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Abstract

To cope with air traffic growth and congested airports, two solutions are apparent on
the supply side: 1) use larger aircraft in the hub and spoke system; or 2) develop new
routes through secondary airports. An enlarged route system through secondary airports
may increase the proportion of route monopolies in the air transport market. The monopoly
optimal non linear pricing policy is well known in the case of one dimension (one instrument,
one characteristic) but not in the case of several dimensions. This paper explores the
robustness of the one dimensional screening model with respect to increasing the number
of instruments and the number of characteristics. The objective of this paper is then to
link and fil the gap in both literatures. One of the merits of the screening model has
been to show that a great variety of economic questions (non linear pricing, product line
choice, auction design, income taxation, regulation...) could be handled within the same
framework.We study a case of non linear pricing (2 instruments (2 routes on which the
airline provides customers with services), 2 characteristics (demand of services on these
routes) and two values per characteristic (low and high demand of services on these routes))
and we show that none of the conclusions of the one dimensional analysis remain valid. In
particular, upward incentive compatibility constraint may be binding at the optimum. As
a consequence, they may be distortion at the top of the distribution. In addition to this,
we show that the optimal solution often requires a kind of form of bundling, we explain
explicitly distortions and show that it is sometimes optimal for the monopolist to only
produce one good (instead of two) or to exclude some buyers from the market. Actually,
this means that the monopolist cannot fully apply his monopoly power and is better off
selling both goods independently.We then define all the possible solutions in the case of a
quadratic cost function for a uniform distribution of agent types and explain the implications
for airlines in terms of service diffenrentiation.



1 Introduction

To cope with air traffic growth and congested airports, two solutions are apparent on the supply
side: 1) use larger aircraft in the hub and spoke system; or 2) develop new routes through
secondary airports. An enlarged route system through secondary airports may increase the
proportion of route monopolies in the air transport market. Other solutions exist (slot auctions
for example) are out of the scope of this paper (see for example, M Raffarin (2003)).

Because large aircraft took years to develop, required enormous up-front investment and has
useful lives of more than 30 years, Airbus and Boeing had to generate long-term demand projec-
tions. To do so, they prepared 20-year forecasts for large commercial aircraft: Airbus published
its Global Market Forecast (GMF hereafter) while Boeing published its Current Market OQutlook
(CMO hereafter). Eventhough these forecasts are produced according to 2 different models, both
manufacturers agreed that there would be a significant growth in the air transportation industry
(worldwide passenger traffic will almost triple by 2019; Airbus forecast an average annual growth
rate of 4.9% while Boeing estimates an average growth rate of 4.8%). They also agreed that Asia
would register the world’s highest growth rates over the next 20 years (See Ref 1).

To produce GMF, Airbus predicted annual demand for new aircraft on each of the 10000
passenger routes linking almost 2000 airports assuming that passenger and cargo demand would
track the Growth Domestic Product (GDP hereafter) growth as they had over the past 50
years. For each airline, on each route pair, the model estimated the need for specific aircraft
and compared that number against the then existing supply of aircraft. The model calculated
maximum feasible frequency limits for each route based on assumptions about airport capacity,
airplane speed, distance and some other factors. It assumed that airlines would attempt to keep
their market share by adding capacity as demand increased and by increasing aircraft size when
it was no longer feasible to increase flight frequencies. Airbus forecast demand for 14661 new
passenger aircraft and 703 new are freighter over the next 20-year period by 2019. It forecast
demand for 727 new aircraft seating from 400 to 500 passengers (the mainstay of the 747 market)
and 1550 new aircraft seating more than 500 passengers (1235 passenger aircraft and 315 cargo
aircraft). The GMF also predicted that by 2019 , Asia-Pacific airlines would hold half of the
very large aircraft (VLA hereafter) passenger fleet and that 6 of the top 10 airports served by
VLA would be in Asia (See Ref 1).

In contrast, Boeing forecast economic growth in 12 regions in its CMOQ. It then used these
growth assumptions to forecast regional traffic flows in 51 intra- and inter-regional markets. For
example, travel within China would grow at an average annual rate of 9% compared to 2.8% in
North America. The CMO concluded there would be demand for 22315 new aircraft through
2019. One reason for this difference between the two forecasts was that the CMO included for
more than 4000 regional jets. Despite general agreement on overall growth, Boeing forecast a
much smaller VLA market. The CMO stated bluntly: "The demand for VLA is small" (See Ref
2). Tt forecast total demand for only 1010 new aircraft seating 400 passengers or more, 40% of
which would be 747-400’s (410 new aircraft). Of the remaining 600 planes, 270 would be cargo
planes, leaving demand for only 330 aircraft seating 500 passengers or more. More importantly,
most of the demand for the larger planes would not materialize for at least 10 years (See Ref 2).

The disparity between these two forecasts could be traced to conflicting assumptions regarding
the relative importance of flight frequency, new route development and aircraft size. Airbus
believed that increased flight frequencies and new routes would provide only short term solutions




to the problem of growing demand. Airport curfews, gate and runaway capacity and passenger
arrival preferences would limit the ability to increase flight frequencies at many airports including
some of the world’s busiest airports like London Heathrow, Tokyo Narito, Singapore and LA
International. As Airbus EVP John Leahy said "the trouble is that on these long distance
flights, nobody wants to arrive at 3.00AM and nobody wants to drive at the airport for a
2.30AM departure so that they can have more flights" (See Ref 3). At the same time Airbus
did not believe that development of new routes would provide a long term solution. Adam
Brown, VP for strategic planning and Forecasting, noted "the pace of new route development
has slowed sharply...between 1990 and 1995, the total number of route grew by less than 700, an
average increase of 1.7% per year. Part of the problem was the difficulty of opening new airports.
In fact, only 10 major airports where scheduled to oper within the next 10 years and only 18
airports had approved plans to grow (See Ref 3). An even bigger concern was the fact that new
routes would not solve the problem of growth at largest population centers, especially in Asia.
While Boeing and others cited the expansion of new routes in transatlantic markets as a model
for growth in transpacific travel, Airbus pointed out that Asia lacked secondary urban centers
to support new destinations(See Ref 4). Thus, hub-to-hub transport would remain the industry
standard in these markets.

Like Airbus, Boeing assumed that increasing flight frequency at existing airports would absorb
certain amount of growth, but that congestion at the largest hubs would require an alternative
solution, which according to Boeing would be new point-to-point routes using medium sized,
long-range aircraft like 777 or 340. In support of this view, a Boeing executive claimed "...60% of
the airlines bought 1000 or so 747s we’ve sold bought them for their range, not for their capacity"
(See Ref 5). To the extent, there was demand for VLA, the 747-400 would be sufficient for most
airlines.

Recent development in the airline industry supported this assertion. In the USA, following
airline deregulation in 1985, southwest airlines had prospered by introducing new services at
secondary airports such as Providence, Rhode Island and Islip, NY. In Europe Ireland based
Ryanair was copying Southwest’s model and had achieved 25% annual passenger growth since
1989 by offering no-frills, economy service between secondary airports (See Ref 6). More recently
start-ups and buzz and easyjet had adopted similar business models. Transatlantic and to a
much lesser extent transpacific travel reflected this trend towards segmentation. Randy Base,
a Boeing Vice President explained "back in 1987, the only daily flight between Chicago and
Europe was a TWA to London. In those days, 60% of American carriers’ transatlantic flights
were in 747s operated by Pan Am and TWA in and out of big East cost airports. In 2000,
United and American Airlines were operating from Chicago to 11 European destinations using
smaller 767 and 777 aircraft (See Ref 7). More recently, both Delta Airlines and American
Airlines had introduced new point-to-point service across the Pacific, the former from Portland,
Oregon , to Nagoya, Japan and the latter from San Jose, California, to Tokyo (See Ref 8).
Related to the opening of new routes was a decline in the average seating capacity in many
airline fleets. In fact, Boeing predicted that smaller jets such as its 777 or Airbus A330 would
provide 160 fragmentation across the Pacific(See Ref 7). Boeing assumed these trends would
continue because people seemed to favor timely and direct service over minimum cost as they
became wealthier (See Ref 2). Another factor would contribute to further fragmentation, though
one that was exceedingly difficult to predict, was entry by new airlines. Nevertheless Boeing



believed entry was likely.

Industry analysts made projections that felt somewhere in between the two. The Airline
Monitor, a leading industry journal, assumed that airlines would buy the A380 for its operating
advantages and passenger appeal. Based on this assumption, the journal forecast total demand
for 735 A380 through 2019 (including Cargo planes) (See Ref 9). It is also predicted that the hub-
and-spoke system will remain the industry standard. Even if, new routes development through
secondary airports will not solve entirely the air traffic growth and congested airports issues, it
will enable airlines to lower their cost (low airport fees, city-, region- or government-support...)
and at the same time to have monopoly positions on these routes allowing positive profits (if
there is enough demand of course).

This paper does not intend to show that Airbus’s or Boeing’s predictions are right or false.
The above comments show that the hub-and-spoke system will remain the industry standard and
also that new route development through secondary airports will be one of the key feature of
the 21 century air transport industry. Assuming the above statement, new route development
through secondary airports will also give birth to route monopolies (as it is often the case for
low cost airlines). In addition to being new market shares for airlines, these new point-to-point
services through secondary airports will also enable airlines, at least for a certain period of time,
to have monopoly positions on these routes and as a consequence, to make positive profits.
We assume monopolistic positions for the carrier as the products (point-to-point routes) are so
differentiated from the other products of the market (routes through the hub-and spoke system)
that they are assume to be different. Example: direct flight from Toulouse (France) to Vancouver
(Canada) is different from flying from Toulouse to Amsterdam, then from Amsterdam to Seattle
and then from Seattle to Vancouver.

The objective of this paper is to study the optimal pricing policy of a monopolist facing a
population of heterogenous buyers. In the air transport literature, on the one hand, after airline
industry deregulation, pricing policy in the hub-and-spoke system, airport dominance (...) has
been largely reviewed (for examples, Graham et al. (1983), Berry (1990), Borenstein (1989,
1990), Bruekner et al. (1992)) but on the other hand, the monopolist’s optimal pricing policy
has been put aside even if 60% of the routes in the world are operated through a monopolistic
position. In Economics, the analysis of optimal screening has been subject of a large literature,
partly justified by the great variety of contexts to which such an analysis can be applied: non
linear pricing, product lines design, optimal taxation, regulations, auctions. Although it is often
recognized that agents have several characteristics and principal have several instruments, this
problem is often studied under the assumption of a unique characteristic and a unique instrument.
The case of several characteristics and several instruments has been studied and the qualitative
features of the optimal pricing policy have been established (Wilson (1993), Armstrong (1996),
Rochet-Choné (1998). Nevertheless, only few examples were solved (Wilson (1993), Rochet
(1995)).

