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A Direct Method for Fuel Optimal Maneuvers of Distributed Spacecraft
in Multiple Flight Regimes

Steven P. Hughes'

D. S. Cooley?

Jose J. Guzman?

We present a method to solve the impulsive minimum fuel maneuver
problem for a distributed set of spacecraft. We develop the method
assuming a non-linear dynamics model and parameterize the prob-
lem to allow the method to be applicable to multiple flight regimes
including low-Earth orbits, highly-elliptic orbits (HEO), Lagrange
point orbits, and interplanetary trajectories. Furthermore, the ap-
proach is not limited by the inter-spacecraft separation distances and
is applicable to both small formations as well as large constellations.
Semianalytical derivatives are derived for the changes in the total AV
with respect to changes in the independent variables. We also apply
a set of constraints to ensure that the fuel expenditure is equalized
over the spacecraft in formation. We conclude with several exam-
ples and present optimal maneuver sequences for both a HEO and
libration point formation.

Introduction

In this paper, we present a direct approach to solve the impulsive, minimum fuel ma-
neuver problem for a distributed set of spacecraft. To equalize the fuel expenditure among
spacecraft, we enforce a set of nonlinear constraints. We present an explanation of the
method and the mathematical theory assuming a general, nonlinear dynamics model that
can be expressed in an inertial or rotating coordinate system depending on the problem
being solved. This ensures the method is applicable to a wide range of spaceflight regimes.
Furthermore, since a nonlinear dynamics model is used, the method is not limited to small
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inter-spacecraft separations and is equally applicable to large constellations and close for-
mations.

Trajectory optimization has a rich history and many techniques have been developed
over the last fifty years. Most techniques can be classified as either direct or indirect.
Betts! presents an excellent survey of trajectory optimization techniques. Guzman? et.al.
present a survey of indirect methods. The approach developed here is a direct method
and is an extension of techniques that have their origins in research performed during
the Apollo era®* and later extended by D’Amario® et. al., and Howell®” et. al. Their
are several new contributions contained in this work. First, the method is generalized to
permit minimum fuel optimization for a maneuver sequence involving a set of m spacecraft.
We have also generalized the method to find the optimal launch vehicle injection orbit to
minimize fuel during the initial spacecraft deployment phase. Finally, we have reformulated
the cost function to remove a naturally occurring singularity in the gradient, without loss
of generality.

We begin this paper with a mathematical problem statement defining the cost and
constraint functions. The cost function is the sum of the total AV of all spacecraft over
an entire maneuver sequence. The parameterization of the problem is discussed for two
types of maneuver sequences: initialization and reconfiguration. Next, we discuss how to
evaluate the cost and constraints. The approach requires solving a number of Initial Value
Problems (IVP) and Two Point Boundary Value Problems (TPBVP). However, given the
speed of modern computers, the method is surprisingly fast. Next, the gradient of the cost
function and the Jacobian of the constraints are derived. We discuss numerical issues in
implementing this approach. We conclude the paper with several test problems in different
flight regimes to demonstrate the applicability of the method. A brief explanation of the
notation is included in Appendix 3.

Problem Statement and Parameterization

There are numerous ways to pose the minimum fuel formation maneuver problem. We
assume that the desired relative motion is driven by mission requirements and has been
determined a-priori. The goal is to develop a technique to achieve the desired relative mo-
tion in a minimum fuel manner. We define the minimum fuel problem for a formation of m
spacecraft, where the trajectory of the kth spacecraft has ny total maneuvers, as
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where r,,, Vo, and t,, are the initial position, velocity, and epoch of the k" spacecraft
respectively. ry, and vy, are the final position and velocity respectively of the k" spacecraft
at a reference epoch ty,

Solve:
min(J) (1)

where

J= zm: AV (2)
k=i




where m is the number of spacecraft and AV} is the total weighted AV expended by the
kt" spacecraft and is calculated using

AV =Y fo(Dujg) Avgy (3)

§=1

where Avjy, is the 4t maneuver on the k" trajectory. The scalar function fs(Awvj;) in Eq. (3)
is included to remove a singularity in the derivative of J for small Avj;. This function will
be discussed in detail in a later section. For now it suffices to say that fs(Avj;) = 1 for
values of Awj large enough not to cause numerical problems. When appropriate, we impose
the following set of constraints to equalize the AV among the spacecraft.

(AV; — AV,)?2 < toly (4)
(AV, — AV3)? < tols (5)
(AVi—1 — AVm)? < tolm—1 (6)
(AVie— AVl Wi tala (7)

where tol; is the desired tolerance for constraint one and so on.
We assume a dynamics model given by the second order differential equation
i =f(r,1,1) (8)

The formulation of the cost and constraints, and their derivatives, is performed for the
general nonlinear dynamics model seen in Eq. (8). We discuss the specific dynamics model
used for software implementation and validation in a later section.

At the heart of solving an optimization problem is the problem parameterization. In
general, the cost function J shown in Eq. (2) is a scalar function of vectors that we can
write as -

J = A = J(XE) (9)
k=1
where X is the vector of independent variables being manipulated by an optimization rou-
tine, and C is a vector of constants associated with the problem. The constraints in Egs. (4)
- (7) can be written as

G = diag (ZAVAVTZT) = G(X,C) < TOL (10)

where AV = [AV; AV, ... AV AVm]T, Z is constant matrix discussed in a later sec-
tion, and TOL is a vector of tolerances associated with the constraints. Before attempting
to solve the problem we must choose which variables and degrees of freedom associated
with the problem are to be included in X, which will be varied by a numerical optimization
routine, and which degrees of freedom are to be included in C and treated as constants.
The choice of X and C will influence the convergence properties of the numerical routine
and determine the types of problems the method can solve.



In the remainder of this section, we discuss two parameterizations to solve the impulsive
minimum fuel maneuver problem for distributed spacecraft. For convenience, we categorize
the types of maneuver sequences as initialization sequences or maintenance/reconfiguration
sequences. In an initialization sequence, all spacecraft begin at a common time and location
on the same orbit. An initialization sequence is performed to take each member spacecraft
from the common parking orbit to its desired final location defined by a final orbit and time.
In a maintenance maneuver sequence, the spacecraft are not initially located on the same
orbit and hence are not collocated before the maneuvers are performed. The fuel optimal
maintenance sequence is a more general problem and we begin by discussing the approach
taken here.

Maintenance and Reconfiguration Sequence

An illustration of a formation reconfiguration sequence is shown in Figure 1. For sim-
plicity the diagram only illustrates a two-spacecraft sequence. Before the beginning of the
maneuver sequence, each spacecraft is located on a unique orbit. We define the initial orbit
for the k" spacecraft, Pk, as the locus of points that are the solutions to the initial value
problem

rix = @" (t1k, toks [Foks Vok]) (11)
for varying values of ¢1x, the time at which the kth spacecraft performs its first maneuver.
Recall that r,; and v, are the position and velocity respectively, of the kth spacecraft at
some reference epoch t,. Throughout the paper we use ¢" to denote the position portion of
the solution to the Initial Value Problem (IVP) of the differential equation shown in Eq. (8).
The initial conditions to the IVP shown in Eq. (11) are contained in square brackets. The
initial time is the second argument and the final time is the first argument.

