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This report summarizes the collective work of a 5-person team from different organizations 
examining the problem of detecting foreign object damage (FOD) events in turbofan engines from 
gas path thermodynamic and bearing accelerometer sensors, and determining the severity of damage 
to each component (diagnosis). Several detection and diagnostic approaches were investigated and a 
software tool (FODID) was developed to assist researchers detect/diagnose FOD events. These 
approaches include: (1) fan efficiency deviation computed from upstream and downstream 
temperature/pressure measurements, (2) gas path weighted least squares estimation of component 
health parameter deficiencies, (3) Kalman filter estimation of component health parameters, and (4) 
use of structural vibration signal processing to detect both large and small FOD events.  The last three 
of these approaches require a significant amount of computation in conjunction with a physics-based 
analytic model of the underlying phenomenon -- the NPSS thermodynamic cycle code for approaches 
1-3 and the DyRoBeS reduced-order rotor dynamics code for approach 4.  
 
The direct fan efficiency approach is appealing because it is simple to apply. However, it inherently 
assumes zero measurement errors and therefore its usefulness is limited to FOD events where the 
magnitude of the fan efficiency change is large enough to overcome sensor noise. This limitation does 
not apply to the extended weighted least squares and extended Kalman filtering methods that are 
more general but also more complex mathematically. The vibration analysis offers a completely 
different approach than the other 3 and has the potential to detect small events that do not cause 
detectible permanent damage. Data fusion of the gas path and vibration results provides an 
opportunity to obtain a more reliable diagnosis that either approach used separately.   
 
A potential application of the FODID software tool, in addition to its detection/diagnosis role, is 
using its sensitivity results to help identify the best types of sensors and their optimum locations 
within the gas path, and similarly for bearing accelerometers.    

Isaac Lopez

Cleveland, Ohio 44135

U.S. Army Research Laboratory
Glenn Research Center
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Introduction 
 
The ingestion of foreign objects into aircraft engines has caused damage that ranges from negligible 
to catastrophic. It is rather difficult to determine the severity of damage by visual inspection (except 
in catastrophic events) and even identifying which components have been damaged without an engine 
removal/tear-down is challenging. Consequently, airline operators are forced to make difficult and 
economically sensitive decisions unless they apply some form of FOD detection and diagnostic 
procedures. The major engine manufacturers have been active in this field for several decades (refs. 
1-10). Their investigations have revealed that solving the diagnostic problem accurately is more 
complex than it might seem at first glance and many valuable lessons have been learned in this regard 
(see Appendix A). However, the details of their current methodologies and implementation tools are 
competition sensitive and therefore generally unavailable. NASA has had some ongoing effort in 
recent years – mostly theoretical research to develop better diagnostic methodologies (refs. 11-14).  
 
The effort reported herein extends the NASA-sponsored effort in several new directions. Firstly, it 
examines the possibility of simply using upstream/downstream pairs of temperature and pressure 
sensors around the most likely FOD-damaged component (the fan) to determine the degree of 
damage. Secondly, it performs a comparative investigation of the weighted least-squares and Kalman 
filter gas path methodologies. Thirdly, an integrated NPSS/MATLAB system was established in 
which the NPSS thermodynamic cycle code provides input data to MATLAB/SIMULINK to perform 
a state-space control analysis for FOD event detection. The MATLAB/SIMULINK output is then 
retrieved by NPSS for simulation adjustment and further analysis. 
 
Fourthly, an investigation of using dynamic structural response measurements to detect FOD events 
was pursued. This led to the use of wavelet signal processing to unmask the FOD features hidden by 
vibration sensor noise for small-sized events that produce only temporary (i.e., millisecond) behavior 
aberrations. Such events may not cause immediate failures or performance degradation because the 
geometry is not altered, but may cause premature parts failure later on due to internal damage.  
 
Fifthly, a fuzzy logic framework to fuse the results of gas path and vibration analyses together into a 
composite FOD diagnosis was established. The initial investigations of the wavelet analysis of the 
structural response and the fuzzy logic data fusion technique were carried out using 
MATLAB/SIMULINK, but were later implemented in the FODID software tool.  
 
Lastly, a software tool (FODID) was developed that can be used to detect and diagnose FOD events 
using a variety of methodologies (gas path and vibration analyses). Specifically, it addresses the issue 
of determining how severely each component is damaged given a set of thermodynamic sensor 
measurements and associated uncertainties. Accounting for system and sensor uncertainties is 
important since their magnitude can be of the same order as the FOD-induced effects. The tool is 
intended to be used initially in a research role to explore alternative detection/diagnostic strategies, 
but ultimately it could morph into a prototype production tool for commercial use.  
 
Ostensibly, it should be easy to detect an FOD event during flight and determine the degree of 
damage incurred. Deviations in component health parameters such as efficiency and flow capacity 
from their nominal values are all that is required. Unfortunately, there are no means to directly 
measure such health parameters (i.e., efficiency and flow capacity sensors do not exist). Instead, they 
must be inferred from measurements of other parameters such as shaft speed, fuel flow rate, and 
temperatures and pressures at various gas path flow stations. The inference process to accomplish this 
is known as a “gas path analysis” and is summarized in Figure 1. The inference methodology 
generally utilizes a thermodynamic model of the engine which is not perfectly accurate, nor are the 
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sensor measurements due to sensor errors and noise. The modeling and sensor errors can seriously 
compromise the accuracy of the diagnostic solution since they may be of the same magnitude as the 
sensed deviations. Hence, some means to cope with these uncertainties is usually needed to obtain a 
reasonably confident diagnosis.   

                                
                     Figure 1 – The overall gas path analysis process to detect/diagnose FOD events. 

 

NASA/TM—2005-213588 3



A direct approach to detecting an FOD event 
 
A direct approach to detecting an FOD event that damages the fan compares the actual fan adiabatic 
efficiency to a reference fan efficiency using known fan inlet and exit average temperatures and 
pressures. Adiabatic fan efficiency ηadib is defined as the ratio of the ideal enthalpy rise to the actual 
enthalpy rise through the fan: 
 
 ηadib  =  (Hideal,out – Hin) / (Hout – Hin)       (1) 
 
where,  
 
         Hin   =  entrance enthalpy     =  fct (Tin,  Pin)  
         Hout  =  actual exit enthalpy  =  fct (Tout, Pout) 
   Hideal,out  =  ideal exit enthalpy    =  fct (Hin,  Pout) 
  
where Tin is the measured entrance temperature, Pin is the measured entrance pressure, Tout is the 
measured exit temperature, and Pout is the measured exit pressure. If the constant-pressure specific 
heat is invariant (which is nearly the case for a high bypass turbofan), then equation 1 becomes even 
simpler since it does not require enthalpy tables: 
 
            ηadib  =  (Tideal,out  - Tin) / (Tout – Tin)        (2) 
 
Or, in terms of the actual bulk-average pressures and temperatures, and average specific heat ratio, γ: 
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So using either equation 1 in conjunction with enthalpy tables to obtain an exact value, or using 
equation 3 without enthalpy tables to obtain a very good approximation, one can readily determine 
the actual adiabatic efficiency. An important caveat is that these relationships require the use of a 
bulk-average temperatures and pressures. Since both temperature and pressure vary significantly 
radially from hub to tip, one would need to locate the sensors carefully to obtain values that represent 
bulk-averages.  
 