The objective of this paper is to link and fill the gap in both literatures. This paper studies the
optimal pricing policy of a monopolist (airline) who produces two goods (operates 2 routes) and
faces a heterogenous population of buyers. The buyers (travel agencies) have two characteristics
(one for each good), two possible values per characteristic and therefore four possible types of
buyer. After a brief survey in section 2, where we recall the qualitative features of the solution
to the monopolist’s problem where agents are represented by a single characteristic and the




principal has only one instrument, section 3 focuses on the specific problem of non linear pricing
by a monopolist in the simplest possible multidimensional model. Section 4 gives the solution
and shows that results obtain in one-dimension model are not robust to increases in numbers
of characteristics and instruments (some upward incentive compatibility constraints are binding
at the optimum). For example, it is sometimes optimal for the airline to provide services above
the first best level to some of its customers. Section 5 studies the problem in a different but
equivalent way and enables to explain distortions in resource allocations. Section 5 studies the
general solutions and section 6 defines several sets of solutions and implications for airline in
terms of service differentiation. Section 7 concludes.

2 A brief Survey

2.1 Airline pricing policy

Airline deregulation has led to profound changes in the structure of the industry. In addition
to giving airlines the freedom to set fares, deregulation removed restrictions on entry and exit,
allowing the carriers to expand and rationalize their route structures. This flexibility led in the
1980s to a dramatic expansion of hub-and-spoke networks, where passengers change planes at
a hub airport on the way to their eventual destination. By funneling all passengers into a hub,
such a system generates high traffic densities on its "spoke" routes. This allows the airline to
exploit economies of density, yielding lower cost per passenger. These economies arise partly
because high traffic density on a route allows the airline to use larger and more efficient aircraft
and to operate this equipment more intensively (at a higher load factor).

Restructuring of the industry in response to deregulation has also led to renewed interest
among economists in the determinants of airfares in individual city-pair markets. This line of
research contains notable contributions by Graham-Kaplan-Sibley (1983), Borenstein (1989),
Morisson-Winston (1990). These studies typically explore the connection between airfares and
market-specific measures of demand (city populations and incomes, tourism potential...), cost
(flight distance, load factors...)and competition (number of competitors, market share...) without
paying much attention to network characteristics. Bruekner et al. (1992) shows the impact of
network characteristics in airfares determination by providing first evidence linking airfares to
the structure of airline hub-and-spoke networks. When a hub-and-spoke successfully raises traffic
density, ticket prices are likely to reflect the resulting lower cost per passenger. Any force that
increases the traffic volume on the spokes of a network will reduce fares in the market it serves.
This effect arises because of economies of density on the spokes. For example, since a large
network (as measured by the number of city pairs it connects) offers many potential destinations
to the residents of an endpoint city, its spoke should have higher traffic densities than the spokes
of a smaller network. With costs correspondingly lower, fares in the individual markets served
should be lower in the large network, other things equal. Similarly, holding size fixed, a network
that connects large cities should have higher traffic densities on its spoke (and thus lower fares
in individual markets) than one serving small cities.

The case of fare determination in the case of route monopolies has received little attention.
With these hard times and cut-throat competition in the hub-and-spoke system, this could be
serious orission.

In addition to being new markets shares for airlines, new routes through secondary airports



(secondary population centers), point-to-point service, can also be seen as a business model.
“Low cost” airlines often use this model. Under the “low cost” label, we can easily say that these
carriers have monopolistic position on some routes (Ryanair in Europe, SouthWest in the United
States of America for examples). Even if they are “low cost” airlines and are able to provide low
fare tickets, this does not means that do not use their monopoly on their market niches (they
probably do to reach such operating margin). What we propose in this paper is to assume that
an airline may have incentives to use a part of the “low cost” business model (secondary airports)
but on another business model. Thanks to low “airport costs”, point-to-point service the airline
is able to propose attractive prices and also to apply its monopoly power on its market niche.
Moreover, the airline may also be supported by cities, regions, or governments for the impact
of a route opening on the economic development of a population center. To do so, we assume
that there exists city pairs, population centers where the macro-economic environment allows
an airline to operate successfully a new route. Instead of providing customers with single class
flights, the airline proposes several levels of services (economy, business and first for example) to
apply price discrimination through its monopoly power. If an airline can operate one route on
such a city pair, the optimal non linear pricing policy is described in section as the one-dimension
case. If an airline can operate two routes on two such city pairs or through three population
centers, the optimal pricing policy is described and explained in the remaining part of the paper.

2.2 Mechanism design and non linear pricing

The analysis of optimal screening has been the subject of a large literature, partly justified by
the great variety of contexts to which such an analysis can be applied: nonlinear pricing, product
lines design, optimal taxation, regulation, auctions...

Although it is often recognized that agents have several characteristics and principals have
several instruments, this problem is often studied under the assumption of a unique characteristic
and a unique instrument. In this case we obtain the following results:

e the set of self selection constraints that are binding at the optimum is typically the same:
the Individual Rationality Constraints (I RC hereafter) at the lower extreme of the distri-
bution of types, and downward local Incentive Compatibility Constraints (JCC hereafter)
everywhere.

e we decompose the problem in two parts: first, find the system of transfers that minimizes
the expected informational rent for a given allocation of goods; second, find the allocation
of goods that maximizes the profit of the principal.

e because of the informational rent, second best allocation is distorted below, except at the
upper extreme of the distribution of types where it coincides with the first best allocation.

Considering the multiplicity of characteristics and instruments in most applications, it is
important to know if those results are still valid in the multidimensional context.
In the screening literature, the question has been essentially considered in two polar cases:

e one instrument-several characteristics: in this case, it is impossible to obtain perfect screen-
ing among agents. The same level of the instrument is chosen by many different agents
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(in Lewis-Sappington (88), this corresponds to firms having different costs and demands).
However Laffont-Maskin-Rochet (87) and Lewis-Sappington (88) show it is possible to ag-
gregate these types and reason in terms of the average cost function of all firms having
chosen the same level of production. Nevertheless, several qualitative properties persist:
for instance, Lewis-Sappington (88) show that price exceeds expected marginal cost, except
at the top of the distribution where they are equal.

e several instruments-one characteristic: the situation is very different. Matthews-Moore
(87) extend the Mussa-Rosen’s model by allowing the monopolist to offer different levels
of warranties as well as qualities. One of their most striking result is that the allocation of
qualities is not necessarily monotonic with respect to types. As a consequence, non local
ICC may be binding at the optimum.

The most interesting case is the one with several characteristics and several instruments,
because it is the most realistic but also the most difficult.

Seade (79) has studied the optimal taxation problem for multidimensional consumers and
has shown that it was equivalent to a variation calculus problem with several variables. McAfee-
McMillan (88) make a decisive step in the study of monopoly pricing under multidimensional
uncertainty. They introduce a General Single Crossing Condition under which JCC can be
replaced by the local conditions of the agents’ decision problems. They also show that the optimal
screening mechanism can be obtained as the solution of a variations calculus problem. In 92,
Armstrong provides a very clear treatment of the difficulties involved in the multidimensional
extension of the Mussa-Rosen’s problem of optimal product lines design by a monopolist. Wilson
(93) contains a very original and almost exhaustive treatment of nonlinear pricing models: several
multidimensional examples are solved.

Focus can now be made on bidimensional problems: Rochet (84) studies an extension of
Baron-Myerson regulation problem in a bidimensional context where both marginal and fixed
costs are unknown to the regulator. Contrarily to Lewis-Sappington, Rochet allows for stochastic
mechanisms (as Baron-Myerson did): this provides a second instrument to the regulator. On
a particular example, Rochet (84) shows that the optimal mechanism can indeed be stochastic,
as conjectured by Baron-Myerson. Following Spence’s early(80) and deep contribution, Dana
(93) gives in a different context a partial solution of the discrete screening model with two types
and two attributes, and finds two solutions depending on the correlation of types’ characteristics.
Armstrong-Rochet (98) study a bidimensional screening model in which four types of agents, who
are discretely distributed, can undertake two kinds of activities. Each activity can be undertaken
at a high or low level. They consider two ways to solve the problem:

o The relaxed problem: they only consider the five downward ICC. They show that three
types of solution can occur ( cases C and D are in fact identical if one permutes activity A
and B). Those solutions change according to the correlation between activities. The binding
constraints are in those cases are the JRC of the lowest type and a set of downward ICC.
The highest type always gets his first allocation and there is no distortion at the top. This
can be explained by the considered JCC: when only downward ICC are considered, rents
do not depend on the high type activity levels and therefore do not need to be distorted.



e The fully constrained problem: they consider the whole set of ICC. This gives rise to a
fourth solution ( actually there are two, but they are symmetric): one upward JCC and
the transverse JCC are binding. As a consequence, an ”intermediary type” gets his first
best allocation and the highest gets an allocation above the first best level.

2.3 A Brief Recall of the Unidimensional Case

Consider an economy in which a monopolist, an airline, sells his production (travel on this route)
to a heterogenous population of two types (t = {t,t"}), customers having low (I) or high (k)
demand of services on this route, who are represented in proportion 7! and 7* (7! + 7% = 1). As
the airline operates through secondary airports, it can lower its airport fees and thus proposes
point-to-point service, attractive prices and can fully apply its monopoly power. The monopolist
wants to maximize his profit:

maz, Z{Piqi —c(q"),
=maqu[ui(t,q) - U(t,q) — C(¢Y)],

where u'(t,¢') = t'¢" and U'(t%, ¢*) = u(t%, ¢') — p'¢*. This maximization problem is subject to
the Individual Rationality and the Incentive Compatibility constraints:

IRC:U(t',q") >0,
ICC:U(t',q") - U(t',¢) 2 u(t',¢) — u(t’,¢).
We then obtain:
U'=u(t',¢) - p'd,
Uh _ Ul — (th _ tl)ql,
Ut —U" > (t' — th)g".
As a consequence buyers of type h get their first best allocation whereas types [ receive a down-

ward distorted allocation.
Writing the Lagrangian and computing the solution gives:

L= Z (t,q) = U'(t,q) — Z#U Ut q") - UE, @) —ut', @) + u(t, ¢))
—Z,\"Uz‘.

The first order conditions give:

MN=-1,
p = —7",
ﬂh
P=Cq)+ =" -1,
P =C'(q").




This means that the airline is able to find the optimal pricing mechanism and service alloca-
tion that enables its profit maximization. Customers with high demand of services will receive
their first best allocation (price equals marginal cost) whereas customers with low demand of
services will receive a downward distorted allocation of services (below the first best level of
course). Airlines provide services below the first best level on low fare tickets to give incentives
to customers with high demand of services to buy high fare tickets instead of buying low fare
tickets. They just propose "minimum" services to "poor customers" and offer "superfluity" to
"rich travellers".

Focus can now be made on the bidimensional case.

