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Abstract

Despite deregulation on the air-transportation markets, many con-

nections are still operated by a single operator. Regxdation is thus a

central issue in this industry. There is however a great concern for the

(possibly negative) consequences of price regulation on the quality of
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introduction of heterogeneity in the travellers' _duation of the con-
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1 Introduction

"Maintaining competition in deregulated airlines markets" is, in the words of

Meyer and Menzies (2000), a key concern of the air-transportation industry.

Despite the deregulation that occurred in the last years, there is still a very

low level of competition on the European market. In 1997, namely five years

after the adoption of the '%hird package" 1 by the European Commission,

almost 85% of the 336 connections over the French territory were run by one

operator and more than 12% by only two. This makes it clear that regulation

is a perspective that cannot be ignored.

Regulation of air transportation services cannot escape the quality issue.

Economies of scale leads naturally the monopolist to provide connections with

a lower frequency than what would be optimal from a social welfare point of

view. And in a regulated environment, it might be feared that firms concen-

trate their efforts on reducing costs at the expense of quality; frequency may

thus be reduced and welfare further deteriorated. The specificity of the ap-

proach consists in addressing simultaneously both distortions: the distortion

in terms of prices and the distortion in terms of frequency. It is shown in

this paper that the socially optimal supply of services as caracterised by" the

price and the frequency can be reached by the means of a simple regulatory

mechanism: a price-cap constraint that depends on the frequency of services.

The air-transportation industry is made of a complex network of travel

services. Within this network, each of the services is in interaction with the

others in order to insure possible connections. Most companies are never-

theless organised according to a star network, that is, with transportation

services that connect a central airport (hub) to the periphery (spoke). The

generalisation of this "hub-and spokes" system makes the management of

each of this services almost independent from the others. As a matter of

t2409/92: Council Regulation of 23 July 1992 on fares and rates for air services (OJ

L 240 of 28 August 1992). This is the last step in the european process that implemented

full deregulation in the sector.



Billette de Villemeur

facts, a large fraction of the passengers may actually pursue its travel and

have a connection. However, as long as there is not a unique final destination

and passengers are distributed m_r se_era! connections, there are no reasons

to favour a specific arrival time. This is in partioflar true on the most impor-

tant routes, for which the frequency of ser_4ces is quite high. As a result, each

of the transportation services can be considered as an independent market.

In the model, we thus focus on a single origin-destination pair. The (ag-

gregate) demand for air transportation services is a function of the price

and the frequency of services. Each (Air-)travel translates indeed in both

monetary and (waiting-)time costs for the passengers. We first caracterise

the first best allocation that can be interpreted as a generalization of the

marginal pricing rules. When compared to the standard monopoly regula-

tion problem there is an additional trade-off. An increase in the frequency

of services induces an increase in operational costs but also in improvement

of consume_a-s' w_faxe. These benefits are e_x]uated by using the well-known

concept "value of time". It is shown that, ff sustainability is not a con-

cern, the optimal allocation is such that the "generalised price" for users

:_ equal to the a'_,_ge _ - "*"*: _ _w-__,arapoz_,on costs. A .... "_step of the analysis

consist in displaying the choices made by a non-regulated monopolist. The

optimal structure introduced before. The study goes on by considering the

second-best opt=m, a more realistic situation where social welfare is max-

imised taking into account the sustainability constraint. This is a modified

Ramsey-Boiteux problem that takes into account the specificities of the air

transportation sector. The model presented here bears several characteristics

in common with the literature on quality regulation 2. The model brings how-

ever several new insights that are not explicitly dealt with in this literature.

In particular we address the implementation problem for the second-best al-

location when quality is taken into account. Regarding the air-transportation

2See I.affont and Tirole (1993, chap. 4).
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sector, Panzar (1979) is the first to address these questions. The issues of air

transportation regulation and public policy are discussed at length by Levine

(1987). The closest model to our analysis is a recent contribution by Brueck-

her and Zhang (2001). Their much more ambitious study calls however for a

priori assumptions on the demand function that we are able to avoid here.

