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I. INTRODUCTION 

The Energy Finite Element Analysis (EFEA) is a finite element based computational method for 
high frequency vibration and acoustic analysis [1-7]. The EFEA solves with finite elements 
governing differential equations for energy variables. These equations are developed from wave 
equations. Recently, an EFEA method for computing high frequency vibration of structures 
either in vacuum or in contact with a dense fluid has been presented [2-4]. The presence of fluid 
loading has been considered through added mass and radiation damping. The EFEA 
developments were validated by comparing EFEA results to solutions obtained by very dense 
conventional finite element models and solutions from classical techniques such as statistical 
energy analysis (SEA) [8] and the modal decomposition method for bodies of revolution. EFEA 
results have also been compared favorably with test data for the vibration and the radiated noise 
generated by a large scale submersible vehicle.  

The primary variable in EFEA is defined as the time averaged over a period and space averaged 
over a wavelength energy density. A joint matrix computed from the power transmission 
coefficients is utilized for coupling the energy density variables across any discontinuities, such 
as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency 
vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the 
interval length between two periodic stiffeners, therefore the stiffener stiffness can not be 
smeared by computing an equivalent rigidity for the plate or cylinder [11]. The periodic 
stiffeners must be regarded as coupling components between periodic units. In this paper, 
Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for 
accounting for the periodicity characteristics. 

A structure is considered as a periodic structure when it is composed by a number of identical 
units connected in a regular pattern. The propagation constant, which relates the wave 
amplitudes of two points at adjacent units separated by the periodic distance, is used to simulate 
the characteristics of periodic structure. SenGupta [9] presented an overview of application of 
periodic structure theory in the analysis of dynamic responses of periodic structures. Mead [10] 
outlined systemic methods for analyzing and for predicting the free and forced wave motion in 
continuous and periodic structures. A formulation for computing the propagation constants of a 
cylindrical shell with periodically axial stringers or circumferential stiffeners is presented by 
Mead and Bardell in Refs. [12] and [13], respectively. 

In this work, the wave transmission of a cylindrical shell stiffened by both the periodically axial 
stringers and the periodically circumferential stiffeners are considered. The basic periodic unit 
consists of a single bay of the cylindrical shell with a ring stiffener at each axial end and a 
stringer at each circumferential end. A hybrid method combining PS theory with the EFEA is 
used to solve it. The joint matrices of the EFEA formulation at stiffeners’ locations are calculated 
from the energy ratio between two adjacent periodic units based on the following procedure. A 
method same to that in Refs [10] and [13] is employed. The rotational inertia effects of the 
stiffeners are ignored when computing the propagation constants for the axially stiffened 
cylinder and the circumferentially stiffened cylinder. All the equations and related derivations 
corresponding to the axial stringers are presented in this report. Similar procedures and 
derivations can be used for the ring stiffeners. The flexural energy ratio between two adjacent 
periodic units is evaluated from the attenuation constants which are defined as the real part of the 
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propagation constants. An iterative algorithm [15] is employed for deriving the power transfer 
coefficients from the energy ratio between two adjacent periodic units. The calculated power 
transfer coefficients account for the periodicity characteristics and are utilized in computing the 
joint matrices of the EFEA formulation. The energy density distribution over the entire periodic 
structure is computed by the EFEA model which includes the periodicity effects through the 
formulation of the joint matrices. In order to validate the new development, the vibration of the 
NASA aluminum testbed cylinder subjected to shaker excitations are analyzed and compared 
with test results. 

II. OVERVIEW OF EFEA FORMULATION 

The EFEA governing differential equations are developed by considering orthogonal and 
incoherent waves traveling within the medium of interest. Expressions for the energy density and 
the power flow are developed from the wave equations. These expressions are employed for 
deriving a relationship between the energy density and the power flow which is eventually 
utilized along with a power balance over a differential control volume for deriving the governing 
differential equation for the EFEA:  

>∏>=<<+><∇− in
2

2

eηωe
ηω

cg ,                            (1) 

where e  indicates the averaged energy density, gc  is the group velocity, η  is the structural 

damping factor, ω  is the radian frequency, >∏< in  is the external input power to the structure. 

