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Introduction 

Recently, the authors completed a study' of the Davenport angles, which are a 
generalization of the Euler angles for which the initial and final Euler axes need not 
be either mutually parallel or mutually perpendicular or even along the coordinate 
axes. During the conduct of that study, those authors discovered a relationship 
which can be used to compute straightforwardly the Euler angles characterizing a 
proper-orthogonal direction-cosine matrix for an arbitrary Euler-axis set satisfymg 

ii, . fi2 = 0 and ii3 . ii, = 0, (1) 
which is also satisfied by the more usual Euler angles we encounter commonly 
in the practice of Astronautics. Rather than leave that relationship hidden in an 
article with very different focus from the present Engineering note, we present it 
and the universal algorithm derived from it for extracting the Euler angles from 
the direction-cosine matrix here. We also offer literal "code" for performing the 
operations, numerical examples, and general considerations about the extraction 
of Euler angles which are not universally known, particularly, the treatment of 
statistical error. 

Development of the Eormuia 

Let ii,, ii,, 5, be a sequence of three (unit) Euler axes, and rp, 8, v be the 
associated Euler angles.' Then the direction-cosine matrix D corresponding to these 
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Euler axes and Euler angles is given by 

where R(ii. 0) denotes the direction-cosine matrix2 of a rotation about an axis 
ii through an angle 8. Davenport3 and Ref. 1 showed that such Euler angles 
exist for any proper-orthogonal D and any set of Euler axes satisfying Eq. (1). 
Thus, i? this work, our interest is not limited to Euler axes chosen from the set 
E E (*l, h2, &}, where 

although in practice this is the case which occurs with greatest frequency. 
The relationship discovered in Ref. 1 is 

with 

(5 )  

( 6 )  

1 = arctan,[(fi, x a,). ii,, 6, . fi,] 

c = [a, (ii, x ii,) fi,]T 

1 where the matrix in Eq. (6) has been indicated by its column vectors, and 
arctan,(y, x )  returns the value of tan-’(y/x) in the correct quadrant. 

Writing 
0 R313(9, 0 - 1, W) (7) 

(8) 

we can solve Eq. (4) as 
0 = R T ( i ,  1) C D CT 

It is considerably easier to extract the values of (a, 19, y) from 0 than from D 
directly. 

From the familiar formula , 

cw cy, - sly CB’ sq c y  sy, + syr CB’ ca, sy SB’ 

R3,3(at 8‘. w )  = -sy c 9  - c y  CB’ sy, -sy sip + c y  CB’ c q  cyr SO’ 3 i SO’ s 9  - S B ’ C a ,  CB’ , 

(9 )  

with c 9  E cos 9, sy, = sin a, etc., and 19’ = B - 1, we have immediately 

29 = a. + cos-1 o,, (10a) 

and, for 1 < B < 1 + T,  

a, = arctan2(03,, -032) and y = arctan,(0,3, 0,) (IObc) 

For 29 = 1 or B = l + l r  the arguments of Eqs. (lob) and (lOc) all vanish, and the 
and y. In those two special cases, two equations have no unique solution for 
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0 depends only on cp - ly or  v, + ly, respectively. Thus, for 8 = 2 one can write at 
best 

9, - w = =ctandO,, - 0 2 ,  r 01,  + 0,) (W 
and for d = l + a  

9, + w = =cm,(0,2 + 02,. O,, - 072) (Ilb) 

Typically, in these cases, one sets ly = 0. Equations (11) are much better behaved 
numerically thrin the usual formulas’ with slightly simpler arguments in the-arctan, 
functions. One or the other of these equations are also better behaved numerically 
than Eqs. (IObc) neur B = 1 or  0 = I + x ,  respectively. Unfortunately, there are no 
available numerically well-behaved equations for both v, and ly in these regions. 