2 The model

The supply of air-transportation services between two airports is caracterised

by the pair (p, f) where p denotes the ticket price and f the frequency of the

flights. The company has to bear fixed costs F and operational costs. Pro-

duction costs. The later are directly related to the frequency of connections

and the nature of the planes. A one way flight with a plane of capacity K

translates into operational costs C (K) on the link that is considered.

In the long run, the company is assumed to adjust the capacity K of the

planes to the total traffic observed X. The relation K = X/f is considered

to hold all along the paper. The framework may however easily be adapted

to situation where planes are not used at full capacity.

We also assume that there are increasing returns to scale: the average trans-

portation cost C (K)/K is a decreasing function of the aircraft size K. This

hypothesis is fully backed by empirical data. As an example, for Airbus A320

category, even when we ignore the fact that bigger planes usually allow to

reach higher distances, the elasticity with respect to capacity of total con-

sumption per passenger is almost constant at -0.84. From a theoretical point

of view, this hypothesis brings an explanation to several facts. First, it ex-

plains why there are no competitors on the connection considered. Second,

it also explains why it is less costly for to companv to offer low-frequency

services with large a&-planes rather than numerous connections with small

capacity aircrafts.

The demand in air-transportation services depends on the price p but also
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on the frequency of connections f. Assuming the ideal departure time to be

uniformly distributed along the time interval that separates two departures,

the ax_rage _aiting time is equal to 1/2f. Denote v the value of time of the

population that is considered. The axerage (waiting-)time costs for services

of "quality" f mounts to u/2f for each passengers flying between the two

cities.

Let S (.) be the (gross) surplus of the representative travellers, a function of

its travel consumption. The net surplus is obtained by taking off all the costs

supported by the travellers: ticket price p and time costs v/2f. We can thus

define the demand function as:

Substitute the demand function into the net surplus to get the indirect utility

function:

-V (p, f) -- S [X (p, f)j - i X _,, f). (2)

The identities (1) and (2) display the fact that the unitary costs of the com-

modity X (one travel) for the passengers amount to the "generalised price"

= p + v/2f. In other words, demand is a function of the whole transporta-

tion costs and not the sole price p. This explains why the observed traffic is

also a function of the value of time p.

3 Social Optimum

In this section, we analyse the first-best allocation, that is the allocation

that ma_cimiT_s the social welfare (the sum of consumers' surplus and firm's

profits). At this stage the company is not required to break-even. We thus

implicitly assume that fixed costs can be financed without efficiency cost

trough a subsidy financed from the general budget. Such a solution is usually

not considered to be realistic. Nevertheless it provides us with an interesting

benchmark.
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Total surplus can be expressed as follows:

I¥1 (X, f) = S (X) - _]X - fC - F (3)

where fixed costs, operational costs but also passengers' time costs are sub-

stracted from the gross surplus. Differentiating (3) with respect to X and f,

and rearranging yields the following first-order conditions:

v

s' (x) : o' (K) + 57' (4)

v = C(K) c'(g). (5)
2f K

Equation (4) evidences the two components of the marginal cost of an ad-

ditional passenger. On the one hand, the (standard) marginal cost of pro-

duction C' (K) as supported by the firm. On the other hand, the time costs

v/2f supported by this additional passenger. Equation (5) evidences the

twofold effect of an increase in frequency. On the one hand, an increase of

the operational costs that is proportional to the unit cost of a flight (thus

the average transportation cost). This is a consequence of the marginal in-

crease in the number of flights. On the other hand, a marginal decrease in

the cost of each flight that follows from the decrease of the capacity K. As a

result, the hypothesis of capacity adjustment yields to the conclusion that,

the optimal (long run) allocation as caracterised by X and f should be such

that:

C(K) (6)
S' (X) = g

In words, the double marginal rule that should govern the choice of X and f

results in a rule where the optimal capacity is defined by the average costs.

