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A health monitoring system based on analytical redundancy is developed for satellites
on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and at-
titude dynamics is modelled as a periodic system. Then, periodic fault detection filters are
designed to detect and identify the satellite’s actuator and sensor faults. In addition, parity
equations are constructed using the algebraic redundant relationship among the actuators
and sensors. Furthermore, a residual processor is designed to generate the probability of
each of the actuator and sensor faults by using a sequential probability test. Finally, the
health monitoring system, consisting of periodic fault detection filters, parity equations
and residual processor, is evaluated in the simulation in the presence of disturbances and
uncertainty.

I. Introduction

Satellites under automatic control demand a high degree of reliability in order to operate properly. If a
sensor fails, the controller’s command will be generated using incorrect measurements. If an actuator fails,
the controller’s command will not be applied properly to the satellite. To avoid this situation, one needs
a health monitoring system capable of detecting a fault as it occurs and identifying the faulty component.
This process is called fault detection and identification (or isolation).

The most common approach to fault detection and identification is hardware redundancy which is the
direct comparison of the outputs from identical components. It requires very little computation. However,
hardware redundancy is expensive and limited by space and weight. An alternative is analytical redundancy
which uses the modelled dynamic relationship between control commands and measurements to form a
residual process. Nominally, the residual is nonzero only when a fault has occurred and is zero at other
times. Furthermore, the residual is nonzero in a unique and fixed direction in response to each fault.
Therefore, when a nonzero residual is detected, a fault can be announced and the faulty component can be
identified.

One popular approach to analytical redundancy is the restricted diagonal detection filter1,2 which has
two special cases. When every fault is detected, it becomes the Beard-Jones detection filter3,4 which can
be determined by spectral methods.2,5, 6 When only one fault is detected, it becomes the unknown input
observer.7–9 Ref. 10 to 12 generalize the unknown input observer for time-invariant systems to the approx-
imate unknown input observer for time-varying systems. Furthermore, Ref. 13 generalizes the approximate
unknown input observer in Ref. 12 from detecting single fault to multiple faults to obtain the approximate
restricted diagonal detection filter for time-varying systems.

In Ref. 14, the fault detection filters in Ref. 12 and 13 are applied to periodic systems. For the approximate
unknown input observer, the filter gain becomes periodic naturally. For the approximate restricted diagonal
detection filter, the filter gain becomes periodic by imposing a boundary constraint on the initial and final
conditions. A numerical algorithm is given to solve for the periodic filter gain. This is an important extension

∗Research Engineer, Mechanical and Aerospace Engineering Department
†Graduate Student Researcher, Mechanical and Aerospace Engineering Department
‡Professor, Mechanical and Aerospace Engineering Department, AIAA Fellow
§Graduate Student Researcher, Mechanical and Aerospace Engineering Department
¶Aerospace Engineer, Flight Dynamics Analysis Branch, Code 595, AIAA Senior Member.

1 of 22

American Institute of Aeronautics and Astronautics



for the approximate restricted diagonal detection filter because the periodic filter gain can be computed off-
line and stored to be used repetitively.

Although the residual generated by the fault detection filter is nominally zero in the absence of a fault
and nonzero otherwise, when driven by disturbances and uncertainty, the residual fails to go to zero even
in the absence of a fault. Therefore, it is difficult to determine the occurrence of a fault by simply choosing
a threshold for the residual. To enhance fault detection and identification, a residual processor is used to
analyze the residual which can be viewed as a pattern containing information about the presence or absence
of a fault. A hypothesis is determined according to the pattern which is unique in response to a particular
fault. By considering the residual processor design as a hypothesis testing problem, the residual processor
could be a multiple-hypothesis Shiryayev sequential probability test.15 The fault identification problem is
now solved by assuming that each fault corresponds to certain hypothesis. Therefore, the residual processor
generates the conditional probability of each fault hypothesis rather than a binary announcement. This
allows for higher level decision making which now can be based on the probability.

In this paper, a health monitoring system based on analytical redundancy is developed for satellites
on elliptical orbits. Different from Ref. 14 where only orbital mechanics is included and the orientation of
the actuators and sensors is assumed to be fixed in the ECI reference frame, both orbital mechanics and
attitude dynamics are now included and the orientation of the actuators and sensors is assumed to be fixed
in the satellite reference frame to reflect a more realistic situation. Furthermore, in addition to periodic
fault detection filters, the residual processor is used to develop a complete health monitoring system for
satellites. In Section II, the background of the periodic fault detection filters and residual processor is given.
In Section III, the satellite on an elliptical orbit is modelled as a periodic system. In Section IV, periodic fault
detection filters are designed and evaluated in the presence of disturbances and uncertainty. In Section V,
the residual processor is designed and evaluated using the residuals generated in Section IV.