A finite element formulation is employed for solving equation (1) numerically. The element level 
systems of equation are: 

}{}{}]{[ eeee QFeK += ,                                               (2)  

where superscript e indicate element-based quantities, { }ee  is the vector of nodal values of the 

energy density at the nodes of a finite element, [ ]eK  is the system matrix for the element, { }eF  is 

the vector of external input power at the nodal locations of the element, and { }eQ  is the vector of 
the internal  power flow across the element boundary which provides the mechanism for 
assembling the global system of equations for adjacent elements and for connecting elements 
across discontinuities. At the boundaries of the elements between discontinuities, the energy 
density is discontinuous and the coupling in the global system of equations is achieved by 
accounting for continuity in the power flow. The vector of internal power flow { }eQ  is expressed 
as a product between the joint matrix and the nodal values of the energy density. The joint matrix 
represents the power transmission mechanism across the discontinuity 
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where i and j refer to the two elements connected at the discontinuity, n and n+1 indicate the two 
nodes of the element i at the joint, m and m+1 indicate the two nodes of the element j at the joint, 

][ ijJ  is the joint matrix which captures the mechanism of power transfer between elements i and 

j across the discontinuity. In this work, the joint matrix is computed based on PS theory. 
Introducing (3) into (2) and assembling two element matrices into the global matrix results in: 
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where [ ]e
iK  and [ ]e

jK  are the element matrices for elements i and j, respectively, { }ie  and { }je  are 

vectors containing all the nodal degrees of freedom for elements i and j, respectively. ][ ijJC  is a 

coupling matrix comprised by the coefficients of ][ ijJ  positioned in the appropriate locations. 

The assembly of the element matrices between elements with no discontinuities is performed in 
the conventional finite element manner since in this case the energy density is continuous at the 
nodes between elements. The final system of EFEA equations is: 

[ ] [ ][ ]{ } { }FeJCK =+∑ ,                                        (5) 

where Σ indicates the summation of all the coupling matrices that correspond to all the 
discontinuities in the model.  

III. DERIVATION OF JOINT MATRIX FOR A PERIODIC AXIAL STRINGER FROM 
PERIODIC STRUCTURE THEORY 

The cylinder analyzed in this work includes both the axial stringers and the circumferential 
stiffeners. The power transfer coefficients at the locations of the periodic (axial or 
circumferential) stiffeners are derived based on PS theory [9]. In this section the wave solution in 
a periodically axially stiffened cylindrical shell is used for computing the propagation constants. 
Similar procedure can be used for the circumferentially stiffened cylindrical shell [4, 13]. The 
propagation constants are employed for determining appropriate values for the power transfer 
coefficients between adjacent periodic units at the locations of the stiffeners. Thus, the joint 
matrices of the EFEA formulation corresponding to the periodic stiffeners end up including the 
periodic effects. 

DERIVATION OF PROPAGATION CONSTANT FROM PERIODIC STRUCTURE THEORY 

The edge displacements and force/moment resultants acting on the edges of a periodic section 
(Figure 1(b)) are related by the following equation [11]: 
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where µ  is defined as a propagation constant. The force and moment resultants along the two 
axial stiffened edges can be expressed in terms of the displacements u , υ  and w  using 
Hamilton’s variational principle, including the contribution from both the shell and the half 
stiffeners, results in [11]: 

[ ]{ } [ ]{ }mn
µ

mnΘ CKeCK 0= ,                                              (7) 

where [ ]0K  is a 8×8 structural property matrix of the periodic unit at 0=θ  [11], [ ]
Θ

K  is a 8×8 

structural property matrix of the periodic unit at Θθ =  [11], { }mnC  is the vector containing the 

amplitude coefficients of the flexural displacements. The characteristic equation for computing 
the propagation constants is: 

[ ]{ } { }mn
µ

mn CCK e= ,                                                       (8) 

where [ ] [ ] [ ]
Θ

KKK 1
0

−= . The propagation constants µ  are obtained from the eigenvalues  µe  of 

matrix [ ]K . Similar procedures can be used for the circumferentially stiffened cylindrical shell, 
and the corresponding propagation constants can be obtained from the eigenvalue equation 
similar to equation (8). 

