A and the weight -:r D is totally dedicated to D A.

Even if, on each route, there are only two levels of demand of services, the airline in this

case has to propose 3 levels of services on each route. In this particular example, we have the

following solution:

q_=qf >q_>q_l

qC=q2D > q2B > q2A

which means 3 levels of services on each route.

Customers C receive their first best allocation of services on each route. They fly first on

routes 1 and 2. Customers B fly first on route 1 and fly "above economy" on route 2. Customers

D fly first on route 2 and fly "above economy" on route 1. Customers A fly economy on both

routes. We can also think about services that can be provided outside the aircraft to allow the

airline to offer the same level of services on board to customers B and A on route 1, and D and
A on route 2.

In the following section, we study the set of solutions s* = {a, b...n} already defined in section

4 as cases {A,B...N}.
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6 The Solution (2) and implications for service allocation in the air-

line industry.

In this section we use the set of solutions defined in section 4, in which characteristics are such
that:

t =4,t =6,
At1 = 2,

t'.=4,t =5,
At2 = 1,

and types are distributed as follows:

and

7FA__ 7I.C ----- E

2'

=8=to = (1 - e)
2 '

pe]-:,:[.
Even ff there are only two levels of demand of services (high or low), as the optimal pricing

policy requires a form of bundling, the optimal resource allocation often requires 3 levels of
services, sometimes 4 on each route.

6.1 Pure Case

A Pure Case is a solution such that there is a ,unique optimal path of length which _runs through
all of the types defining a unique ordered partition T of T. As a consequence, this also defines

a unique optimal path for each Lype and consequently a unique expression for each rent.

Solution i (case I in section 4) is the only Pure Case in the set of solutions. The attractions

are as follows: C is attracted to B, who is attracted to D, who is attracted to A. _,Ve can then

say that C _- B _- D >- A. _Ve can thus define:

T= {A,D,B,C}.

In this case, we have:

u__B=/ktlq£1)l - /kt2q_2 + mt2q_2,

U D = At2q_2 ,

U A=O.
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andquantitiesare:

- t A,

rA - _rc) At2

qff=tf + - =c)atl,
7r D

7rc + 7rB

qB=tf ,

_Tr C

q2B = tf + --_ At2,

qC=tC,

qC=tC.

This solution is singular as a quantity is upward distorted. As distortions depend on the prede-

cessor's type, qD is upward distorted: B is attracted to D so distortions in qD are positive when

t D > t B and negative otherwise:

tD < tls _ Df < O,

ty > tf Dy > o.
As a consequence,

qC=q_l >qt>qD,

q_>qC > q_2 > q_4.

Again in this case, customers C fly first on both routes. Surprisingly, customers D fly "above

first" on route 2 and economy on route 1. Customers B fly first on route one and "above

economy" on route 2. Customer A fly economy on route 2 and "above economy" on route 2.

6.2 Almost Pure Case

An Almost Pure Case is a solution such that there is a single optimal paths to compute the

rent of each type. There exist several distinct optimal paths such that every type has one and

only optimal path running through it.

Solution c (case C, Regular Asymmetric Case in section 4) is the only Almost Pure Case

in the set of solutions. The attractions are as follows: C is attracted to D, who is attracted

to A, and B is attracted to A. We can then say that C >- D >- A and B >- A._Ve can thus

define: T1 = {A,D,C} and T2 = {A,B} defining: ._.c = {C --* D --* A},q 'D = {D --* A} and

3,B= {B-+ A}.

The set of optimal rents is accordingly as follows:

u_c = Atlq_ + At2q_2,

U_ a = At2qlA,

U_ D = At2q A,

U A=0.
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This solutionis regularandquantitiesare:

#=#+

_rA At2,

(__D _ r:c),:xt2 '
7( A

__C

 =tf,
#=if,

qr=tf,

Cand B are the highest type in the respective ordered subsets T1 and T2. As a consequence, C
and B obtain their first best allocations.

_e have the following solution:

qC=q_2 >q_2 >q_2

which means 3 levels of services on each route.

Customers C and B receive their first best allocation of services on each route. Customers

C fly first on routes 1 and 2. Customers B fly first on route 1 and fly "above economy" (at his

first best level) on route 2. Customers D fly first on route 2 and fly "above economy" on route

1. Customers A fly economy on both routes.

6.3 Regular and Completely Ordered

Such a solution does not exist since we have to rank t B and t D. To be able to do so, whether there

exists an attraction between them or they can reach each other through t c without involving any

transverse binding ICC. In both cases there is upward distortions: whether t B or t D attracts the

other, quantities allocated to the attracted one are distorted, one up_-axds and one downwards
as:

tf> ,
¢>q;

ff t s or t # can reach the other one through t c implies that. qC is upward distorted as:

6.4 Regular and Partially Ordered

Solutions d, e and f, respectively Regular Symmetric Case and the Separable Case, are regular

and allow partially type ordering.
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Forsolutiond, see the previous Section.