II. Background

In Section A, the actuator and sensor fault model is given. In Section B, the periodic fault detection
filters in Ref. 14 are given. In Section C, the multiple-hypothesis Shiryayev sequential probability test in
Ref. 15 is given.

A. Actuator and Sensor Fault Model

Consider a linear periodic system,

ẋ = Ax + Bu (1a)
y = Cx (1b)

where u is the control command, y is the measurement, A(t + T ) = A(t), B(t + T ) = B(t), C(t + T ) = C(t)
and T is the period. The ith actuator fault can be modelled as an additive term in the state equation (1a)

ẋ = Ax + Bu + Faµa

where the fault direction Fa is the ith column of B and the fault magnitude µa is an unknown and arbitrary
scalar function of time that is zero when there is no fault.

The ith sensor fault can be modelled as an additive term in the measurement equation (1b).

y = Cx + Esµs (2)

where the fault direction Es is a column of zeros except a one in the ith position and the fault magnitude
µs is an unknown and arbitrary scalar function of time that is zero when there is no fault. For the purpose
of fault detection filter design, an input to the state equation that drives the measurement in the same way
that µs does in (2) is obtained.10 Define a new state x̄ = x + fsµs where Es = Cfs. Then, the dynamic
equation of x̄ and (2) can be written as

˙̄x = Ax̄ + Bu +
[

fs f̄s

] [
µ̇s

µs

]
(3a)

y = Cx̄ (3b)
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where f̄s = ḟs −Afs. Therefore, for fault detection filter design, the sensor fault is modelled as a two-
dimensional additive term in the state equation as in (3).

B. Periodic Fault Detection Filter

The periodic multiple-fault detection filter problem considers a linear periodic system with q faults.

ẋ = Ax + Buu + Bww +
q∑

i=1

Fiµi

y = Cx + v

where w is the process noise and v is the sensor noise. If only s of the q faults need to be detected and
identified, the objective of the periodic multiple-fault detection filter problem is to find a periodic filter gain
L for the linear filter,

˙̂x = Ax̂ + Buu + L(y − Cx̂)
r = y − Cx̂

such that each projected residual Ĥir for i = 1 · · · s is affected primarily by its associated target fault µi and
minimally by its associated nuisance fault µ̂i = [µ1 · · · µi−1 µi+1 · · · µq ]T , process noise w, sensor noise v

and initial condition error x(t0)− x̂(t0). The projector Ĥi is defined a priori10

Ĥi = I −Ker Ĥi

[
(Ker Ĥi)T Ker Ĥi

]−1

(Ker Ĥi)T

where Ker Ĥi = [Cbi,1,δi,1 Cbi,2,δi,2 · · · Cbi,pi,δi,pi
]. The vectors bi,j,δi,j , j = 1 · · · pi, are found from the

iteration defined by the Goh transformation,16,17

bi,j,k = Abi,j,k−1 − ḃi,j,k−1

bi,j,0 = fi,j

where fi,j is the jth column of F̂i = [F1 · · · Fi−1 Fi+1 · · · Fq ] and pi = dim F̂i. δi,j is the smallest non-
negative integer such that Cbi,j,δi,j 6= 0. Note that the derivation of Ĥi can also be included in the periodic
multiple-fault detection filter problem instead of being defined a priori.

Here the optimization problem for the periodic multiple-fault detection filter is presented after some
manipulations. Please refer to Ref. 14 and 13 for more details.

min
L,W1(t0)···Ws(t0)

∫ t0+T

t0

tr

[
s∑

i=1

ĤiCWiC
T Ĥi

]
dt (4)

subject to

Ẇi = (A− LC)Wi + Wi(A− LC)T + (L− PiC
T V −1)V (L− PiC

T V −1)T (5a)
0 = Wi(t0 + T )−Wi(t0) (5b)

where
Ṗi = APi + PiA

T − PiC
T V −1CPi +

1
γi

F̂iQ̂iF̂
T
i − FiQiF

T
i + BwQwBT

w (6)

for i = 1 · · · s. For each projected residual Ĥir, Qi and γ−1
i Q̂i are the design weightings on the transmission

from the associated target fault and associated nuisance fault, respectively. When Qi is larger, the trans-
mission from µi is larger. When γ−1

i Q̂i is larger, the transmission from µ̂i is smaller. Similarly, Qw, V and
P0 are the design weightings on the transmission from the process noise, sensor noise and initial condition
error, respectively. When Qw, V and P0 are larger, the transmission from w, v and x(t0)− x̂(t0) is smaller,
respectively. Note that the Riccati matrix Pi in (6) is periodic and independent of L.
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By taking the first-order variation of (4) and (5), and using continuously differentiable matrix Lagrange
multipliers Ki’s to adjoin the constraint to the cost, the first-order necessary condition implies that the
optimal solution for L and the dynamics of Ki are

L∗ =

(
s∑

i=1

Ki

)−1 [
s∑

i=1

Ki(Pi + Wi)

]
CT V −1 (7)

satisfying (5) and

−K̇i = Ki(A− LC) + (A− LC)T Ki + CT ĤiC (8a)
0 = Ki(t0 + T )−Ki(t0) (8b)

where i = 1 · · · s. The process of deriving the filter gain of the periodic multiple-fault detection filter requires
the solution to a two-point boundary value problem that includes a set of Lyapunov equations, (5) and (8),
coupled by (7). A numerical algorithm is given in Ref. 14 to solve (4) numerically by using the steepest
descent method. However, the global minimum cannot be guaranteed because (4) may not be convex.