The goal of the reconfiguration sequence is to depart from the trajectories defined by
P,i, and move each spacecraft to a new location on Py which is defined as the locus of
points that are the solution to the initial value problem

Tngk = @ (bayk) Lk [EreyVia]) (12)
for varying values of t,,, where nj is the number of maneuvers on the kth trajectory, and
rs, and vy are the desired final position and velocity respectively, of the k" spacecraft

at some reference final epoch ts;. According to this definition, ¢, is the time of the last
maneuver of the k" spacecraft.

Between the initial and final maneuvers, the k" spacecraft can perform intermediate
maneuvers at locations r; given by

2< 9 <np—1
Tik {12 -174: a0 ki)

Note that the reason 2 < j < nj — 1 is because r1; and r,, ; are determined from the initial
value problems shown in Eq. (11) and (12). Because we allow the time of the first and last
maneuver for each spacecraft to vary, as well as the times of the interior maneuvers, we see
that ¢;;, the maneuver times, are given by
il Nk
t.
ik { 1l 2

(14)
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Figure 1 Formation Maintenance and Reconfiguration Illustration

There may be numerical difficulties if ¢, is not ordered such that to; > t1;. This is discussed
in a later section.

From Egs. (11-14) we see that the variables that define the maneuver sequence are: ¢4,
toks Toks Vok,tfk, T fks VfksTjk, and tg. We can now parameterize the problem by choosing
which variables to include in X and which to include in C. For the general minimum fuel
reconfiguration problem we choose to include as independent variables the time of the first
maneuver of the k*" spacecraft, ¢;;, the times of the interior maneuvers, t;, and the times
of the final maneuvers, t,,x. We also include the locations of the interior maneuvers, rjy,
as independent variables. We treat the state components ¢y, ror, and vy that define the
initial orbit, and the state components tx, rfx, and vy, that define the final orbits, as
constants. In summary, for the maintenance and reconfiguration problem we can write

25 i |
71T
X = [tik i) B< Sl ng (15)
< kir<m
45
C:[tok rg‘k ng tfk r?k V?k] (16)

The parameterization of the reconfiguration problem shown in Egs. (15) and (16) is
chosen such that the boundary conditions at ry; and rpx are satisfied implicitly. The
optimizer is not tasked with satisfying another set of complicated non-linear constraints to
satisfy the boundary conditions along the initial and final orbits P, and Py respectively.
The down-side to this approach is that for each cost function evaluation we must solve a
number of initial value problems (IVP) and two point boundary value problems (TPBVP).
Solution of the TPBVPs is discussed in a later section. In the next section we discuss the
parameterization of the initialization sequence.
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Figure 2 Formation Initialization Illustration

Initialization Sequence

The second type of maneuver sequence we address is an initialization sequence. In an
initialization sequence, all spacecraft initially lie on a common orbit defined by the locus of
points P,, as shown in Figure 2. Hence, for the initialization sequence we have

Dol Vor = Vios i lor =ilptiand et P od— P (17)

We refer to P, as the injection orbit and it may or may not be known a-priori. For large
formations that may require significant fuel expenditure from all spacecraft in formation
to achieve the desired relative geometry, it may be desirable to include the injection orbit
itself as an independent variable. In this case, the solution to the optimization problem
yields the minimum fuel initialization trajectory for each spacecraft as well as the optimal
launch vehicle injection orbit. Referring to Figure 2, we see that although all spacecraft
initially lie on P,, it is not required that all spacecraft perform their first maneuver in the
initialization sequence at the same epoch and hence the spacecraft can depart from P, at
different locations. The location of the first maneuver for the k%" spacecraft is determined
by the epoch of its first maneuver ¢1x, and the state vector that defines P,. We assume that
P, is unique trajectory defined by the locus of points that is the solution to the following
IVP for varying values of tqx:

il ¢r(t1k, to, [roa VO]) (18)

where t,, r,, and v,, are the launch vehicle injection conditions, and ¢ is the time of the
first maneuver of the k" spacecraft. There is a unique final trajectory for the kth spacecraft
defined by the locus of points, Py, which is the solution to the following IVP for varying
values of t,, x:

Trk = O (Enpkr Tk 21t Vi) (19)

We assume the values tsg, rs, and vy, have been determined a-priori to maximize the
mission return. Hence these values are constants for the initialization problem.




For complete generality, we assume that the epoch of the initial maneuver for each
spacecraft and the epoch of the final maneuver to insert the spacecraft into its location
in formation can freely vary. Note that the initial epoch of the first maneuver of the kth
spacecraft, 1 is not the same as t,. The epoch ¢, is part of the state vector that uniquely
determines the injection orbit, while ¢1x is the epoch when the kth spacecraft departs from
the injection orbit. We also assume that the times and locations of the interior maneuvers
for all spacecraft can freely vary. For the initialization problem we define X and C as
follows:

i Sy e — 1
X=[t¥ vl ti vy ] 1< i S (20)
< =)
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C= [tfk I‘?k V?k ] (21)

The parameterization of the cost and constraint functions in an optimization problem
greatly influence the convergence properties of the method. In this section, we discussed
a parameterization of the minimum fuel maneuver problem for two types of maneuver se-
quences for a set of distributed spacecraft. Given the problem parameterizations developed
in this section, we are ready to look into the details of evaluating the cost and constraint
functions.

Cost and Constraint Function Evaluation

In this section we take the problem parameterization given by X and C in the last
section and discuss how to calculate the cost J(X, C) and the constraints G(X, C). Calcu-
lating the cost and constraints is similar for both the initialization and the reconfiguration
problem and so we address them simultaneously. The first step is to redimensionalize the
vector of independent variables X. Once we have a dimensionalized set of variables given by
X and C, we solve a set of IVPs to obtain the position vectors that define the locations of
the first and last maneuvers of each spacecraft. The next step is to solve a set of TPBVPs
that yield Avji. Finally, we solve for the cost and constraints using Eqgs. (2), (3) and (32).
Each step is discussed in more detail below.

Step 1: Redimensionalize X

It is often necessary to work with nondimensional variables when solving optimization
problems using numerical methods. We begin by assuming that the numerical optimiza-
tion process uses non-dimensional variables where the transformation from dimensional to
nondimensional variables is given by

X' = diag(Xs)7'X — X, (22)

where X'’ is the nondimensional form of X, diag(Xy) is a matrix with X on the diagonal
and zeros for the off-diagonal terms, and Xy and X, are vectors of the same length as X.
We assume that diag(X)~! exists. The inverse transformation is simply

X = diag(Xs)(X + X.) (23)




It is more convenient to work in dimensional variables to evaluate the cost and constraints
and the redimensionalization is performed before step 2 is performed. X ¢ and X, are chosen
according to the numerical issues associated with the particular problem being solved.