In solution e, C is attracted to B and D and A attracts B, D and C. We can then define

three optimal paths from C to A, one running through B, the other through D, and a third

one going directly to A. This defines .yc = {C --* B --* A}, _/c = {C --* D _ A} and
%c = {C--_ A}, 7 D = {D --* A},')'B = {B --* A}. Consequently, we can define three ordered

subsets T1 = {t A, t B, tC},T2 = {t A, t D, t c} and T3 = {t A, to}and three expressions for U c

In solution f, C is attracted to D and A, and A attracts B, D and C. We can then define

three optimal paths from C to A, one running through B, the other through D, and a third one

going directly to A. This defines .),c = {C _ D ---* A}, .yc = {C _ A}, .),D = {D _ A}, .yB =

{B --* A}. Consequently, we can define two ordered subsets T1 = {t A, t D, tC},T2 -_- {t B, t C} and

two expressions for U_ c

Solutions d,e and f defines a type ordering for each good: for the good 1, C = B >- D _ A

and for good 2: C = D >- B _ A.

Again, we obtain the following solution:

which means 3 levels of services on each route.

Customers C receive their first best allocation of services on each route. They fly first on

routes 1 and 2. Customers B fly first on route 1 and fly "above economy" on route 2. Customers

D fly first on route 2 and fly "above economy" on route 1. Customers A fly economy on both

routes. We can also think about services that can be provided outside the aircraft to allow the

airline to offer the same level of services on board to customers B and A on route 1, and D and
A on route 2.

6.5 Singular and Completely Ordered

A pure case belongs to this class of solutions.

Solutions a, b, h, i, j, k, m are singular (upward distortions) and completely ordered (there

exists an ordered subset Tj of four types).
In this set of solutions there are two possible type ordering:

C _ B _- D _- A for solutions i, j, k,

B >- C >- D _- A for solutions a, b, h.

This can be explained as follows:

• solutions a, b, h occur for low values of e equivalent to low proportions of types t C and

t A and high proportions of types t B and t D. It is in the monopolist's interest to extract

maximum surplus from types tB and thus sell them their first best allocations. Even if

rrB = _rD and whatever the solution, neither D is the highest type nor D is superior to B.

This comes from the parameters of the model, Ata > At2.

In this case we have,
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Again,customersC fly first on both routes. Surprisingly, customers D fly "above first" on route

2 and econoI_- on route 1. Customers B fly first on route one and "above economy" (at their

first best level) on route 2. Customer A fly economy on route 2 and "above economy" on route
2.

• solutions i, j, k are such that B is attracted to D. This enables to rank them and defines

the unique and expected type ordering C _- B _- D _- A, where C is the highest as t_ > t_
for all a, i. Then B is bigger than D as B has more impact on distortions than D since

Atl > At2. At last A is the lowest type as t A < t_ for all a, i.

In this case we have,

qlC=q l>q l >q l,

Again, customers C fly first on both routes. Surprisingly, customers D fly "above first" on route

2 and economy on route 1. Customers B fly first on route one and "above economy" on route 2.

Customer A fly economy on route 2 and "above economy" on route 2.

6.6 Singular and Partially Ordered

Solution l is such that:

7 c= {C --* D --* A},

79= {D --* A},

7_I = {B---, D---, A},

3{2= {B --* A},

defining:

TI={A,D,C},

T2={A,D,B}.

B and C obtain their first best allocations while q_ is upwards distorted and q_, q_, qA are
downwards distorted. Even we can rank B and D we cannot rank C and D and define a unique

type ordering. _re have:

T°= {tA},

= {tc,ts}.
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In thiscasewehave,

q_=qf > ¢ > qf,

Again, customers C fly first on both routes. Surprisingly, customers D fly "above first" on route

2 and economy on route 1. Customers B fly first on route one and "above economy" (at their

first best level) on route 2. Customer A fly economy on route 2 and "above economy" on route
2.

6.7 Special cases

Solutions n and g as two types attract each other, B and C.