For the periodic single-fault detection filter problem that detects the fault µi and blocks the fault µ̂i, the
minimization problem (4) reduces to

min
L

1
t1 − t0

∫ t1

t0

tr
[
ĤiCWiC

T Ĥi

]
dt

subject to (5). The optimal filter gain is
L∗ = PiC

T V −1 (9)
using the solution to (6). Note that s single-fault detection filters are needed in order to monitor all s faults.
For all the results in the application in Section IV, the periodic single-fault detection filter is used.

C. Residual Processor

The residual processing problem is considered as a hypothesis testing problem which can be solved by the
multiple-hypothesis Shiryayev sequential probability test (MHSSPT).15 MHSSPT is a generalized result of
Ref. 18 which solves the change detection problem based on the results of Ref. 19 and by using a dynamic
programming formulation. Under certain condition, MHSSPT detects the change in hypothesis (i.e., the
occurrence of a disruption) in a conditionally independent measurement sequence in minimum time. In the
dynamic programming formulation, the measurement cost, the cost of false alarm and the cost of miss alarm
are considered. MHSSPT is shown to be optimal in the infinite time case.

Here, the propagation equation for the posterior probability of disruption conditioned on the measurement
sequence will be introduced first. This recursive formula allows the posterior probability of each hypothesis
to be calculated online and plays a central role in the dynamic programming analysis. Then, the assumptions
behind the derivation are discussed when the recursive formula is applied to our application. The propagation
equation of the posterior probability of each hypothesis based on the measurement history is

Fk+1,i =
P (θi ≤ tk+1/Xk) · fi(xk+1)∑m
i=0 P (θi ≤ tk+1/Xk) · fi(xk+1)

(10)

P (θi ≤ tk+1/Xk) = Fk,i + p̃i(1− Fk,i) ∀i 6= 0 (11)

P (θ0 ≤ tk+1/Xk) =
∏

i
(1− P (θi ≤ tk+1/Xk)) ∀i 6= 0 (12)

F0,i = πi (13)

where

Fk,i : P (θi ≤ tk/Xk)
θi : Time of transition to hypothesis Hi

Xk : Measurement history up to tk

p̃i : A priori probability of transition to hypothesis Hi from tk to tk+1,∀k
fi(xk) : Probability density function of xk given Hi

m + 1 : Number of hypotheses
πi : P (θi ≤ t0).
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The propagation equation (10) is derived from Bayes Rule under the following assumptions. First,
the measurement sequence xk is conditionally independent or equivalently, P (Xk/θi ≤ tk) = P (xk/θi ≤
tk)P (xk−1/θi ≤ tk) · · · P (x1/θi ≤ tk) which means that the measurement sequence is assumed to be
independent when a disruption occurred. Second, the statistical properties of the measurements (i.e., the
probability density function fi(·)) are assumed known before and after disruption for all hypotheses. Third,
the a priori transition probability p̃i is assumed to be known and constant for all stages. Note that the analysis
remains the same even if the transition probability is stage dependent. Finally, the a priori probability πi is
also assumed to be known for all hypotheses.

Now the validity of the above assumptions are discussed when the recursive formula is applied to our
application. First, it is likely that each of the residual process generated by the periodic fault detection
filter is time correlated. In our application, the collection of residuals generated at each time instant is
considered independent static pattern which can be associated to one of the pre-defined hypothesis. Second,
the distribution of the measurement sequence is assumed to be known before and after disruption. In practice,
the magnitude of the failure is not known priori. The statistical properties of the distribution defined for all
failure hypotheses may not be completely known. To deal with this uncertainty, if one of the parameters α
of the density function fi(·) is not known and assumed to follow its own distribution (i.e., a density function
ψα(·) defined over Ω), then the conditional density function fi(·) can be formulated as

fi(·) =
∫

Ω

fi(x/η) · ψα(η) · dη (14)

Finally, the probability of transition p̃i and the a priori probability πi are not known. Both of them are treated
as design parameters. In general, a smaller p̃i is chosen when noisy measurement sequence is processed. The
a priori probability πi is assumed to be a small number. These two parameters are not sensitive in the
algorithm and should not affect the performance when reasonable values are assumed.