3 Statement of the Problem

We focus here on the specific problem of nonlinear pricing by a monopolist in the simplest possible
model (two characteristics, two possible values per characteristic and therefore four possible
types), and first give the solution which has the same qualitative features than in dimension one,
in the case of a linear quadratic cost function( in a previous version of his paper with Choné,
Rochet (95), alone, studies this problem, where production is a level of quality, and we study the
case of quantity with a non zero cross cost) whereas Armstrong-Rochet (98) study the case of
constant marginal costs. Such a solution appears when the correlation between characteristics is
near zero and the cross cost parameter is not too big: in such a case, only downward local ICC
and TRC of the lowest type are binding but according to the value of the cross cost parameter,
the quantities can be distorted downwards or upwards. This differs from dimension one (except
when there is no cross cost parameter) and the highest type receives his first best allocation of
goods. We call it the regular case. Matthews and Moore (87) study a standard model (Mussa-
Rosen (78)), taking three types into account, the IRC is only effective for type 3. In this case
type 1 faces undistorted quality while the other two receive degraded quality (unidirectional
downward distortion), but allocations are not monotonic. In Donnenfeld-White (88) there is
unidirectional upward distortion. But Srinagesh-Bradburg (89) find bidirectional distortions(one
upwards, one downwards). We then define the complete solution in three different situations,
first, where there is no cross cost and a discrete uniform distribution of types, where we obtain
the same four solutions as in Rochet (95), second, where there is no cross cost and a general
discrete distribution of types and also in the case of a discrete uniform distribution, with a non
zero cross cost parameter, where we obtain ten other solutions.

3.1 The Model

We consider a natural bidimensional extension of the Mussa-Rosen’s (1978) model, in which a
multiproduct monopolist sells two goods to a heterogenous population of four types of discretely
distributed buyers. The model is different from Mussa-Rosen’s because production represents
quantities and not qualities. The airline operates two routes, route 1 and route 2 and provides
her customers with quantities of services on route 1, ¢;, and on route 2, ¢go. Customers are
characterized by their type, ¢t = (¢;,%), their demand for services on route 1 and 2 (distance,
departure time, arrival time, number of possible changes, on-board space, ...).

Buyers utilities are quasilinear:



U = u(tia q1 qz) - p(gl{ q2) - Ea
u(t', g1, g2) = 19 + 1305,
P'q" = piqi + P2,
where t* is a bidimensional vector of characteristics of the consumers (his type), g is a bidimen-
sional vector of the quantities of the goods and p is the unit price of the goods. u(t, g) represents
the monetary equivalent of the goods, with characteristic vector g for a consumer of type t.
Notice that ¢ and ¢ have the same dimensionality so that perfect screening (in the sense
that consumers with different types always buy different quantities of goods) is possible, i.e.,
we assume that the (full information) optimal resource allocation §(-) involves perfect screening.
g(-) is defined as follows:
vt € T, §(¢) = arg max,[S(t, ),
where S(t,q) = u(t,q) — C(q), and T represents the set of possible types and C(q) is the cost
function of the monopolist:

1
Cla, ) = 5((1? + &) + pq1ge.

We use such a cost function, as we assume that for a low quantity of services, the necessary
services are served first (the flight itself) and as the number of services increases, the services
become more and more superfluous and as a consequence, more and expansive. p is used for
positive or negative production synergies. We also assume that the surplus function S(t,q) is
strictly concave, differentiable in ¢ and has, for all ¢, a unique maximum §(t). The set of §(-)
will be used as a benchmark for evaluating the distortions of resource allocations entailed by the
monopoly power under bidimensional adverse selection.

3.2 The Monopolist’s Problem

We describe the strategy of the monopolist as a set of price-quantity allocations (p’, ¢*) satisfying
ICC and IRC':

IR:U* > 0, for all ¢,

IC: u(t,q') — p'¢t — E* > u(t,¢¢) — p’¢ — E7, for all i, ;.

The airline has to define the price of a ticket and the associated quantity of services for each
type of agent that satisfy his or her TRC and the ICC.

They are equivalent to:

IR:U* >0,

IC: Ut = U? > u(tt, @) — u(t?, ¢).

Finally, 7* denotes for all i the proportion of agents of type i in the population of potential
buyers. The monopolist’s optimal strategy is obtained by maximizing his profit:
Maz ¥, n'(p'q* — C(¢*) + EY),
which is equivalent to:

Maz ¥, mt(u(t!, ¢') — U* — C(¢")) under the above constraints.
Note: we write this expected profit as:

Mazy w'(p'q’ ~ C(¢) + EY),
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instead of the commonly used expression:

Maz Z Hp'q' \z q)
We choose the first formulation because C(g) is convex. As a consequence, C(3},;¢*) > 3, C(g?).
With a technology that generates such a cost function, it is less costly for the monopolist to use
“just in time production” and to maximize profit as previously mentioned. This is the case for
There are two characteristics and two possible values for each characteristic. Therefore there
are four possible types of consumers . We denote these types by letter i = A, B,C, D.

=(t1,5), (%),
=(t5),  (rP),
=(t.8), (r9),

=(t.13),  (7P).
To avoid symmetric problem and to better differentiate B and D, we assume:

(& —t)7® > (5 — )P

which means for example that route 2 is shorter that route 1.
The specified a quadratic cost function is:

Cla ) = %(Qf + @)+ parg2, p€|-1,1[.
This implies that ¢ is linear:
d(t,t2) = (522, 525).
The Lagrangian of the problem :

LU, q) =3 m(ult',¢') — U = C(¢") - i (U = U7 —ul(t, &) +u(t?, &) = X, X°U°
where p;; and A" represent respectively the (non positive) multipliers associated to ICC(i, j) and
IRC(i). The first order conditions ( Which are necessary and sufficient for the linear program)
give:Vi, 6L/0U" = —m* — 3 (py; — pjs) — X' =0,
o4+ A= >_i{#j; — p;) and adding these equations on ¢ gives:

Ym==3 =1, _
« Vi, m* < Y (ks — ), with = if U* > 0 (equivalent to X' = 0).
This is equivalent to say that at least for one i, the JRC is binding. This is economically clear

since adding a uniform fee to a price schedule does not alter JCC, and increases the monopolist’s
profit.

Following Border-Sobel (87), we say that j attracts ¢ when IC(ij) is binding. These relations
(who attracts whom?) are crucial for determining distortions in resource allocation. Therefore

if ¢ attracts no one (p,;; = 0, V), i receives his first best allocation.

When U* > 0: =* E (K4 — /1,] This condition explains the trade off faced by the
monopolist in the choice of unit price p*, price paid by types t*. A small increase for p* to p* + €
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has a direct effect on profit: it increases it by en* per unit, where 7* is the proportion of types t:.
However this marginal increase also has a complex, indirect effect on profit: for all js who are
attracted by i (—u;; > 0), prices have to be decreased by ¢, otherwise IC(ij) would no longer be
satisfied anymore, which decreases the profit per unit by eu,;. Symmetrically, for all js such that
i is attracted to j (u;; < 0) prices can be increased by e so that JC(35) still binds. This increases
the profit per unit by —ep,;. This condition shows that these effects are exactly compensated
when prices are optimally chosen.

4 The Solution (1)

To solve the problem, the question is to guess what constraints are binding and then check that
is indeed the case. Intuitively for ¢! large enough (the lowest level of service that the airline offers
is the travel itself) and p not too big, all quantities served will be strictly positive, which implies
that JR(A) will be the IRC that binds. In this case:

Vi A, mt =3 (15 — big)-
4.1 The regular symmetric case

By analogy with the one dimensional case, it is tempting to assume that only downward or
leftward ICC' will be binding. This is what we call the Regular Case ( Regular because only
downward or leftward JCC can be binding). If, moreover, all such constraints are binding, we
obtain what we call the Regular Symmetric Case, represented on diagram 1 (see diagram 1),
where an arrow between 7 and j means that IC(¢, 5) is binding (j attracts ¢), and a circle around
point i means that JR(:) is binding (U* = 0).

We assume now that: Atym® > At,mP. This assumption allows to better differentiate the
market of good 1 from the market of good 2.
We look for the regular symmetric solution of the monopolist’s problem.
Applying the first order conditions, we get:
ppatpupa=714—1, (M =-1)
—kpa + bep =T,
“HoB —HeDp =T,
Hcp = Bpa =T,
and the other Lagrange multipliers are equal to 0.
We then obtain the optimal quantities (substituting ¢! in ¢4 and vice and versa) as functions

of ppy:
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= i [tf + At 48 — p(th + Aty =lzraal))
—Fl SIEF = p(tF + Aty r—tpmal )]
- p(t5)],
tl +At1$'_4‘m:;_—’f_c_ p(tP)],
4+ At,T0lomaa) o 4 Ay nady)
= ﬁj tB + At "—+§‘&2 p(tB
—_ 1 C
= = lt5 — p())), i
- —nB—qC
= —'ltr;'f —p(t? + Atlu“;ﬁ——z)]-

In this case, agents utilities

[ty
[t
{
its

UA =0,
UB == At;qlA,
UP = Atyqd,

UC€ = Athf + Atng,B = AthlD + Atg(b‘A,

where Ati = t? - tlz

We have 4 unknowns (y,;s) and 3 equations. The missing equation is obtained by examining
diagram 1. The difference of utility between C and A can be computed along two paths (through
B or through D):

UC - UA = At]Qf + Atngs = Athf) + Atgqa4
Replacing the expressions of ¢'s in the above equation and solving the system of four equations
with four unknowns, we obtain:

_ [AL2((7B + 7€) /7P) + At3(1/7mA) — pAty Aty((n4 — 1) /7mA)]
P24 T /A + (/)8 + (1/74) + (1/7)) A8 + 2pAt Aty 7A]
This defines a solution for the problem only if all p,;s are non positive, which is equivalent
to:

RSCOZ#BA S -
A.C _ .B.D —AZ(xP(nC+xP))+pn P (1—nA-22B) At Aty
o ¢ — 7P > AT

o 7rA7rC _ 7"B7TD > — A2 (7B (xC+7B))4+prB(1—nA—2xB —27C) AL, AL,

We then look for the other conditions that must be checked by the parameters of the model
for the RSC to be solution (see appendix 1) and we obtain conditions on g¢}s and p,s.
These conditions can be written as functions of ug,4:

RSCO:pg, < —75,
RSCliug, > —7B — 7€,
RSC2:¢* < P,
— pgal- Atl(—ib’i?) - P2%] - 2% — At (ZF) 2 0.
RSC3:¢ < g7,
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_nA
o upa[3 — paB] + 22T > 0,

RSC4qf <of,
< ppal =54 — pAL(TEE )] + Aty — pZF 2 0.
RSC5:¢4 < ¢2, A
A b
- NBA[Atz(%‘) + p28] + 2% — pAty > 0.
RSC6 qB < q2 3
o ppal= 3 + P38 + pRUFE > 0
RSCT:¢4 < 2,
- lLBA['f + PAtl L]+ 4% + PMLI#—Z 2 0.
RSC8:¢% < ¢,
< ppa 0.

RSC9:qf < ¢f
<—>p,BA+1—7TA 20

For p = 0, notice that the solution exists only when:
2
(nAnC — nBrD) € ]— (%ﬁ) 7P (n€ + =P) ,1’%;3 (see conditions RSC1, and RSC2 or

RSCS).

The optimal strategy of the monopolist is defined as a set of price-quantity allocations satis-
fying TRC and ICC. With fixed quantities as defined previously, optimal prices are determined
by the following equation:

P=5t,¢)=5:(¢) - 5, F G, q) - 5t q)).

We ca.n notice that the unit prices paid by buyers of type ¢ are a convex combination of the
marginal cost and of the marginal utilities of buyers that are attracted to i (his quantity vector
q¢'). In our case, with linear preferences, we get:

- 2(g) - T, (v - 1)

When i attracts no one (u;; = 0 for all i,j), ¢ pays prices equal to the marginal costs and
gets his first best allocation. In the other case, (u; < 0) prices are always superior to marginal
costs, because only downwards local ICC bind: as a consequence, in the R.S.C, u;; < 0 implies
that # is superior to ¢* .