This kind of solution means that there exists two types such that:

U i-U_ _ = (t i-tj)q i,

u J-u _ = -(t'-tJ)q_
q_=q,:foran (¢ - t_)¢ o

If (t_ - t_) > 0, this means that q_ is upwards distorted and q_: is downwards distorted, then we
have:

ql > _: > _e:> ¢:,
which cannot be satisfied with:

As a consequence, q_ = qJ: = 0.

In solution g we can define the following ordered subsets:

T1 = {C,B,A}

==_C_B_A,

T2 = {B,C,D,A}

_B>-C_-D>-A.

In this particular case where B is at the same time the immediate successor, in T1, and the

immediate predecessor, in T2, of C. We have:

and consequently:

U c _ u_B = At2qB,

u:B - u_C =-At2q C,
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In this solutionoptimalpaths-y,_define the rents of B and C are as follo_-s:

rr c = At2_.2 _- AQ_._I , with probabillt_, _c

=At2q¢2 + Atxq_l, with probabilitya c,

= _t2_ + _t,_, withprobabmty_L
U_ B = Atiq_l, with probability a B,

=--At=q2c +/kt=q_2 + At]q#1,with probabilityoff,

=--At=q c +/kt2q_2+ Atlq_1,with probabilityoff.

As Vc C 3_ and Vc C _ we have:a c = off and a c = a_ and consequently: a c = af. Then we
have:

q5 =t2 -F At2 7rC -4-At2_ ,

_=@- _t_ _ _t_(_f * _)_
71-B 7rB

where the second term of each distortion is explained by mutual attractions, which means ac-
cording to distortions that are usually computed as:

q(t'_) "t' =-X:Z -'-''-'+' ',, _ -t_),

are computed:

t=g_ i

t i ^ t i rrkerk.(ti+l _ t iq('_) -- q(") = -- Z _ J'-" '_)'
k j

that we make the sum for all k as _ = _/_ when k and i attract each other and t_ - t_ # O.
qC __ _ implies:

(_ + _)_ , ,,f_.c
_rc .- 7rB -0

which is impossible. If we neglect closed paths (and mutual attractions), using:

t i ^ t _ _Z" _a_(t _+1q( '_) q( '_) = -- Z- - t,_),3 _a

Ug4 j

this second part of the distortions does not appear and the condition becomes:

+_---1
71"C 7rB

which is also impossible. This defines a solution in which the monopolist only sells good 1 as:

In this case:

q_=_=@=o.

T°= {t_,t_} = {t_},
7"=0,

_= {t_,tc} = {t,"}
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asin the classiconedimensionalcaseof coursesinceonly onegoodis produced.This does
not meansthat good2 is not profitable. This means that there is no optimal mechanism en-

abling the monopolist to fully apply his monopoly power and he is better off selling both goods

independently.

We then obtain the following solution (see separable case in section 4),

q =qlB>qlD--q l,

Again, customers C fly first on both routes. Customers D fly first on route 2 and economy on

route 1. Customers B fly first on route one and economy on route 2. Customer A fly economy
on both routes.

Solution n is equivalent as B and C attract each other implying:

=

implying the sum of strictly positive terms to be negative,

7r C 71"B

rT--_+ 7U =-1

if we neglect mutual attraction, which is of course impossible. Computing utilities:

U c

U B

= At2q_2 + Atlq_l, with probability a c,

= At2q¢2 + Atlq D, with probability cr2c,

=-At2q c + At_q_2 + Atlq_41, with probability a_,

=--At2q c + At.q_2 + Atlq D, with probability a B,

as C is attracted to B but cannot reach A as B is not attracted to A. This creates a closed

paths, C --* B ---*C. Again:

q_ = 0, for all i.

We then obtain the same solution as in case g.

In both cases, there is no optimal selling mechanism enabling the monopolist to fully apply

his monopoly power. In this case, as we assume that both routes are profitable, the airline will

market these routes independantly.

7 Conclusion

In this paper we have derived the complete solution of a two-product monopolist in the 2*2 case

with a quadratic cost function and linear preferences. We have seen that a solution with the

same qualitative features than the one in dimension one does not exists for all parameters neither
for all distributions.

In the case where there is no cross cost parameter, we have discovered four possible solutions

depending on the correlation between types, as in Armstrong-Rochet (98), whereas Dana (93)

in a different context, but a similar setting, finds only two solutions. One of the most striking
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result is the solutionfor stronglynegativecorrelation,the singularcase: there is an upward
binding ICC (B towards C and not D towards C because Ata > At2 ) and a transverse one

(B towards D because Ata "___At2). A_ a consequence, the highest type C receives an upw-ards

distorted allocation, whereas an "intermediary" type, B, gets his first best allocation (and also

in the regular as3nxmaetric case). The type who has the highest indirect utility lex_el does not

always get his first best allocation( see t3_pe C in the singular case), and is not necessarily the

only one to get it.

