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A Direct M ethod for Fuel Optimal Maneuvers of Distribu ted Spacecraft 
in M ultiple Flight R egimes 
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D. S. Cooley2 

Jose J. Guzman3 

We present a method to solve the impulsive minimum fuel maneuver 
problem for a distributed set of spacecraft. We develop the method 
assuming a non-linear dynamics model and parameterize the prob­
lem to allow the method to b applicable to multiple flight regimes 
including low-Earth orbits, highly-elliptic orbits (REO), Lagrange 
point orbits, and interplanetary trajectories. Furthermore, the ap­
proach is not limited by the inter-spacecraft separation distances and 
is applicable to both small formations as well as large constellations . 
Semianalytical derivatives are deriv d for the changes in the total 6 V 
with respect to changes in the independent variables. We also apply 
a set of constraints to ensure that the fuel expenditure is equalized 
over the spacecraft in formation. We conclude with several exam­
ples and present optimal maneuver sequences for both a REO and 
libration point formation . 

Introduction 

In this paper, we present a direct approach to solve the impulsive, minimum fuel ma­
neuver problem for a distributed set of spacecraft. To equalize the fuel expenditure among 
spacecraft, we enforce a set of nonlinear constraints. We present an explanation of the 
method and the mathematical theory assuming a general, nonlinear dynamics model that 
can be expressed in an inertial or rotating coordinate system depending on the problem 
being solved. This ensures the method is applicable to a wide range of spaceflight regimes. 
Furthermore, since a nonlinear dynamics model is used, the method is not limited to small 
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inter-spacecraft separations and is equally applicable to large constellations and close for­
mations. 

Trajectory optimization has a rich history and many techniques have been developed 
over the last fifty years . Most techniques can be classified as either direct or indirect. 
Betts! presents an excellent survey of traj ectory optimization techniques. Guzman2 et_al. 
present a survey of indirect methods. The approach developed here is a direct method 
and is an extension of techniques that have their origins in research performed during 
the Apollo era3,4 and later extended by D'Amari05 et. ai., and Howe1l6, 7 et. ai. Their 
are several new contributions contained in this work. First, the method is generalized to 
permit minimum fuel optimization for a maneuver sequence involving a set of m spacecraft. 
We have also generalized the method to find the optimal launch vehicle injection orbit to 
minimize fuel during the init ial spacecraft deployment phase_ Finally, we have reformulated 
the cost function to remove a naturally occurring singularity in the gradient, without loss 
of generality. 

We begin t his paper with a mathematical problem statement defining the cost and 
constraint functions . The cost function is the sum of t he total 1:1 V of all spacecraft over 
an entire maneuver sequence. The parameterization of the problem is discussed for two 
types of maneuver sequences: initialization and reconfiguration. ext, we discuss how to 
evaluate the cost and constraints. The approach requires solving a number of Initial Value 
Problems (IVP) and Two Point Boundary Value Problems (TPBVP ). However, given the 
speed of modern computers, the method is surprisingly fast. ext, the gradient of the cost 
function and the Jacobian of the constraints are derived. We discuss numerical issues in 
implementing this approach. We conclude the paper with several test problems in different 
flight regimes to demonstrate the applicability of the method. A brief explanation of the 
notation is included in Appendix 3. 

Problem Statement and Parameterization 

There are numerous ways to pose the minimum fuel formation maneuver problem. We 
assume that the desired relative motion is driven by mission requirements and has been 
determined a-priori. The goal is to develop a technique to achieve the desired relative mo­
tion in a minimum fuel manner. We define the minimum fuel problem for a formation of m 
spacecraft, where the trajectory of the kth spacecraft has nk total maneuvers, as 

where rOk , V Ok ' and tOk are the initial position, velocity, and epoch of t he kth spacecraft 
respectively_ r fk and v fk are the final posit ion and velocity respectively ofthe kth spacecraft 
at a reference epoch t fk 

Solve: 
min(J ) (1) 

where 
m 

J= L I:1Vk (2) 
k=l 
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where m is the number of spacecraft and 6. Vk is the total weighted 6. V expended by the 
kth spacecraft and is calculated using 

nk 

6. Vk = L f s (6.Vjk) 6.Vjk 
j=1 

(3) 

where 6.Vjk is the lh maneuver on the kth trajectory. The scalar function ! s(6.Vjk) in Eq. (3) 
is included to remove a singularity in the derivative of J for small 6.Vjk. This function will 
be discussed in detail in a later section. For now it suffices to say that ! s(6.Vjk) = 1 for 
values of 6.Vjk large enough not to cause numerical problems. When appropriate, we impose 
the following set of constraints to equalize the 6. V among the spacecraft. 

(6.Vl - 6.V2)2 < toh (4) 

(6. V2 - 6.V3)2 < tol2 (5) 

(6. Vm- 1 - 6. Vm)2 < tolm-l (6) 

(6.Vl - 6.Vm)2 < tolm (7) 

where toh is the desired tolerance for constraint one and so on. 

We assume a dynamics model given by the second order differ ntial equation 

r = f (r , r , t) (8) 

The formulation of the cost and constraints, and their derivatives, is performed for the 
general nonlinear dynamics model seen in Eq. (8). We discuss the specific dynamics model 
used for software implementation and validation in a later section. 

At the heart of solving an optimization problem is the problem parameterization. In 
general, the cost function J shown in Eq. (2) is a scalar function of vectors that we can 
write as 

m 

J = L6.Vk = J(X , C) (9) 
k=1 

where X is the vector of independent variables being manipulated by an optimization rou­
t ine, and C is a vector of constants associated with the problem. The constraints in Eqs. (4) 
- (7) can be written as 

G = diag (Z6. Y 6. y TZT) = G (X , C ) ~ TOL (10) 

where A Y = [6. VI 6. V2 ... 6. Vm-l 6. VmV, Z is constant matrix discussed in a later sec­
tion, and TOL is a vector of tolerances associated with the constraints. B fore attempting 
to solve the problem we must choose which variables and degrees of freedom associated 
with the problem are to be included in X , which will be varied by a numerical optimization 
routine, and which degrees of freedom are to be included in C and treated as constants. 
The choice of X and C will influence the convergence properties of the numerical routine 
and determine the types of problems the method can solve. 
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In the remainder of this section, we discuss two parameterizations to solve the impulsive 
minimum fuel maneuver problem for distributed spacecraft. For convenience, we categorize 
the types of maneuver sequences as initialization sequences or maintenancej reconfiguration 
sequences. In an initialization sequence, all spacecraft begin at a common time and location 
on the same orbit. An initialization sequence is performed to take each member spacecraft 
from the common parking orbit to its desired final location d fined by a final orbit and time. 
In a maintenanc maneuver sequence, t he spacecraft are not initially located on the same 
orbit and hence are not collocated before the maneuvers are performed. The fuel optimal 
maintenance sequence is a more general problem and we begin by discussing the approach 
taken here. 