III. Satellite Model

In this section, an Earth pointing satellite, which keeps one face of the satellite pointed to the Earth
all the time, is modelled as a periodic system. The actuators considered are three thrusters. The sensors
considered are a star sensor, a horizon sensor, a sun sensor, a GPS and an inertial measurement unit which
has three gyros and three accelerometers. In Section A, the dynamics of the satellite is given. In Section B,
the measurement model is given. In Section C, the dynamics of the satellite and the measurement model
are linearized for the periodic fault detection filter design.

A. Dynamics of Satellite

The equation of motion associated with the orbital mechanics of the satellite is

r̈ +
µ

‖r‖3 r − CI
BCB

T a = 0 (15)

where r = [ rx ry rz ]T is the position of the satellite in ECI reference frame, a = [ ax ay az ]T is the accel-
eration generated by the three thrusters in the thruster reference frame, CB

T is the transformation from the
thruster reference frame to satellite reference frame, CI

B is the transformation from the satellite reference
frame to ECI reference frame and µ is the Earth gravitational constant. In this paper, CB

T is chosen to be
an identity matrix while it can be any other values.

The attitude dynamics of the satellite is modelled for the nominal operation of the satellite where the
three attitude angles Θ = [ φ θ ψ ]T are defined as the angles between the nadir reference frame (i.e., the
system of coordinates that maintain their orientation relative to the Earth as the satellite moves on its orbit)
and satellite reference frame. The relationship between these two reference frames is

wB
IB = wB

NB + CB
NwN

IN (16)

where wB
IB is the angular velocity of satellite reference frame with respect to ECI reference frame expressed in

the satellite reference frame, wB
NB is the angular velocity of satellite reference frame with respect to the nadir

reference frame expressed in the satellite reference frame, wN
IN is the angular velocity of nadir reference frame
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with respect to ECI reference frame expressed in the nadir reference frame and CB
N is the transformation

from the nadir reference frame to satellite reference frame. Assume that the attitude angles are small which
is the case for an Earth pointing satellite. Then, wB

NB can be approximated by Θ̇ to the first order and from
(16),

Θ̇ = −CB
NwN

IN + wB
IB (17)

This can be used as the equation of motion associated with the attitude dynamics of the satellite given that
wB

IB can be measured by the gyros.
Therefore, by combining (15) and (17), the equation of motion of the satellite is

d

dt




r

ṙ

Θ


 =




ṙ

− µ
‖r‖3 r + CI

NCN
B a

−CB
NwN

IN + wB
IB


 (18)

where CN
B is the transformation from the satellite reference frame to nadir reference frame and CI

N is the
transformation from the nadir reference frame to ECI reference frame. Note that wN

IN and CI
N are functions

of r and CN
B is a function of Θ. Also note that a is the control input generated by the thrusters and wB

IB is
the measured input obtained by using the gyros.

B. Measurement Model

In this section, the measurement models of the star sensor, horizon sensor, sun sensor, GPS and inertial
measurement unit are given.

Star sensor Star sensor measures the azimuth φstar and elevation λstar of a star in the star sensor
reference frame and provides attitude information of the satellite by comparing the measured star coordinate
to the a priori known star coordinate in the star catalog.20 The measured unit vector in the direction of the
star in the star sensor reference frame is

ŝ =



− sin φstar cos λstar

cos φstar cos λstar

− sin λstar




which can be related to the unit vector s in the direction of the star in ECI reference frame from the star
catalog by

ŝ = Cstar
B CB

NCN
I s (19)

where Cstar
B is the transformation from the satellite reference frame to star sensor reference frame. In this

paper, Cstar
B is chosen to be an identity matrix and the star is chosen to be 15 degrees of right ascension and

10 degrees of declination in ECI reference frame while they can be any other values.

Horizon sensor Horizon sensor measures the angle between the satellite to Earth’s two horizons by
scanning the Earth with the scanner’s line of sight sweeping from one horizon to the other and multiplying
the time it takes to scan by the angular rate of the scanner rotation.21 Horizon sensor usually operates
with two synchronized scanners to scan upper and lower sides of the Earth that have equal distance to the
equator of the Earth. Attitude information of the satellite can be obtained as follows. When there is no
roll rotation, the times that it takes for the two scanners to scan the Earth are equal. When there is roll
rotation, one scanner will take longer to scan the Earth than the other scanner. The difference of the time
4t can be related to the roll angle φ by

v4 t = 4φ
2r2 + R2

e

2r2 −R2
e

(20)

where v is the angular rate of the scanner rotation and Re is the radius of the Earth. When there is no pitch
rotation, the satellite x-axis is perpendicular to the plane containing the two lines of sight at the middle of
the scanning process. When there is pitch rotation, the angle γh between the satellite x-axis and the plane
containing the two lines of sight at the middle of the scanning process is 90 degrees minus the pitch angle θ,
i.e.,

γh =
π

2
− θ (21)
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Sun sensor Sun sensor measures the azimuth φsun and elevation λsun of sun in the sun sensor reference
frame and provides attitude information of the satellite by comparing the measured sun coordinate to the
actual sun coordinate.20 The measured unit vector in the direction of sun in the sun sensor reference frame
is

ŝ =




cosφsun sin λsun

sin φsun sin λsun

cos λsun




which can be related to the unit vector s in the direction of sun in ECI reference frame by

ŝ = Csun
B CB

NCN
I s (22)

where Csun
B is the transformation from the satellite reference frame to sun sensor reference frame. In this

paper, Csun
B is chosen to be an identity matrix while it can be any other values.