Travellers' maximising behaviour implies S' (X) = p + v/2f. Substituting

this expression into (4) and (6) leads to:

p = C'(K), (7)
c(g)

/3 = g (S)
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Expressions (7) and (8) show respectively that first-best allocation can be

decentralized through (i) marginal cost pricing and (ii) a frequency of con-

nections such that the generalised price/3 as supported by the passenger

exactly equals the average transportation cost. Interestingly enough, this in-

duces an efficient setting of the transportation services characteristics. The

(only) travellers are those for which the transportation costs (including time

costs) are smaller than the firms" operational costs.

A consequence of this (optimal) pricing policy is however that the corn-

pan), does not break-even. More precisely, sales will only cover marginal costs

_,,_ ur.ucJ_ wm maoun_ a_ ieas_ to the fixed costs F. Profits may indeed

be written as:

1-I=pX-fC(K)-F=fK[C'(K) C/_)]-F

where C' (K) < C (K)/K from the increasing returns to scale assumption.

Remark that, the higher the value of time v and the higher the traffic level

X, the bigger the losses. By using (5), the profits of the firm at the first-best

optimum can be rewritten as:

p

II = -_X - F.

As a result, the first-best solution is not feasible if the operator faces a break-

even constraint. One has then to consider a second-best solution where prices

are set above marginal cost in order to recover all the costs. This question

is addressed below.

4 Transportation services with a profit maxi-

mising monopolist

The first-best allocation has been computed by considering social welfare

and fully ignoring the issue of profitability. Vqe know turn to the converse
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situation by considering the choices made by a profit-maximising monopolist.

The price p and the frequency f will be such that the profit

H (p, f) = pX (p, f) - fC (X/f) - F

is maximum. This gives rise to the following first-order conditions:

on Ox

= X(p,f)+(p-C'(g))--_p =0

Ono_.f c' Ox f= (p- (K))--_-]--C(K)+ c'(g)=0.

In order to interpret these expressions, it is useful to introduce the price-

elasticity of the demand function (in absolute value):

p OX (p, f)

ex, = X (p , f ) cOp

This value measures the rate of demand decrease that follows from a one

point increase in the price. Note that this parameter depends a priori on the

price p and the frequency f. Since the link between price and frequency are

at the center of the questions addressed in this paper, it is useful to study

the impact on demand of changes in both parameters. For this purpose, we

use equation (1) describing travellers' behaviour to get:

cOX (p, f) v cOX (p, f)

Of 2f 2 COp

We can now re-write the FOC to obtain the following characterization of

the services supplied by a profit-maximising monopolist:

p - C' (K) 1
- (9)

p exp

L, C(K)
- C' (g). (10)

2f K

Equation (9) shows that the mark-up made by the monopolist is inversely

related with the price-elasticity of demand. In words, the more captive the
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travellers are, (i.e. the less alternatix_es they have so that they are con-

strained to pay their ticket '_,hatever the price"), the higher the profits of

the company. Interestingl3; this weU-..kno_m monopoly pridng formula is not

modified by the possibility of choosing the frequency of connections. Note

however that this does not mean that the price p is independent from the

frequency f : the elasticity ex_ is indeed a function of both parameters.

It may appear surprising that equation (10) does not differ from the equation

(5) that defines optimal frequency at the firs>best. Again, the unchanged

r_de does not mean that value will be the same in both cases. V_qlile the aver-

age waiting time should always be equal to the difference between the mean

cost and the marginal cost, these costs are evaluated for different values of

the capacity, K = X/f. It is nevertheless remarkable to find unchanged the

rule that governs the choice of f. Even the unregulated monopolist sets ] by

taking into account, not only the impact of f on its o_m costs but also the

impact of f on trax_ilers surplus (because of ius effect on the uravel demand).