Maintenance and Reconfiguration Sequence 

An illustration of a formation reconfiguration sequence is shown in Figure 1. For sim­
plicity the diagram only illustrates a two-spac craft sequence. Before the beginning of the 
maneuver sequence, each spacecraft is located on a unique orbit. We define the initial orbit 
for the kth spacecraft, P ok, as the locus of point that are the solutions to the initial value 
problem 

(11) 

for varying values of tlk , the time at which the kth spacecraft performs its first maneuver. 
Recall that r ok and v ok are the position and velocity respectively, of the kth spacecraft at 
some reference epoch tok. Throughout the paper we use (pr to denote the position portion of 
the solution to the Initial Value Problem (IVP) of the differential equation shown in Eq. (8). 
The initial conditions to the IVP shown in Eq. (11) are contained in square brackets. The 
initial t ime is the second argument and the final time is the first argument. 

The goal of the reconfiguration sequ nce is to depart from the trajectories defined by 
P ok, and move each spacecraft to a new location on P fk which is defined as the locus of 
points that are the solution to the initial value probl m 

(12) 

for varying values of tnkk , where nk is the number of maneuvers on the kth trajectory, and 
r fk and v fk are the desired final position and velocity respectively, of the kth spacecraft 
at some reference final epoch t fk. According to this definition , tnkk is the time of the last 
maneuver of the kth spacecraft. 

Between the initial and final maneuvers , the kth spacecraft can perform intermediate 
maneuvers at locations r jk given by 

(13) 

ote that the reason 2 ~ j ~ nk - 1 is because rlk and r nkk are determined from the initial 
value problems shown in Eq. (11) and (12). Because we allow the time of the first and last 
maneuver for each spacecraft to vary, as well as the times of the interior maneuvers, we see 
that t ik, the maneuver times arc given by 

{ 1 ~ i ~ nk (14) tik 
1 ~ k ~m 
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Figure 1 Formation Maintenance and Reconfiguration Illustration 

There may be numerical difficulties if tik is not ordered such that t2k > tlk' This is discussed 
in a later section. 

From Eqs. (11-14) we see that the variables that define the maneuver sequence are: tlk, 

tok, r ok, V ok,tjk, r jk, v jk, r jk, and tik· We can now parameterize the problem by choosing 
which variables to include in X and which to include in C . For the general minimum fuel 
reconfiguration problem we choose to include as independent variables the time of the first 
maneuver of the kth spacecraft, tIk, the times of the interior maneuvers, tik, and the times 
of the final maneuvers, tnkk ' We also include the locations of the interior maneuvers, r jk, 
as independent variables. We treat the state components tok, r ok, and V ok that define the 
initial orbit, and the state components t jk, r jk, and v jk that define the final orbits, as 
constants. In summary, for the maintenance and reconfiguration problem we can write 

{ 

2 < . - J 
1:S i 
1:S k 

(15) 

C [ T T T T]T 
= tok r ok V ok t jk r jk v jk (16) 

The parameterization of the reconfiguration problem shown in Eqs. (15) and (16) is 
chosen such that the boundary conditions at r lk and r nkk are satisfied implicitly. The 
optimizer is not tasked with satisfying another set of complicated non-linear constraints to 
satisfy the boundary conditions along the initial and final orbits P ok and P jk respectively. 
The down-side to this approach is that for each cost function evaluation we must solve a 
number of initial value problems (IVP) and two point boundary value problems (TPBVP). 
Solution of the TPBVPs is discussed in a later section. In the next section we discuss the 
parameterization of the initialization sequence. 
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F igure 2 Formation Initialization Illustration 

Initializat ion Sequence 

• The second type of maneuver sequence we address is an initialization sequence. In an 
initialization sequence, all spacecraft init ially lie on a common orbit defined by the locus of 
points Po, as shown in Figure 2. Hence, for the initialization sequence we have 

(17) 

We refer to Po as the injection orbit and it mayor may not be known a-priori. For large 
formations that may require ignificant fu 1 expenditure from all spacecraft in formation 
to achieve the desired relative geometry, it may be desirable to include the injection orbit 
itself as an independent variable. In this case, the solution to the optimization problem 
yields the minimum fuel initialization trajectory for each spacecraft as well as the optimal 
launch vehicle injection orbit. Referring to Figure 2, we see that although all spacecraft 
initially lie on Po, it is not required that all spacecraft perform their first maneuver in the 
initialization sequence at the same epoch and hence the spacecraft can depart from Po at 
different locations. Th location of the first maneuver for the kth spacecraft is determined 
by the epoch of its first maneuver tlk, and the state vector that defines P o. We assume that 
Po is unique trajectory defined by t he locus of points that is the solution to the following 
IVP for varying values of t1k: 

(18) 

where to, 1'0, and v o, are the launch vehicle inj ection conditions, and tlk is the time of the 
first maneuver of the kth spacecraft. There is a unique final trajectory for the kth spacecraft 
defined by the locus of points, P jk, which is the solution to the following IVP for varying 
values of tnkk: 

(19) 

We assume the values tjk, r jk, and V jk have been determined a-priori to maximize the 
mission return. Hence these values are constants for the initialization problem. 
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For complete generality, we assume that the epoch of the initial maneuver for each 
spacecraft and the epoch of the final maneuver to insert the spacecraft into its location 
in formation can freely vary. Note that th initial epoch of the first maneuver of the kth 

spacecraft, tlk is not the same as to. The epoch to is part of the state vector that uniquely 
determines the injection orbit while tlk is the epoch when the kth spacecraft departs from 
the injection orbit. We also assume that the times and locations of the interior maneuvers 
for all spacecraft can freely vary. For the initialization problem we define X and C as 
follows: 

X = [ to r~ v~ tik rrk ( { ~~ ~ 
1:S: k 

(20) 

C = [ t fk r )k V)k 1 T (21) 

The parameterization of the cost and constraint functions in an optimization problem 
greatly influence the convergence properties of the method. In this section, we discussed 
a parameterization of the minimum fuel maneuver problem for two types of maneuver se­
quences for a set of distributed spacecraft. Given the problem parameterizations developed 
in this section, we are ready to look into the details of evaluating the cost and constraint 
functions. 

Cost and Constraint Function Evaluation 

In this section we take the problem parameterization given by X and C in the last 
section and discuss how to calculate the cost J(X , C ) and the constraints G (X, C). Calcu­
lating the cost and constraints is similar for both the initialization and the reconfiguration 
problem and so we address them simultaneously. The first step is to redimensionalize the 
vector of independent variables X . Once we have a dimensionalized set of variables given by 
X and C , we solve a set of IVPs to obtain the position vectors that define the locations of 
the first and last maneuvers of each spacecraft. T he next step is to solve a set of TPBVPs 
that yield 6.Vjk' Finally, we solve for the cost and constraints using Eqs. (2), (3) and (32). 
Each step is discussed in more detail below. 