Proposition 1 In the regular symmetric case, prices are superior to marginal costs except for
the highest type who is charged with a price equal to marginal cost and gets his first best allocation
in quantity. The price charged on a good depends on the consumed quantity of the other good:
p, depends on qu. The optimal nonlinear pricing requires a kind of form of bundling.

To show the second part of the proposition, we consider types A and D for the good 1: we
know that t = tP and the solution gives the following result: pf > p{ and ¢ff < ¢P and this
comes from the fact that g5 < g2 as t§ < t2. Symmetrically we obtain the same result on good
2 for types A and B.

When p = 0, we have the following solution for prices in the R.S.C:

t; = tﬁ <:pc‘ - ag(QQ) — qa = qa
ty =to =y > 5(q) = ¢ < §,
= no upward dlstortlon

14




As in Lewis-Sappington (88), prices always exceed marginal costs, except for the highest type
where they are equal.

4.2 Complete solution: the case of a general discrete distribution and
p=0
4.2.1 The Regular Symmetric Case

‘We have previously seen that the regular symmetric case does not exist for all distributions. This
solution is defined by its two frontiers: ucg <0, and gP > ¢! (or ¢F > ¢!, see figures 1 and 2).
These two frontiers give the following conditions:

Mm<0¢:f%0-ﬁﬁh>(A“ﬁ9(f+ﬂn

BD

ﬁzﬁcsﬁ#—ﬂﬁsﬂj.
- T

Proposition 2 Ifm47¢—nBrP ¢ |- (322D (nC+7P), = 2222 the solution is regular symmetric.

Types C get their first best allocation and .4, ¢&, qA are dounwards distorted. There is no
upward distortion.

4.2.2 The Separable Case

N ow we assume that one of these two conditions is no longer satisfied anymore: if 747¢ —7BxD >
=27” this means that C is also directly attracted by A. Thus, the non local downward ICC is
bmdmg As a consequence, g = g, ¢& = ¢4 and the solution is now separable (see diagram 2).
9. 42, ¢ . qP are equal to the first best allocation.
Diagram 2 enables to compute the indirect utility levels and we get:

U4 =0,
B =At1qlA,
UD =At2q§4,

UC = At1gft + Atogf = AtigP + Atagf = At1gft + Atygf.

The F.O.C and the conditions on quantities give:

ppa+ppa =74 —1,(A% = -1),
—ppa+ top =75,
—Hca— bcB ~ HcD = 7°,
Hcp — Hpa = WD,
T =1

% =%

We get the following results:
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HBA = —'ﬂa%ap‘DA = —-;ﬁb?ﬁa

picg =72 + ppa < 0,pcp =P + pp, <0,

poa =78 +7C + 7P + ppa+ppy <0.
Proposition 3 When there is a strong positive correlation between types (nAnC — nBgP > 1222
), the non local downward ICC is binding, and the solution is separable: qP = ¢f*,q8 = ¢4,
¢¥ = qP, of = ¢P. C gets his first best allocation and gD, qf, g%, ¢ are downwards distorted.

The optimal quantities are:

B + 7€
qlB=qIC=t’117

A, B

e+
=¢d =t - Ats,
=0 =t 7C +aD "2
@ =g =tj.

We have to check that all the Lagrange multipliers are negative under the condition

B_.D

Vi3
747¢ — nBxP >
A

and it is indeed the case. Conditions on quantities to satisfy the ICC are always true in this case.

For such a distribution, the optimal solution does not generate perfect screening and the
allocations do not require the kind of form of bundling mentioned previously: for each type,
the unit price charged on a good does not depend on the consumed quantity of the other good.
Optimal quantities depend on the marginal distribution of types. But we still have the usual
unidimensional result: prices are greater than marginal costs, except at the top of the distribution
where they are equal.

4.2.3 The Regular Asymmetric Case

Now we assume that the other condition for R.S.C to be solution( 747 —nB7xP > —(£2)*7P (nC+
7P) | ie., pcg < 0) is no longer satisfied. In this case, we obtain a solution in which C is not
attracted to B (ucg = 0). We call it the regular asymmetric case (Regular because only down-
ward or leftward JCC can be binding and Asymmetric because there is no attraction between
B and C, whereas D attracts C)(see diagram 3) .

Diagram 3 enables to compute the indirect utility levels and we get:

UA=0,
UB = Ath]’_‘,
UD = Atgq;,

UC = AthlD +At2q5‘.
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The F.O.C give:

KA = -'7:-81
—Hpa +hcp = 77,
pep = ~7°.
We get the following results:
Hpa = -8
#pa = -1 —mC
Hep =T

Now we have to check that B is not attracted by C. This is equivalent to:

Ati(gf — af) < Ata(df — '),

and this condition implies after computations that:
TATC — PrD > ~(Z2PrP(rA + 7€ + xP),
1
The same condition applies to show that B is not attracted to D.

Proposition 4 When 747¢ — 7B7P ¢ [-(%f)"’v‘ru(w’4 + 7€ + 7P), —(82)7P(nC + 7P)] the

solution is regular asymmetric: B and C receive their first best allocation, whereas ¢P, qf*, g are
distorted downwards.

The optimal quantities are:

7B
q‘14=tll - ‘7r—AAt1,
7rc+7rD
q§4=t’2——7rA At,,
o
qf:tl] _W—DAtl’
(I1>D=t’211
qf:tll,
q23=t§‘,
qf=t?,
¢ =t
Note that D is not attracted to B if:
7ArC _ B Aty o B, 4, ¢
T -7 TDZ—(ZE—)T{ (n +7 +7TD)
2

17



If we had not assumed that At; 78 > Atyn?, we would have obtained the same condition for
B and D to not attract each other.

In this case the unidimensional qualitative properties are almost satisfied. For the good 1, the
usual results are satisfied in the sense that the downward local ICC are binding ( C is attracted
to D, and B is attracted to A). This is not the case on the market of good 2: D is attracted to
A, but C is not attracted to B. We also have to notice that two different types get their first
best allocation(these types pay prices equal to marginal costs) and perfect screening is obtained
in this optimal solution.

Under this condition, 747C — n87P > —(§2)*nP(xC + P), the Lagrange multipliers are all
non positive, and conditions on quantities are all satisfied.

4.2.4 The Singular Case

Now we assume that 747C — 7Bl < —(§2)27P (74 4+7C+7D), ie., (At (g0 —gf') < Ata(qF —g5)
is not satisfied anymore), and B is now attracted to C and D.This condition also means that

B > Atl 7FA7TC + At2
- Atl + Atz D Atl + Atg‘
In this case the solution is singular: surprisingly, the transverse and an upward ICC' are binding
(see diagram 4).
Diagram 4 enables to compute the indirect utility levels and we get:

U4 =0,
UB = Athf = Athf) - Athf + UD,
UD = Atgq‘24,

UC = AthlA + Atgqg = At1QP + Atzq‘;.

The F.O.C and the conditions on quantities give:

pep + Hep — Bpa = TP,

—ppa = kpc — Bpp = T°,

Kgc — kep = 7°,

% =a,

Aty (P — qf') = Ata(@) — a8).
We get the following results:

We check the sign of y,;s:
7 @
':FC = ‘;‘TLZ_D — ppc = =67 and pgp = —67°,
pep=—(1+0)n° and pp,y = —(1+6)(z° +7°),

(At1)2[—uCD;)ﬂBD + ?AA] = (Ng)z[-li—7r)'302 + %] gives the following for 6,

_ (7BrP — rAnC) A — AtZnP(1 — 7P)
At2(nC + D) (1A + D) + AtinDP(1 — nB)

< 0 by assumption.
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Proposition 5 When m7¢ — 7870 < —(£2)2 A 4+ 7€ 4+ =P) the solution is singular. B

gets his first best allocation and C attracts B. As a consequence qS is distorted upwards. D also
attracts B and consequently qP is distorted upwards.

All the conditions on the quantities are always satisfied for such distributions.

In this solution, it is optimal, for the monopolist, to price below the marginal cost on good 2
for types C and D and to give the first best allocation to an “intermediary” type, type B.

The intuition for upward distortions is as follows: proportion of type B is so high that it
is in the seller’s interest to extract maximum surplus from them and thus sell them their first
best allocation. But the seller has also to prevent types B from choosing the allocations offered
to other types, in particular type C. In order to reduce competition between g€ and ¢7, it is
therefore optimal to increase ¢S above the first best level.

To sum up, here are the four solutions of the monopolist’s problem:

o A7C — 7Bxl € [, —(§2)?7P(n# + 7€ + 7P)] : Singular Solution.

o 7ATC — 7870 € [—(FR)2P (74 + 7€ + 7P), —(§2)*7P(nC + 7P)]: Regular Asymmetric
Solution.

o mAnC — 78D € [ (82272 (xC + 7P), 222) : Regular Symmetric Solution.
o 147C — 7BxD g [ﬂ”g, 1] :Separable Solution.

We have seen that, in our problem, four possible solutions exist depending on the correlation

of types. Dana (1993) also finds solutions depending on the correlation of types but only gets

two since he assumes that At; = At, and 78 = 7P.

4.3 Complete Solution: the case of a Uniform Discrete Distribution
and p € ]-1,1]

‘We assume:

71"4
7rB=7TD=

See Appendix 2 and figure 4.

We have obtained four solutions in the previous section: we call respectively A,C,D.E the
singular case, the regular asymmetric case, the regular symmetric case and the separable case.
We obtain ten other solutions (see diagrams) depicted in figure 4. Two constraints are always
binding: for all (¢, p) the individual rationality constraint of types A (not surprising) and IC(AD)
that is D is always attracted to A. Two other constraints never bind: /C(CA) and IC(CD).
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There are two solutions (G and N) where the seller never offers a first best allocation. What-
ever the type is, the allocation is distorted.

We go from D to C when pcp becomes positive, then IC(BC) is not binding anymore.

We go from C' to A when IC(CB), IC(DB) fail, then they are binding.

We go from A to B when ugp, becomes positive.

We go from D to E when IC(AC) fails.

We go from E to F when uog becomes positive.

We go from F' to G when IC(CB),IC(BC) fail.

We go from G to H when uop becomes positive.

We go from H to M when pp, becomes positive.

We go from M to N when IC(BC) fails.

We go from D to K when IC(DB) fails.

We go from K to J when pop becomes positive.

We go from J to I when ug, becomes positive.

4.3.1 Case B

An upward ICC is binding (B is attracted to C'). As a consequence, ¢© is distorted upwards for
the same reasons than in case A. B gets his first best allocation.

4.3.2 CaseF

B and C get their first best allocation. ¢f is not distorted, whereas gf*,qP,¢f are distorted
downwards. The solution is separable on the market of good 1 (the solution is separable on the
market of good o means: t, =t] — g}, =¢): ¢! =qP < ¢f =¢f.

4.3.3 Case G

This solution is similar to the case E solution, but B is attracted to C. This means that
g5t = ¢f = gf whereas ¢P is optimal. The solution is not globally separable anymore, but it is
still separable on the market of good 1. In this case, the seller never offers a first best allocation.