Other sensors For the GPS, the measurement is the position of the satellite in ECI reference frame, i.e.,

ygps = r (23)

For the inertial measurement unit, there are three gyros and three accelerometers. The three gyros measure
the angular velocity of satellite reference frame with respect to ECI reference frame, i.e.,

ygyro = wB
IB (24)

The three accelerometers only measure the acceleration due to the three thrusters because they cannot mea-
sure the gravitational force. By aligning the three accelerometers along the three thrusters, the measurement
equation is

ya = a (25)

C. Linearized Satellite Model

Because the fault detection filter design requires a linear model, the equation of motion (18) and measurement
model are linearized around a Keplerian reference orbit with zero attitude angles. The Keplerian reference
orbit is chosen with semimajor axis of 6998.12 km, eccentricity of 0.01, inclination of 5 deg, right ascension
of the ascending node of 20 deg and argument of perigee of 15 deg. On the reference orbit, the nominal a is
zero and the nominal wB

IB is equal to wN
IN . Let the state x and input u be

x =




r

ṙ

Θ


 , u =

[
a

ygyro

]

Denote the nominal state as x0 and nominal input as u0.
The linearized equation of motion of the satellite is

d

dt




δr

δṙ

δΘ


 =




0 I 0
∂r̈
∂r |x0,u0 0 0
∂Θ̇
∂r |x0,u0

∂Θ̇
∂ṙ |x0,u0

∂Θ̇
∂Θ |x0,u0







δr

δṙ

δΘ


 +




0 0
CI

NCN
B |x0,u0 0
0 I




[
δa

δygyro

]
(26)

where some elements can be obtained analytically while other elements have to be obtained numerically
using the central difference method because they are too complex. The linearized measurement model can
be obtained similarly by linearizing the star sensor measurement ystar = [ φstar λstar ], horizon sensor
measurement yh = [ v 4 t γh ], sun sensor measurement ysun = [ φsun λsun ] and GPS measurement ygps

analytically or numerically, i.e.,

δy =




δystar

δyh

δysun

δygps


 = C




δr

δṙ

δΘ


 (27)
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IV. Periodic Fault Detection Filter Design and Evaluation

In this section, periodic fault detection filters are designed and evaluated for the three thrusters, three
gyros, star sensor, horizon sensor and sun sensor. Since there is redundancy in the number of GPS satellites,
it is assumed that there is a separate health monitoring system built into the GPS receiver.22 Therefore, it
is assumed here that the GPS is always healthy. Since the three accelerometers measure only the control
inputs but not the states, three algebraic parity equations can be constructed as

r = ya − a

For each residual, it is zero when there is no fault and becomes nonzero when the thruster fault or accelerom-
eter fault occurs. Therefore, each parity equation can detect one thruster fault and one accelerometer fault,
but cannot identify the fault that occurs. However, because the thruster fault can be detected and identified
by using the periodic fault detection filter, the accelerometer fault can be detected and identified by using the
parity equation assuming that these two faults do not occur at the same time. In Section A, periodic fault
detection filters are designed and more algebraic parity equations are constructed. In Section B, periodic
fault detection filters and parity equations are evaluated.

A. Periodic Fault Detection Filter Design

In order to design the periodic fault detection filter, the fault direction of each fault is obtained first. The
fault directions for the three thruster faults are the first three columns of the B matrix. The fault directions
for the three gyro faults are the last three columns of the B matrix. The fault directions for the star sensor,
horizon sensor and sun sensor faults cannot be formed because the C matrix in (27) loses rank and there
exists no fs in (3). Therefore, periodic fault detection filters are designed for the three thrusters and three
gyros using (26) and (27) while periodic fault detection filters are designed for the star sensor, horizon sensor
and sun sensor using (26) and a reduced-order measurement model that includes the GPS measurement and
only one of the two components from the measurements of each of the star sensor, horizon sensor and sun
sensor.