All that remains is to compare the actual adiabatic efficiency with a reference adiabatic efficiency. If 
the engine is operating in a steady-state condition such as at cruise, one could simply monitor a time 
trace of ηadib to detect significant deviations. That is, the chosen reference value ηadib,ref could be a 
time-averaged prior value. But FOD events would most likely occur at a transient condition such as 
during takeoff in which case a previous time average is not meaningful. Instead, ηadib,ref ought to be 
the expected value as calculated from a calibrated thermodynamic cycle model such as provided by 
NPSS. “Calibrated” here implies that a standard engine model is adjusted slightly for each specific 
engine based on performance qualification testing data. Then, one could monitor the ratio r of the 
actual to reference adiabatic efficiency even if the operating conditions are continuously changing: 
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Figure 2 – Fan efficiency factor time trace with an FOD event 
at time 2500. 

                    Fan efficiency factor ≡  
refadib

adibr
,

!

!
=       (4) 

 
Figure 2 illustrates what such a 100-point averaged time trace might look like for a FOD event that 
occurs at time step 2500. 
 
The same methodology can possibly be 
extended to the other turbomachinery 
components. However, there is a 
complicating factor in applying this 
concept to these components; namely, 
downstream component input 
conditions are affected by upstream 
components. As an example, the input 
temperature and input pressure for the 
LPC will be affected by any fan 
efficiency changes. Hence, ηadib will not 
equal ηadib,ref  even if the LPC is 
operating normally (undamaged) if the fan 
is damaged. 
 
To cope with more general situations that involve possible damage to multiple components, and that 
account for more realistic effects (i.e., system and sensor noise), we pursued more comprehensive 
methodologies as discussed in the following sections.  
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Least-squares approximation (LSA) 
 
Our pursuit of a more comprehensive methodology begins by casting our FOD problem as a problem 
in linear algebra. By perturbing the values of the health parameters (independents) in a 
thermodynamic engine model and recording the corresponding output values of the sensor 
measurements (dependents), we can use a least-squares approximation to establish the relationships 
(response curves) between the independent and dependent variables. We can use these response 
curves to fit observed measurements and estimate the values of sought-after health parameters.  The 
NPSS thermodynamic cycle code was used to perform the numerical calculations cited below. 
 
Fitting curves to given sets of data points is an important practical application of linear algebra. 
Assume that we have k independent variables kix

i
,,1  , L= and m sets of data points 

mjkixij ,,1  ,  ,,1  , LL == where ij
x  is the value of the dependent variable xi at the j’th 

measurement. We would like to determine a function ),,( 1 k
xxF L  such that  

  
 mixxFy ikiii ,...,1  ,),...,( 1 =+= !                                                                     (5)                                                 
   
where the approximation errors εi are small. We assume that ),,( 1 k

xxF L  is a linear sum of n sub-

functions ),,( 1 ki xxf L  with the form  
 

),,(),,(),,( 111101 knnkk xxfcxxfccxxF LLLL +++=                                (6) 
  

We wish to determine the set of coefficients ci so that ),,( 1 k
xxF L best fits the m measured data 

points.  
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then the predicted value of y is:  
 
            ypre  =  Ac          (8) 
 
and the m-vector ε of approximation errors is: 
 
  Ac - yy yå  pre =!=         (9) 
 
The least-squares solution for ε is:  
 

y AAc  A
TT

=                                                        (10) 
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where ATA is a symmetric positive-definite matrix that is not singular. The coefficient vector c can be 
uniquely solved by LUP decomposition. If the curve crosses the origin, then c0 is zero and the left-
most column should be deleted from matrix A. 
 
We investigated the application of this solution method to a mid-size separate flow, 6:1 bypass ratio 
turbofan engine similar to a PW2037 whose control system maintains constant thrust by adjusting the 
combustor fuel/air ratio. Six health parameters and five sensor parameters were selected. The six 
health parameters and their baseline values at the sea level static/takeoff thrust operating point were: 
 

• Fan efficiency, η              0.890     
• Fan flow capacity, Wc       1345 lbm/sec 
• LPC efficiency, η             0.900 
• LPC flow capacity, Wc        192 lbm/sec 
• HPC efficiency, η             0.865   
• HPC flow capacity, Wc        192 lbm/sec 

 
The five sensor parameters and their baseline values were: 

• LP rotor speed, N1                       4550 RPM 
• HP rotor speed, N2                    12360 RPM 
• LPC exit temperature, T2.5            718 ºR 
• HPT inlet temperature, T41         2932 ºR 
• Exhaust temperature, T49            1353 ºR 
 

To reveal whether the model is linear about the operating point, we perturbed each health parameter 
independently and recorded the changes in the sensor parameters. While the sensor parameters show 
good linear relationship with all three efficiency parameters (Fig. 3), they are in at least a quadratic 
relationship with the three flow capacity parameters (Fig. 4).  
 

 
Figure 3 - N1 change versus fan efficiency change Figure 4 - N1 change versus fan flow capacity change 

 
We next studied the interactions between health parameters. By perturbing two health parameters 
together it was observed that there exist interactions between some pairs. For example, there is a 13 
percent interaction for N2 between fan flow capacity and HPC efficiency when they are both 
perturbed 5 percent simultaneously. (Interaction here refers to the difference in sensor values obtained 
by perturbing multiple health parameters simultaneously compared to perturbing them sequentially.) 
These observations (non-linear flow capacity response and significant interactions) suggest that the 
response curves obtained via least-squares approximation should contain quadratic terms including 
cross-terms. Also the response curves must cross the origin (zero health parameter perturbation 
causes no change in measurements). Hence, equation 6 can be replaced with a more general non-
linear form for our specific case of 6 health and 5 sensor parameters:  
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where 

621
,,, xxx L are percentage changes of the six health parameters and gk are the sensor 

parameter changes.  
 
The levels of 

621
,,, xxx L used to perturb the health parameters are –5, -3.5, -2.0, -0.5, 0.5, 2.0, 3.5, 

5. If full-factorial experiments were designed, there would be 86  = 262,144 cases to run. The number 
would become prohibitively high if more health parameters were included. We would prefer to reduce 
the number of experiments without sacrificing too much fidelity compared to using a full-factorial 
experiment. One way to dramatically reduce the number of cases while preserving reasonable fidelity 
is to randomly select a representative subset of the full-factorial experiments. The second way is to 
determine which health parameter pairs cause very weak interactions so that their interactions can be 
excluded from the set of experiments. The third way is to reduce the number of levels for some health 
parameters. For example, the levels for the three efficiency parameters can all be reduced due to their 
linear effect on the sensor parameters (Fig. 3).   
 
In this study,  we adopted the first approach. Approximately 2000 health parameter combinations 
were randomly selected and the response curves for the five sensor parameters were generated. To 
check the accuracy of the resulting response curves, their predictions can be compared to the values 
generated by running the NPSS code.  For instance, based on –3 percent change in fan efficiency, the 
following predictions and NPSS solutions are obtained for the 5 sensor parameters: 
 
                                                    g1              g2             g3               g4             g5__    
     Equation 3 predictions:    –12.4835    57.7034    41.4279    -0.75890    20.6195 
     NPSS calculations:           –10.1274    51.1341    41.3033    -0.65334    20.6559 
 
While not perfect, these predictions are judged to be sufficiently accurate for most purposes. To 
further illustrate this method and check its accuracy, we now consider a more challenging problem; 
namely, estimate the efficiency changes in the fan, LPC, and HPC due to various sets of  deviations in 
N1, N2, and T49. First, we solve for the response curve coefficients using the least-squares 
approximation technique described above using NPSS and efficiency perturbations ranging from -5 to 
+5 percent. This yields the coefficient values shown in Table 1.   
 