Step 1: Redimensionalize X 

It is often necessary to work with nondimensional variables when solving optimization 
problems using numerical methods. We begin by assuming that the numerical optimiza­
t ion process uses non-dimensional variables where the transformation from dimensional to 
non dimensional variables is given by 

(22) 

where Xl is the nondimensional form of X, diag(X f) is a matrix with X f on the diagonal 
and zeros for the off-diagonal terms, and X f and X s are vectors of the same length as X. 
We assume that diag(X f )-1 exists. The inverse transformation is simply 

X = diag(X f )(X I + X s) (23) 
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It is more convenient to work in dimensional variables to evaluate the cost and constraints 
and the redimensionalization is performed before step 2 is performed. X f and Xs are chosen 
according to the numerical issues associated with the particular problem being solved. 

Step 2: Solve IVPs 

To evaluate the cost and constraints, we need to be able to calculate 

{
I < . _ J 
1.s k 

(24) 

where a superscript "-" denotes a condition immediately before an impulse maneuver , and 
a superscript "+" denotes a condition immediately after an impulsive maneuver. The 
quantities vik and v~kk are determined by solving the following initial value problems 

(25) 

(26) 

where <jJv denotes the velocity portion of the solution to the IVP, and tfk, rfb and vfk are 
contained in C and treated as constants. If we are solving a maintenance problem, tok , rok, 

and Vok are also contained in C. However, if we are solving an initialization problem then 
the initial boundary conditions may be contained in X . To solve the TPBVPs found in the 
next step we will need r lk and r nk k. However, these are simply the position portions of the 
solution to the IVPs in Eq. (25) and (26). 

Step 3: Solve TPBVPs 

The remaining components of the impulsive maneuver vectors needed to calculate Eqs. (24) 
are determined by solving a set of T PBVPs . From Step 2 we found rlk and r nkk, and the 
variables rik and tjk are contained in X . T herefore, we know the positions and times for all 
maneuvers and we have N Lambert's problems to solve where N is given by 

m 

N = I )nk -1) (27) 
k=l 

There are numerous well-known approaches to solving Lambert's problem. We use a simple 
multiple shooting method outlined below. The algorithm is described as follows where we 
drop the subscript k, for now, to simplify the notation. Given an initial position rj and an 
initial velocity Vj, both at t ime tj, find OV j applied at time tj so that we achieve rj+l at 
tj+l . Figure 3 illustrates the problem. The dark black arc denotes the path a spacecraft 
would follow if no OVj were applied. For this arc, the final position denoted by ra is not 
equal to the desired final position r j+l. Hence, for the dark black are, orj+l i= O. The 
dashed arc denotes the trajectory that is the solution to Lambert's problem. For this arc 
rj+l = r a , or o r j+l = O. To solve for OV j such that o r j+l = 0 first define Xj as 

x.=[ rj
] 

J Vj 
(28) 
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Figure 3 Illustration of One Trajectory Arc 

then 5Xj+l is given by 
5Xj+l = <I> (tj+l' tj) 5x j 

where tj+l and tj are fixed. We can write <I> (tj+l, tj) as 

(29) 

(30) 

We can solve for 6.Vj such that 5r j+l is zero by iterating on Eq. (31) until (rj+l - ra) meets 
a user defined tolerance. 

(31) 

Upon convergence, for each trajectory arc we save vt ' vj, and <I> for use in calculating the 
cost, constraints, and their derivatives. It is important to note that this approach assumes 
that Bj~l ,j exists. We address cases when this is not true in a later section. Using the above 
algorithm, we solve all N Lambert's problems. Knowing the solution to each trajectory arc 
permits the calculation of all maneuvers 6.Vjk and with this information we can evaluate J 
and G . 

Step 4: Solve for J and G 

From the previous steps we know v tk and v jk' We use Eqs. (24) to calculate 6.Vjk' Next 
we can evaluate !s(6.Vjk) using Eqs. (41)-(43) . J can be calculated using Eqs. (2) and (3). 

The constraints in Eqs. (7) are more conveniently written for mathematical manipulation 
as 

G = diag (Z6. V 6. V TZT) :::; TOL (32) 

where TOL is a vector of tolerances, 6. V is giv n by 

(33) 
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and Z is given by 
-1 1 0 0 0 
0 - 1 1 0 0 
0 0 -1 1 0 

Z = 
0 -1 1 0 0 
0 0 -1 1 0 
0 0 0 -1 1 
1 0 0 0 -1 

The above equations allow us to calculate J(X, C ), and G(X, C). To take full advantage 
of the power of a numerical optimization routine, it is also useful to calculate the gradient 
of J and the Jacobian of G . We devote the next section to this topic. 

Cost and Constraint D erivatives 

Gradient-based numerical optimization routines such as Sequential Quadratic Program­
ming (SQP) perform best when supplied with analytic derivatives of the cost and con­
straints . Providing derivatives is often nontrivial, yet it is advantageous because it increases 
the speed of convergence by requiring fewer function calls and avoids numerical problems 
associated with finite differencing. 

Below we derive the gradient of the cost function and the Jacobian of the constraint 
functions. We need the derivatives of the cost and constraint functions with respect to 
the independent variables shown in Eqs. (15) and (20). Specifically, we require analytic 
expressions for 

(34) 

and 

oG = 2 diag (Z/:::" Va/:::" vT ZT) 
ox ox 

(35) 

where x is a generic independent variable and 

(36) 

In Eqs. (34)-(36) we see terms of the form a/:::,. Vk / OX which can be written 

o/:::"Vk a nk 

~ = ox 'L fS( /:::"Vjk)/:::"Vjk 
j=l 

(37) 

One can show that Eq. (37) can be written as 

(38) 
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By inspecting Eq. (38), we see that we must determine a 6.vJdax. This term is non­
trivial and in the next few subsections we derive this term for the specific independent 
variables used in this work. The term fs( 6.Vjk)/ 6.Vjk can cause difficulty for small 6.Vjk' 

Traditionally, to determine the total 6. V, w would set fs = 1 and we have the new 
relationship 

nk 

6. V~ = L 6.Vjk (39) 
j=l 

However, if fs = 1 then we have the following term that appears in the derivative of 6. Vr 
(40) 

This term is obviously singular for small 6.Vjk. The difficulty this causes is significant 
because the optimization process tends to make 6.Vjk as small as possible and sometimes 
6.Vjk can approach zero. We can mit igate probl ms caused by small values of 6.Vjk by 
carefully choosing fs(6.Vjk)' 

By inspecting the term fs( 6.Vjk)/6.Vjk, we see that we need fs(6.Vjk) to approach zero 
as fast or faster than 6.Vjk so that the limit as 6.Vjk --+ 0 is defined. There are many possible 
choices for such a function. We have chosen to partition the function fs(6.Vjk) into three 
regions. For small values of 6.Vjk, where 6.Vjk < 6.vL we define fs(6.Vjk) as 

( 41) 

For intermediate values of 6.Vjk, where 6.vL < 6.Vjk < 6.vH, we define fs( 6.Vjk) as 

( 42) 

For large values of 6.Vjk, where 6.vH < 6.Vjk, we define fs(6.Vjk) as 

( 43) 

The values of 6.vL and 6.vH in the above equations are chosen depending upon the numerics 
of the particular problem being solved. However, 6.vL must always be less than 6.vH. 