It should be noted that the wave transmission through two-dimensional elements such as a shell 
or plate with periodic stiffeners differs from that through one-dimensional elements (for example 
a periodically stiffened beam). If this circumferentially stiffened cylinder is subjected to a diffuse 
vibration wave field rather than an axi-symmetric excitation, the higher order circumferential 
modes will be activized, which behaves as a two-dimensional problem. In this case, the incident 
wave will find some particular circumferential modes that transmit the wave freely and therefore 
two-dimensional elements do not normally exhibit a single pass or stop band at a particular 
frequency as is the case for one-dimensional periodic structures. As a result, when a 
circumferentially or/and axially stiffened cylinder is analyzed, the propagation constants 
corresponding to several different circumferential modes or/and several different halfwave 
numbers along the length of the cylinder should be calculated and checked to find those undergo 
a pass band (or close to a pass band) characteristic. The propagation constants corresponding to 
these circumferential modes (for ring stiffeners) or halfwave numbers (for axial stringers) are 
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used to determine the power transfer coefficients at the stiffeners for EFEA in the following 
derivation. 

DERIVATION OF JOINT MATRIX FOR A PERIODIC AXIAL STRINGER 

Assuming the amplitudes of velocity over the two adjacent periodic units are ( )θxVi ,  and 

( )θxVi ,1+  respectively, the time averaged kinetic energies stored in the two periodic units can be 

calculated as: 
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for circumferentially stiffened cylinder. The velocities at the two adjacent periodic units are 
related by the propagation constant ( ) ),(e),( real

1 θxVθxV i
µ

i =+ . Therefore, the energy ratio 

between two adjacent units based on the periodic structure theory is computed as: 
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for axially stiffened cylinder, and 
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for circumferentially stiffened cylinder. The real part of the complex propagation constant 
comprises the attenuation constant. 
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The power transfer coefficients associated with the bending energy transmitted and reflected 
from the periodic stiffeners are evaluated from the energy ratio PSr  computed by the PS theory 

for two adjacent units. An iterative algorithm [15] is employed here in order to compute the 
appropriate power transfer coefficients from the energy ratio evaluated by the PS theory. This 
algorithm was developed and utilized in the past for computing power transfer characteristics for 
spot-welded panels in automotive applications. An EFEA model comprised of two adjacent 
periodic cylindrical bays is constructed. One bay is defined as the excited section and the other 
comprises the receiving bay.  The total energy stored at two bays is computed by the EFEA 
formulation while the EFEA system matrix is a function of the unknown power transfer 
coefficients. The iterative algorithm provides the values for the EFEA power transfer coefficients 
which account for the periodic characteristics of the axial stringers. The power transfer 
coefficients are utilized in the computation of the joint matrix [2] 

∫
−+−=

B jiijijij BτIτIJ d])[]])([[]([][ 1 φφ ,         (15) 

where iφ , jφ  are Lagrangian basis functions, B is the boundary area between elements i and j at 

the joint, and ][ ijτ  is a matrix comprised by the power transfer coefficients.  Since the joint 

matrices between all the elements at the periodic stiffeners contain the periodicity effects the 
overall EFEA global system of equations which includes all the joint matrices also accounts for 
the periodic effects. 