                     Table 1 – Example response curves generated with equation 11. 

 

      g(x,y,z)  = c1 x  +  c2 y  +  c3 z   + c4 x2  +  c5 y2  +  c6 z2  +  c7 xy  +  c8 xz  +  c9 yz 
                 where x = fan efficiency, y = LPC efficiency , z = HPC efficiency 
 

        c1               c2             c3             c4              c5            c6             c7             c8           c9 
 

N1     3.35718   0.52324   0.89534 -0.00967 -0.00605 -0.00111  0.00922  0.02066 0.00050 

N2   -16.82756 -10.89637  16.83345  0.30459  0.03298  0.11904 -0.08686 -0.66856 0.04896 
T49   -6.29113  -2.58067 -11.40829  0.13568  0.06123  0.35265 -0.00834  0.01526 0.05570 
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Next, an NPSS FOD detection model was created1 in order to calculate the actual changes (NPSS 
determined) and the predicted changes (response curves) in the 3 health parameters for 12 sets of 
perturbation values. Table 2 shows that the actual changes (left panel) are predicted well by the least-
squares approximation model (right panel) over the  ±10 percent efficiency change range. 
 

Table 2: Least-squares prediction accuracy comparison.  
 

        NPSS actual changes        Least-squares predicted changes 

Fan �    LPC �     HPC �         Fan �        LPC �        HPC �    
 

  0       0   0     0     0    0           
  2       0   0     2.05     -0.19       -0.05        
  0       1   0    -0.03      1.05   0.00        
  0       0     5    -0.05     0.52    4.94        

   -2      –1   0    -1.98    -1.00       –0.05        
   -5      –0.5  –2    -5.04    -0.30       –2.04        

 -5      –5  –5   –4.99    –5.16       –4.85        
  5       5   5    4.82           5.40         5.35        
 -7     –10  –2    -7.21         –9.47       -1.73        
-10       0   0        –10.23         0.23         0.16       
  0     –10   0    -0.02       –10.22        0.29    
  0       0  –10    0.32         –0.53       –9.72    

 
 
Although the least-squares approximation method works well for efficiency deviations as depicted 
above, it is less successful for more general cases involving mass flow capacities as a health 
parameters due to their non-linear behavior (Fig. 4). In such cases, we have experienced frequent 
solver problems -- convergence to an erroneous solution or non-convergence. Also, we have ignored 
another important issue; namely, sensor measurements with noise. In reality, sensor measurements 
always contain some noise from the sensors directly and from the subsequent signal processing. If 
typical noise levels were introduced, the pure least-squares approximation method would yield 
inaccurate predictions. Although a moving average could be used to alleviate this problem, an 
alternative approach is to filter out the noise and generate more accurate results.  
 

                                                             
1 In NPSS parlance, each compressor efficiency parameter was wrapped as an interpreted element which 
contains the efficiency as an independent object and a “calculate() method” that computes the estimated values 
of dependent variables based on response curves as the solver changes the independent efficiency variable. N1 
and N2 are wrapped as dependent objects with constraint conditions (i.e., equal measurement and estimated 
values). A third dependent object was defined for minimizing the squares of the differences between the 
estimated values and measurement values of the dependents. 
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FOD detection/diagnosis noise filtering methods 
 
These problems (non-convergence and inability to handle random measurement errors) can be better 
handled using stochastic estimation to filter the noise. One widely used filter is called Kalman 
filtering and it relies on three assumptions: (1) the system is linear, (2) the random errors are 
comprised of white noise, and (3) the white noise is distributed normally. While the latter two are 
often satisfied, many real-world problems such as our diagnostic problem are non-linear. If the 
system is non-linear, the filter can be extended by linearization about the current state. This works 
adequately on some problems where the nonlinear effects are small, but can fail if the non-linearity is 
strong. First we briefly review the fundamentals of Kalman filtering, then apply it to our diagnostic 
problem. 
 
Kalman filter - The Kalman filter addresses the general problem of estimating the state n

x !" of a 
linear discrete-time process; that is: 
 

111 !!! ++=
kkkk
wBuAxx                  (12) 

with a measurement m
y !" : 

kkk vMxy +=                   (13) 
 

where k is the discrete time step index, A is an n x n matrix that relates the previous state to the 
present state, B is an n x l matrix that relates the optional control input l

u !"  to the state, M is an m x 
n matrix that relates the state to the measurement y, wk is random system noise, and vk is random 
measurement noise. Both wk and vk are assumed to be white and normal with mean value 0 and with 
covariance matrices Q and R, respectively; that is, their probability distributions p are: 
                                                       
                                                     p(w) ~ N(0, Q)  
                                                     p(v) ~ N(0, R)   
 
The Kalman filter estimates the process state x by using a recursive predictor-corrector algorithm. The 
predictor has two equations for calculating the priori estimate state !

k
x̂  and the priori estimate error 

covariance !
k
P : 

11
ˆˆ

!!
!

+=
kkk

BuxAx                  (14) 

QAAPP T
kk += !

!
1

                 (15)
  

The corrector has three equations to calculate the gain matrix 
k

K , the posteriori estimate state 
k
x̂ and 

the posteriori estimate error covariance 
k
P : 

 
1)( !!!

+= RMMPMPK
T

k

T

kk
                (16) 

)ˆ(ˆˆ !!
!+= kkkkk xMyKxx                  (17) 

T

kk

T

kkkk
RKKMKIPMKIP +!!=

! )()(                            (18) 
 

k
K  obtained above minimizes 

k
P  and thus x̂  is called the minimum variance estimate of x.  
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Extended Kalman Filter (EKF) - If the governing process and measurement equations are not linear, 
then a Kalman filter that linearizes about the current state is called an extended Kalman filter or EKF. 
The process and measurement are described by:   

  ),( 111 !!! += kkkk wuxfx                (19)

 kkk vxgy += )(                 (20) 
 

Let Ak  be the partial derivative matrix of ),( 11 !! kk uxf  at the previous posteriori estimate
1

ˆ
!kx . 

Linearizing around 
1

ˆ
!kx  gives  

),ˆ(ˆ
11 !!

!
= kkk uxfx                 (21) 

QAPAP T

kkkk += !

!

1
                (22) 

 
Let Mk be the partial derivative matrix of )( kxg  at the present priori estimate !

k
x̂ . Linearizing around 

!
k
x̂  gives 

            1)( !!!
+= RMPMMPK

T

kkk

T

kkk
               (23) 

))ˆ((ˆˆ !!
!+= kkkkk xgyKxx                  (24) 

T

kk

T

kkkkkk
RKKMKIPMKIP +!!=

! )()(               (25) 
 

Application of EKF to fault detection - We can apply the EKF method to our previously defined 
example FOD diagnostic problem rather simply. The state variables are the percentage changes in the 
six health parameters 

621
,,, xxx L  and the measurement variables are the changes in the five sensor 

parameters 
521

,,, yyy L as defined above. We create an EKF about the operating point as follows:  
 

The process and measurement estimation equations are:  

),0(~)(    ,11 QNwpwxx kkk !! +=                  (26) 

            ),0(~)(    ,)( RNvpvxgy kkk +=                  (27) 
 

where )()( kgxg = as described above in equation 11. 
 