Step 2: Solve IVPs

To evaluate the cost and constraints, we need to be able to calculate

g =
Lo = = JiE Rk
where a superscript “” denotes a condition immediately before an impulse maneuver, and

a superscript “+” denotes a condition immediately after an impulsive maneuver. The
quantities v, and v;';)c ;, are determined by solving the following initial value problems

vl—k & ¢v(t1k7 toka [rOk’ ka]) (25)
Ve = Bttt 70,V i

where ¢ denotes the velocity portion of the solution to the IVP, and ¢y, rfx, and vy are
contained in C and treated as constants. If we are solving a maintenance problem, tx, rok,
and v, are also contained in C. However, if we are solving an initialization problem then
the initial boundary conditions may be contained in X. To solve the TPBVPs found in the
next step we will need ryj and ry, . However, these are simply the position portions of the
solution to the IVPs in Eq. (25) and (26).

Step 3: Solve TPBVPs

The remaining components of the impulsive maneuver vectors needed to calculate Eqs. (24)

are determined by solving a set of TPBVPs. From Step 2 we found ri; and rp,, and the
variables r;;, and t;; are contained in X. Therefore, we know the positions and times for all
maneuvers and we have N Lambert’s problems to solve where N is given by

N=> (n—1) (27)

1

There are numerous well-known approaches to solving Lambert’s problem. We use a simple
multiple shooting method outlined below. The algorithm is described as follows where we
drop the subscript k, for now, to simplify the notation. Given an initial position r; and an
initial velocity v;, both at time t;, find dv; applied at time t; so that we achieve rj; at
tj+1. Figure 3 illustrates the problem. The dark black arc denotes the path a spacecraft
would follow if no dv; were applied. For this arc, the final position denoted by r, is not
equal to the desired final position r;;;. Hence, for the dark black are, érj+; # 0. The
dashed arc denotes the trajectory that is the solution to Lambert’s problem. For this arc
rj41 = Iq, or drj41 = 0. To solve for dv; such that dr; 1 = 0 first define x; as

Xj = [ . J (28)

v




Figure 3 Illustration of One Trajectory Arc

then dx;; is given by
0Xjy1 =@ (tj+1, tj) (SX]' (29)

where tj41 and t; are fixed. We can write ® (t;41,t;) as

At i B

B (tii1,t) = J+1.J J+1.J 30

Gl Wetig - !

We can solve for Av; such that dr;41 is zero by iterating on Eq. (31) until (rj41 — r,) meets

a user defined tolerance.
Avj =Bj; (Fj+1 — Ta) (31)

Upon convergence, for each trajectory arc we save vj ST and @ for use in calculating the
cost, constraints, and their derivatives. It is important to note that this approach assumes
that Bj_+11, ; exists. We address cases when this is not true in a later section. Using the above
algorithm, we solve all N Lambert’s problems. Knowing the solution to each trajectory arc
permits the calculation of all maneuvers Av,j and with this information we can evaluate J

and G.
Step 4: Solve for J and G

From the previous steps we know vJ-r,C and Vik- We use Egs. (24) to calculate Avj;. Next
we can evaluate fs(Avj;x) using Egs. (41)-(43). J can be calculated using Egs. (2) and (3).

The constraints in Egs. (7) are more conveniently written for mathematical manipulation

as
G = diag (ZAVAVTZT) < TOL (32)

where TOL is a vector of tolerances, AV is given by

AV = [AVi AVs ... AVp]F (33)



and Z is given by
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The above equations allow us to calculate J(X, C), and G(X, C). To take full advantage
of the power of a numerical optimization routine, it is also useful to calculate the gradient
of J and the Jacobian of G. We devote the next section to this topic.

Cost and Constraint Derivatives

Gradient-based numerical optimization routines such as Sequential Quadratic Program-
ming (SQP) perform best when supplied with analytic derivatives of the cost and con-
straints. Providing derivatives is often nontrivial, yet it is advantageous because it increases
the speed of convergence by requiring fewer function calls and avoids numerical problems
associated with finite differencing.

Below we derive the gradient of the cost function and the Jacobian of the constraint
functions. We need the derivatives of the cost and constraint functions with respect to
the independent variables shown in Eqgs. (15) and (20). Specifically, we require analytic
expressions for

dJ 0
e > AV (34)
=l
and "
ASos ! diag . (35)
Oz ox

where z is a generic independent variable and

8AV _[AVi 0AVz  0AVn,]T (36)
O ¥ |10z 8F 0
In Egs. (34)-(36) we see terms of the form dAV}/dx which can be written
SINTICRS
b ; fa(Bvji) Avj (37)
One can show that Eq. (37) can be written as
OAVE <& (8fs(Avjr) | fo(Bug)\ OAVE
= Av;
Oz Z: ( 6A7}jk bi Avjk ox V]k (38)
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By inspecting Eq. (38), we see that we must determine 8Av}}c Jip. 'This term is non-
trivial and in the next few subsections we derive this term for the specific independent
variables used in this work. The term fs(Awvji)/Avji can cause difficulty for small Avjy.

Traditionally, to determine the total AV, we would set fs = 1 and we have the new
relationship
ng
AR =" Avj (39)
j=1
However, if fs = 1 then we have the following term that appears in the derivative of AV}
Avs
fs( ’UJ]C) o 1 (40)
Avjg Avj

This term is obviously singular for small Av;;. The difficulty this causes is significant
because the optimization process tends to make Av;; as small as possible and sometimes
Avjj, can approach zero. We can mitigate problems caused by small values of Avj; by
carefully choosing f,(Avji).

By inspecting the term fs(Avjx)/Avjk, we see that we need fs(Avjx) to approach zero
as fast or faster than Awvjy so that the limit as Av;, — 0 is defined. There are many possible
choices for such a function. We have chosen to partition the function fs(Awj;) into three
regions. For small values of Avjj, where Avj, < Avg, we define fs(Avjy) as

fsllBusi) = Av]?k (Avjx < Avg) (41)
For intermediate values of Av,i, where Avy < Avj, < Avy, we define fs(Avj) as
F(Avj) = aAv;-‘k 4+ bAv;q-’k -+ cAv?-k + dAvj, (Avp < Av < Avg) (42)
For large values of Avji, where Avy < Avjy, we define fs(Avjy) as
fs(Avi) =1 (Avy < Avjy) (43)

The values of Avy, and Avg in the above equations are chosen depending upon the numerics
of the particular problem being solved. However, Avy, must always be less than Avy.