If the Euler axes are chosen from E, or from any orthonormal set of 3 x 1 
matrices, then 1 may take on  the value -x/2, 0, w / 2 ,  or w (mod 2x).  When this 
makes the range of d inconvenient the angles may be replaced by their equivalents 
according to’ 

Frequently one desires that 8 be in the range 0 2 79 5 r. 

the (proper-orthogonal) direction-cosine matrix is: 

Given D, I,, fi2, fi3 : 

(v,, 8, w) +-+ (cp+r, 21-  8, w - x )  mod 2w (12) 

Thus, given D, fi,, fi,, fi3, the  algorithm for extracting the Euler angles from 

0 Set observability flag to “poor.” 
Compute 1 and C from Eqs.  (5) and (6) 

0 Compute 0 from Eq. (8) 
0 C o m p t e  d from Eq. (loa) 

If 18-21 2 E and IO-%--wl 2 6, ( E  is machine- and problem-dependent) 
- Set observability flag to “good.” 
- Compute v, and ly from Eqs. (lob) and (1Oc) 

- Set l y = O  

- If Id - I1 < E ,  compute cp from Eq. ( l l a )  
- If Id - 1 - wI < E ,  compute v, from Eq. ( l l b )  

rn Adjust angles according to  Eq. (12) if necessary 
The outputs are v,, 8, v, and the observability flag. 

Else 

Note that the tests above refer to the value of the argument (mod 2w) which is 
srnalle-st. 

Our result should be compared to that of K ~ l v e , ~  who, instead of performing 
analytical operations on the direction-cosine matrix, does a special accounting of 
the indices. Kolve’s method is applicable only to  Euler axes which are parallel to 
the coordinate axes. Thus, Kolve’s method cannot be applied to the second of the 
numerical exampies below. 

We note that cp and ly cannot be calculated unambiguously using only Eqs. ( l la )  
2nd (Ilk? /. 7712 :o!ution of -f the ql:ifinnc yi)?:p!d n:!merhJ rp_s!:!ts f~ 

c p - y + 2 m x  and v,+ly+2nx 

respectively, where m and n are integers. By taking linear combinations of these 
two quantities, we can obtain numerical results for 

v , + ( m + n ) w  and ly-(rn-n)x 
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and neither m + n nor m - n need be even integers. Thus, both a, and p + n and 
both ty and ty + n are possible solutions, which is unacceptable. It follows that we 
cannot use Eq. ( l la)  and Eq. ( l lb)  alone to calculate a, and ty. 

Instead of the program we have given following Eq. (12) we can use Eq. ( l la )  
when O,, 2 0 to solve for a,-w or Eq. ( l lb)  when 0,, < 0 to solve for a , f ~  and to 
supplement either of these solutions with that for 9 or ty from either Eq. (loa) or 
Eq. (lob), respectively. The resulting a, and ty will not suffer from the ambiguity 
of multiples of n, but only from the usual ambiguity of multiples of 2x, which 
causes us no distress. 

When Id- 11 is close to 0 or x ,  the alternate method will yield an accurate value 
for a,&ty for one choice of the sign, but the value for the solution from Eq. (loa) 
or Eq. (lob) (and its accuracy) will be the same as for the program above. When 
this is combined with the 9 & ty to obtain the remaining angle, that angle will 
suffer then from the same lack of significance as that calculated from this work's 
proposed program. Thus, whether one uses the prograin proposed above for the 
individual angles or the alternate method is purely a matter of esthetic taste, 

Numerical Examples 

Example 1 

As a simple example, consider the computation of a,, 0, and ty for a 3-1-2 set of 
Euler axes with true values a, = 45 deg, 0 = 30 deg and ty = 20 deg. The resulting 
direction-cosine matrix is 

D = R(2, 20 deg) R ( i ,  30 deg) R(3, 45 deg) 

1 0.5435 0.7854 -0.2962 

= -0.6124 0.6124 0.5000 [ 0.5741 -0.0904 0.8138 

One finds straightforwardly that 

C = and 1 = arctan,(l, 0) = w/2 (14) 

Performing the multiplications of Eq. (8) yields 

(15) 

(16) 

1 0.5435 0.7854 -0.2962 

0 = -0.5741 0.0904 -0.8138 [ -0.6124 0 6124 0.5000 

and applying Eqs. (10) yields 

9 = 45.0000, 19 = 30.0000, w = 20.0000. 

as expected. Deviatiozs wcw onbj in the 14th d e c i r d  p!ace. 