The predictor equations are: 

1
ˆˆ

!

!
=

kk
xx                    (28) 

            QPP kk += !

!

1
                   (29) 

 
The corrector equations are the same as equations 23, 24 and 25. The terms of Mk are obtained by 
partially differentiating g(x) with respect to x and updating it at each time step. 
 
We assumed that all state variables have a standard deviation σ = 0.05 so the diagonal terms of 
covariance matrix Q are σ2 = 0.0025. The off-diagonal terms were arbitrarily set to 0.0005. To set the 
terms of R, we assumed that all sensor measurements have a σ of 0.005 times their base values (that 
is, the signal/noise ratio, SNR = 200) and that there are no correlations among the measurements, so 
all off-diagonal terms are zero. The filter needs an initial guess to start the process and x0 was set to 
zero, while P0  was set to Q.  
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The measurements were synthesized using a random number generator, standard deviations of 0.005 
times the sensor base values, and normal probability distributions (Fig 5). When synthesizing the 
measurements, we used a different seed for each measurement variable so that the measurements 
among the variables are not correlated.2   
 

 
Figure 5 -  Example synthesized noisy sensor data resulting from a -3 percent change in fan flow capacity. The 
black horizontal lines represent the true measurement changes while the curves are the synthesized noisy data 
with SNR = 200.  

 
To emulate single component fault events, we made -3 percent changes in the 6 health parameters 
(state parameters in EKF terminology) and computed the corresponding changes in the 5 sensor 
measurement parameters using two different methods: (a) modeling the cycle behavior with the NPSS 
code, and (b) using the previously generated response curves from equation 3. Method b requires 
considerably less execution time than method a, but is not as accurate. In both methods, we added 
white noise as illustrated in Figure 5. Then, using the calculated noisy sensor changes, we applied the 
EKF method to predict the health parameter changes.  
 
Ten sets of the health parameter changes were analyzed as shown in Table 3 for both methods of 
generating the measurement changes. The results indicate that both methods yield comparable results; 
that is, the results tabulated under the “Predicted changes using LSA ypre -values “ heading (method b) 
are only slightly less accurate than using NPSS to generate the measurement changes.   
 
Figure 6 displays typical EKF solution convergence behavior for the first of these sets.  Starting the 
iteration with zero for the initial condition (x0 = 0), the EKF method yields acceptably accurate 
solutions in all cases, both single fault cases and multiple fault cases, except the fourth case where 
only the LPC efficiency was changed. In this case the Kalman filter incorrectly predicts a 
combination of positive LPC flow capacity change and negative HPC flow capacity change. 
However, if x0  was set to the true state [0,0,0,-3,0,0] instead of 0, the filter yields the correct 
prediction (case 5 in Table 3). This indicates that multiple health parameter states may generate the 
same sensor measurements, and that the predicted set of health parameters depends on the assumed 
initial state. This is an inherent byproduct of non-linear systems. The same anomaly was also 
observed using noiseless measurements (not displayed). Because the EKF method cannot differentiate 
multiple solutions from each other based solely on the measurements, other means must be used. In 
the specific case encountered here, the pattern of positive predicted LPC flow capacity change and 
negative HPC flow capacity change may be used to discard this solution. The problem of multiple 
solutions may be mitigated somewhat by choosing measurement variables that are strongly dependent 
on the health parameter changes.  
                                                             
2 If the same seed is used, a singular matrix will be generated which renders the filter inoperable.  
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It should be noted that the least-squares approximation solution method is also subject to this issue of 
finding inaccurate solutions. In addition, both the EKF method and the least-squares method tend to 
smear the allocation of predicted faults among all of the health parameters instead of concentrating it 
totally on one (or several) true faults. 
 

 
Figure 6 – Example EKF iteration history of case 1 of Table 3 with  SNR = 200. The true health parameter fault 
is a  -3% change in fan flow capacity at step 1, all other changes are zero.  

 
 

 
Figure 7 - Example EKF iteration history of case 1 of Table 3 with  SNR = 1000. The true health parameter 
fault is a  -3% change in fan flow capacity at step 1, all other changes are zero.  
 

 
Table 3: EKF solution results for ten fault cases with SNR = 200. 

 
The six column headings are the health parameters: fan Wc, fan η, LPC Wc, LPC η, HPC Wc, HPC η. 

 
 Case      True changes, %          Predicted changes using NPSS y-values         Predicted changes using LSA ypre -values  

 
 1  -3  0  0  0  0  0   -2.68 -0.26  0.46  0.26  0.58  0.12   -3.09 -0.73  0.49  0.19  0.86  0.29 
 2   0 -3  0  0  0  0    0.25 -2.03 -1.09 -1.04 -0.43 -0.26    0.34 -2.08 -0.99 -1.02 -0.52 -0.18 
 3   0  0 -3  0  0  0   -0.07  0.06 -3.47 -1.27  0.73  0.22   -0.04  0.06 -3.39 -1.25  0.63  0.25 
 4   0  0  0 -3  0  0   -0.12 -0.22  1.72  0.33 -1.03 -0.53   -0.10 -0.22  1.78  0.35 -1.05 -0.54 
 5   0  0  0 -3  0  0   -0.09 -0.05  0.06 -2.94  0.16  0.02   -0.07 -0.05  0.11 -2.93  0.14  0.01 
 6   0  0  0  0 -3  0   -0.12 -0.26 -0.08 -0.45 -2.24  0.09   -0.07 -0.06  0.10  0.06 -2.89  0.00 
 7   0  0  0  0  0 -3   -0.22 -0.20 -0.24 -0.51  0.25 -3.01   -0.09 -0.05  0.08  0.06  0.14 -2.97 
 8  -3 -3  0  0  0  0   -2.62 -2.14 -0.56 -0.86 -0.04 -0.04   -2.99 -2.46 -0.62 -0.96  0.03 -0.01 
 9  -3  0 -3  0  0  0   -2.66 -0.19 -3.06 -1.13  1.21  0.44   -3.06 -0.63 -3.05 -1.19  1.40  0.56 
10   0  0  0  0 -3 -3   -0.28 -0.51 -0.41 -1.04 -2.28 -2.83   -0.13 -0.49 -0.22 -0.99 -2.05 -2.68 
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Notes: 1. The predicted values are the average values of the last 10 of 400 iterations. 
                      2.  Iterations were initialized with x0 = 0, except case 5 where x0 = [0 0 0 0 -3 0 0]. 

 
 
The measurement covariance matrix R affects the convergence rate of the EKF method. The smaller 
the R, the larger the gain matrix Kk, thus more weight is given to the measurements and the filter 
takes less time steps to converge. Figure 7 shows that the increase in SNR not only speeds the 
convergence but also decreases the fluctuation significantly. To effectively detect short duration FOD 
events that do not cause permanent health parameter changes, there should be enough time steps for 
the filter to show positive convergence. This can be achieved by either increasing the frequency of 
measurements or raising the SNR. Figure 6 shows a positive detection at about time step 50. If the 
event lasts 1 second, then the recording rate must be at least 50 Hz. If the SNR is raised from 200 to 
1000 (Fig. 7), positive detection takes place at time step 10 and the recording rate can be lowered to 
10 Hz. 
 