The form of fs described above r moves the singularity in the derivative of fs( 6.Vjk) for 
small values of 6.Vjk. As 6.Vjk --+ 0 we see that where 6.Vjk < 6.vL 

(44) 

and we have a non-singular function for all values of 6.Vjk' The four constants in the quartic 
function in Eq. (42) are chosen so that f s(6.Vjk) and its first derivative are continuous. The 
derivation of the constants a, b, c, and d is shown in Appendix 1 and the expressions are 
found in Eqs. (114-117). 

The second term in Eq. (38) that is non-trivial is 

0 6. v;;' 
ax 
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where n: is a dummy variable that represents an arbitrary component of X given in Eqs. (15) 
and (20). First let’s identify some derivatives that are zero after looking at  the physics of 
the problem. From inspection of Figure (1) and (2) we see that 

and 

dAVT 

aren 
> = O  if n f k  

dAvT 
3 k = O  if n # k  

dti, (47) 

where n is dummy index used to denote the trajectory number. Eqs. (46) and (47) come 
from the fact that changing the time or position of a maneuver on one trajectory does not 
affect the AV along another trajectory. For this reason we can drop the subscripts n and 
k without loss of generality. Hence the remaining derivatives to be calculated are 

dAvT dhv: 
dre ’ dti  

where the second subscript on each variable is assumed to be I C .  For convenience, we break 
down the derivatives shown above into three categories and devote a subsection to each. 
The first category contains initial boundary derivatives which are derivatives with respect 
to to, r,, v,, and t l .  The second category contains derivatives that are with respect to 
internal maneuver times and locations, te (te E t i)  and re respectively where 2 5 4 5 nk - 1. 
The third cakgory contains derivatives with respect to the final time, tnk .  The next three 
subsections discuss the three t,ypes of derivatives in detail. 

~- 

Initial Boundary Derivatives 

We define the initial boundary derivatives to be those with respect to t l ,  to ,  ro: and v,. 
By inspection of Figure (1) we can see that 

This is due to the fact that changing ro does not change Av3. Likewise changing time to 
does not change Av3. Therefore the nonzero initial boundary derivatives are 

dAvT dAvT dAvT dAvT dAvT dAvT dAvT dAvT 
atl atl , at, 1 at, dr, dr, ’ dvo ’ dv, 
- ___ - - ___ - __ - 

Let’s begin by looking at the derivatives with respect to t l .  Assume we have the TPBVP 
illustrated in Figure 4 and tlcfined by 

Given: to ,  r,, v,, t l ,  t2, r2 

Find: v t  such that r Itz = 1-2 
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Figure 4 Illustrat,ion of Initial Boundary 

If-e know the solution has the following form 

v: = 4' (tl,tz, [n,~;]) (50) 

The symbol 0 denotes the solution to the initial value problem with initial conditions 
contained in square brackets. The second time argument is the initial time and the first 
time argument is the final time. So, in EQ. (49), r2 and vi axe the initial conditions with 
an initial time of t2 and a h a l  time of tl. Hence, in this case we are back-propagating 
because t2 > tl. The superscript T and e denote the position and velocity portions of the 
initial value problem respectively. By inspection of Figure 4; we see that changing tl will 
result in a change in rl. v;: vi , and v;. Taking the derivative of rl and v: with respect 
to  tl yields 

I 

(51) drl  - a# a ~ $ ~ l ? ~ ;  +--- at, at1 av at, 

where V is a dummy variable to denote diflerentiation with respect to vehity.  
equations ca,n be rewritten as 

These 

% -- av' - a: + Dt,,t, at, 
a1 

(54) 

Solving the system of equations, and using Eqs. (118) and (119) from -4ppendix 2, we obtain 

(55) 
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By inspection, we see that 

a v + 
_2_ =0 
ah 

(57) 

(58) 

The derivatives with respect to r o and Vo can be derived by starting with a solution of 
the form 

(59) 

(60) 

where we note that changes in r o or Vo result in changes in r 1, v I' v i, and v i . Taking 
derivatives of Eqs. (59) and (60) with respect to r o yields 

ar2 a(pr arl a(pr avi 
-=--+-­aro aR aro av aro (61) 

avi a¢varl a¢vavt -=--+-- (62) aro aR aro av aro 
where R is dummy variable to denote differentiation with respect to position. These equa-
tions can be rewritten as 

avi avi -a = Ct2 ,tl A tl,to + D t2h -a 
r o r o 

Finally, solving for the desired derivatives yields 

a v i -1 aro = - B t2.tl A t2h A tl,to 

Taking derivatives of Eqs. (59) and (60) with respect to Vo yields 

avi a¢v a r l a¢v avi -=--+-­
a vo aR avo av avo 

These equations can be rewritt n as 

14 
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(64) 

(65) 

(66) 

(67) 

(68) 

(69) 



avz a v [ 
~ = C t2 .tl B t1,to + D t2h ~ 
uro u r o 

solving for the desired quantities yields 

(70) 

(71) 

(72) 

Finally, the last two nonzero derivatives with respect to r a and va can b written simply as 

(73) 

(74) 

The last initial boundary derivatives to be determined are the derivatives with respect 
to to. The derivatives of r l and v I with respect to to can be found by starting with a 
solution of the form 

(75) 

(76) 

where we note that changes in to result in changes in r l, VI' v [) and vz· Taking the 
derivative of Eqs. (75) and (76) wit h respect to to yields 

These equations simplify to 

or 0 a(pr a¢T a r l a¢T a v I 
-=-+--+ - -
ato ato oR ato aV ato 

a r l a VI 
o = a o + C to,tl ato + D toh ato 

solving for the desired derivatives yields 
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Table 1 Initial Boundary Derivatives with Respect to to 
Term ato 

aV1 - C tl ,to Va - Dtl ,to ao 
avi - D tlh(1 - D t2.tl D tlh) - I C t2 ,tl (A tl,to v a + B tl ,toao) 
aVi -(I - D t2.tl D tlh)-I C t2h (A tl,!o Va + B tl ,toao) 
avt 0 