The form of f, described above removes the singularity in the derivative of fs(Avj;) for
small values of Avji. As Avj;, — 0 we see that where Avy, < Avg,

S (Av; Av?
lim ——f( ”]k)— lim oL

= =0 44
Avjp—0 Avjk Avjr—0 Avjk ( )

and we have a non-singular function for all values of Avji. The four constants in the quartic
function in Eq. (42) are chosen so that fs(Awvj;) and its first derivative are continuous. The
derivation of the constants a,b,c, and d is shown in Appendix 1 and the expressions are
found in Eqs. (114-117).

The second term in Eq. (38) that is non-trivial is

(9Av;‘.';C

ox 5
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where z is a dummy variable that represents an arbitrary component of X given in Egs. (15)
and (20). First let’s identify some derivatives that are zero after looking at the physics of
the problem. From inspection of Figure (1) and (2) we see that

OAV ), 0 if k 4
ore, it n (46)
and
aAvj.}c
at-j =0 if n#k (47)

where n is dummy index used to denote the trajectory number. Eqs. (46) and (47) come
from the fact that changing the time or position of a maneuver on one trajectory does not
affect the AV along another trajectory. For this reason we can -drop the subscripts n and
k without loss of generality. Hence the remaining derivatives to be calculated are

aAvJT 8Av;‘.r
dr, = 0O

where the second subscript on each variable is assumed to be k. For convenience, we break
down the derivatives shown above into three categories and devote a subsection to each.
The first category contains initial boundary derivatives which are derivatives with respect
to to, I'p, Vo, and ¢;. The second category contains derivatives that are with respect to
internal maneuver times and locations, t¢ (t¢ € t;) and ry respectively where 2 < ¢ < nj — 1.
The third category contains derivatives with respect to the final time, ¢,,. The next three
subsections discuss the three types of derivatives in detail.

Initial Boundary Derivatives

We define the initial boundary derivatives to be those with respect to t1, t,, o, and v,.
By inspection of Figure (1) we can see that

8Av;‘-r (9Av;‘{w 8AVJT dAvT

= = = J = 1 ] 4
ot o, - o, v, 0 Hi>2 (48)

This is due to the fact that changing ro does not change Avs. Likewise changing time t,
does not change Avs. Therefore the nonzero initial boundary derivatives are
oavl  oAvI  aAvl  oAvE  aavl  aavi  aavi aAvT
o, ° o0ty 7 ot, ' Ht, ' Or, ' Or, ' Ov, = 0Ov,

Let’s begin by looking at the derivatives with respect to ¢;. Assume we have the TPBVP
illustrated in Figure 4 and defined by

Given: t,, r,, v, t1, t2, T2
Find: vi such that r |;, = ro

12
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Figure 4 Ilustration of Initial Boundary

We know the solution has the following form

1 = ¢ (t1,t2, [r2,v7]) (49)

vi =¢" (tl,tz, [rz,vz_]) (50)

The symbol ¢ denotes the solution to the initial value problem with initial conditions
contained in square brackets. The second time argument is the initial time and the first
time argument is the final time. So, in Eq. (49), ry and v, are the initial conditions with
an initial time of ¢ and a final time of ¢;. Hence, in this case we are back-propagating
because t» > t;. The superscript r and v denote the position and velocity portions of the
initial value problem respectively. By inspection of Figure 4, we see that changing ¢; will
result in a change in ry, v, vf, and v, . Taking the derivative of r; and vf with respect

to t; yields
Ory _ 09"  9¢" Gvy

= + 2

gty otp OV I

avy _0¢" + 0¢* Ovy

oty ot av It

where V is a dummy variable to denote differentiation with respect to velocity. These
equations can be rewritten as '

(31)

(52)

ov .
vy =vy + By Bty (83)

ovi ov, _
Ei- = af + Dt1,t2 ﬁ (04)
Solving the system of equations, and using Eqs. (118) and (119) from Appendix 2, we obtain
8v2— -1 - + o
Bt - (Cuts = Doty By Arstr) (VT — V1) (55)

ovy _ -

-5% = aiF - Btg?ﬁ Atz,n (vl - Vi*') (56)

13



By inspection, we see that

AT
oy
8v§' o
G v

(57)

(58)

The derivatives with respect to r, and v, can be derived by starting with a solution of

the form
Toi= ¢)T (t27t17 [rla V—1+'])

vy = ¢° (ta,t1, [r1, viT))

(59)

(60)

. . . - + -— .
where we note that changes in r, or v, result in changes in ry, vi, v{", and v, . Taking

derivatives of Egs. (59) and (60) with respect to r, yields

61‘2 = 8¢>" (91‘1 i 5¢r 8Vf—
or, OR. Ory" 0V or,

Ovy _ 99" o1, 99" ovi
dr, _ OR Or, ' OV 0Or,

(61)

(62)

where R is dummy variable to denote differentiation with respect to position. These equa-

tions can be rewritten as
avfL

0=Ag At + Btz,tlaT
(o]

ov, ovi
2 —C A +D e 18

to b1 Bty t ta,t
Or, AR AT

Finally, solving for the desired derivatives yields

avf‘
or,

o 1 -1
= —Bj, 1, At Ayt

ovy
Or,

2NN -1
= (Cuyts — Dt By Atastr) Aty

Taking derivatives of Egs. (59) and (60) with respect to v, yields

oy _ 06 or, 097 Ot
dv, OR 8v, 6V Bv;

ovi _ 00" om 00" o
Bv, OR®Ov, . OV v,

These equations can be rewritten as

+
ov]

0= At2,t1Bt1,to + Bt2,t1 5;_
o

14
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ovy ovi

=@ B Dy, ¢, — 70
Y ta,t1 Bt to + Diga 5~ (70)
solving for the desired quantities yields
ovy 3
871 = -B; . AuuBi, (71)
o
vy -1
o (Ctatr — Doty Biyy, Atst) Bat, (72)
(]
Finally, the last two nonzero derivatives with respect to r, and v, can be written simply as
ovy
6;} =0 (73)
ovy
e (74)
o

The last initial boundary derivatives to be determined are the derivatives with respect
to to,. The derivatives of r; and v; with respect to ¢, can be found by starting with a
solution of the form

= ¢ (1o 06 [PivEl]) (75)

Vo =" (Lo b, B0 V1 1) (76)

where we note that changes in ¢, result in changes in ry, v, vf, and v, . Taking the
derivative of Egs. (75) and (76) with respect to t, yields

or, O¢" 8¢ Or1 . O¢ Ovy

7
Ots = Ot ROt RV @l 4
ov, 0¢’ 3¢”@ 0¢" vy (78)
. 8, " OR B8, OV B,
These equations simplify to
ory ovy
0 — Vo—l—Ato’tlE‘:: +Btoytla—ti‘ (79)
Or ovy
0= a, + Cta’tla_ti + Dta,tl 8_t<1) (80)
solving for the desired derivatives yields
Or
ati = — (A4 t,Vo + Bty 6,30) (81)
ovy
a_ti = —(Cty,t, Vo + Dy, t,20) (82)
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Table 1 Initial Boundary Derivatives with Respect to %,