The selection of the covariance matrix Q must be fine tuned. Setting Q too small has the effect of 
putting too much trust on the estimate and the filter takes more time steps to converge.  Setting Q too 
high, however, causes the filter to “drift” -- the predicted health parameters may contain values 
outside those that were used to generate the response curves so the results cannot be trusted. 

 
It is desirable that Kalman filter should be able to operate continuously without divergence after an 
FOD event. Figure 8 shows the continuous EKF operation with 3 fault events of reduced fan, LPC, 
and HPC weight flow taking place at different times. The filter detects the events quickly and 
correctly, and returns to the baseline values rapidly after the faults are removed.    
 

 
 

Figure 8 - Continuous operation of EKF with SNR of 200 and three FOD events. The events occurred at time 
steps 400, 1200 and 2000, each with a 400  time step duration, and no event caused sustained damage. 

 
In summary, we have shown that the response curves obtained by perturbing analytic engine models 
and a least-squares approximation can be used to establish an EKF that successfully detects FOD fault 
events.  Setting some of the filter configuration parameters is important to achieving good results; 
specifically, the initial state x0 and measurement signal/noise ratio SNR.  
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State-space open-loop system 
 
A MATLAB/SIMULINK state-space open-loop system can be used to represent the behavior of a 
linear system: 
 

                                                  
uxy

uxx

D  C  

B  A  

+=

+=&

                                                                                 (30) 

 
where the vectors x, u, and y represent the state, control, and output variables, respectively. The A, B, 
C and D matrices can be conveniently generated with the help of a NPSS utility called the Linear 
Model Generator (LMG) that automatically perturbs a baseline case multiple times. 
 
First, we verify that such an open loop system behaves similarly in both a NPSS transient simulation 
and a MATLAB/SIMULINK simulation. The engine model used was a high-bypass turbofan wherein 
the single control variable was fuel flow deviation dWfuel and the health parameter was fan efficiency 
deviation dFanEff. Both state and the output variables were the low-spool and high-spool shaft 
speeds, dN1 and dN2. Here, d represents the deviation from nominal value at the steady-state 
condition.   
 
Figure 9 shows the system behavior in SIMULINK and Figure 10 shows the transient simulation of 
the same system in NPSS. Step inputs of dWfuel and dFanEff, separately and together, were introduced 
at time 1 second. The shapes and magnitudes of the responses are similar in both simulations, 
although there is about a 10 percent steady-state difference caused by the non-linearity of the model.  
 
Because the engine health parameters can only be observed instead of serving as controls, we 
augment the state-space representation to include health parameters as state variables so that they can 
be estimated. Also an observer was added so that the states can be estimated from measured sensor 
outputs.  
 
Figure 11 shows such a complete state observer system. The augmented state vector contains dN1, 
dN2, and compression system efficiency deviations (dFanEff, dLpcEff and dHpcEff). The control is 
dWfuel. The measurements are dN1, dN2, burner inlet total temperature (dITt), burner exit total pressure 
(dBurnOPt), and burner exit total temperature (dBurnOTt). Note that the Kalman gain in the state 
observer is calculated using the continuous-time algebraic Riccati equation. Figure 10 shows the 
responses. A step change of dWfuel was introduced in the time interval 5-15 seconds (panel A) and 
FOD-caused efficiency deviations of all three compression system components occur at time 0 (panel 
B). The noisy measurements are shown in panel D. Panel E shows that the estimated efficiency 
deviations agree with the actual values shown in panel B. The estimated outputs (panel F) are also 
close to the actual outputs (panel C) and the results obtained from NPSS transient simulation (panel 
G). 
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Figure 9 – A simple state-space MATLAB/SIMULINK simulation of a FOD event at 1 second. 
 
 
 
 
  

  
Figure 10 – A NPSS transient simulation of the same FOD event as used in the SIMULINK simulation. 
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Figure 11 - A state observer for FOD detection. 
 
 
The state-space open loop state observer system as described in Figure 11 is capable of detecting 
FOD events. Note that the control variable u and noisy measurements y are input to the system, and 
the estimated state xo and estimated measurements yo are output from the system. An NPSS 
simulation can provide the inputs, but we need a way to link NPSS to the MATLAB/SIMULINK 
model to do so and to retrieve the outputs from the MATLAB/SIMULINK simulation. 
 
NPSS does provide a Generic Controller dynamically loadable module (DLM) which enables NPSS 
to drive MATLAB. A definition file is required to specify the SIMULINK model file name, input 
variables, and output variables. At run time, NPSS parses the definition file and communicates with 
SIMULINK. The model shown in Figure 11 needs to be modified so that u and y are inputs. Such an 
integrated system was implemented and generated essentially the same results as shown in Figure 12. 
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Figure 12 - The responses of the state observer for FOD detection. 
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FOD event detection via vibration signals  
 
Up to this point we have only discussed the use of traditional gas path analyses to detect and diagnose 
FOD events. These analyses infer damage to specific components based on indirect measurements. 
That is, they estimate damage based on the thermodynamic consequences of  geometry changes 
sustained during the event. But what if the event causes damage without changing the geometry? For 
instance, a relatively small impact may only initiate a crack rather than break or deform blades. The 
crack may sooner or later precipitate a serious failure, but a gas path analysis will not detect the event 
when it occurs – only if and when the crack enlarges and causes either deformation or failure.  
 
To cope with this possibility as well as provide confirming FOD detection evidence for large impact 
events, it was hypothesized that structural dynamics offers the possibility of detecting both minor and 
major FOD events. The basic concept is to continuously monitor bearing accelerometer signals (or 
other dynamic responses) and search for FOD-caused anomalies. FOD events that cause permanent 
damage are likely to cause an increase in rotor imbalance that can be readily detected as a step change 
in an acceleration moving average (similar to Fig. 2). Just as in the gas path analysis, a moving 
average can be used to handle noisy acceleration signals. On the other hand, the FOD event may not 
cause a permanent increase in imbalance and in such cases only a very short transient signal (<< 1 
second) aberration occurs. In this case we must invoke a more sophisticated signal processing 
methodology to isolate such events, particularly when they are masked by system and sensor noise.    
 
The original approach used to pursue this concept was to create a reduced-order structural response 
model of a typical turbofan engine that accurately captures all first-order effects as illustrated in 
Figure 13.  
 

                   
                     Figure 13 - FEM representation of a turbofan rotor/bearing system (ref. zzz). 
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This model was used in conjunction with MATLAB/SIMULINK to develop a continuous-time state-
space vibration model which can be used to generate rotor bearing vibration signals in response to 
given FOD events (i.e., mass of object, fan impact radius, impact velocity and duration, permanent 
increase in imbalance). Reference 13 contains a detailed description of this methodology. 
 
In an ideal situation (neither process nor sensor noise), strategically located bearing vibration sensors 
would transmit a constant amplitude oscillating signal due to residual rotor imbalance as displayed in 
Figure 14a in the time span 0 to 0.1 seconds. If a relatively large FOD event occurs, the signal 
response would change significantly as illustrated and simple threshold-exceedance detection logic 
would be adequate. If the FOD impact is small as in Figure 14b, discerning the event is more 
challenging but still tenable.   
 