5 Traffic and frequency complementarity

...... 1: -Since Spence (19,"5) we Imow that a muuul_,,.-t may-under- or over- supply
.... 1_-_. /_.;¢1_ ...... + _ _.I_- ..... 1..1 !_ ..... :.,11 ..... _: ........ "_ ._1 ..... 1; ..... +1_

comp]ementmri_ or substitutability of the quanti_" and the quality. By def-

L_itiozh X and jr will be complement ff the social benefits of quality increase

_th the n_ber of travellers or _ this is equivalent_ if the _l bene-

fits of one travel increase with the _equency. There will be substitutability

otherwise. Formally complementarity is defined by:

0 c'
oxof = ofox = o-7 (g)] > 0 (n)

In other words, X and f are complements (resp. substitutes) if the difference

between the marginal _llingness to pay for a ticket and the marginal cost of

a travel is increasing with the frequency (resp. decreasing). The behaviour of
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the firm will however depend on its capacity to extract the consumer surplus

rather than its value. This leads us to rewrite equatiol_ (11) by using equation

(5) that characterises frequency to obtain:

02W K d [C(K) C' (K)]OfOX f dK

This equation makes it clear that demand and frequency are complements if

the difference between the mean cost and the marginal cost is decreasing with

the plane capacity. Observe that this same difference governs the frequency

choice both at the social optimum and at the profit maximising equilibrium.

Given a frequency of connections f, the demand X and thus the capacity

of the aircrafts K will be lower in the monopoly case than at the first-best.

In case of complementarity, the average waiting time is decreasing with K.

Thus the monopolist will set a lower frequency than what would be socially

optimum. In case of substitutability, the frequency would be higher.

Note that complementarity of X and f is actually a fair assumption since

_ v C" (K).
2X

Thus, in order to have substitutability, one should have a (strongly) decreas-

ing marginal cost: C" (K) < -v/(2X). As soon as it is not the case, traffic

and frequency will be complement and the monopolist will set a frequency f

below what would be socially optimum. This is the assumption made in the

remaining part of the paper.
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6 Second-best

V_Tenow turn to the so-called second-best, where social welfare

i,' /Y\

-'_o_,:>:,.o,,:_+,,(.,:>=_<.,<>-:_-s_tT)-F
is maximised under the constraint that the firm may break-even. Observe

that, even without any fixed costs F, the assumption made earher according

to which the mean cost C (K)/K is decreasing imphes that the price should

be higher than the marginal cost for the firm to break-even.

Denote L the Lagrangian expression associated _th this problem while

is the multiplier of the break-even constraint. We obtain the followin_ first

order conditions:

OLop = S' (X) - + _-] --_ - X Op,f)
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OL

of

+(I + A) [X (p,f)+(p-C'(K)) O-_p] =0,

S' (X) - p + _ Of 2f 2X (p' f)

+(I+A) (p-C'(K))-_-f-C(K)+-fC (K)
=0.

By using equation (1) that describes travellers behaviour and the various

notations introduced above, this system can be simplified to get

p- c' (K) 1
p 1 +A exv'

u = C(K) C'(K)
2f g "

(12)

(13)

Equation (12) shows that the rule that governs the setting of prices at the

second-best is not modified when time costs are taken into account. This

is the standard Ramsey formula. Since the distortion that follows from a

price set above the marginal cost increases with the elasticity of demand, the

mark-up should be inversely related to this price elasticity. It is set in such a

way that the overall distortion is minimised and the firm can recover all its

costs which importance is measured by the shadow price A.

Equation (13) is unchanged with respect to equation (5) obtained for the

first-best. This does not come as a surprise since the equation governing the

choice of frequency was already the same for the un-regulated monopolist.

Remind that this does not mean that the frequency will be identical. In

particular, if X and f are complements, the frequency set by a regulated

monopolist should be higher than the frequency that would be chosen by a

profit-maximising firm. (and lower than the first-best level).

A last remark should be made regarding equation (13). That the multiplier

A is not part of it does not mean that the frequency f is independent of the

fixed costs F. If costs increase, then A increases since the mark-up increases

in order to cover this additional costs. Thus the price p (at second-best) is



Billette de ViUe_neur 13

an increasing function of F. More precisely, the price p and the frequency

f at the second-best optimum less and less differ from the values set by a

profit_maximising firm (thus more and more differ from the first-best values).