Term Gty

ovy — @ Vo= D A,

8V1,_ _Dtl,tz (I i th,tlDtl,t2)_lct2,t1 (Atl,tovo gl Btl»toao)
aV2_ == th,thl,tz)_lCtz,tl (Atlytovo i Bthtoao)
ovy 0

Recall that changing ¢, changes ri, v, vf, and v,. We can find the expressions for
6‘v1+ /0t, and Ov, /0t, starting with solutions of the form

v_li_ = ¢v(t17t2a [I‘z,Vz_]) (83)

vy = ¢ (t2, b1, [r1,v{]) (84)

Taking the derivative with respect to ¢, yields

ovi  0¢"0ry 09’ ovy

— 85
% _ OR 0%, | OV Ot, (85)
Ovy _ 04" 0r i ¢’ ov (86)
ot, OR Oty OVaRdL,
This can be rewritten as the system of equations below
ovy Ovy
=), e 7
dt, e T (873
ovy ovy
8tj = —Cuy,t: (At1,toVo + Bey t,80) + Diy 1ty a—ti (88)
Solving the system of equations for the desired quantities yields
ovy -
51 = Dttall =Dt D)7 Crpa (Mgt Vo F B, t,20) (89)
o
Ovy &l
57 = ~(I=DuDtyta) " Crots (Aty t Vo + Bea t,20) (90)
(o]

Note that Eqgs. (89) and (90) contain an element of the inverse of the state transition matrix.
See Appendix 2 for a discussion of how this can be calculated without inverting the entire
6 by 6 state transition matrix.

We have completed the derivation of the initial boundary derivatives and they are sum-
marized in Tables 1 - 3. Now we move on to the internal derivatives.
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Table 2 Initial Boundary Derivatives with Respect to 1

Term oty

ovy a;

8v1F af — Bt_2,1t1At2,t1 (vl_ - VIL)

8V2_ (Ct%tl 7% Dt2,t1B;}t1At2,t1) (Vl_ I vii_)
ovy 0

Table 3 Initial Boundary Derivatives with respect to r, and v,

Term or, v,
ovy ” Ciito Dy to
" - <3
8V1 _Btg,tlAtz,ltlAh,to —Btz,tlAtZtlBtlato
= = i
BV . (Cots — D BL s Atn) Anps (Coum — Dut B Bais ) Biy,
ovy 0 0

Internal Derivatives

The internal derivatives are defined as derivatives of AVJT with respect to the internal
maneuver times and positions, or:

8Avf {

< ng
arg n (91)

and

oAvT ;

Oty 2 <l S =1
By inspection of Figure (1) we can see that some of the derivatives shown in expressions

(91) and (92) are zero. For example, changing r3 does not change Av; or Avs. Likewise
we see that changing the time ¢3 does not change Av; or Avs. In general we can write

aAvJT

o =0 iffjr < = ilfong =L 1 (93)
l

8Avf s

T =0 if j<l—-1lorj>~£+1 (94)
L

In other words, changing the time or position of the j* maneuver only changes the following
maneuvers: Av;_y, Av;, and Av;y;. Thus, the only non-zero internal derivatives are

8AvV7 , OBAvY oAvE
dep’ ' Orp Ory

The non-zero internal derivatives can all be determined by closely investigating Lambert’s
problem. Recall that Lambert’s problem is to find v; and v, given ry, t7, rp and tp.
We see that the non-zero internal derivatives can be determined from the derivatives of the
solution to Lambert’s problem |, v;’ and v, with respect to changes in ry, t7, rr and tp.
These derivatives appear in the literature,>” and they can also be found by the approach
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Table 4 Time Derivatives of the Solution to Lambert’s Problem

oty Otp
+ - -1 + —1 -
ovy ar “"lBtp,t,Atp,tzVI 3 _Btp,tlvFl
BVF (DtF,tI Btp,tIAtF,tI i ctF,tr )VI ap — DtFatIBtF,t[VF

Table_5 Position Derivatives of the Solution to Lambert’s Problem

81‘1 6rp
+ _R-1 LY
av[ tp,tIAtFitI Btp,t] '
avF CtF,tI = Dtp,tIBtp,tIAtF,tl DtF,iIBtF,tI

used in this paper to determine the derivatives of cost and constraints with respect to the
independent variables. Table 4 contains a summary of the derivatives of v;r and vy with
respect to changes in the initial and final time ¢; and tp respectively. Table 5 contains a
summary of the derivatives of v,+ and vy with respect to changes in the initial and final
position r; and rx respectively. The left hand column of the tables contain the numerator of
the derivative definition and the horizontal titles contain the denominator of the derivative
definition for a particular derivative. So, for example, we see that
N

%f=g+B;hMmﬂ; (95)
where B, pl,t , and Ay, ¢, come from the STM of the trajectory that is the solution to Lam-
bert’s problem, VI+ is the velocity immediately after the first impulse, and a;L is the accel-
eration immediately after the first impulse. Using the derivatives in Tables 4 and 5, we can
determine the remaining internal derivatives which are summarized in Table 6.

It is interesting to note that the derivatives dv, /0t, and vy /8t, are explicit functions
of the accelerations a; and a, . For spacecraft flying in environments with nonconservative
forces these terms may be significant. However, when we evaluate Eq. (38), the accelerations
appear in pairs such as (aj — a;). This term is identically zero when the flight regime
consists only of conservative forces and so acceleration terms do not come into play unless
there are forces that are explicit functions of the spacecraft velocity.

Final Boundary Derivatives

The final boundary derivatives are defined as derivatives of Av? with respect to ty,.
From inspection, we see that

T
BAvj

B IRE | O it T 96
B, R (96)
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Table 6 Interior Derivatives

Term Oty Ory

(74 P 0 0

8V2——1 _Bt_e,lte—lvl_ Bt_z,ltz—l

v, a, — Dt@‘tf—lBt_l,ltZ»lvz_ th’tf‘lBt'_bltZ—l

6v; a; i Bt—z}uhteAteH,tevz_ _B;ihteAtulatz

avé—+1 (Dtl+1»tlB1;Jlr1¢eAt2+1,te E Ctm,te)"f Cte+1,te - Dte+1,teBt_“1_1,tgAte+1,tz
5VZ++1 0 0

Table 7 Final Boundary Derivatives with Respect to t,,

Term Otn,
5V1_1 : 0
-— + L5 s
avn—l Bnk,nk—l (‘;nk vnk)
— S — + 2 —
8V‘n ank hix anank_ank,'nk—l (Vnk vnk)
+ +
ov, al,

Following a similar approach as in the last two sections, the final boundary derivatives are

ov,_;

=0 97
Btny (97)
ovi " i3
Bt:k g Bnkl,nk—l (V:k 3 Vnk) (98)
vl W
Tt 99
Bty T (99)
e T . b ¥
B s 3 + Drgonic—1Bry g1 (o Vo) (100)
The quantity v;; is found using
Nt S0 Gt V) (101)

and a;f and a; come from Eq. (8) evaluated at the pre and post maneuver conditions
for maneuver ng. The derivatives with respect to t,, are summarized in Table 7. This
completes the derivation of the required derivatives. We now move on to discuss numerical
issues and implementation.