434 Case H

B does not attract C, but is attracted to C. As a consequence ¢S is distorted upwards and the
solution is separable for the good 1. B gets his first best allocation even if 7% becomes relatively
small (when € increases).

4.3.5 Casel

The downward local ICC are only binding on the market of good 2: C is attracted to B and D
is attracted to A. The transverse JCC is also binding (B is attracted to D). As a consequence
we obtain this condition on the quantities obtained by types B and D :

Aty(qf — a7) > Ata(g5 ~ ¢3).
C gets his first best allocation.
4.3.6 Case J

C gets his first best allocation and we obtain the following conditions on quantities:

Aty (g — qf) = Ata(df — &),
Aty (g - qft) > Ato(qf — ¢f).
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4.3.7 Case K

This solution is similar to the regular symmetric case but the transverse JCC is binding. This
solution differs from the case D solution because we obtain:

@ <gP<qgf <,

G<@=q <dg.

B and D receive the same quantity of good 2.
4.3.8 CaselL

The solution differs from the case K one because g¥ > ¢f and B gets his first best allocation.
As in case C, the proportion of type B is so high that it is in the seller’s interest to offer them
their first best allocation to extract the maximum surplus from them.

4.3.9 Case M

B gets his first best allocation whereas C receives an upwards distorted allocation. It is surprising
in this case, as in the case H (especially the South-East of the H area), because the proportion
of buyers of type B is relatively small. The solution is separable for the good 1.

4.3.10 Case N

The seller does not offer any first best allocation. The solution is separable for the good 1. For
the market of good 2, D receives his first best allocation and

&=d.
5 The Equivalent Approach

In our simple model (discrete distribution of four types of buyers, linear utilities in money), we
defined the global solution to the monopolist’s problem: we defined the allocations and rents for
each solution. To do so, following Spence (80)we maximize the expected profit of the seller under
Individual Rationality Constraints (IRC) and Incentive Compatibility Constraints (ICC); we
decompose the problem into two subproblems:

e minimize the agents’s expected utilities for fixed allocations

e Choose the allocation so as to maximize the expected surplus minus the expected utilities

Rents are defined so that JTRC and ICC are satisfied and computed according to the binding
constraints (or attractions, see Border-Sobel (87)).

These attractions allow us to define optimal paths from a type of agent to a dummy type
(the “lowest type”, type A in chapter 2 ) that enable to compute these rents. Thanks to Rochet
(87) that shows that closed paths (from a type of agents to himself) do not increase expected
utility (and are thus non optimal), we know that the rents defined by optimal paths from a type
to the dummy type are optimal.

Once we know the solution and the optimal rents we can write the monopolist’s problem as:

e Compute the optimal rents according to binding constraints.
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e maximize the expected profit of the seller under the constraints that each type of agents
gets his optimal rent.

This new formulation of the seller’s problem, the equivalent problem hereafter, which of course
leads to the same solution, enables to explain distortions in resource allocation. Distortions
depend on optimal paths and more especially of the length (the number of type involved in the
path) and the number of these optimal paths that define a solution.

After some brief remarks on the above results, we study the equivalent problem and explain
the way allocations are distorted. We confirm Rochet-Chone (1998) that defines the sets of
agents who do participate as: i) a set of types who get no rent: this set is in fact reduced to a
singleton, 47) a set of types who get strictly positive rents and #i1) a set of types who get strictly
positive rents and their first best allocations. We then study the Regular Symmetric Case (
see case D in section 4) to show the equivalence of the two problems and to explain distortions
in resource allocations. We also study the general solution ( defined in section 4) and define
several sets of solutions: ordered types, called Pure Cases ( solutions that enables to define
a complete type ordering implying uniqueness of rents), single optimum, called Almost Pure
Cases( uniqueness of rents and partial type ordering), several optima, regular solutions ( only
downward binding I/CC), singular solutions ( some upward or transverse ICC are binding). We
also exhibit two special cases in which the monopolist only produces one good and this is closed,
but not equivalent, to Armstrong (96) who shows that it is sometimes optimal for the monopolist
to exclude some customers from its products in order to extract more revenue from other higher
value consumers.

5.1 Remarks

As defined in Border-Sobel (87), we say that j attracts i when IC(i, j) is binding. These attrac-
tions (who attracts whom?) are crucial for determining distortions in resource allocation and
also to compute rents. If j attracts i we can define U* as a function of U7 and ¢’. If § is attracted
by another type, say k, we can define his rent as a function of U* and ¢* and so on. If j is not
attracted by any other type, this means that j is the dummy type or lowest type and his TRC
is binding (see section 4).

A path is defined as a way to reach the dummy type from another type ( with one or several
steps from type to type). An optimal path from one type to another is defined as a succession of
attractions from one type to the dummy. As successions of attractions always lead to the dummy
type (see section 4), we can compute the set of rents using backward induction. This means that
the set of possible paths defines the set of possible rents and the set of optimal paths defines a
solution and the optimal rents associated to this solution.

Example: i is attracted to j and j is attracted to the dummy type, say k. This defines the
optimal paths v = {i — j — k},7/ = {j = k} . Then, we have:

U'=U +u(t',¢) — u(t!,¢’)
V' =U*+u(t’,q*) — u(tt, ¢*)
Uk=0 -
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then, we obtain:

Ul=u(t',¢) — u(t’,¢) + u(t’, ¢*) — u(t*, ¢")
U7 =u(#, ¢5) — u(tf, ")
Uk =0.

This enables to solve the first subproblem of the monopolist’s problem: ”minimize expected
utilities”. We can then define a set of rents U(q) such that JCC are satisfied for all i, j and the
rent of the lowest type is zero. According to these attractions, we can say that j is an immediate
successor of ¢ and also an immediate predecessor of j. This also means that for any optimal path
we are able to define an ordered type subset where {i — j — k} is equivalent to:

i>=j =k

Consequently, for any solution, we can reorganize T into a partition of ordered subsets Y.

We define as closed paths, successions of attractions that leads one type to himself. Using
Lemmas from Rochet (87): considering arbitrary paths in the set of types T, a path from type t*
to t is denoted by a function . We denote the "length” of ~ :{0,1,...1}— T. Finally, we say
that a path of length [ is closed if: v(0) = ~(l).

Lemma 1: U(q) is non-empty if and only if for every closed path ~ :

-1

D ulbyrt1)s Gyisy) — wltye)s Gygey) < 0.
k=0

Lemmea 2: When the above condition is satisfied, U(q) has a unique element U__, character-
ized for all i by:

-1
U'_=sup’y_ ultyrn)s Gysr) — wltae) Grey)
Y k=0

where the sup is taken over all the possible open paths from type t' to the dummy type, whose
utility is zero.

This means that rents computed according to optimal paths from a type to the dummy one
are optimal. On the one hand, these rents do not depend on the distribution of types but only
on the set of types. On the other hand, quantities and distortions, on which depends these rents,
depend on the distribution of types (see section 4).

5.2 The Monopolist’s Equivalent Problem

As we know how to compute the optimal rents according to optimal paths, we can now write the
monopolist’s problem as:

Maz ) _'(u(t',¢") - C(g") - U_)
-1
s/c:U_*=sup Z (i (k1) k) — Utoigie)s Qviqry) for all i
-
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From section 4, we know that whatever the solution:
U 4=0.

We can explain this as follows: at least for one type, A in our model, the IRC is binding. Since
adding a uniform fee in the price schedule does alter the ICC and increases the seller’s profit,
it’s optimal for the monopolist to give no rent to the dummy type.

We also know that there are usually several ways to compute the optimal rents of the other
types. There exists as many ways to compute these rents as the number of possible optimal
paths from one type to the dummy type.

For example, if there exists two possible optimal paths from type t¢ to t4, 4{ through B and
S through D, there are clearly two expressions for U _C. In this particular example, the Regular

Symmetric Case, we have:
7 = {775}

UC(1Y) = Atagf + Atyqf,
UC(h§) = AtigP + Atags.
This means that in this particular case, there are two constraints on type tC : the constraint
U °= max UC(7°) for all v°
~C \
is equivalent to:
U_°=U°(y),
U_°=U°(3),
or
U_C=0{U () +o5U°(r5),
of +05 =1,

considering UJC like “the probability that type t© chooses path 'yjc to reach the dummy type”.

Once we know the solutions, we are able to identify, for all types, all the possible expressions
of the optimal rents in each solution. To solve the monopolist’s problem, we have to define for
all solutions, the set of possible optimal paths: for solution s € s*, we define v(s) as the set of
possible paths. In 7(s), we define for all #* all the possible paths to reach t4 as ¥(s):

7' (s) = {+.,75...7L} if there are n possible optimal paths from t* to t*.
v(s) ={n}, for all 7, for all possible optimal paths p}.

Notice that if type ¢/ # ¢ belongs to one of the optimal paths +; from t* to ¢, this means
that the truncation of +; between ¢/ and t# defines an optimal path between these two types and
also an expression of the optimal rent of type t/. From the above example, this means that an

expression of U_B is:
U_P = Atigt,
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since B belongs to v{ and an expression of U_? is:
U_P = At

since D belongs to 1§ .
To refer to the above formulation of the monopolist’s problem, we define a type ordering for
each optimal path. 7§ defines the following type ordering:

CrBx A

this means that in this optimal paths B is the immediate successor of C and A is the immediate
successor of B and this defines the unigue vZ; 7§ defines the following type ordering:

CrDr A

this means that in this optimal paths D is the immediate successor of C and A is the immediate
successor of D and this defines the unique vP. We can reorganize T into a partition of ordered
subsets T :

T] = {C, B, A},
Tg — {C, D, A}

As 7¢ is of length 2 (I = 2), we can define:
-1
Uc (’Yf) = Z u(t‘yf(k-!-l), 4.,5(,‘,) - U(t',»;-(k), q,,g(,‘)(k))
k=0

where k = 2 represents the highest type, C in this example, k¥ = 1 represents the immediate
successor to the highest type in the optimal path 7$, B and k = 0 represents the dummy type,
A. We also define:

-1

Cy = '
UC(rs) = D ulltgern)r Gogeey) = 2ltrgi)s Togger )
k=0

where k = 2 represents the highest type, C in this example, k = 1 represents the immediate
successor to the highest type in the optimal path v¢, D and k = 0 represents the dummy type,
A.

The Lagrangian of the problem can now be written as:
LU,q)=) {n*(u(t',q) - C(¢) = U_") = Y _MNU_'-U'()}
i J
=Y {7'(u(t',¢") - C(¢") - U_?)

-1
=D XU_ = O ultysrns %) ~ Uty 4y}
J k=0

where A;- represents the non positive multiplierg associated to the constraints on the optimal rent
of type t computed along the optimal path V5
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The first order conditions (which are necessary and sufficient for this linear program) give:

% = -wi—zx;=o, for all 4,

J
=7 =—Z)\}, for all 7,
J

and:
8L BS(t, ¢°) LOUR(%) :
—_— = 1 A —- =, for all 7,
aqz 6q1 ; ; J aql
aS(t', ¢') 1 »OU*(%) ,
aqt v Ek#; EJ: iT o¢ orallz

We make the sum for all k& # i as closed paths are not optimal. This means that there exists
no (classical) solution when two types attract each other (see special cases in section 6, in which
the monopolist only produces good 1). We also have:

OU*(v5)
oq*

= ('t — ¢*), for all i.