For the three thruster and three gyro faults, six periodic single-fault detection filters are designed. For
each single-fault detection filter, the target fault is one of the six faults and the nuisance fault is the other
five faults. The filter gain of the periodic single-fault detection filter is given by (9) using the solution to
(6). A process noise is assumed in (26) to model the uncertainty between the control commands and the
control inputs generated by the thrusters and the sensor noise in the gyros. Two different sets of design
weightings are chosen when designing the single-fault detection filters for the thruster faults. For the single-
fault detection filters that detect the first and third thruster faults, the periodic Riccati matrix Pi in (6) is
obtained with design weightings chosen as follows: Qi = 0.999, γ = 10−2, Q̂i = I, Qw is a diagonal matrix
with 1, 1, 1, 5, 5, and 5 on the diagonal line and V is a diagonal matrix with 2.3373× 10−9, 2.3373× 10−9,
7.2250 × 10−5, 7.6154 × 10−7, 5.2716 × 10−9, and 5.2716 × 10−9 on the diagonal line. For the single-fault
detection filter that detects the second thruster fault, a larger Q̂i = 100I is used to block the nuisance
faults better. For the single-fault detection filters that detect the three gyro faults, the same set of design
weightings is chosen. The periodic Riccati matrix Pi in (6) is obtained with design weightings chosen as
follows: Qi = 0.99, γ = 10−2, Q̂i = I, Qw = I and V = I. Note that V is treated as design parameter and
chosen to be I instead of using the true sensor covariance when designing the single-fault detection filters
for the three gyro faults because the performance of the single-fault detection filters is better when V = I.

For the star sensor, horizon sensor and sun sensor faults, three periodic single-fault detection filters are
designed similarly. For designing the single-fault detection filter that detects the star sensor fault, a reduced-
order measurement model that includes ygps, λstar, γh and φsun is used. For designing the two single-fault
detection filters that detect the horizon sensor and sun sensor faults, a reduced-order measurement model
that includes ygps, φstar, γh and λsun is used. These two reduced-order measurement models are used
because they provide better rank condition than other six possible reduced-order measurement models over
the entire period.

The fault directions for the star sensor, horizon sensor and sun sensor faults in (3) are obtained by using

fs = CT (CCT )−1Es

ḟs = ĊT (CCT )−1Es − CT (CCT )−1(ĊCT + CĊT )(CCT )−1Es
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where C is the corresponding reduced-order measurement matrix. Note that f̄s’s, the fault directions rep-
resenting the fault magnitudes, are very small and about three orders smaller than fs’s, the fault directions
representing the fault rates. This indicates that if the faults are low-frequency, it will be difficult to detect
the faults. For example, if the target fault is a bias, the projected residual will become small after a while
even though the target fault still exists. Physically, this is because the attitude angles are weakly coupled
with the rest of the dynamics and the star sensor, horizon sensor and sun sensor measure functions of mainly
the attitude angles. On the other hand, since f̄s’s are very small, the fault detection filter may be designed
using only fs’s. The advantage is that the fault detection filter can detect and identify more faults in one
filter because the dimension of the fault is reduced. The disadvantage is that the projected residual may be
a little more sensitive to the nuisance fault because the fault magnitude direction of the nuisance fault is not
blocked. However, the fault magnitude direction of the nuisance fault may be included in the process noise
to improve the blocking of the nuisance fault.

When designing these three periodic single-fault detection filters, the target fault is one of the star sensor,
horizon sensor and sun sensor faults and the nuisance fault is the other two sensor faults. A collection of the
design weightings are used when tuning each of the single-fault detection filters. Then, the design weightings
that offer the best performance are chosen. For the single-fault detection filter that detects the star sensor
fault, the periodic Riccati matrix Pi in (6) is obtained with design weightings chosen as follows: Qi = 0.1,
γ = 10−2, Q̂i = I, V = I and Qw is a diagonal matrix with 1, 1, 1, 1, 1 and 104 on the diagonal line.
Then, the filter gain of the periodic single-fault detection filter is obtained by (9). Similarly, the single-fault
detection filter that detects the horizon sensor fault is designed with Qi = 0.85, γ = 10−2, Q̂i = I, V = I and
Qw = I. Finally, the single-fault detection filter that detects the sun sensor fault is designed with Qi = 0.1,
γ = 10−2, Q̂i is a diagonal matrix with 1 and 100 on the diagonal line, V = I and Qw is a diagonal matrix
with 104, 104, 104, 1, 102 and 104 on the diagonal line.

Since the C matrix in (27) loses rank, there exists algebraic redundant relationship among the star sensor,
horizon sensor, sun sensor and GPS that can be used to construct algebraic parity equations. First, there are
three singular values of the C matrix that are very small compared to other singular values over the entire
period. This indicates that there exist three parity equations for these sensors. In order to construct parity
equations that are not sensitive to certain faults, three reduced-order measurement models, δyr = Crδx, are
formed without using one of the star sensor, horizon sensor and sun sensor, respectively. For each of thee
reduced-order measurement model, δyr are the measurements from the GPS and two of the three sensors
and δx are the states defined in (27). For each of the three reduced-order measurement matrices Cr, there
is one singular value that is very small which indicates that there exists one parity equation which can be
constructed as

r = zT δyr

where z is the left singular vector of Cr associated with the smallest singular value and zT Cr = 0. Since
each of these three parity equations is not sensitive to one of the star sensor, horizon sensor and sun sensor
faults, these three parity equations can be used to detect and identify the star sensor, horizon sensor and
sun sensor faults given that only one fault occurs at a time.