Numerical Issues and Implementation

Subtle issues in the implementation of a numerical optimization approach often dra-
matically influence the speed of convergence and the quality of the solutions. The method
presented here has several numerical issues that can be accommodated if they are under-
stood by the analyst. In this section, we address these numerical issues as well as discuss
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details of the software implementation of the method used to solve the test cases in the next
section. The first difficulty occurs when certain components of the STM are not invertible.
The second difficulty is an artifact of the problem parameterization and occurs when the
times of two maneuvers are the same. The third difficulty is when there are small AV's
along a trajectory.

The most obvious numerical difficulty appears in calculating the derivatives of the cost
and constraints. The equations for the derivatives in the previous section assume that
the components of the STM are invertible. Stern'® showed three cases in which certain
components of the STM are not invertible for the two-body problem. They are:

1. The difference between the initial and final times is an integer multiple of the orbit
period.

2. The difference between the initial and final true anomalies is given by N, for N =
0,1,2,3, ... (Note that case 1 is a subset of case 2)

3. A certain trigonometric function of the eccentricity and the eccentric anomalies is
Zero.

The first two cases cause surprisingly less difficulty than one might initially expect. Test
cases on the Hohmann transfer, whose solution involves a transfer angle of exactly 7, have
shown that components of the STM are invertible for transfer angles within le-4 degrees of
the singularity that occurs at the solution. The result is that the method finds solutions
within 1e-6 m/s of the known analytic solution. Furthermore, this method has been devel-
oped to solve real-world problems where perturbations are included in the dynamics model.
In these cases, the solution rarely occurs exactly at transfer angles (2N + 1)7. Finally, the
third case occurs for multiple revolution solutions. The examples investigated in this work
did not contain multiple revolution trajectory arcs.

Another subtle singularity arises from the parameterization of the problem. The opti-
mization routine controls the independent variables shown in Eq. (15) for a maintenance
or reconfiguration sequence and the independent variables shown in Eq. (20) for an ini-
tialization sequence. Suppose we are optimizing a maneuver sequence that contains two
spacecraft (m = 2) and that each spacecraft performs four maneuvers (n; = ng = 4). For
this scenario, tog and t3g, the times of the second and third maneuver of the second space-
craft respectively, and rop and rss, the location of the second and third maneuvers of the
second spacecraft respectively, are varied freely by the optimizer. It is possible that during
the optimization process, that the optimization routine may try the following:

tog = t39 Ioo # I'3o (102)

There is no solution to Lambert’s problem for the above conditions. Furthermore, as t22 —
t3a, Avgg — 00. There are several ways to handle this difficulty. One is to apply a set of
constraints such that ¢;; —t;_1 x > ¢ where c is a constant chosen according to the problem
being solved. However, if during the optimization process this problem occurs, it is likely
that one of the maneuvers is not necessary. The simplest solution is to stop the optimization
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process, remove one of the maneuvers, in this case either the maneuver at time £ or t32,
and restart the optimization process.

The third numerical difficulty is the singularity that occurs when fs(Av;z) = 1 and
Awj, = 0 and was discussed in previous sections. By defining f(Awvjx) as in Eq. (41) - (43),
we can remove this singularity. Physically, the form chosen for fs(Av;;) removes small
values of Avjj from the cost function. Care must be taken in defining the constants Avy,
and Avgy according to the problem being solved.

The formulation of the cost function, constraints, and gradients was performed without
regard to the specific dynamics model chosen. However, in a software implementation,
we must choose a dynamics model including the reference frame in which to express the
equations of motion, and the forces and perturbations to include. We have chosen to work
in the Earth Mean J2000 Equatorial system. We have chosen to include accelerations from
the spherical Earth, Js, and third body point mass accelerations from the Sun and Moon.
The resulting dynamics are given by

4

i me + My s m;
ol = —G(—3‘—)1‘21 = ZG Tjrjl = Tjrjz SF aj, (103)

21 =8 Ti1 T2

where a subscript “1” represents the spacecraft, a subscript “2” represents Earth, a subscript
“3” represents the sun, a subscript “4” represents the moon, and ro; is the position of the
spacecraft with respect to the Earth and so on. The term a, is given by

5x2>

3Jopie e dyz
ap == 21_5 Y 7'2 (104)

where z, y, and z are the inertial components of the spacecraft position vector, and p. and
R, are the Earth’s gravitational parameter and radius respectively. The STM is calculated
by defining

s = e ]T (105)
then :
=Tt Ay (106)
then in first order or state form 55
A== (107)
ox

The derivatives in Eq. (107), while non-trivial, are well known and not presented here.
Finally, the differential equation governing the STM is given by

d=Ad (108)

The differential equations shown in Egs. (103) and (108) are numerically integrated as a
coupled system of 42 first-order ordinary differential equations.
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The remaining issues involved in the software implementation are concerned with opti-
mizer selection, convergence criteria, scaling, and bookkeeping of the considerable amount
of data required to evaluate the cost function and its gradient and the constraint func-
tions and their Jacobian. We have chosen to work in MATLAB and therefore have used
the fmincon SQP algorithm available in the MATLAB Optimization Toolbox. For speed,
all numerical integration of the equations of motion and the STMs is performed by using
MATLAB mez functions compiled from C code. Likewise, all TPBVPs are solved in mexed
C functions. The TolX, TolFun, and TolCon convergence tolerances of fmincon were set to
le-12 for most problems and we refer the reader to the MATLAB Optimization Toolbox®
documentation for more information on the definition of these settings.

The final issue involves bookkeeping. For each cost function evaluation, we require an
initial guess in order to start the TPBVP solver discussed in a previous section. For the first
function evaluation, the code uses an initial guess provided by the user. For subsequent cost
function evaluations, the code uses solutions from previous cost function evaluations as the
initial guess. This assures that the initial guesses for the TPBVPs evolve with the optimizer
iterations. There is an STM matrix associated with each segment of each trajectory and
these STMs are calculated when the TPBVPs are solved. The STMs for each segment are
saved, and then used in the calculation of the Gradient and Jacobian. Great care must be
taken to save the STMs in a convenient manner and use them correctly in the equations for
the Gradient and Jacobian.

We now move on to discuss several example applications.

Applications and Examples

In recent years, numerous distributed spacecraft missions have been proposed in a diverse
set of flight regimes and employing a wide range of inter-spacecraft separation distances.
The examples we have chosen demonstrate the applicability of the method to different
flight regimes and different types of distributed spacecraft missions. In example 1, case 1,
we choose not to solve for the optimal injection orbit. In example 1, case 2, we do solve
for the optimal injection orbit. Similarly, in some cases we have chosen to apply the AV
equalization constraints, and in other cases we have chosen not to apply the constraints.