We can also write the Lagrangian of the problem as:
LU, )= {r'(u(t',¢") = C(g) = U_) = X' _oh(U_* ~U(x})}
i J

=z{7ri(u(ti, qi) _ C(qi) _ U_i)
-1

=X Z a;[U._i - (Z u(t7;»(k+l)’ qv;(k)) - u(t'yg(k)v q7§(k)(k)))]}a
J

k=0

where X is the Lagrange multiplier of the constraint: the optimal rent of type t is a combination
of all the possible rents U*(v) which can be chosen by types t' who reach ¢4 along the optimal
path ~}with probability o7 :

U_? =Z oi(U_* = U'(%;), for all i and j,

In this case we obtain as first order conditions:

oL i i 1 1
3 = -t =) Zj:aj=0, for all ¢,

<=7’ = —\¥or all ¢,

26




and:

£~k

oL db(t q) " kuUk\’),/ .
— = r— =0, for all 7,
o ;Z

as(t',q') 1 ) aU"(’Y'?) :
<=}——aq!—— =—— ’ﬂ'kU’f——Eq-;—J-— = for all 1.

5.3 Optimal Resource Allocations
The first order conditions with respect to ¢* give:

as(t ) _ 1 ,\kaU S
22

where i belongs to one of the optimal paths that links types t* to the dummy type. If types t!
do not belong to any optimal paths, this means that it does not attract any types. In this case,

5 YL

and the first order condition gives: o
as(t.q') 0
o¢

and types t* obtain their first best allocation.
In our setting, when p = 0, the first order conditions can be written as:

oL St ¢)
o ~ " og ZEAk

7't - ¢ -I—EZ/\

<==>7r*(t;—qa)+zz,\§ t:,“ —t:)=0,foralli and a = 1,2,
i

oU*
(’7] =0, foralliand a = 1,2,

—Oforallzanda—-12

1 . A
<=»q;=t;+;r;zz,\§(t;+l—t;),foraniandazm,
kA
i g, 4 k_k(iitl _ i :
<==>qa=ta+F;Z7r oj(ta” —t,),forall i and a = 1,2
J

The surplus function is assumed to be convex, differentiable in ¢ and has, for all ¢, a unique
maximum §(t). The set of ¢(t) will be used as a benchmark for evaluating the distortions in
resource allocations entailed by the monopoly power under bidimensional adverse selection; the
first best allocation is:

g(t,) =t., forall i and a = 1,2,
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and distortions:

q(th) —q(t,) = —ZZ)\'“ (ti —t:),for all i and a = 1,2,
k#i j

==q(t,) - 4(t,) = (q’tz)(t”'l—t’)forallianda=1,2

where:

Mg, t)=)> > X <o,
k£i 3§

Mg, t)=— Z Zﬂkaf <0

k#i §

which depends on ¢ (see section 4).

The distortion in ¢(t}) can be seen as a ratio between the weighted sum of the differences
between t'’s predecessor and t* and the proportion of types #* in the population. The weights are
represented by /\;-“ , Langrange multiplier associated to the constraint:

U_*-U*(5) =0

Even if M\(g,t') is always negative, the sign of the distortion depends on the sign of [ti+! —t¥]:
upwards distortion if it is positive, downwards otherwise. The sign of the distortion of type
tV’s allocation only depends on its predecessor’s type. If type f is attracted to type t* (¢ is t’s
immediate successor) and if there exists a good « such t, — t!, < 0, then:

Q(t-a) = Q(Za)a
q(te) > 4(t,)-

This generalizes the result of no distortion at the top of the distribution: the highest type ¢
who attracts no other type, gets his first best allocation. The intuition for upward distortion:
if the proportion of type f is high it might be interesting for the monopolist’s to extract the
maximum surplus from type t' and thus sell them their first best allocation. In this case, the
seller has also to prevent type f from choosing the other types’s allocations and especially his
immediate successor’s allocation, ¢(t™!). To reduce competition between ¢(f) and q(f~!) it might
be therefore optimal for the seller to increase g(£,') above the first best level and this is the case
when:
> 1,

e We call Pure Case a solution such that there is for the highest type an optimal path
which runs through all of the types (and also unique since no closed paths are optimal),
this means that we can define a unique ordered subset T € T. We can then rank these
types from t°, the dummy type to £, the highest type:

T={t°¢.. 1}
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This also means that if there are T types, the longest optimal path, from £ to t° is of length
T — 1. And for all optimal path of length [ we have:

Y(l-1)C (), foralll = {1,...,T - 1}.
In this particular case, the first order conditions give:

oL

5 = -7t = A =0, for all ¢,

<= X' = —7*, forall i,
) ) 1 ) .
= g(th) — §(th) == Y 7t —ti),forall i and o = 1,2,
"k
. o 1- ¥ L .
=q(tl) —q(t,) = ——27;'55'——@;"‘1 —t,),foralliand a =1,2
In this particular case, as in the classic one-dimensional case, A(g, ') does not depend on
q,
A(qa t') =-

As a consequence, the subproblem 2 can be solved by maximizing the virtual surplus
Su(t, q*):

,for all 1.

1- Zkgi T
v

So(t',¢") = S(t', ¢") — Mg, t)[u(t*™*,¢") — u(t', ¢")], for all 4,

- R S S
Su(F,4) = S(t' ) - T

S.(t,9)=5(t9).

where 1 is the highest type, nobody’s successor. This generalizes the result of no distortion
at the top of the distribution. But this does not imply that allocations are only downward
distorted.

[+t —t']q", for all 4

e We call Almost Pure Case a solution such that there is a single optimal path to compute
the rent of each type, this does not mean, as above, that there exists a single optimal path
running through all the types. This means that we can define several ordered subsets, say
J:

T= {le T?---TJ}a

and for every T; we can rank its types from t?, the dummy type in T; to Z;, the highest
type in T;. t9 = t° for all j. T is such that :

T,NYTN...NYT; = {t°}.

This shows an important result (which is valid for all solutions, not only almost pure cases):
Proposition 6 whatever the solution, the set of types that participate and get no rent is
always a singleton, the dummy type, if all the quantities served by the monopolist are strictly

positive.
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To show this, imagine there are two such types, t) the lowest type in T; and t0 the lowest
type in T}, as nobody attracts them, we have (which is also equivalent to say that attract each
other, i.e, a closed path exists between t? and t9):

Uy =07
We also have:
0 (40 _ 40,0 _
Uj _U? = (tj —t)g =0,
0 0 _ 40\,0
Ui _U;') = (t; —tj)qj =0,
== an = q?a =0 fOI' all (t?a - t_(i)a) # 0.
If (¢, —t3,) > 0, this means that ¢}, is upwards distorted and ¢J, is downwards distorted, then
we have:
Gin > Qo > Qo > Qs
which cannot he satisfied with:
0 _ 0
Gja = ia:
As a consequence, ¢}, = g5, = 0(QED). Then we define by I;; the length of the optimal path
of type t'in subset T; , I; the length of the longest one and by ~(l;) this optimal path from £;

to t°.This means that for all i # 0, there exists a unique ~(I;) running through t’. And for a.ll
optimal path of length I; we have:

¥(l; — 1) CH(l;), for all 1 = {1,...,1;},

Y Li=T-1
J

In this case, the first order conditions give:

oL i i_ .
i ——‘71'—}\-—0, for all ¢,
< X' = —n*, for a]] 1,
: q( Z T t1+1 tl
k>1

foralli,i+ 1,k € janda=1,2,
> k
——"1 — "kSiﬂ (t?l - t;)a

e

=q(ty) - 4(te) =
foralli,i+ 1,k € janda=1,2.
As above, A(g, t') does not depend on q

Mg t') = —(1 = ), forall i,i+ 1,k € j.

k<i

As a consequence, the subproblem 2 can be solved by maximizing the virtual surplus:
o 1= .k
S.u(tz, 1) =S(t1, qz) _ Zﬂ:ﬁz
Sv(fj, (}3) = S(F], qi,) for all ]

[u(t™, ¢") — u(t',¢')), for all i # 1,
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e In a much more complex solution, in which some types can reach the dummy type with
several optimal paths, we can also define several ordered subsets Y, T5...T; but

TiNYeN...NYTy # {t°,
the intersection of all these ordered subsets is not reduced to a singleton. In this case,
Mat) =2 D%
k#i j
depends on g. We can notice that:
= —Z/\;, for all 4,

J
i i .
—-—WE 0%, for all 1,
J

and .
Y oi=1,foralli
7

which means that:A;- € [-7%,0], for all i,5. 0% can be seen as the probability that type
t* chooses the optimal path j to reach the dummy type. These constraints on Lagrange
multipliers are crucial to determine the general solution of the monopolist’s problem. The
study of the Regular Symmetric Case in the following subsection is an example. We can
also notice that in this kind of solution:

Ag.#)2—(1 = n*),for alli,i+1,k € m,

k<i
Mg, t)>— Z Z ok,
k£ g
Then the part of the distortions in resource allocations due to optimal paths starting from
tk is —m¥ (A\* = —7*). Then the part of the distortions in ' due to type ¢ is:
—r*ok € [-7*,0].

As a consequence, we can write distortions as:
q(th) — 4t) = - D mhakit —£)
i)

where 7%0% €]0, 7*[ if there exists at least two optimal paths from t* going through t,
7*0% = 7* if there is only one such path, and 7*c* = 0 if no paths runs trough t* (in
this case there exists at least one J such that ' = t;). This generalizes the result of no

distortion at the top of the distribution in each Y.

This confirms a result of Rochet-Chone (98) saying that for any solution we can define several
ordered subsets T ; defining several sets of agents (in our simple model we do not obtain as they
do the set of agents who do no participate and get nothing):
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e aset 79 (reduced to a singleton):
T° = {t], for all 5} = {t°}.
where t? is the lowest type in subset Y;. The element of 7° gets a rent U_°:

U_°=0.

e aset T = {t'} for all i such that:
U *>0,
o(t) #4(t").

e asset T _
T = {&;, for allj},
. where #; is the highest type in subset Y;.Every element in T is such that:
U_~7>0,
q(t;) =4(2)).
5.4 The Regular Symmetric Case in the Equivalent Problem

The monopolist produces two goods with the following cost function:

Cl) = 5@ + )

and wants to sells these two goods to a heterogenous population of four type: We denote these
types by letter i = A, B, C, D.

th = (t),15), (),
t8 = (till,tl2)1 (73)7
t°=(t,13), (),
tP=(t,85),  (P),

and t% — ¢! = At,, for a = 1,2. Buyers utilities are quasilinear:

U = u(ti’ q1, q2) - p(glzq2) - E’

ult's a1, @) = tidi + 505,

P'q' =pig + g
This solution is such that, C is attracted to B and D and A attracts B and D. We can then
define two optimal paths from C to A, one running through B, the other through D. This defines
7f ={C - B — A} and 1§ = {C — D — A}. Consequently, we can define two ordered subsets
T: = {t4,t5,tC} and T, = {t*,tP,C} and two expressions for U_© :

UC(+) = AtoqPU B,
UC(rS)=AtigP +U_P.
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as B and D are immediate successor of C. As A is the immediate successor of B :
U_%=atg,

and also the immediate successor of D :
U_P=Atg.