However, the situation becomes much more challenging when noise is included and the FOD impact 
is small. In these cases, the short duration event will cause no permanent deformation and the event 
signature will be completely masked by noise as illustrated in Figure 15. Part a of this figure displays 
the weak HPT bearing signal resulting from a ½ pound - 300 feet/sec foreign object impact at the 20 
inch fan radius location assuming a fan eccentricity of 0.001 inches. The event is modeled as a 0.04 
second square-wave pulse that occurs at 3.44 seconds and is barely noticeable. When process and 
sensor noise (assuming a signal/noise ratio of 3.5) is added to this ideal signal (Fig. 15b), the FOD 
event is completely masked.    
 

            
               
       Figure 14 – Noise-free bearing displacement response signals from FOD impacts (ref. 13) 
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     Figure 15 – Bearing accelerometer signals in response to a small FOD event at 3.44 sec. (ref. 13) 
 
To unmask such events we must resort to advanced signal processing techniques. One powerful 
approach is to use a discrete time wavelet transform to perform this function.  Our analytical 
investigations indicated that such events can be successfully isolated using a 3-step Daubechies 8 
wavelet smoothing filter followed by a third order differentiation of the wavelet transform as depicted 
in Figure 16. The acceleration signal is passed through an approximation filter three times and 
subsequently through a detail filter in order to focus on the subband of interest in the original signal.   
 
The net result of these signal processing manipulations is the ability to clearly detect an FOD-induced 
vibration event. Figure 17a below illustrates the same raw accelerometer signal displayed previously 
in Figure 15b but at a coarser time scale. The impact pattern is lost in the noise. Figure 17b displays 
the processed signal using the wavelet analysis. The impulse feature is quite clear with spikes both at 
the start and end of the event. 
 
Encouraged by the results of the continuous-time state space MATLAB/SIMULINK simulation, we 
proceeded to implement the same vibration analysis methodology using NPSS. This required 
extending NPSS to perform such structural analyses. However, NPSS does not provide an approach 
to do continuous-time state space model simulation, so we first created several discrete-time state 
space models at different sampling frequencies to determine which discrete-time frequency model 
adequately represents the continuous-time model.   
 
Using the c2d() MATLAB function, the discrete-time A, B, C, D matrices were obtained at sampling 
frequencies of 100, 1000, and 10,000 Hz. Then an NPSS interpreted element entitled Vibration was 
created. Using input such as sampling frequency, time, engine speed, engine speed deviation, FOD 
residual imbalance, impact mass, and impact duration, this element generates bearing displacement 
and acceleration signals at the locations previously defined in Figure 13. Figure 18 shows that the 
NPSS Vibration element with 1000 Hz and 10,000 Hz sampling frequencies generated results similar 
to the continuous SIMULINK model, while sampling at 100 Hz gave poor results.  Given that the 
engine speed is around 7000 rpm, 1000 Hz sampling yields approximately 8 points per cycle, which 
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is greater than the required Nyquist rate3. Therefore, sampling at 1000 Hz or greater is valid for our 
discrete-time implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The platform used for these tests was a Windows 2000 Advanced Server with four x86 Intel 278 
processors and 3.9 GB of physical memory. To simulate 1 second of real time data, it took 
approximately 2 seconds of execution time for the 100 Hz model, 18 seconds for the 1000 Hz model, 
and 180 seconds for the 10,000 Hz model. None of these models is fast enough for real time 
simulations. Because NPSS interpreted elements execute several times slower than dynamically 
loadable module (DLM) elements, we subsequently created a corresponding DLM version of the 
Vibration element. The corresponding execution times were 0.2 seconds for the 100 Hz model, 1 
second for the 1000 Hz model, and 10 seconds for the 10,000 Hz model. Thus, at 1000 Hz the DLM-
version of the Vibration element can achieve real-time performance. 

                                                             
3 The Nyquist rate is lowest sampling rate that permits accurate reconstruction of the sampled analog signal. 

Figure 16. Wavelet transform-based vibration feature extraction implemented using 
an analysis and synthesis finite impulse response (FIR) filter bank (from ref. 13). 
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Wavelet analysis was performed in NPSS using various levels of lowpass decomposition4 followed 
lowpass reconstruction as illustrated in Figure 19 for 2 levels. If a FOD event is embedded in the 
noisy vibration signals, it should show up more distinctly in the smoothed signal. Because the signals 
generated by the Vibration element do not contain noise, a Gaussian element was developed that 
generates random Gaussian numbers with specified mean and standard deviation using the Box-
Mulder method5. The wavelet analysis is coded in another NPSS element (Daub) that implements the 
Daubechies 8 filter and  contains methods for lowpass decomposition, lowpass reconstruction, 
highpass decomposition, highpass reconstruction, down-sample, up-sample, differentiation, and 
recombination of two signals. The filter coefficients were obtained from the prior MATLAB 
implementation.  
 
First we verified that the filter works properly. We synthesized sine wave signals containing Gaussian 
noises (Fig. 20, left). After 1 level of filtering, we obtained the “approximation signal” (Fig. 20, 
middle top) and the “detailed signal” (Fig. 20, middle bottom). The approximation signal and detailed 
signal were then recombined to accurately form the original signal (Fig. 20, right). We then applied 
the Daub element to the analysis of vibration data obtained using the Vibration and Gaussian 
elements. 
 
                                                             
4 Decomposition separates the signal into 2 fundamental constituents: an average signal called the 
“approximation” and the remaining portion of the signal called “detail.”   
5 Random numbers are generated using the  linear conguential method because NPSS does not contain a random 
number generator.  

Figure 17.  Example structural vibration signal containing noise and a small FOD event 
at 3.42 seconds lasting 0.02 seconds:  (a) raw accelerometer signal, (b) wavelet-
processed signal that exposes the hidden FOD event. 

(a) 

(b) 

Spike due to descending  
part of FOD-event pulse 

Spike due to rising part 
of FOD-event pulse 

NASA/TM—2005-213588 23



 
 

Figure 18 – Discretized NPSS vibration results for100, 1000, 10,000 Hz sampling frequencies and baseline 
SIMULINK results . 
 
 
Here we used a 1000 Hz sampling rate and an FOD event was introduced at 2 seconds with an impact 
duration of 0.01 seconds and an FOD-imbalance duration of 0.2 seconds. Figure 21 shows the results 
with the fan node displacement acceleration signal. After 2 levels of  low-pass filtering, the signals 
were smoothed to reveal the incidence of the FOD event (Fig. 21B).  
 
 
 

 
 
 
 
 

Figure 19- Wavelet analysis of vibration signals using 2 levels of lowpass filtering. 
 
 
FOD events can also be detected in vibration signals by observing the signal “magnitude” and rate of 
change of magnitude. Magnitude is calculated as the root mean square (RMS) of a group of samples. 
Rate of change of magnitude is just the difference between two neighboring magnitudes. Figure 21 
shows an example magnitude analysis for a group size of  100 samples. Parts C and D show the 
results without filtering and parts E and F show the results after 2 levels of lowpass wavelet filtering. 
In all cases the FOD event was identified, but the results without filtering appear superior. 
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Figure 20 - Verification of wavelet Daub NPSS element. 
 