The first example is a Highly Elliptic Orbit (HEO) formation of four spacecraft that
forms an ideal tetrahedron with sides of 100 km at apogee. For this HEO formation, we
apply the method to initialize the tetrahedron in the presence of perturbations for three
cases:

1. Minimize J, do not vary injection orbit, do not apply AV equalization constraints.

2. Minimize J, vary the injection orbit, do not apply AV equalization constraints.

3. Minimize J, vary the injection orbit, apply AV equalization constraints.

The second example is a formation in a large-amplitude Lissajous orbit about the Sun-
Earth Lo point. The formation is composed of two spacecraft that initially have the same
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state and epoch. The final configuration is a separation of 200 km between the two space-
craft. For this example, we present an optimal initialization sequence to demonstrate the
applicability of the method to multi-body flight regimes.

Example 1: HEO Formation

Recall that example 1 is a HEO formation of four spacecraft that forms an ideal tetra-
hedron of 100 km at apogee. The desired final orbit states are found in Table 8. The initial
orbit, called the injection orbit, is found in column five. The desired final states for the
spacecraft are found in columns one through four. The injection orbit was determined by
back-propagating the desired final states for approximately 24 hours, and averaging the
states of the four spacecraft. A three maneuver initial guess sequence was then created by
solving the resulting four lambert problems and adding a small intermediate AV for a total
of three maneuvers on each of the four trajectories. The AVs for the initial guess found
using this approach are shown in Table (9). We see that the total AV for the initial guess
is 256.63 m/s.

Table 8 States Defining Desired Orbit for Example 1

Property SIC 17 S/C 2f S/C 31 S/C 47 Injection Orbit?
a (km) 42095.74 42095.74 42095.74 42095.74 42095.70
e .8181803 8181822 .8162243 0.8169300 0.8173807
i (deg.) 18.00000 18.00000 18.02006 17.94851 17.99215
w (deg.) 90.00012 90.09161 90.04603 90.04597 90.04581
Q (deg.) 0.1020429¢-3 0.1026448e-3 .1024955e-3 0.1023461e-3 0
v (deg.) 178.6875 178.6709 178.6699 178.6733 179.9916

1 22 Mar 2012 12:00:00.0000 f 23 Mar 2012 11:17:34.2939

Table 9 AV’s for Initial Guess for Examplel, Case One
Property s/C1 S/C2 S/C3 S/C4
Avy (m/s) 24°78 w 21187 NS 3398 ERI 3501
Avy (m/s) 6.97 7.0568 5.964 6.357
Avz (m/s) 20.04, 2244 36.87 35.28
> Ayg(mys) - 5L79 5137 " 76.83 ¥6by

Total AV = 256.63 m/s

For example 1, case 1, an optimal maneuver sequence was found for the HEO forma-
tion by selecting the independent variables X and the constants C as shown in equations
Egs. (15) and (16). Hence, we treated this as a reconfiguration problem where initially
the spacecraft were collocated at the same point on the initial orbit. We did not vary the
state of the initial orbit, and we did not apply the AV equalization constraints. The AV's
associated with the optimal solution for case 1 are found in Table 10. We see the total AV
is 71.476 m/s and maximum accumulated AV for a single spacecraft is about 20 m/s. This
is a fuel savings of 185 m/s over the initial guess.
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Table 10 Optimal Solution: Example 1, Case 1
Property S/€1° 8/ B3 5/
Avy (m/s) 8.864  8.783 5.372 6.593
Avy (m/s) 1475 2258 3.276 6.33
Avz (m/s) 5797 40 16438 8.899 572
3, Av; (m/s) 15.956 17.479 17.5466 20.495

Total AV = 71.476 m/s

For case 2, we began with the converged solution to case 1 as the initial guess, but
allowed the initial orbit to be included in the independent variables as opposed to being
considered a constant. Hence, X and C were defined as shown in equations Egs. (20)
and (21). The solution yields a minimum fuel maneuver sequence, and the optimal launch
injection orbit. The AVs for case 2 are shown in Table 11 and the optimal launch injection
orbit in Table 12. The total AV for case 2 is 20.79 m/s. We see that varying the injection
orbit has a dramatic influence on the total AV. There is a 51 m/s improvement over case
1 and the maximum accumulated AV for a single spacecraft is about 7.3 m/s.

Table 11 Optimal Solution: Example 1, Case 2
Property SIC 1 8/C 2 5/C3 50
Avy (m/s) 0.247 4.187 1.003 4.5e-5
Avy (m/s) 0.523 "% 0593 SN2 3RO 1D
Avz (m/s) 3.836 4.1e-5 0.791 3.6e-5
> Avj (m/s) 4606 4.780 4.176 T7.212

Total AV = 20.774 m/s

Table 12 Example 1, Case 2 Optimal Injection Orbit
Property Injection Orbit!

a (km) 42091.69

e 0.8168908
i (deg.) 17.999768
w (deg.) 89.78643
Q (deg.) 0.181559
v (deg.) 180.14348

T 22 Mar 2012 11:58:35.4160

For case 3, we choose the same independent variables as example two, however we applied
the AVequalization constraints shown in Eq. (32). We used the solution from Example 1,
case 2 as the initial guess for case 3. The AV's for an optimal solution for case 3 are shown
in Table 13. Notice that the total AVfor each spacecraft is 6.093 m/s. Comparing to case
2 we see that enforcing the AVequalization constraints resulted in a small penalty of about
3.34 m/s. We now move on to discuss Example 2.
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Table 13 Optimal Solution: Example 1, Case 3
Property S/C1 §/C2 S/C3 S/C4
Av; (m/s) 0.789" 5.151w 1460 0:002
Avy (m/s) 2.460 1940 3.254 6.068
Awvz (m/s) 2.844 . (0/002 81 379 = 0023
Y Av; (m/s) 6.093 6.093 6.093 6.029
Total AV = 24.116 m/s

Example 2: Libration Point Formation

The second example consists of a two-spacecraft libration point formation problem about
the Sun-Earth Ly point. The desired states of the spacecraft after the maneuver sequence,
and the injection orbit and initial epoch are shown in Table 14. The states are for a large-
amplitude Lissajous orbit. The initial guess maneuver sequence for Example 2 contains

Table 14 States Defining Desired Orbit for Example 2
Property gE Tt S/C 2t Injection Orbit?
z (km) 76863.56215  76915.15497 -70150.29946
y (km)  -407755.1147 -407729.4652 1358773.158
z (km)  -33798.44889 -33989.96985 983153.4317
& (km/s) -0.04802618 -0.048026184 -0.10552622
y (km/s) 112799544  1.127995438 ~0.00980635
z (km/s) 0.13812967  0.138129667 -0.05853318

T 11-Jan-2004 09:35:33.6099 1 09-Jul-2004 09:35:33.6099

four maneuvers for each of the two spacecraft. The two internal maneuvers were computed
by first finding a two-maneuver trajectory and then placing two small maneuvers, spaced
equally in time, along the original two-maneuver trajectory. The AV's associated with the
initial guess for Example 2 are found in Table 15. The total AV for the initial guess for
each spacecraft is about 2.6 m/s.