Then:

UC(1f) =Atagf + Aty
UC(7S) = At1gP + Atyg.
In this case the monopolist problem can be written as:
Ma:rz (u(t', ") — C(¢') — U %)

s/c:U_*=0,(04),
:U_B = Atyf, (AB),
:U_P = Atoqf, (AP),
:U_C = Atag2 + Aty (X5),
:U_C = Aty1qP + Atygf (XS).

The constraint on U € can also be written as:

U_C=0,U°("{) + 02UC(7F),
o1 +02=1,

O1=0.

The first order conditions give:

a—L. = -t =Y X =0, for all 7,
<=M = -1,
= AP = 1B,
<= A0 = 7P,

<= A + X = —nC,



Uk k
oL = ‘fraS(t’q ZZ)\'“ (7)—0 foralliand a =1,2

oq; 9% =5 0g,
oL A B C
(:E)q T4t — ¢) + (OF +X9)At, =0,
1
oL A/lA D C
= =71t — ) + (A7 + A7) At
o
oL _ B
=== =0,
4::6—1;_#3(3 )+ (A At, =0
Og;
== =0
aqlc m ( q1 ) 3
oL
Spp =" -g)=0
oL DD c
S =" (t? — ¢P) + (A9)At; = 0,
oL
@—_-7"0@)—‘15):0-
To define the solution, we have to determine the value of the non posmve Lagrange multipliers.
We still have two unknowns, /\1 , A$ and only one equation )\C-i-)\c 7¢. The missing equation
is obtained by:

UC(ri) = U°(%)
<=>At2q2B + Atigf = Athf) + Atygy,
<= Aty (gf — @) = Aty(6f — ).

We wnte quantity as functions of /\C and define its value with the above equation: if paths v{
and ~$ are both optimal they prov1de the same rent.

_ B c
uﬂ_jk_l.lmh

(=P — 7€ = X9)

A

AtZ ’

AC
@ =t; + gt

b, (7%= X0)

D

Aty,
Solving Aty(gP — ¢f') = Aty(g® — g&) we obtain:
B + 7€ 1

+ 7 1 1 1 1
X = -[—5—af + Al /(7 + )8 + (5 + —5)Ad).
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This defines a solution if all )\; are non positive. We obtain the condition already found in chapter
2 according to the non positivity of the Lagrange multipliers:

2
747C — 787D > —-é—gﬂrb(:rrc +7P).
At?
The other conditions that must be checked by the model are such that: If type ¢! is attracted by
its immediate successor t*~! we have:
U $ _ U -1 - (tt - ti—l)qi—'l
and if t*~! is not attracted to ¢ we have:
U U ¢ > (8 —t)g,

= U '—-U_" <t -tYe,

= ([t - g < (- )
and we obtain, as in chapter 2:

AR — P < T
s

In this solution, ¢7,¢f’, ¢5, ¢’ are equal to the optimal resource allocation. gf, ¢&,q2, ¢P are
downward distorted. The distortions D:, are:

(—7B + X9) (=78 — 7€) ~7B
Df'-‘——?rA—LAtle ) Atl, oy Atl[,

T
—7TD _ 7TC —7TD
Atgé}( = )Atz, py At2[a

T

T

¢ 7€
D2B =7r—lBAt2 € } —T—B;‘Atz,()[,

(=€ = 39)

D -7
‘Dl = s At; € ]?Atlo[

and for all i = {A,B,C, D} and a = {1,2}, D} < 0, since for every optimal path defining an

ordered subset, we always have: _ _
1 > £ for all i,a.

We can explain distortions as follows:
e Type t& is attracted to t4, and only ¢4,
>t
ty =t3,
then the weight of the distortion on g¢{* due to type t&’s attraction is

‘—ﬂ'B.
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Type tP is attracted to t4, and only t4,
D _ 1A
tP =4,
D ;A
then the weight of the distortion on g4 (due to type tP’s attraction is

—7P,
e Type tC is attracted to tB, and also . Then the part of the distortion due to type t<’s
attraction is

—ﬂ'c.

This weight is split between distortions explained by 7§ and 4. This means that we can
define distortions as:

—7B — 7€
Df=L‘?——)At1,
D _ C(1 _
D{,‘=( T 7rA(1 U))Atz,
T

c
B __ -0
D2 - ﬂ’B At2,

m°(1 - o)

D{) = 7rD Atl,

where o € |0, 1] depends on g,
U_¢=0aU%(") + (1= o)U°(H),

and can be seen as the “probability” that type t© chooses paths 7{={C — B — A} to
reach the dummy type, (1— o) for 4§. This means that a weight —on© is dedicated to D
and D{! and a weight —(1 — )7 is dedicated to DP and D4. Types t? and t? have only
one path to reach ¢4, so the probability that they choose these paths is one. Consequently,
the weight —B is totally dedicated to D' and the weight —7P is totally dedicated to D4

Even if, on each route, there are only two levels of demand of services, the airline in this
case has to propose 3 levels of services on each route. In this particular example, we have the
following solution:

o =q >¢’ >q
G5=0>% >0

which means 3 levels of services on each route.

Customers C receive their first best allocation of services on each route. They fly first on
routes 1 and 2. Customers B fly first on route 1 and fly "above economy" on route 2. Customers
D fly first on route 2 and fly "above economy" on route 1. Customers A fly economy on both
routes. We can also think about services that can be provided outside the aircraft to allow the
airline to offer the same level of services on board to customers B and A on route 1, and D and
A on route 2.

In the following section, we study the set of solutions s* = {a,b...n} already defined in section
4 as cases {A,B...N}.
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6 The Solution (2) and implications for service allocation in the air-
line industry

In this section we use the set of solutions defined in section 4, in which characteristics are such
that:

=4t =g,
At1=2,
th=4,th =5,
Aty =1,
and types are distributed as follows:
mA=gC=3
T 3
B__ D _ (1—c¢)
s 5
and
pel-1,1].

Even if there are only two levels of demand of services (high or low), as the optimal pricing
policy requires a form of bundling, the optimal resource allocation often requires 3 levels of
services, sometimes 4 on each route.

6.1 Pure Case

A Pure Case is a solution such that there is a unique optimal path of length which runs through
all of the types defining a unique ordered partition T of T. As a consequence, this also defines
a unique optimal path for each type and consequently a unique expression for each rent.

Solution 7 (case I in section 4) is the only Pure Case in the set of solutions. The attractions
are as follows: C is attracted to B, who is attracted to D, who is attracted to A. We can then
say that C > B > D > A. We can thus define:

T={A,D,B,C}.
In this case, we have:

U_S=Atygf + AtygP — AtyqP + Atyqs,
U_B=At1gP — Atygl + Atogf,

U _P=Atqd,

U_“=0.
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and quantities are:

@ =t

D B c
a4, (=m0 =17 =7%)
q2 =t2+ ﬂ’A At2
B c
p .p (=7 —7%)
q =t1 + D Atlv
c B
p ,p, K T +T
g =ty + ——p — Ot
QF':t{g’
C
g . T
@ =t; +FAt2’
Qf=tf,
g5 =t5.

This solution is singular as a quantity is upward distorted. As distortions depend on the prede-
cessor’s type, ¢ is upward distorted: B is attracted to D so distortions in g2 are positive when
t? > t2 and negative otherwise:

t? <tP = DP <0,
t?>t8 = DY >0.

As a consequence,

o =a >qf >df,
o> >a > 6.
Again in this case, customers C fly first on both routes. Surprisingly, customers D fly "above

first" on route 2 and economy on route 1. Customers B fly first on route one and "above
economy" on route 2. Customer A fly economy on route 2 and "above economy" on route 2.

6.2 Almost Pure Case

An Almost Pure Case is a solution such that there is a single optimal paths to compute the
rent of each type. There exist several distinct optimal paths such that every type has one and
only optimal path running through it.

Solution ¢ (case C, Regular Asymmetric Case in section 4) is the only Almost Pure Case
in the set of solutions. The attractions are as follows: C is attracted to D, who is attracted
to A, and B is attracted to A. We can then say that C > D > A and B > A.We can thus
define: T, = {4,D,C} and T; = {A, B} defining: v = {C —» D — A}, = {D — A} and
v? ={B - A}.

The set of optimal rents is accordingly as follows:

U _©=Atqf + Atygf,

U_B = Atgqi“,
U_D = At2q2A,
U_“=0.
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This solution is regular and quantities are:

@t =t + —At
i

g=tf+ T,
i

@? =tP + 5 At,,

7 =t7,

@ =tf,

% =t;,

g =tf,

% =t5.

Cand B are the highest type in the respective ordered subsets T, and Y. As a consequence, C
and B obtain their first best allocations.

we have the following solution:

a=q>q > ‘If
G=qG>q > 'y
which means 3 levels of services on each route.
Customers C' and B receive their first best allocation of services on each route. Customers
C fly first on routes 1 and 2. Customers B fly first on route 1 and fly "above economy" (at his

first best level) on route 2. Customers D fly first on route 2 and fly "above economy" on route
1. Customers A fly economy on both routes.

6.3 Regular and Completely Ordered

Such a solution does not exist since we have torank t& and t”. To be able to do so, whether there
exists an attraction between them or they can reach each other through t© without involving any
transverse binding JCC. In both cases there is upward distortions: whether tZ or t? attracts the
other, quantities allocated to the attracted one are distorted, one upwards and one downwards
as:

ty >0,

t7 >1t3;

B or P can reach the other one through t¢ implies that ¢€ is upward distorted as:
ty > t7,
tS>t2.

6.4 Regular and Partially Ordered

Solutions d,e and f, respectively Regular Symmetric Case and the Separable Case, are regular
and allow partially type ordering.
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For solution d, see the previous Section.

In solution e, C'is attracted to B and D and A attracts B, D and C. We can then define
three optimal paths from C to A, one running through B, the other through D, and a third
one going directly to A. This defines /¥ = {C — B — A}, 7§ = {C - D — A} and
7§ = {C — A},¥? = {D — A},7¥® = {B — A}. Consequently, we can define three ordered
subsets T; = {t*,t8,tC}, Ty = {t4,tP,t} and Y3 = {t4,t}and three expressions for U €.

In solution f, C is attracted to D and A, and A attracts B, D and C. We can then define
three optimal paths from C to A, one running through B, the other through D, and a third one
going directly to A. This defines 1/¢ = {C — D — A}, 1§ = {C — A},7P = {D — A},+B =
{B — A}. Consequently, we can define two ordered subsets T, = {t4,¢P t¢}, Ty = {t?,t€} and
two expressions for U_©.

Solutions d,e and f defines a type ordering for each good: for the gopod 1, C =B > D = A
and for good 2: C =D » B > A.

Again, we obtain the following solution:

= >q¢’ > ¢
=0 >q>¢

which means 3 levels of services on each route.