_en we take p into acrmunt several other solutions appear each one having its own properties.

_Ve know that D is always attracted to A and never to B and C. The monopolist al_3_ captures

all the surplus of the lowest, type (A) and the others alwa3_ obtain a strictly positive surplus.

We also show that the bidimensional monopolist's problem has solutions such that:

• the optimal pricing mechanism often requires a form of bundling

• it is sometimes impossible for the monopolist to apply his monopoly power, and he is

sometimes better off selling both goods independently,

• if all the quantities served by the monopolist are positive, there is no closed path or mutual

attraction and the set of types who get no rent, is reduced to a singleton, the dummy type,

• distortions depend on the number of optimal paths and also on their lengths, especially
the number of types involved in these optimal paths,

• the sign of the distortions in types tis allocations only depends on their immediate prede-

ce_q-,Drs_

• the rule of no distortion at the top of the distribution is always satisfied.

In this particular bidimensional setting we succeed in finding the global solution as there axe

only two arguments, two characteristics and four types. We are also able to solve _he problem

by maximizing the expected virtual surplus for Pure and Almost Pure cases. In a general

multidimensional setting, solving the problem is always feasible as we have enough equations to

determine all the unkno_ns. But to do so we have to be able to answer the question: "_rhat is

the set of optimal paths that defines the solution?

On the airline side, empirical research is needed on route monopolies. Further research should

also be undertaken on network monopolies connecting secondary airports.

8 Graphs and Figures

9 Appendices

9.1 Appendix 1

Conditions on quantities for the Regular Symmetric Case:

uB- uA=
V A - U B ___ -Atlq_l,
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U D -- _ rA -_" At2q_2

UA - UD >__-At2_

5

oC>_ 

Uc - v A = At_ff + At2_

Vc - UA =/xh_ +/xt2_

U C - V A >_ Atlq_l + At2q#2

Uc _ uA <_At, q[ + At2qc

Uc - UB = At2_

U_ _ uc >_-At2q c

U c _ U D = At_q_1

v_ _ o-c >_-AhqC
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UB - Uv =/xhqlD -/xt_qy

U a _ g D >_ Atlq D- At2q D

U o - U B > -Atlq_ + At2q B

9.2 Appendix 2

We write here the F.O.C of the problem in the 2*2 case when buyers are uniformly distributed.

In this case we obtain the following equations for the optimal quantities:

[t1 + , - p(t A + 2At2

qC = 1 [tC 2Atl-"A_-"r)c(_--rz-_L_ + - p(tf + 2At:"_"+_"_)]
qD = 1 ...+.c_ _ p(t D + 2At2t,_-+.,_o_l[t_+2Ah ___ 1-_ ,_
q_2 = 0__T=___[t21 A + 2At-_z , - P(t A + 2Atl-_'_ -"_* )]

[t_+2/xt: 1__ , _ ___
qC = 1 c -.,_c-._c p(tf + 2Atlt'_'+t'_ ',(l_-g:-__[t2+ 2At2 _ - _ )j

qD : 1 D on.lt --_AD--_BD

We have the following equations for the Lag'range multipliers of the problem:

--'IRA -- AA -- #AB -- ]ZAC -- PAD "_- #BA -47 #CA + #DA -----O,

--7[B -- AB -- ]_BA -- #BC -- #BD -j- #AB + #CB + #DB -_-O,

__C _ AC -- #CA -- ]_CB -- #CD -_-#AC -_-#BC -_-#DC = O,

--Trm -- Am -- #DA -- #DB -- ]_DC 2c [LAD -_-[2BD _- _CD = O.

To derivethe complete solutionwe replicatethe technicused in section4. We takea solution

and findthe frontiers(theconditionson quantitiesand the sign of #ijs).V%rethen look for a

solutionifone oftheseconditionsfails.We then findthe bindingconstraintsand then we check

the conditionsof existenceof a solution.We always obtain a system of P equationswith P

unknowns. V_rehave N equations (o_Lu_and the missing equationsare equalityconditionson
_,Oq /

quantities, obtained by examining the attractions and the different possible paths from one type

to another. And so on... (see figure 4). This has been done with Mathematica 3.0 ( a mathematical

software).
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