B. Periodic Fault Detection Filter Evaluation

These periodic fault detection filters and algebraic parity equations are implemented in simulation with
measurements updated at 10 Hz. The parameters of the periodic fault detection filters and parity equations,
and nominal measurement on the reference orbit are stored as a table with time of the reference orbit as the
index over one period. In order to calculate the residuals of the fault detection filters and parity equations,
the appropriate parameters and nominal measurement are obtained by using the point on the reference orbit
that is closest to the position of the satellite as measured by GPS. Please refer to Ref. 14 for more details.

The performance of the periodic fault detection filters and parity equations is evaluated when the satellite
travels on another Keplerian orbit with the same orbital elements of the reference orbit except that the
semimajor axis is 20 km larger. Realistic sensor noise is imposed on the sensors as white Gaussian noise
with standard deviation of 4.8346×10−5 rad for the star sensor, 0.0085 and 8.7266×10−4 rad for the horizon
sensor, 7.2606× 10−5 rad for the sun sensor, 1 m for the GPS and 0.0005 rad/s for the gyros. To evaluate
the performance of the periodic fault detection filters and parity equations, a bias fault of 1 m/s2 is imposed
on each of the three thrusters separately at the 2000th second. Also, a bias fault of ten times larger than the
standard deviation of the sensor noise is imposed on the star sensor, horizon sensor, sun sensor and three
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gyros separately at the 2000th second.
First, the performance of the six periodic single-fault detection filters for the three thrusters and three

gyros is shown. Figure 1 shows the time response of the norm of the six projected residuals over one period
when there is no fault. Figures 2 to 4 show the projected residuals when the first, second and third thruster
fault occurs, respectively. Figures 5 to 7 show the projected residuals when the first, second and third gyro
fault occurs, respectively. These figures show that when a thruster or gyro fault occurs, only the projected
residual associated with the faulty thruster or gyro becomes large while the projected residuals associated
with the healthy thrusters and gyros remain small. Therefore, the six periodic single-fault detection filters
can detect and identify the three thruster faults and three gyro faults very well. Note that these projected
residuals are scaled such that each projected residual becomes one when its associated target fault occurs
and when the satellite travels on the reference orbit without any disturbances and uncertainty.
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Figure 1. No fault occurs.

Then, the performance of the three periodic single-fault detection filters and three parity equations for
the star sensor, horizon sensor and sun sensor is shown. Figure 8 shows the time response of the norm of
the three projected residuals of the periodic single-fault detection filters and the absolute value of the three
residuals of the parity equations over one period when there is no fault. Figures 9 to 11 show the residuals
when the star sensor, horizon sensor and sun sensor fault occurs, respectively. These figures show that
when one of these three sensor faults occurs, only the projected residual of the periodic single-fault detection
filter associated with the faulty sensor becomes large while the projected residuals of the periodic single-fault
detection filters associated with the healthy sensors remain small. However, the projected residual associated
with the faulty sensor becomes small after a while even though the fault still exists because the fault direction
representing the fault magnitude is very small as discussed earlier. Note that the duration of the projected
residual staying large is long enough for detecting and identifying the fault by using the fault detection filter
along with the residual processor which is discussed in Section V.

V. Residual Processor Design and Evaluation

As discussed in the previous sections, there are nine periodic fault detection filters and three algebraic
parity equations designed for residual generation. There are six elements from each filter residual and one
form each parity equation. Therefore, the number of the input elements to the residual processor is 57
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Figure 2. First thruster fault occurs.
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Figure 3. Second thruster fault occurs.
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Figure 4. Third thruster fault occurs.
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Figure 5. First gyro fault occurs.
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Figure 6. Second gyro fault occurs.
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Figure 7. Third gyro fault occurs.
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Figure 8. No fault occurs.
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Figure 9. Star sensor fault occurs.
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Figure 10. Horizon sensor fault occurs.
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Figure 11. Sun sensor fault occurs.
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in total. This leads to intensive computations. To reduce the complexity of the problem and shorten the
processing time, the norm of the residual of each filter and parity equation is used instead. Then, the input
vector of the residual processor has only 12 elements. Another advantage of using just the norm is that only
one hypothesis is enough when defining a failure hypothesis. Without the norm operating on the residual,
two hypotheses are needed to define one fault. One hypothesis is needed to define the positive fault scenario
and the another hypothesis is associated to the negative fault scenario.