We chose to treat this problem as a formation maintenance problem and we did not vary
the initial orbit. Furthermore, due to the fact that the AV of the initial guess is already
small, we did not apply the AV equalization constraints.

The AVs for the optimal maneuver sequence for Example 2 are shown in Table 16.
Comparing the optimal solution to the initial guess we see that the optimal solution is
about a one order-of-magnitude improvement over the initial guess. Also, while we did not
enforce the AV equalization constraints, the AV's for the optimal solution are nearly equal
at approximately 0.109 m/s.
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Table 15 AVs for Initial Guess for Test Case Two
Property S/CiI1 uS/C 2
Avy (m/s) ., 0.2272 10.2272
Avy (m/s) ikl ol Ll
Avs (m/s) 1.098  1.087
Avy (m/s) 0.1766  0.28
Y Av; (m/s) 2.6728 2.7651
Total AV = 5.4379 m/s

Table 16 Optimal Solution: Example 2
Property S/C 1 S/C 2
Avy (m/s) 0.05679 0.0568
Avy (m/s) 0.04973 0.04972
Avsg (m/s)  4.058e-005 4.066e-005
Avg (m/s) 0.00279 .00275

Y. Av; (m/s)  0.10935 0.10932

Total AV = 0.21867 m/s

Conclusions

Distributed spacecraft and formation flying missions have been proposed for numerous
flight regimes and for a wide range of interspacecraft separations. It is useful for the mission
analyst to have at his or her disposal a method that is applicable to as many mission
scenarios and dynamics regimes as possible to perform optimal maneuver planning.

In this work we presented a direct approach to find minimum fuel maneuver sequences
for distributed spacecraft missions. The cost function is defined as the cumulative AV of
all spacecraft in formation and we proposed a set of optional constraints to equalize the fuel
expenditure among spacecraft over a particular maneuver sequence. The method requires
solving a set of IVPs and TPBVPs for each cost function evaluation. However, given the
speed of modern computers the method is not prohibitively slow. Analytic derivatives of
the cost and constraints were derived to take full advantage of the power of the numerical
optimization routine. The method was applied to two test problems: a HEO formation and
a libration point formation. Several optimal scenarios were presented.

Their are several new contributions to the literature contained in this work. We gener-
alized methods previously developed in Refs [3] - [7], to permit minimum fuel optimization
for a set of m spacecraft. We also generalized the method to find the optimal launch ve-
hicle injection orbit to minimize fuel during the initial spacecraft deployment phase. The
cost function was reformulated to remove a naturally occurring singularity in the gradi-
ent, without loss of generality. We also formulated a set of constraints to equalize the
fuel expenditure among spacecraft. These modifications, together with the work performed
by previous researchers, provides an optimization technique for minimum fuel distributed
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spacecraft maneuvers in multiple flight regimes including LEO, HEO, libration and in-
terplanetary trajectories. Furthermore, the method is not limited to small interspaceraft
separations and is applicable to small formations or large constellations.
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Appendix 1

In Table 17, we see the three forms that the function fy(Awv;;) can assume depending

on the magnitude of Avjj. The constants in the quartic equation are chosen so that f; and
its first derivative are continuous for all values of Av;;. If we label the different portions
of fs as Fy, Fy, and F3 as shown in Figure 5, then the conditions to ensure a continuous
function and its first derivative are

or,
0Av

_ 0F,

0 e i 2 109
Auy OB I

Avy,
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Table 17 Definition of fs(Avji) for different values of Avj

Avj fs(Avji)
A'Ujk < Avyp, A'szk
Avp, < Avjg < Avg aAv;?k + bAv?k + cAvjz»,c + dAvjg,
Avyg < A’Ujk 1
Fi(Avy) = F>(Awvyr) (110)
F:
P (111)
0Av|p,,,
Fy(Avg) =1 (112)
These conditions yield the following system of linear, algebraic equations
4Avi 3Av: 2Ay; 1 a 2Avy,
Av; . Avsrn Anp A b Av? (113)
GAvs 3A0E 20w 1 ¢ 0
Avﬁl Av% Av%{ Avg d il
The solution to this system of equations is
__AvAv} + Avp + Avy — 3Avy (114)
(—Avg + Avp)3Avy
Ll 2Av%Av%{ + Av? + Av} Avp — 2AvL Avy + Avg — 2A0% (115)
¥ (—Avg + Avp)3Avy,
1 Av% + A'U%A’UH + 4A’U?{A’U% + Av%AvL - 8A’ULA’U%1 + Av;’{ (116)
3 (—Avy + Avp)3Avy
A Av3, — 2Avg) Av?
d=2( v, + Avy vi ) Avy (117)

Avg(—Avyg + AUL)3

Appendix 2

In order to calculate all of the required partial derivatives, it is sometimes necessary
to calculate the inverse of the state transition matrix. Using well known formulas for the
inverse of a block matrix, and assuming that all of the necessary inverses exist, one can
show that

I

il
h il B
e e

Cj+1; Djiv;
e, G o e D Ly NORREN o) R i M e
[ (AJ‘HJ BJ'*‘LJDj-fl-l,jC]"'IJ) (CJ+1,J DJ+1,JBj+1,jAJ+1,J)
e AL T iy =l g . oAl =
(BJ'*'LJ AJ+1,JCj+1,jDJ+l,J) (DJ+1,J N CJ+1,JAj+1,jBJ+1,J)
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Figure 5 Illustration of fs(AV)

From the above, we determine that

B} = Cjing—DirBih jAii (118)
= 23
Djj+1Bj i1 = —Bjii At (119)

The relations above can be useful in reconciling the various expressions for the partial
derivatives found in the literature. It should also be noted that for Hamiltonian systems,
the state transition matrix is symplectic? which implies that

=1 7 ir
Aj; Bjyy ] :[ Dijy 1 —BTj+1,j

B(tjs1,t) " = [ T
4 Cj+1;  Djyig —Cjn;  Ajty

Appendix 3: Notation

Position vector

Velocity vector

Number of spacecraft in formation

Number of maneuvers along k" trajectory
State transition matrix

Upper left 3x3 partition of ®

Upper right 3x3 partition of ®

Lower left 3x3 partition of ®

Lower right 3x3 partition of ®

4t impulsive maneuver on kth trajectory
Magnitude of 4 maneuver on kt" trajectory
Lok Initial trajectory of k" spacecraft

Final trajectory of k" spacecraft

Vector of independent variables

Vector of constants

Internal maneuver location index, 2 <7 <ng —1
Maneuver time index, 1 < j < ny

Trajectory index, 1 <k <m

JIDEE o= S T

wb&ox
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