In other words, a state-owned firm which maximizes social welfare subject

to the break-even constraint but which is relatively inefficient (and thus has

to finance high fixed costs) does not really differ from a profit maximising

firm. _

The implementation of the (second-best) optimal allocation raises several

difficulties. On the one hand the regulator does not usually have a sufficient

knowledge of the market in order to decide what should be the characteristi_

(price and frequency) of each city-pair connection. On the other hand, with-

out any competition and control, the air-transportation company is expected

to offer services with (too) high tariffs at a (too) low frequency. This will push

down the welfare of inhabitants and the profits of the firms in the concerned

cities; and thus hinder the economy of an entire region. Note that a publicly

owned firm would not solve for this problem. As soon as managers' reward is

linked with the firm performance which appear to be desirable feature the

company will adopt a strategy that aims to maximise profits. The problem

is thus fundamentally linked with the _rking of markets, or, in the words

of Spence, with the "divergence between private and social benefits". Again,

facts speaks from themselves. On the Paris-Toulouse connection, for exam-

ple, in the years that follow deregulation in Europe, the number of passengers

raised by one half, the average capacity of the flights has been halved and

the number of moves tripled. The aim of the mechanism proposed here is

3If in addition to fixed costs F, operational costs C (K) are also higher for a public

owned firm, it might be more convenient for the consummers to face a profit-maximising

firm.
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precisely to give the "right incentives" to the firms where deregulation has

not allowed markets to escape a monopolistic situation. However, as already

mentioned, the regulator should not (and cannot) substitute herself to the

company because of obvious asymmetric information problems. We show that

it is nevertheless possible to decentralise the optimal (second-best) solution

by the means of a price-cap conjugated with a suitable "quality reward".

Assume that the firm maximizes its profits subject to the following '_rice-

and-frequency" cap constraint:

//

_=p+-_.] <__. (14)

The company is free to use its knowledge of demand in order to choose the

price p and the frequency f on the considered market provided that the

generalised price that travellers have to support does not exceed an upper

bound _. As a result, the quality of services dispose the upper limit for prices.

Put it the other way: tariff setting determines a minimum frequency level.

The first-order conditions of this maximisation program can be written as:

OX

X (p, f l + (P- C' (K l )---_pp - # = 0

(p- C' (K)) aX X , v
--_- - C (K ) + -]-C (K ) + #-_.ff -- 0

where # is the Lagrange multiplier associated to the "price-and frequency"

cap constraint (14). Assume that the regulator fix the upper bound _ in such

a way that

# = X*l (1 + :,)

where X* is the demand at the second-best optimum. The monopolist will

find it profitable to fix p and f such that:

1
p ex_ 1 + ,X exp

v C(K)
- C' (K).

2f K
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In order to implement the optimal solution, it is thus sufficient to compel the

firm to offer services such that their "generalised prices" do not exceed their

second-best optimal values.

Such a regulatory mechanism could appear to be an artificial (and useless)

rewriting of the problem if the regulatory body would not have the necessary

information to fix _. Despite its simplicity, the mechanism proposed here

appears to be perfectly implementable. The optimal solution can be reached

by the means of an iterative mechanism inspired by Vogelsang and Finsinger

(1979) that is based on the sole book-keeping data4 In the remaining part

of the paper, we study how it extends to an heterogeneous population.

8 Heterogeneity of characteristics and regu-

lation

The outlined regulatory process ability to work when travellers are heteroge-

neous is the focus of the present section. To do this we consider a population

of travellers with value of time v distributed over [0, +oo[, according to the

density function g (v) and the cumulative distribution function G (v). The

aggregate demand is thus given _,

X (p, f) = x_ (p, f) g (v) dv

where x_ (p, f) is the individual demand of a traveller with a value of time

v, as defined by equation (1). Note that, at this stage, the _alue of timc v is

the only characteristic that differs across individuals.

Taking into account the very fact that the company cannot offer differ-

ent connection frequencies to the passengers, the computation of the social

4More precisely, one need to observe traffic, prices and profits at each period and for

each connection. The principle consists in adjusting the coe2]icient of the constraint at

each period and one can show that this coefficient will converge to their optimal values.

On this m_mnisms and their limits, see Laffond and Tirole (1993).
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optimum as defined by the first-best leads to almost unchanged conclusions.

Indeed, the optimal allocation is now defined by the system

/]

= aZl , (15)
-_ c (g)

- C' (g). (16)
2f K

where "_ = f+_ v (x_/X) g (v) dv is a weighted average of the x-alue of time.