Including null hypothesis and nine failure hypotheses, there are totally ten hypotheses are defined when
designing the residual processor. In tradition, the no fault hypothesis is referred to as the null hypothesis.
The nine failure hypotheses are first thruster fault hypothesis, second thruster fault hypothesis, third thruster
fault hypothesis, first gyro fault hypothesis, second gyro fault hypothesis, third gyro fault hypothesis, star
sensor fault hypothesis, horizon sensor fault hypothesis and sun sensor fault hypothesis. The output of the
residual processor are the probabilities of the ten hypotheses conditioned on the history of the residuals.

Now, we are ready to define the hypothesis conditioned density functions. For the problem at hand,
it is assumed that the input vector generated at each time instant is Gaussian distributed. Following the
formulation shown in (14), a Gaussian distributed random vector x ∈ Rn where x ∼ N (mi, Λxi

) with the
mean mi ∈ Rn and mi ∼ Unif [bi, bi + 2 ·m∗

i ] ∀m∗
i ≥ 0 where bi ∈ Rn, the probability density function can

be written as

fi(x) =
1

4n ·Πjm∗
ij

· [erf{ 1√
2
· Λ−1/2

xi
· (x− bi)} − erf{ 1√

2
· Λ−1/2

xi
· (x− bi − 2 ·m∗

i )}]

Note that Gaussian model may not be the most accurate assumption. Other probability density functions
can be chosen to propagate the posterior probability. The analysis in the Shiryayev test still remains the
same.

The mean and covariance of the conditional probability density under each of the given hypothesis
are determined from the simulation. For example, if the magnitude of all the filter residuals are smaller
than 0.5 when no fault presents, the mean of the input residual vector can be assumed to be uniformly
distributed between 0 and 0.5 when defining the null hypothesis. To define a particular failure hypothesis,
the corresponding fault with a variety of magnitude are introduced in the simulation. Then, the corresponding
magnitude of the residuals are recorded and the range of the mean can be determined accordingly. Finally,
the covariances can be calculated from the simulated residuals. In our analysis, the priori probability of
transition p̃i is assumed to be 10−8 and the a priori probabilities πi is chosen to be 0.001. Both of them are
assumed to be same for all hypotheses.

The multiple-hypothesis Shiryayev sequential probability test can now be applied on the residuals of
the periodic fault detection filters and the parity equations to propagate the posterior probability of each
hypothesis. Figure 12 shows the posterior probability conditioned on each of the nine failure hypothesis when
there is no fault. It can be seen that the failure probabilities stay at zero in the entire period. Figure 13
to 15 shows the hypothesis conditioned probability when the first, second and third thruster fault occurs,
respectively. It is shown that our scheme correctly identified the three thruster faults. Figure 16 to 18 show
the conditioned probability when the first, second and third gyro fault occurs, respectively. The processor
has a little trouble in differentiating between first gyro fault and second gyro fault right after the fault
is occurred. However, this should not cause a false declaration when the false alarm rate is chosen to be
smaller than 0.1 which leads to a threshold probability bigger than 0.9. Therefore, the Shiryayev test can still
correctly identifies these two failures. Finally, Figures 19 to 21show the posterior probability when the star,
horizon and sun sensor fault occurs, respectively. The results show that the sensor faults can be detected
and identified within fraction of a second.

VI. Conclusion

A complete health monitoring system based on analytical redundancy is developed for satellites on
elliptical orbits which can be modelled as periodic systems. This health monitoring system consists of
periodic fault detection filters, algebraic parity equations and residual processor. The actuators and sensors
being monitored include three thrusters, three gyros, a star sensor, a horizon sensor, a sun sensor and
three accelerometers. The performance of the health monitoring system is evaluated in the simulation in
the presence of disturbances and uncertainty. For the star sensor, horizon sensor and sun sensor faults,
the residual processor announces the fault in a fraction of second. For the three gyro faults, the residual
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Figure 12. No fault occurs.
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Figure 13. First thruster fault occurs.
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Figure 14. Second thruster fault occurs.
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Figure 15. Third thruster fault occurs.
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Figure 16. First gyro fault occurs.
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Figure 17. Second gyro fault occurs.
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Figure 18. Third gyro fault occurs.
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Figure 19. Star sensor fault occurs.
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Figure 20. Horizon sensor fault occurs.
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Figure 21. Sun sensor fault occurs.
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processor needs up to about one second to announce the fault. For the three thruster faults, the residual
processor needs about four seconds to announce the fault. Note that the satellite will only deviate from the
desired trajectory by 8 m in four seconds given that the thruster fault is 1 m/s2. When the fault magnitude
becomes larger, the time that the residual processor needs to announce the fault will decrease. In this paper,
only single satellite is considered. When a cluster of satellites are considered, the time that the residual
processor needs to detect the thruster fault is expected to decrease because the additional range sensor can
be very accurate.
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