 

             
                Figure 21 - Wavelet and magnitude analysis of fan node displacement acceleration signals. 
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Fusing gas path results with vibration results 
 
Since neither the gas path analysis approach nor the structural dynamics approach guarantee accurate 
solutions (they both involve significant uncertainties), a data fusion framework using a fuzzy logic 
inference system was formulated that merges the results from both analytic approaches into a single 
detection/diagnostic result possessing greater confidence than either approach provides separately. 
Raw data from different phenomenological sensors (gas path and vibration) observing the same event 
can be reduced to a set of compact results using “membership functions” that categorize the results 
into weighted beliefs. That is, the gas path results yield evidence that either an FOD event occurred, it 
did not occur, or it is uncertain (and similarly for the vibration analysis). The strength of the belief for 
each category is quantified by calculating a “probability mass” value as illustrated in the left hand 
side of Figure 22.  The gas path and vibration “expert” results can then be fused together into a 
composite picture that weighs the evidence of both experts.  A full discussion of this effort is reported 
in reference 12.        
 

            
 
           Figure 22 – Example fuzzy logic inference data fusion with marginal evidence of an FOD event.  
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FOD detection/diagnosis software tool 
 

The foregoing investigations laid the foundation for the development of a FOD detection/diagnosis 
software tool. The objective was to implement the methodologies within a flexible, generic 
architecture on a commonly available computer platform (Windows 2000/XP) with as little reliance 
as possible on commercial software. The initial approach to this requirement was to create an Excel 
spreadsheet as illustrated in Figure 23. The component (health parameter) deviations X are listed 
vertically in green and the corresponding contributions to the sensor measurement deviations in the 
gray area. Each cell in the gray area contains a simple equation of the form  

 
Zij = Hij Xi                                                                                                                          (31) 

 
where, 

  
Zij  =  contribution to the jth sensor deviation from the ith component deviation 
Hij   = sensitivity coefficients input by the user (elements of the H matrix)  
Xi   = guessed value of the deviation of the ith component 

 
 

 
                                          
                                             Figure 23 – Spreadsheet engine FOD diagnostic tool 
 
The total predicted deviation of the jth sensor (Zj) is the sum of the column values (ΣZij). These values 
are compared to the measured deviations (Zmeasured) to form a set of residuals R. The goal is to 
minimize the sum S of the squared weighted residuals as indicated and is accomplished with Excel’s 
minimization function. Ideally, S = 0, which would indicate that the set of calculated component 
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deviations produced a set of predicted measurement deviations that exactly match the measured 
sensor deviations. Hence, the magnitude of S is an indicator of the methodologies accuracy. 
An obvious shortcoming of the spreadsheet implementation is the large amount of manual labor 
required to fetch the Hij coefficient values from n + 1 cycle code output cases and transcribe these 
values into the spreadsheet. This error-prone, tedious process must be repeated for each operating 
point of interest and for each engine of interest. Moreover, this particular formulation does not 
account for system and sensor noise – a serious shortcoming as discussed previously. 
 
A much improved implementation was subsequently developed that avoids these shortcomings while 
also adding the vibration analysis method described above; namely, a C++ GUI-driven code entitled 
FODID (Foreign Object Damage Identification). FODID interfaces its GUI with NPSS to 
automatically generate the required H influence matrix and predict component deviations given a set 
of sensor deviations. The primary purpose of FODID is to serve as a prototype computational tool for 
diagnosing damage caused by FOD events.   
 
The actual gas path mathematical method utilized is known as maximum a-posteriori which is 
essentially a generalization of the weighted least squares approach. In form, it closely resembles the 
extended Kalman filter approach discussed above. We let Xe be a ne-vector of component deviations 
(i.e., the health parameter deviations), and augment it by an m-vector of sensor errors Xs.  That is, the 
total independent deviation vector X = Xe | Xs and is of dimension n = ne + m. The solution is: 
 

                      [ ] ZRHHRHPX
TT 1111

0

!!!! +=                                                                           (32) 
 
where Z is the m-vector of sensor deviations, P0 is the n x n state covariance matrix, and R is the m x 
m measurement covariance matrix that captures the effect of sensor measurement uncertainties. If we 
delete P0 we have a weighted least squares formulation. R is computed from: 
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where Σ is an m x m diagonal matrix of squared sensor measurement standard deviations: 
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In general, the sensor influence coefficient matrix Hs relates changes in corrected measurement 
deviations that account for non-standard conditions (inlet temperature and pressure variations, and 
engine pressure ratio variation) to changes in raw measurement deviations and therefore includes 3 
additional rows and columns (ref. 2). But in the current formulation we presume that such corrections 
are not required because the baseline values also include their effects. Hence, Hs is simply an identity 
matrix. For the same reason, Σ would also be expanded to include 3 more terms in a more general 
formulation.                
 
A typical FODID user interface is illustrated in Figure 24 and consists of several interrelated 
windows: (1) a text editor that normally displays the baseline NPSS primary input file, (2) the main 
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diagnostic tool that defines the problem, sets options, edits deviation values, invokes NPSS, and 
displays output, and (3) an optional engine sensor simulator that supplies a continuous stream of 
noisy sensor data for the diagnostic tool to analyze. 
 

   
                                        
                                       Figure 24 - Typical FODID screen display to users. 
 
FODID can be operated in either of two modes – static mode or dynamic mode as indicated in Figure 
25. In the static mode, a single diagnosis is normally performed on user-defined sensor deviations. 
However, it is also possible request FODID to invert this process and determine sensor deviations 
given a set of component deviations.  In the dynamic mode, a continuous sequence of diagnoses is 
performed on the input sensory data stream supplied by the independently running Engine Sensor 
Simulator code.   

                          
                                                  Figure 25 – FODOD mode choices  
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In all modes, the user is presented with the main dialog shown in Figure 26. The upper portion 
controls the input and output for the component deviations, and the lower portion controls the sensor 
inputs and outputs. In the upper portion, a list of user-defined component health parameters appears in 
column 2 grouped according to user-defined component names (i.e., the entries without checkboxes 
in column 1), and a similar sensor name list appears in the lower table. These are NPSS-specific 
names that must be defined within the NPSS engine model. Column 1 enables users to turn these 
deviations on or off by clicking the appropriate check boxes.  
  
Both tables also include a Baseline value column that is filled in automatically after invoking NPSS. 
The Sensor COV column contains a list of sensor Coefficients of Variation (standard deviations 
normalized by baseline values) to define typical sensor signal noise levels (actual sensor noise plus 
any associated signal processing noise). The Deviation column in the Sensor Measurement Deviation 
table must also be input by the user to specify the FOD-induced sensor measurement deviations.  All 
of these deviation values are normalized by the corresponding baseline values to give them equal 
weights.   
 
The tool permits users to add, delete, or modify some of these entries using the edit boxes underneath 
each table and the editing buttons on the far right hand side. Clicking anywhere within a table row 
automatically fills the edit boxes with the appropriate column values.  The information in these 2 
tables constitutes a “problem configuration” and may be saved and recalled using the Open, Save, and 
Save As…buttons.  
 