Recall that changing to changes rl , vI' vi, and vi. We can find the expressions for 
avi / ato and avi / ato starting with solutions of the form 

vi = ¢v(t2' tl, [r l' vi]) 
Taking the derivative with respect to to yields 

avi a¢Varl a¢vav i 
- = --+ - -
ato aR ato aV ato 

This can be rewritten as the system of equations below 

av i _ avi 
ato - - C t2 .tl (A tl,to v a + B tl,toao) + D t2.tl ato 

Solving the system of equations for the desired quantities yields 

avi -1 
ato = - D tlh(1 - D t2 ,tl D tlh) C t2 ,tl (A tl ,to v a + B tl,toao) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

avi -1 
ato = -(I - D t2.tl D tl,t2) Ct2 ,tl (A tl ,to v a + B tl ,toao) (90) 

ote that Eqs. (89) and (90) contain an element of the inverse of the state transition matrix. 
See Appendix 2 for a discussion of how this can be calculated without inverting the entire 
6 by 6 state transition matrix. 

We have completed the derivation of the initial boundary derivatives and they are sum­
marized in Tables 1 - 3. ow we move on to the internal derivatives. 
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Term 

Table 2 Initial Boundary Derivatives with Respect to tl 
Term atl 

Table 3 Initial Boundary Derivatives with respect to r 0 and v 0 

C t1 ,to 

- B~ ~tl A t2 h A h ,to 

(Ct2 ,tl - Dt2 ,h B~~tI At2 ,iI) A tl ,to 
o 

Internal Derivatives 

The internal derivatives are defined as derivatives of D. vJ with respect to the internal 
maneuver times and positions, or: 

aD.vT 

{ 1 ::; j ::; nk __ J 

are 2::; f ::; nk - 1 
(91) 

and 
aD.vT 

{ 1::; j ::; nk __ J 

ate 2 ::; f ::; nk - 1 
(92) 

By inspection of Figure (1) we can see that some of the derivatives shown in expressions 
(91) and (92) are zero. For example, changing I3 does not change D.Vl or D.v5· Likewise 
we see that changing the time t3 does not change D.vl or D.v5. In general we can write 

aD.vT 

__ J = 0 if j < f - 1 or j > f + 1 
ar e 

aD.v T 

__ J = 0 if j < f - 1 or j > f + 1 
ate 

(93) 

(94) 

In other words, changing the t ime or position of the lh maneuver only changes the following 
maneuvers: D.Vj_l, D.Vj, and .6Vj+l. Thus, the only non-zero internal derivatives are 

The non-zero internal derivatives can all be determined by closely investigating Lambert's 
problem. Recall that Lambert's problem is to find vj and vp, given rI , tI , rF and tF· 
We see that the non-zero internal derivatives can be determined from the derivatives of the 
solution to Lamb rt's problem , v j and vp, with respect to changes in r] , tI, r F and tF. 
These derivatives appear in the literature,5,7 and they can also be found by the approach 
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Table 4 Time Derivatives of the Solution to Lambert 's Problem 

ov+ 
J 

oVp 

Table 5 Position Derivatives of the Solution to Lambert's Problem 

ov+ 
I 

oVp 

orJ orF 

used in this paper to determine the derivatives of cost and constraints with respect to the 
independent variables. Table 4 contains a summary of the derivatives of vt and vp with 
respect to changes in the initial and final time tJ and tF respectively. Table 5 contains a 
summary of the derivatives of vt and vp with respect to changes in th initial and final 
position r J and r F respectively. The left hand column of the tables contain the numerator of 
the derivative definition and the horizontal titles contain the denominator of the derivative 
definition for a particular derivative. So, for example, we see that 

(95) 

where B t),tI and A tF.tE come from the STM of the trajectory that is the solution to Lam­
bert's problem, vt is the velocity immediately after the first impulse, and at is the accel­
eration immediately after the first impul . Using the derivatives in Tables 4 and 5, we can 
determine the remaining internal derivatives which 8J:e summarized in Table 6. 

It is interesting to note that the derivatives oVe jote and vt j ote arc explicit functions 
of the accelerations at and ae. For spacecraft flying in environments with nonconservative 
forces these terms may be significant. However, when we evaluate Eq. (3 ), the accelerations 
appear in pairs such as (at - an. This term is identically zero when the flight regime 
consists only of conservative forces and so acceleration terms do not come into play unless 
there are forces that are explicit functions of the spacecraft velocity. 

Final Boundary Derivatives 

The final boundary derivatives ar defined as derivatives of ,0,. vJ with respect to t nk · 

From inspection, we see that 

o ,0,.vT 
__ J = 0 if j < n - 1 
otnk 

(96) 
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Term 

OVe_1 

OVI-l 
OVe 
ovi 

OVe+1 

Ovi+l 

Table 6 Interior Derivatives 
ote ore 

Table 7 Final Boundary Derivatives with Respect to tnk 

Term otnk 

Following a similar approach as in the last two sections, the final boundary derivativ s are 

The quantity v;tk is found using 

ov;t _ + 
~ - a,.;,k 
U nk 

(97) 

(98) 

(99) 

(100) 

(101) 

and a;tk and a~k come from Eq. (8) evaluated at the pre and post maneuver conditions 
for maneuver nk. The derivatives with respect to tnk are summarized in Table 7. This 
completes the derivation of the required derivatives. We now move on to discuss numerical 
issues and implementation. 

Numerical Issues and Implementation 

Subtle issues in the implementation of a numerical optimization approach often dra­
matically influence the speed of convergence and the quality of the solutions. The method 
presented here has everal numerical issues that can be accommodated if they are under­
stood by the analyst . In this section, we address these numerical issues as well as discuss 
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details of the software implementation of the method used to solve the test cases in the next 
section. The first difficulty occurs when certain components of the STM are not invertible. 
The second difficulty is an artifact of the problem parameterization and occurs when the 
times of two maneuvers are the same. The third difficulty is when there are small D. V s 
along a trajectory. 

The most obvious numerical difficulty appears in calculating the derivatives of the cost 
and constraints . The equations for the derivatives in the previous section assume that 
the components of the STM are invertible. Stern lO showed three cases in which certain 
components of the STM are not invertible for the two-body problem. They are: 

1. The difference between the initial and final t imes is an integer multiple of the orbit 
period. 

2. The difference between the initial and final true anomalies is given by N1f, for N = 
0,1,2,3, ... ( ote that case 1 is a subset of case 2) 

3. A certain trigonometric funct ion of the ccentricity and the eccentric anomalies is 
zero. 

The first two cases cause surprisingly less difficulty than one might initially expect. Test 
cases on the Hohmann t ransfer, whose solution involves a transfer angle of exactly 1f, have 
shown that components of the STM are invertible for transfer angles within 1e-4 degrees of 
the singularity that occurs at the solut ion. The result is that the method finds solutions 
within 1e-6 mj s of the known analytic solution. Furthermore, this method has been devel­
oped to solve real-world problems where perturbations are included in the dynamics model. 
In these cases, the solution rarely occurs exactly at transfer angles (2N + 1)1f. Finally, the 
third case occurs for multiple revolution solutions. The examples investigated in this work 
did not contain multiple revolution trajectory arcs. 