Customers C receive their first best allocation of services on each route. They fly first on
routes 1 and 2. Customers B fly first on route 1 and fly "above economy" on route 2. Customers
D fly first on route 2 and fly "above economy" on route 1. Customers A fly economy on both
routes. We can also think about services that can be provided outside the aircraft to allow the
airline to offer the same level of services on board to customers B and A on route 1, and D and
A on route 2.

6.5 Singular and Completely Ordered

A pure case belongs to this class of solutions.

Solutions a,b, h,t, j,k,m are singular (upward distortions) and completely ordered (there
exists an ordered subset Y; of four types).

In this set of solutions there are two possible type ordering:

C > B > D » A for solutions 1, j, k,
B> C = D » A for solutions a, b, h.

This can be explained as follows:

e solutions a,b, h occur for low values of € equivalent to low proportions of types t¢ and
t* and high proportions of types t® and t”. It is in the monopolist’s interest to extract
maximum surplus from types t® and thus sell them their first best allocations. Even if
78 = 7P and whatever the solution, neither D is the highest type nor D is superior to B.

This comes from the parameters of the model, At; > At,.

In this case we have,
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C __
@=q >q >q,

@ > >q > ¢

Again, customers C fly first on both routes. Surprisingly, customers D fly "above first" on route
2 and economy on route 1. Customers B fly first on route one and "above economy" (at their
first best level) on route 2. Customer A fly economy on route 2 and "above economy" on route
2.

e solutions ¢, 7. k are such that B is attracted to D. This enables to rank them and defines
the unique and expected type ordering C > B > D > A, where C is the highest as t€ > ¢,
for all o,i. Then B is bigger than D as B has more impact on distortions than D since
Aty > Aty. At last A is the lowest type as t2 < ¢! for all a, i.

In this case we have,

“=q>4q>q,
% >e4>q > 6
Again, customers C fly first on both routes. Surprisingly, customers D fly "above first" on route

2 and economy on route 1. Customers B fly first on route one and "above economy" on route 2.
Customer A fly economy on route 2 and "above economy" on route 2.

6.6 Singular and Partially Ordered
Solution [ is such that:

')'Cz{C——-»D—)A},
v ={D— A4},
2 ={B - D — A},
72B={B_’A}’

defining:

Tl = {A, D7 0}7
T,={4,D,B).
B and C obtain their first best allocations while ¢’ is upwards distorted and ¢P, ¢f, ¢f* are

downwards distorted. Even we can rank B and D we cannot rank C and D and define a unique
type ordering. We have:

T° ={t*},
T ={tP},
T ={tt%}.
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In this case we have,

c_ B
G=¢ >q >,
D_ C B 4
2 >9% >9% >0
Again, customers C fly first on both routes. Surprisingly, customers D fly "above first" on route
2 and economy on route 1. Customers B fly first on route one and "above economy" (at their

first best level) on route 2. Customer A fly economy on route 2 and "above economy" on route
2.

6.7 Special cases

Solutions n and g as two types attract each other, B and C.
This kind of solution means that there exists two types such that:

U '~U_7 = (t* -t
UV = (- ),
=q. = ¢ forall (£, —#}) #0.
If (¢, — tJ) > 0, this means that ¢, is upwards distorted and ¢/, is downwards distorted, then we
have:
G>0>a>aq,
which cannot be satisfied with:
Go = G5
As a consequence, ¢&, = ¢, = 0.
In solution g we can define the following ordered subsets:
T, = {C,B, A}
=C»>B* A,

T, = {B,C,D,A}
=B >C > D> A

In this particular case where B is at the same time the immediate successor, in T;, and the
immediate predecessor, in Ts, of C'. We have:

U_°-U_B=Aty],
and consequently:
B




In this solution optimal paths 'y"- define the rents of B and C are as follows:

U = At,qP + Atiqft, with probability fflci
= Atyqf + Aty qf, with probability oS,
= Atoq) + AtyqP, with probability o,
U_B=At ¢, with probability o2,
=—AtyqS + Atygd + Aty g, with probability o2,
=—AtyqS + Atagd + At1qP, with probability o

As v§ C 7Z and 7§ C 7F we have:0§ = oF and 0§ = o and consequently: 6§ = oB. Then we
have:

oB + 0B 7rB oBn¢

oBnC¢ (o8 +aB)7r
q‘28=t23~At2 ;TB — Aty- 2 7T33

where the second term of each distortion is explained by mutual attractions, which means ac-
cording to distortions that are usually computed as:

q(ty) —4(th) ==Y mrob( - &),
Cok#E g

are computed:

q(t' ) _- Zzwko,k(t:-rl _ t'

that we make the sum for all k as ¢f = ¢}, when k and ¢ attract each other and tX — # # 0.

g5 = g implies: s e
(U‘f‘*‘”:]sg)"" +017r

wC B
which is impossible. If we neglect closed paths (and mutual attractions), using:

ate) —4(t) = =) Y okt — ),
i
this second part of the distortions does not appear and the condition becomes:
(0B +oB)r® | oPn®
7€ B

which is also impossible. This defines a solution in which the monopolist only sells good 1 as:

U5) =qf=q§‘=0.

=0

=-1

In this case:
T° = {t*,t"} = {11},
T=0,
T={t%t} = {t}}
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as in the classic one dimensional case of course since only one good is produced. This does
not means that good 2 is not profitable. This means that there is no optimal mechanism en-
abling the monopolist to fully apply his monopoly power and he is better off selling both goods
independently.

We then obtain the following solution (see separable case in section 4),

=0 >q =¢qf,
E=>0 =g

Again, customers C fly first on both routes. Customers D fly first on route 2 and economy on
route 1. Customers B fly first on route one and economy on route 2. Customer A fly economy
on both routes.

Solution n is equivalent as B and C attract each other implying:

% =aq,
implying the sum of strictly positive terms to be negative,

C B

T ™

e =

if we neglect mutual attraction, which is of course impossible. Computing utilities:

U_°=Atyg + Atyqf, with probability o,
= Aty + At qP, with probability o,

U_B = —Atgqg + Atgqf + Athf, with probability af ,
= —Atyq§ + Atogf + AtygP, with probability o2,

as C is attracted to B but cannot reach A as B is not attracted to A. This creates a closed
paths, C —» B — C. Again: _
g; =0, for all 7.

We then obtain the same solution as in case g.

In both cases, there is no optimal selling mechanism enabling the monopolist to fully apply
his monopoly power. In this case, as we assume that both routes are profitable, the airline will
market these routes independantly.

7 Conclusion

In this paper we have derived the complete solution of a two-product monopolist in the 2*2 case
with a quadratic cost function and linear preferences. We have seen that a solution with the
same qualitative features than the one in dimension one does not exists for all parameters neither
for all distributions.

In the case where there is no cross cost parameter, we have discovered four possible solutions
depending on the correlation between types, as in Armstrong-Rochet (98), whereas Dana (93)
in a different context, but a similar setting, finds only two solutions. One of the most striking
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result is the solution for strongly negative correlation, the singular case: there is an upward
binding ICC (B towards C and not D towards C because At; > At, ) and a transverse one
(B towards D because At; > Alg). As a consequence, the highest type C receives an upwards
distorted allocation, whereas an “intermediary” type, B, gets his first best allocation (and also
in the regular asymmetric case). The type who has the highest indirect utility level does not
always get his first best allocation( see type C in the singular case), and is not necessarily the
only one to get it.

When we take p into account several other solutions appear each one having its own properties.
We know that D is always attracted to A and never to B and C. The monopolist always captures
all the surplus of the lowest type (A) and the others always obtain a strictly positive surplus.

We also show that the bidimensional monopolist’s problem has solutions such that:

e the optimal pricing mechanism often requires a form of bundling

e it is sometimes impossible for the monopolist to apply his monopoly power, and he is
sometimes better off selling both goods independently,

e if all the quantities served by the monopolist are positive, there is no closed path or mutual
attraction and the set of types who get no rent is reduced to a singleton, the dummy type,

e distortions depend on the number of optimal paths and also on their lengths, especially
the number of types involved in these optimal paths,

o the sign of the distortions in types t's allocations only depends on their immediate prede-
Cessors,

e the rule of no distortion at the top of the distribution is always satisfied.

In this particular bidimensional setting we succeed in finding the global solution as there are
only two arguments, two characteristics and four types. We are also able to solve the problem
by maximizing the expected virtual surplus for Pure and Almost Pure cases. In a general
multidimensional setting, solving the problem is always feasible as we have enough equations to
determine all the unknowns. But to do so we have to be able to answer the question: What is
the set of optimal paths that defines the solution?

On the airline side, empirical research is needed on route monopolies. Further research should
also be undertaken on network monopolies connecting secondary airports.

8 Graphs and Figures
9 Appendices

9.1 Appendix 1
Conditions on quantities for the Regular Symmetric Case:

UZ - U4 = Atyqf,
UA-U®B > -AtigP,
@qf > q‘f
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UP - U= Atygg!
U4~ UP > —AtygP

PR

UC — U4 = AtigP + Aty
UC —UA = At1gf + Atog?
U — U4 > Atigft + Atygtt

@q‘Pqu,etquq:f.

UC — U < Atyqf + Atyg§
UC - UB = Atzqu
UB —~U® > -Atyg§

&d >d8

US - UP = At qP
UD - UC Z —Athf

e >¢P
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B _ UD = AthlD bt AtngB
UB —UP > AtigP — Atag?

s >q8

UP -~ UB > —At P + Atyg?

&g >qf

9.2 Appendix 2

We write here the F.O.C of the problem in the 2*2 case when buyers are uniformly distributed.
In this case we obtain the following equations for the optimal quantities:

af = Ghmltl + 208, 224784 — p(tfl + 20ty =ECA—ERA)]

aF = qoltl + 24t =Fapken — p(t8 + 2At,=eB—knh )i
¢ = 7&0 + 20t “HACTEDC — p(tE + Aty LBCTRAC)]
qP = iz [tP + 24t kBT — p(tD + 20t EantinD )
@ = gty + 20t ﬁmﬂm p(tf + 20t ~LBazkca))
o8 = (—-?—[tB + 2At, wm — p(tF + 2At, antion)]
@ = =lts + 2At2—ﬁﬂu‘«1C — p(t§ + 2At, Lactina)y)

9P = T2 (t] + 20t =2apmEel — p(tP + 24t (-esp-bcn)))
We have the following equations for the Lagrange multipliers of the problem:

—m = M — tap — pac — Bap + Bpa T Hcat+ pa=0,

-8 —XP — ups — bpc — kBp + Bap + ke + Hpp =0,

=7 = XC — uoa — Bes — Hep + Hac + Bee + bpe =0,

—mP = AP — pps — bpp — kpc + Bap + kep T Hep =0
To derive the complete solution we replicate the technic used in section 4. We take a solution
and find the frontiers(the conditions on quantities and the sign of u,;s). We then look for a
solution if one of these conditions fails. We then find the binding constraints and then we check
the conditions of existence of a solution. We always obtain a system of P equations with P
unknowns. We have N equations (ac) and the missing equations are equality conditions on

quantities, obtained by examining the ‘attractions and the different possible paths from one type
to another. And so on...(see figure 4). This has been done with Mathematica 3.0 ( a mathematical

software).
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