Example 2 

To appreciate the power of this algorithm consider the following more complex 
example example: 

1/& I/& 
ii, = [I/:] , fi,= [-I:&] , n3 1 .  = 
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The Euler-axis set is orthonormal hut not proper orthonormal, and two of the axes 
are certainly not along body coordinate axes. Let the direction-cosine matrix be 

Then 

D = R(ii3. 20 deg)R(ii,, 30 deg) R(B,, 45 deg) 

1 0.9929 0.1171 0.0216 

-0.0887 0.6063 0.7903 
0.0795 -0.7866 0.6124 

1 / a  I/Jz 0 

and 
1 = arctan,(-I, 0) = -x/2 

Performing the multiplications of Fq. (8) yields 

1 0.7854 0.5435 0.2962 

0 = 0.0904 -0.5741 0.8138 i 0.6124 -0.6124 -0.5OOO 

and applying 3 s .  (10) yields 

as expected. Again, deviations from the input values occur only in the 14th decimal 
place. 

Note that although the Euler angles have the same values in the two examples, 
the direction-cosine matrices 0 are not identical. This is because the middle angle 
for 0 is not d but d - 1 and 1 has different values in the two examples. Also, 
0 from rhe first example had a value outside the internal 0 5 13 5 K and required 
adjustment according to Eq. (12). Note the similarities (if not equality) of the 
matrix entries, although they may differ by a sign and not always be in the same 
place. These similarities are due to the fact that In our examples above 1 has the 
value x/2 or  -z/2 so that the transformation of Eq. (12) is of a rather trivial sort. 
Had the two I had very different values from multiples of x/2, then the similarity 
of the matrix elements might not be present. That situation will occur, however, 
only when the three rotation axes are chosen from a non-orthonormal set (but 
satisfying Eq. (l)), in which case we are dealing not wirh Euler angies but with 
the Davenport 

Statistical Considerations 

Since radiation-hardened spacecraft computers are routinely available now which 
implement IEEE Standard 754 for double precision in its numerical computations, 
questions of numerical precision are not the deciding factor in  choosing the value of 
e but rather estimation accuracy. However, since the direction-cosine matrix usually 
arises from an estimation process, it is of interest to study how the estimation 
errors affect the extraction of Euler angles. 
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The covariance matrix of the attitude is best represented in terms of the attitude 
increment vector A t ,  which we now define.2 Let D* be the estimated direction- 
cosine matrix and DtrUe the true direction-cosine matrix. Then the two can be 
related by a very small rotation according to 

with 

The attitude increment vector A{ is thus the rotation vector of a very small rotation. 
The attitude covariance matrix is best defined as the covariance matrix of A{. Thus 

where E ( . ) denotes the expectation. This definition of the covariance matrix has 
the advantage of being independent of the choice of primary reference axes and 
transforms in the usual way under a change of the body axes. It is immune to the 
diseases which effect the covariance matrix expressed in terms of the Euler angles, 
which we will encounter below. 

The statistical errors in the Euler angles are given by the 3 x 1 array 

A# 3 

where again 8’ = 0 - i appears in the formulas, because this, effectively, is the 
quantity which we are extracting ultimately from the direction-cosine matrix. This 
error vector in the Euler angles can be related to the attitude increment vector by 

which is Eq. (412) of Ref. 2. For a 3-1-3 set of Euler angles (Eq. (300) of Ref. 2) 

(27) 

which may be factored as 

sin ty cos w 0 

sin 0’ cos w - sin 9’ cos 0 
- cos 8’ sin y - cos 0’ cos yr sin 19’ 

M-I(q,  d’, y) = io 1 

which clearly becomes infinite as 0‘ approaches 0 or a. Note that the second 
matrix in Eq. (28) is proper orthogonal. 

For the sake of example, let us assume that 

pte = cr2 13x3 (29) 
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so that the variance of ty is 
.’, = 6 2  mf?ls’ 

Had we not chosen the attitude covariance matrix in our example to be a multiple 
of the 3 x 3 identity matrix, we would have found that both tsq and ow become 
infinite at 8’ = 0 or r. 

The estimate for ty becomes meaningless, obviously, when C T ~  becomes equal 
to’ 180 deg or 648,000 arcsec. If (T is equal to 1.0 arcsec, this occurs when 8‘ is 
equal to 0.3 arcsec or 180de,o-0.3arcsec. Far (T equal to 1.0 deg, it occurs when 
8’ is equal to 0.2 deg or 179.8 deg. Thus, as we approach the extrema of 8‘, 
statistical significance becomes lost before numerical significance is lost, except for 
computers whose wordlength is much smaller than that needed to  accommodate 
the IEEE standard for double precision floating point numbers. 
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