Another subtle singularity ari s from the parameterization of the problem. The opti­
mization routine controls the independent variables shown in Eq. (15) for a maintenance 
or reconfiguration sequence and the independent variables shown in Eq. (20) for an ini­
tialization sequence. Suppose we are optimizing a maneuver sequence that contains two 
spacecraft (m = 2) and t hat ach spacecraft performs four maneuvers (nl = n2 = 4). For 
this scenario, t22 and t32 , the times of the second and third maneuver of the second space­
craft respectively, and r 22 and r 32, the location of the second and third maneuvers of the 
second spacecraft respectively, are varied freely by the optimizer. It is possible that during 
the optimization process, that the optimization routine may try the following: 

(102) 

T here is no solution to Lambert's problem for the above conditions. Furthermore, as t22 -+ 

t32 , D.V22 -+ 00. There are several ways to handle this difficulty. One is to apply a set of 
constraints such that tik - ti-l ,k 2: c where c is a constant chosen according to the problem 
being solved. However, if during the optimization process this problem occurs it is likely 
that one of the maneuvers is not necessary. The simplest solution is to stop the optimization 
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process, remove one of the maneuvers, in this case either the maneuver at time t22 or t32, 

and restart the optimization process. 

The third numerical difficulty is the singularity that occurs when fs(6vjk) = 1 and 
6Vjk = 0 and was discussed in previous sections. By defining fs(6vjk) as in Eq. (41) - (43), 
we can remove this singularity. Physically, the form chosen for fs(6vjk) removes small 
values of 6 Vjk from the cost function. Care must be taken in defining the constants 6VL 
and 6VH according to the problem being solv d. 

The formulation of the cost function, constraints , and gradients was performed without 
regard to the specific dynamics model chosen. However, in a software implementation, 
we must choose a dynamics model including the reference frame in which to express the 
equations of motion, and the forces and perturbations to include. We have chosen to work 
in the Earth Mean J2000 Equatorial system. We have chosen to include accelerations from 
the spherical Earth, h and third body point mass accelerations from the Sun and Moon. 
The resulting dynamics are given by 

.. (m2 + md ~ ( mj m j ) r 21 = -G 3 r 21 - 0 G - 3- r j1 - 3 r j2 + ah 
T21 j=3 Tj1 Tj2 

(103) 

where a subscript "I" repres nts the spacecraft, a subscript' 2" represents Earth, a subscript 
"3" represents the sun, a subscript "4" represents the moon, and r 21 is the position of the 
spacecraft with respect to the Earth and so on. The term a h is given by 

(104) 

where x, y, and z are the inertial components of the spacecraft position vector, and fJ-e and 
Re are the Earth's gravitational parameter and radius respectively. The STM is calculated 
by defining 

then 

then in first order or state form 

x = [rT "T ]T 

A = ax 
ax 

(105) 

(106) 

(107) 

The derivatives in Eq. (107), whil non-trivial, are well known and not presented here. 
Finally, the differential equation governing the STM is given by 

(108) 

The differential equations shown in Eqs. (103) and (108) are numerically integrated as a 
coupled system of 42 first-order ordinary differential equations. 
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The remaining issues involved in the software implementation are concerned with opti­
mizer selection, convergence criteria, scaling, and bookkeeping of the considerable amount 
of data required to evaluate the cost function and its gradient and the constraint func­
tions and their Jacobian. We have chosen to work in MATLAB and therefore have used 
the fmincon SQP algorithm available in the MATLAB Optimization Toolbox. For speed, 
all numerical integration of the equations of motion and the STMs is performed by using 
MATLAB mex functions compiled from C code. Likewise, all TPBVPs are solved in mexed 
C functions. The TolX, ToiFun, and TolCon convergence tolerances of fmincon were set to 
1e-12 for most problems and we refer the reader to the MATLAB Optimization Toolbox 
documentation for more information on the definition of these settings. 

The final issue involves bookkeeping. For each cost function evaluation, we require an 
initial guess in order to start the T PBVP solver discussed in a previous section. For the first 
function evaluation, the code uses an init ial guess provided by the user. For subsequent cost 
function evaluations, the code uses solutions from previous cost function evaluations as the 
initial guess. This assures that the initial guesses for the TPBVPs evolve with the optimizer 
iterations. There is an STM matrix associated with each segment of each trajectory and 
these STMs are calculated when the TPBVPs are solved. The STMs for each segment are 
saved, and then used in the calculation of the Gradient and Jacobian. Great care must be 
taken to save the STMs in a convenient manner and use them correctly in the equations for 
the Gradient and J acobian. 

We now move on to discuss several example applications. 

Applications and Examples 

In recent years, numerous distributed spacecraft missions have been proposed in a diverse 
set of flight regimes and employing a wide range of inter-spacecraft separation distances. 
The examples we have chosen demonstrate the applicability of the method to different 
flight regimes and different types of distributed spacecraft missions. In example 1, case 1, 
we choose not to solve for th optimal injection orbit. In example 1, case 2, we do solve 
for the optimal injection orbit. Similarly, in some cases we have chosen to apply the !1 V 
equalization constraints, and in other cases we hav chosen not to apply the constraints . 

The first example is a Highly Elliptic Orbit (HEO) formation of four spacecraft that 
forms an ideal tetrahedron with sides of 100 km at apogee. For this HEO formation, we 
apply the method to initialize the tetrahedron in the presence of perturbations for three 
cases: 

1. Minimize J , do not vary injection orbit, do not apply !1 V equalization constraints. 

2. Minimize J , vary the injection orbit, do not apply !1 V equalization constraints. 

3. Minimize J , vary the injection orbit, apply !1 V equalization constraints . 

The second example is a formation in a large-amplitude Lissajous orbit about the Sun­
Earth L2 point. The formation is composed of two spacecraft that initially have the same 
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state and epoch. The final configuration is a separation of 200 km between the two space­
craft. For this example, we present an optimal initialization sequence to demonstrate the 
applicability of the method to multi-body flight regimes . 

Example 1: H EO Formation 

Recall that example 1 is a HEO formation of four spacecraft that forms an ideal tetra­
hedron of 100 km at apogee. The desired final orbit states are found in Table 8. The initial 
orbit, called the injection orbit , is found in column five. The desired final states for the 
spacecraft are found in columns one through four . The injection orbit was determined by 
back-propagating the desired final states for approximately 24 hours , and averaging the 
states of the four spacecraft. A three maneuver initial guess sequence was then created by 
solving the resulting four lambert problems and adding a small intermediate!::' V for a total 
of three maneuvers on each of the four trajectories. The !::' V s for the initial guess found 
using this approach are shown in Table (9). We see that the total!::' V for the initial guess 
is 256.63 mj s. 