In words equation (15) states that all traveUers _ should see the marginal

benefits of their travel to equate the sum of the marginal cost of production

C' (K) and their own (waiting-) time costs ,/2f. Equation (16) substitutes

for equation (5) in defining the optimal frequency f. It states that the mean

value of time P to be considered is an average that weights the value of

time proportionally to the relative number of travel xv/X. In other words,

the more people travel, the more their value of time impact on the value p

considered by the social planner.

Interestingly enough, this optimal allocation can still be implemented by the

means of a marginal pricing rule. More precisely, the travellers' behaviour as

defined by (1) implies that S' (xv) = p + ,/(2f) all _. Thus p = C' (K) and

f defined by equation (16) will exactly decentralise the optimum allocation.

Consequently, under the assumption of this model the heterogeneity does

not introduce any source of inefficiency in the setting of the transportation

services. Whatever its value of time v, each traveller use transportation

services up to (and no more than) a level such that her marginal benefits

exactly equates the total (i.e. production and time) marginal cost. Note

that, in contrast to the representative agent case, each traveller will now

support a different generalised price, lo, :

v C (K) v -
2--]= ---k--+ 2---K

In words, the generalised price is equal to the average cost plus the difference

between the their own (waiting-) time and the average one.

5Whatever their value of time v.
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As long as the company sticks to linear tariffs, the profit-maximising

structure of services is defined by the pair (p, f) that solves for the s3,stem:

OX

X (p, f ) + (p - C' (g ) ) -_p = 0

OX X,

(p-C'(g))-_-c(g)+7C (g) = 0

Price is thus defined by the standard formula

p-C'(g)_ 1

p exp'

while the frequency obeys an equation unchanged in its form:

____=c(g) C'(K).
21 K

In contrast to what happens when the regulator sets for f, the average value of

time considered is not proportional to frequent- of use of aXr-trar_po_ation

._n-vices. The firm rather consider the profitabili_" of each type so that _ is

defined by:

= vo--2 g (v)fo+ 0 ./Op

= ,_ g (IA d1_
Jo X ex_

where

This does mean that the value of time is biased '%oward" the more sensitive

tb_pes, i.e. the types with the higher price elasticity- e_.

Not surprisingl); the second-best allocation corresponds to a solution the

lies in-between the first-best allocation and the profit-maximising one. More

precisely, price and frequency are defined by the system:

p-Cx _ 1

p l+_exp'

b__ = _C (g) C' (g).
2f K
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where A isthe '_usual" Lagrange multiplier associated with the break-even

constraint and the value of time P is a weighted sum of the value already

introduced P and p:

I+A "

Such a resultsheds a prioria verynegativelighton the applicabilityofthe

regulatorymechanism proposed above. Informationconsiderationsmakes it

obviousthatsuch a valuecannotbe assumed to be known by the regulator.

Itmakes thusmore strikingthe followingresult:the second-bestallocation

willbe (exactly)implemented by a monopolist submitted to the regulatory

constraint:

where Y is the mean value of time over the plane passengers. The proposed

mechanism does not require the regulator to have more knowledge than the

"social" or "average" value of time.

9 CONCLUSION

The optimal tariffs and optimal frequency of air transportation services is

determined. Despite the complex interaction between price and quality (fre-

quency), the optimal price is exactly defined by the Ramsey-BoReux rule.

The optimal frequency should be such that the time costs equate the differ-

ence between the average and the marginal costs. If quantity and frequency

are strategic complements, a monopoly will setup the prices above the so-

cially optimal value and the frequency below the socially optimal level.

In order for the optimal structure of services to be set up by the mo-

nopolist, incentives should be given both to decrease price and to increase

frequency. This is possible, if the transportation company is submitted to

a regulatory constraint that bears on the generalised transportation costs,

that this the sum of the ticket price and (the monetary value of) the time
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costs. Implementation requires only book-keeping data and the knowledge

of the social or average value of time. It appears thus possible to propose a

regulatory scheme that deal with both p_ri_ and quality aspects.
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