IV. VALIDATION 

In order to validate the developed hybrid EFEA-Periodic Structure formulation (EFEA-PS), the 
NASA Langley Aluminum testbed cylinder (ATC) with periodic axial stringers and ring 
stiffeners (Figure 2) subjected to shaker excitations applied at four locations of the cylinder is 
analyzed by EFEA-PS and compared to the experimental results. The ATC was designed to 
serve as a universal structure for evaluating structural acoustic codes, modeling techniques and 
optimization methods used in the prediction of aircraft interior noise [16]. The radius of the 
cylindrical shell is 0.6096m and the length of the cylindrical section is 3.66m. The thickness of 
the cylindrical shell is 1.016x10-3 m. Nine aluminum ring stiffeners are evenly spaced over the 
length of the cylinder and twenty-four axial stringers are equally distributed around the 
circumference. It forms a periodic structure with a basic unit consisting of a single bay of the 
cylindrical shell with a ring stiffener at each axial end and a stringer at each circumferential end. 
A plate with the thickness of 5.933x10-2 m is attached to each end of the cylindrical section with 
additional an aluminum end ring. The ends of the cylinder are further covered by two aluminum 
domes with the thickness of 6.147x10-3 m, respectively. The EFEA model for the cylinder is 
presented in Figure 3. The model is comprised by 2001 structural elements, 1728 plate-plate 
joints, among which 528 are plate-periodic ring stiffener-plate joints, 480 are plate-periodic axial 
stringer-plate joints. In the experiment four shakers (Figure 3) apply the excitations. Velocity 
measurements are acquired at 40 bays (indicated in Figure 3) on the cylindrical shell. There are 
3x5 measurement points in each bay. The time averaged energy density at each measured point is 
calculated from the test results. The frequency averaged energy density over each 1/3 octave 
band is computed between 315Hz to 6300Hz. Finally the space averaged energy density in each 
bay is obtained and compared to the EFEA results. The power transfer coefficients associated 
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with the axial and circumferential stiffeners are calculated and used in the EFEA-PS 
computations. The propagation constants corresponding to different circumferential modes and 
different halfwave numbers along the length of the longitudinal bay are calculated. Those which 
undergo a pass band are selected, and they are used to determine the power transfer coefficients. 
The energy densities are compared between the EFEA-PS method and experiment. Results for 
the axially consecutive bay 1 ~ bay 3 are depicted in Figures 4 ~ 6, respectively. Good 
correlation is observed between the EFEA-PS method and experiment. Results computed by the 
EFEA method with power transfer coefficients that account for the stiffener base on [2, 14] but 
not for the periodicity of the structure are also presented for comparison. As it can be observed a 
considerably lesser amount of power is transferred to the receiving units if the periodic effects 
are not taken into account. It can be observed that the EFEA-PS method captures well the 
periodic characteristics for both the axial stringers and ring stiffeners. Figure 7 presents the 
frequency averaged magnitudes of the difference between test and analysis for all 40 bays. In the 
Appendix, the difference between the test data and the numerical results at each 1/3 octave band 
from 315Hz up to 6,300Hz is presented for all 40 bays where measurements were collected. 

CONCLUSION 

A hybrid method that combines the EFEA and the PS theory for analyzing the high frequency 
vibration of a cylindrical shell stiffened by the periodically circumferential stiffeners and axial 
stringers is developed. The periodic stiffeners are accounted in the derivation of the power 
transfer coefficients and in the derivation of the joint matrices in the EFEA. Since the two-
dimensional periodic structures do not normally exhibit a single pass or stop band at a particular 
frequency as is the case for one-dimensional periodic structures, the propagation constants 
corresponding to several different circumferential modes or/and several different halfwave 
numbers along the length of the cylinder should be calculated to find those undergo a pass band 
characteristic when a circumferentially and axially stiffened cylinder is analyzed. The 
propagation constants corresponding to these circumferential modes (for ring stiffeners) or 
halfwave numbers (for axial stringers) should be used to determine the power transfer 
coefficients at the stiffeners for EFEA computations. 
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(a)                       (b) 

Figure 1 (a) A periodic axial stiffened cylindrical shell and the corresponding coordinate 
system. (b) One periodic section (including one bay cylindrical shell and a half stiffener 

attached axially at each end) 

 

 

 

Figure 2 Aluminum Testbed Cylinder (ATC) with the stringer and ring ribs 
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Figure 3 EFEA model of ATC with ring ribs and axial stringers 
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Figure 4  Averaged energy density over bay 1 
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Figure 5  Averaged energy density over bay 2 

20

25

30

35

40

45

50

55

60

65

70

75

80

300 1300 2300 3300 4300 5300 6300

Frequency (Hz)

E
n

er
g

y 
d

en
si

ty
 (

d
B

, r
ef

. 1
e-

12
)

Test result EFEA_PS EFEA

 

Figure 6  Averaged energy density over bay 3 
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Figure 7  Frequency averaged magnitudes of the difference between test and analysis 
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APPENDIX: Difference (dB) between test and EFEA analysis at different frequencies 
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