Table 8 States Defining Desired Orbit for Example 1 
Property SjC If Sj C 2f Sj C 3f SjC 4f Injection Orbitf 

a (km) 42095.74 42095.74 42095.74 42095.74 42095.70 
e .8181803 .81 1822 .8162243 0.8169300 0.8173807 

i (deg.) 18.00000 1 .00000 18.02006 17.94851 17.99215 
w (deg.) 90.00012 90.09161 90.04603 90.04597 90.04581 
n (deg .) 0.102042ge-3 0.1026448e-3 .1024955e-3 0.1023461e-3 0 
v (deg.) 178.6875 178.6709 178.6699 178.6733 179.9916 

:j: 22 Mar 2012 12:00:00.0000 t 23 Mar 2012 11:17:34.2939 

Table 9 f::. V 's for Initial Guess for Example1, Case One 
Property SjC 1 Sj C 2 SjC 3 SjC 4 

!::,Vl (mjs) 24.78 21.87 33.98 35.01 
!::,V2 (mjs) 6.97 7.058 5.964 6.357 
!::,V3 (mjs) 20.04 22.44 36.87 35 .28 

I:!::,Vj (m js) 51.79 51.37 76.82 76.65 

Total!::'V = 256.63 mjs 

For example 1, case 1, an optimal maneuver sequence was found for the HEO forma­
tion by selecting the independent variables X and the constants C as shown in equations 
Eqs. (15) and (16). Hence, we treated this as a reconfiguration problem where initia lly 
the spacecraft were collocated at the same point on the initial orbit. We did not vary the 
st ate of the initial orbit, and we did not apply the f::. V equalization constraints. The !::' V s 
associated with the optimal solution for case 1 are found in Table 10. We see the total!::' V 
is 71.476 mj s and maximum accumulated t::, V for a single spacecraft is about 20 mj s. This 
is a fuel savings of 185 mj s over t he initial guess. 
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Table 10 Optimal Solution: Example 1, Case 1 
Property SIC 1 SIC 2 SIC 3 SIC 4 

D.Vl (m/ s) 8.864 .783 5.372 6.593 
D.v2 (m/s) 1.475 2.25 3.276 6.33 
D.v3 (m/s) 5.797 6.438 8.899 7.572 

2:D.Vj (m/s) 15.956 17.479 17.5466 20.495 

Total D. V = 71.476 m/ s 

For case 2, we began with the converged solution to case 1 as the initial guess, but 
allowed the initial orbit to be included in the independent variables as opposed to being 
considered a constant. Hence, X and C were defined as shown in equations Eqs. (20) 
and (21). The solution yields a minimum fuel maneuver sequence, and the optimal launch 
inj ection orbit. The D. Vs for case 2 are shown in Table 11 and the optimal launch injection 
orbit in Table 12. The total D. V for case 2 is 20.79 m/ s. We see that varying the injection 
orbit has a dramatic influence on the total D. V. There is a 51 m/ s improvement over case 
1 and the maximum accumulated D. V for a single spacecraft is about 7.3 m/ s. 

Table 11 Optimal Solution: Example 1, Case 2 
Property SIC 1 SIC 2 SIC 3 SIC 4 

D.vl (m/s) 0.247 4.187 1.003 4.5e-5 
D.v2 (m/s) 0.523 0.593 2.382 7.212 
D.v3 (m/s) 3.836 4.1e-5 0.791 3.6e-5 

2: D.Vj em/ s) 4.606 4.780 4.176 7.212 

Total D.V = 20.774 m/s 

Table 12 Example 1, Case 2 Optimal Injection Orbit 
Property Injection Orbitt 

a (km) 42091.69 
e 0.8168908 

i (deg.) 17.999768 
w (deg.) 89.78643 
n (deg.) 0.181559 
II (deg.) 180.14348 

t 22 Mar 2012 11:58:35.4160 

For case 3, we choose the same independent variables as example two, however we applied 
the D.Vequalization constraints shown in Eq. (32). We used the solution from Example 1, 
case 2 as the initial guess for case 3. The D.Vs for an optimal solut ion for cas 3 are shown 
in Table 13. Notice that the total D. Vfor each spacecraft is 6.093 m/ s. Comparing to case 
2 we see that enforcing the D. Vequalization constraints resulted in a small penalty of about 
3.34 m/ s. We now move on to discuss Example 2. 
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Table 13 Optimal Solution: Example 1, Case 3 
Property SjC 1 SjC 2 SjC 3 SjC 4 

6 Vl (mjs) 0.789 5.151 1.460 0.002 
6 V2 (mj s) 2.460 1.940 3.254 6.068 
6 V3 (mjs) 2.844 0.002 1.379 0.023 

L6vj (mjs) 6.093 6.093 6.093 6.029 

Total 6 V = 24.116 mj s 

Example 2: Libration Point Formation 

The second example consists of a two-spacecraft libration point formation problem about 
the Sun-Earth L2 point. The desired states of the spacecraft after the maneuver sequence, 
and the injection orbit and initial epoch are shown in Table 14. The states are for a large­
amplitude Lissajous orbit . The initial guess maneuver sequence for Example 2 contains 

Table 14 States Defining Desired Orbit for Example 2 
Property SjC It SjC 2t Injection Orbit! 

x (km) 76863.56215 76915.15497 -70150.29946 
Y (km) -407755.1147 -407729.4652 1358773.158 
z (km) -33798.44889 -33989.96985 983153.4317 

:i; (kmjs) -0.04802618 -0.048026184 -0.10552622 
Y (kmjs) 1.12799544 1.127995438 -0.00980635 
i (kmjs) 0.13 12967 0.138129667 -0.05853318 

t 11-Jan-2004 09:35:33.6099 + 09-Jul-2004 09:35:33.6099 

four maneuvers for each of the two spacecraft. The two internal maneuvers were computed 
by first finding a two-maneuver trajectory and then placing two small maneuvers, spaced 
equally in time, along the original two-maneuver trajectory. The 6 V s associated with the 
initial guess for Example 2 are found in Table 15. The total 6 V for the initial guess for 
each spacecraft is about 2.6 mj s. 

We chose to treat this problem as a formation maintenance problem and we did not vary 
the initial orbit. Furthermore, due to the fact that the 6 V of the initial guess is already 
small, we did not apply the 6 V equalization constraints. 

The 6 Vs for the optimal man uver sequence for Example 2 are shown in Table 16. 
Comparing the optimal solution to the initial guess we see that the optimal solution is 
about a one order-of-magnitude improvement over the initial guess. Also, while we did not 
enforce the 6 V equalization constraints, the 6 V s for the optimal solution are nearly equal 
at approximately 0.109 mj s. 
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Conclusions 

Table 15 /::,. Vs for Initial Guess for Test Case Two 
Property SjC 1 SjC 2 

~Vl (mjs) 0.2272 0.2272 
~V2 (mjs) 1.171 1.171 
~V3 (mj s) 1.098 1.087 
~V4 (mj s) 0.1766 0.28 

I.: ~Vj (mj s) 2.6728 2.7651 

Total ~V = 5.4379 mjs 

Table 16 Optimal Solution: Example 2 
Property SjC 1 SjC 2 

~Vl (mjs) 0.05679 0.0568 
~V2 (mjs) 0.04973 0.04972 
~V3 (mj s) 4 .058e-005 4.066e-005 
~V4 (mjs) 0.00279 .00275 

I.:~Vj (mjs) 0.10935 0.10932 

Total ~ V = 0.21867 mj s 

Distributed spacecraft and formation flying missions have been proposed for numerous 
flight regimes and for a wide range of interspacecraft separations. It is useful for the mission 
analyst to have at his or her disposal a method that is applicable to as many mission 
scenarios and dynamics regimes as possible to perform optimal maneuver planning. 

In this work we presented a direct approach to find minimum fuel maneuver sequences 
for distributed spacecraft missions. The cost function is defined as the cumulative ~ V of 
all spacecraft in formation and we proposed a set of optional constraints to equalize the fuel 
expenditure among spacecraft over a particular maneuver sequence. The method requires 
solving a set of IVPs and TPBVPs for each cost function evaluation. However, given th 
speed of modern computers the method is not prohibitively slow. Analytic derivatives of 
the cost and constraints were derived to take full advantage of the power of the numerical 
optimization routine. The method was applied to two test problems: a HEO formation and 
a libration point formation. Several optimal scenarios were presented. 

Their ar several new contributions to th literature contained in this work. We gener­
alized methods previously developed in Refs [3] - [7], to permit minimum fuel optimization 
for a set of m spacecraft. We also generalized the method to find the optimal launch ve­
hicle injection orbit to minimize fuel during the initial spacecraft deployment phase. The 
cost function was reformulated to remove a naturally occurring singularity in the gradi­
ent, without loss of generality. We also formulated a set of constraints to equalize the 
fuel expenditure among spacecraft. These modifications, together with the work performed 
by previous researchers, provides an optimization technique for minimum fuel distributed 

26 



spacecraft maneuvers in multiple flight regimes including LEO, HEO , libration and in­
terplanetary trajectories. F\.uthermor , the method is not limited to small interspaceraft 
separations and is applicable to small formations or large constellations. 
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Appendix 1 

In Table 17, we see the thr e forms that the function fs(/:" vjk) can assume depending 
on the magnitude of /:"Vjk . The constants in the quartic equation are chos n so that fs and 
its first derivative are continuous for all values of /:"Vjk. If we label the different portions 
of fs as FI , F2, and F3 as shown in Figure 5, then the conditions to ensure a continuous 
function and its first derivative are 

8FI I 8F21 
8/:"v t:.VL = 8 /:"v t:.VL 

(109) 
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Table 17 DefiniLion of is (t:.Vjk) for different values of t:.vjI< 

6.Vjk fs(6.Vjk) 

F2 (6.VH) = 1 

These conditions yield the following system of linear , algebraic equations 

The solution to this system of equations is 

6.vL6.vl + 6.vL + 6.v1 - 36.vH a = - ----,---'-"-------~___=_--

(- 6.vH + 6.vL)36.v7I 

b = 2 6.vI6.v7I + 6.vI + 6.v16.vL - 26.vL 6.vH + 6.vk - 26.v7I 
(-6.vH + 6.vL)36.v7I 

6.vi + 6.vI6.vH + 46.v16.vI + 6.vk6.vL - 86.vL6.V7I + 6.v~ 
C=--~---,---'~--~~~~~-~-. __ ---~~-~ 

(-6.vH + 6.vL)36.v7I 

Appendix 2 

d = 2 (6.vL + 6.v1- 26.vH )6.vI 
6.vH( - 6.vH + 6.vL)3 

(llO) 

(Ill) 

(1l2) 

(1l3) 

(1l4) 

(1l5) 

(1l6) 

(1l7) 

In order to calculate all of the required partial derivatives, it is sometimes necessary 
to calculate the inverse of the state transition matrix_ Using well known formulas for the 
inverse of a block matrix, and assuming that all of the necessary inverses exist, one can 
show that 

<I> (t+l,t-)-l = [Aj +1,j B j+1 ,j ] - 1 
J J C -+1 - D -+1 -J ,J J ,J 

[ 
(A j+l ,j - B j+l ,j D Zt1,j C j+I,j)=1 (C j+I ,j - D j+I,jB j';I ,j A j+I,j)-l ] 
(B j+1,j - A j+1 ,j C j+1 ,j D j+1 ,j) 1 (D j+1,j - C j +1,j A j';l ,j B j+1 ,j)-1 
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Fig ure 5 Illustration of Is(6 V) 

From the above, we determine that 

B - 1 
j,j+1 

D j ,j+1 B j,J+l 

C Hl ,j - DHl,jBj~l ,j Aj+1 ,j 

-Bj~l ,jAj+1 ,j 

(118) 

(119) 

The relations above can be useful in reconciling the various expressions for the partial 
derivatives found in the literature. It should also be noted that for Hamiltonian systems, 
the state transition matrix is symplectic9 which implies that 

1 [A .+1 . <I> (t · 1 t ·)- - J ,J 
J+ 'J - C 

Hl,j 

B H1,j 
D Hl ,j 

D T+1 · J
T 

,J 

-C ·+ l · J ,J 

Appendix 3: Notation 

r 

v 
m 
nk 

<I> 
A 
B 
C 
D 
6.Vjk 

6.Vjk 

Pok 

Pfk 
X 
C 
i 
j 
k 

Position vector 
Velocity vector 
N umber of spacecraft in formation 

umber of maneuvers along kth trajectory 
State transition matrix 
Upper left 3x3 partition of <I> 
Upper right 3x3 partition of <I> 
Lower left 3x3 partition of <I> 
Lower right 3x3 partition of <I> 
lh impulsive maneuver on kth trajectory 
Magnitude of jth maneuver on kth trajectory 
Initial trajectory of kth spacecraft 
Final trajectory of kth spacecraft 
Vector of independent variables 
V< ctor of constants 
Internal maneuver location index, 2 ~ i ~ nk - 1 
Maneuver time index, 1 ~ j ~ nk 

Trajectory index, 1 ~ k ~ m 
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