 
 
                                                        Figure 26 – Defining the problem. 
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Normal static mode – This steady state mode requires users to input a set of sensor variables and 
supply their deviations. Figure 26 illustrates the appearance of the dialog after this step and before a 
diagnosis is performed. The sensor deviations are defined, the component actual deviations are 
zeroed, and the component predicted deviation column is blank. Once these inputs are defined, and 
the user clicks the Run NPSS button, the code prepares an NPSS input file and invokes the NPSS 
simulation code multiple times to generate baseline values of the sensor variables as well as n sets of 
perturbed values (obtained by sequentially perturbing the n component deviations). FODID then 
harvests the n+1 NPSS output files to obtain the response variable values it needs to solve equation 7. 
After solving this equation it presents the results to the user on-screen as a column of predicted 
component deviations as illustrated in Figure 27 It also predicts how much of the total deviation is 
due to each component as a rough indicator of which components are most severely damaged. These 
normalized damage allocations are enumerated in the Distribution column. 
 
The diagnostic solution may be checked by clicking the Check solution button. Doing so invokes 
NPSS with the solution X-vector to calculate a predicted sensor deviation vector Zpredicted. Comparing 
the predicted sensor deviation vector to the measured sensor deviation vector yields an error estimate 
that appears underneath the sensor predicted deviation column. 
 

 
                               
                           Figure 27 – FODID dialog appearance after diagnosis 
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Inverted static mode – FODID can also generate a set of simulated sensor deviations given a set of 
component deviations. This is the inverse of the normal static problem and it utilizes NPSS to predict 
the sensor deviations.  If users run this mode first and then run the normal static mode, there will be 
two columns of component deviations – actual values and predicted values. Using this sequence, it is 
possible to determine an accuracy metric for the diagnostic solution by comparing the differences 
between the predicted and actual component deviations. FODID displays an overall accuracy metric 
labeled Error underneath the component Predicted Deviation column.  It is calculated as the weighted 
RMS average component error; that is, the errors for each component are averaged and the 
contribution from each component to the total is weighted according to its magnitude: 
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where wi are the weighting factors, Xi,pre is the average predicted deviation for component i, Xi,act is 
the average actual deviation, and N is the number of components: 
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Here, k is the number of health parameters associated with a single component (typically, k = 2), Xj,pre 
is the predicted deviation of parameter j, and Xj,act is the actual deviation of parameter j.   
 
A similar error metric is displayed underneath the Distribution column and represents the average 
discrepancy between the actual and predicted damaged allotments listed.  
 
Options – Switching from normal static mode to inverted static mode (or vice versa) is accomplished 
by setting the Mode selector switch (Figure 28) on the Diagnostic Dialog. 
 

                                                  
                                                    
                                                     Figure 28 – Mode selection switch 
 
Here, the Normal static mode is labeled “Normal: Determine health parameter deviations” and the 
inverted static mode labeled “Inverted: Determine sensor measurement deviations.”  Other options 
may be set by clicking the Options button which brings up the Options Dialog (Figure 29). 
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                                                                 Figure 29 – Options dialog 
 
Normally, when NPSS is invoked an output window is automatically opened to enable users to 
monitor the progress of the NPSS run. This console window is also automatically closed upon 
completion of the NPSS run. This console window is created and destroyed so quickly, however, that 
users cannot spot any trouble that might arise. The “Debug” option provides this capability by 
pausing the NPSS output window after each run before destroying it. 
 
The “Tool tips” option turns on the feature that displays a brief help message whenever the mouse 
cursor hovers over a control in the dialog. 
 
The “Run simulation in normal mode after each inverted mode run” option causes FODID to perform 
a  normal static mode diagnosis immediately after each inverted static mode case.   
 
The “Use Linear Model Generator to generate the H matrix” option causes NPSS to use its LMG 
feature to generate the H matrix. However, this is not recommended since this feature is not as 
reliable as the default method in producing accurate H matrices.  
 
The “Plot sensitivities“ option causes FODID to display a sensitivity chart (Figure 30) each time an 
active component row is clicked (upper table). The chart appears in the lower right side of the 
diagnostic dialog and shows the sensitivity of each sensor deviation to the selected component 
deviation and the degree of linearity. This information is valuable because it enables users to quickly 
verify that there is at least one sensor deviation that is strongly dependent on the selected component 
deviation. If this condition is not satisfied, the diagnostic solution is likely to incur substantial error. 
Four perturbation sizes are used to generate this chart and they are listed in the Perturbation sizes edit 
box. Users may alter these values if desired. Also, they may select any one of the four perturbation 
sizes to use in the solution method (the second size is the default value). An alternative chart that 
plots the relevant H-matrix elements is available by selecting the “Plot H-matrix elements” box. 
These plots may be printed or saved to the clipboard by right clicking the mouse to bring up a context 
menu.     
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                                        Figure 30 – Representative sensitivity chart  
 
The remaining 4 option items are all file names that inform FODID where to find: 
 

• The NPSS executable file 
• The NPSS primary input file 
• The sensor fault matrix (Hs) file 
• The state covariance matrix (P0) file 

   
Dynamic mode – In this mode a separate code called the Engine Sensor Simulator, running in parallel 
with FODID, generates a continuous stream of  noisy sensor data that it transmits to FODID in groups 
of 1000 or 10,000 datasets at a time via a file transfer mechanism. Each dataset consists of a time 
index value and a vector of sensor measurement values (Zmeasured). Each element of Zmeasured is 
generated randomly using a Gaussian distribution and the user-defined standard deviation vector that 
appears in the lower table of the FODID diagnostic dialog. At any time after the Engine Sensor 
Simulator is started, a user may click the “Inject FOD” button to initiate an FOD event (see Figure 
31). Then every subsequent dataset will contain both random noise and the sensor deviations defined 
in the lower table of the FODID diagnostic table. For convenience, the list of sensor names, the noise 
COV vector, and the FOD deviation vector are all listed in the Engine Sensor Simulator dialog. By 
default these values are identical to the values used by FODID, but users may select another set if 
they desire by clicking the “Select engine model” button.  
 
The current time index value is continuously updated after the “Data points:” header on the Engine 
Sensor Simulator dialog and a similar update takes place on the FODID dialog. The updates are a 
visual clue to the user that data transfer is actually occurring. The data transfer bandwidth is on the 
order of 2500 datasets/second.  
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                                             Figure 31 – The Engine Sensor Simulator dialog 
 
The Engine Sensor Simulator (ESS) may be invoked either separately or via the Tools menu on the 
text editor window. ESS synthesizes both gas path sensory information and vibration sensory 
information. The gas path sensor signals contain just normally distributed noise until the user requests 
an FOD event  Then the noise and the FOD deviations are added before being transmitted to FODID.  
The 8 vibration signals are synthesized using results from a specific reduced-order structural analysis 
model (ref. 11) and the user-selected FOD parameters listed on the dialog.   
 
Once ESS is started, FODID will process each dataset it receives looking for an FOD event. It does 
this by using each transmitted dataset in conjunction with equation 32 to generate a continuous stream 
of gas path diagnoses, and examining each resulting component deviation vector (Xe) to see if any 
preset threshold violations have occurred. To prevent random noise from triggering a false detection, 
only 100-point moving averages are used to detect threshold violations. Once an FOD event is 
detected, FODID displays the event in a time history chart as illustrated in Figure 32 and updates the 
solution information in the deviation table.  
 
Similarly, FODID will examine the raw vibration data looking for and flagging threshold violations. 
In addition, it will perform a continuous stream of wavelet analyses using the process defined in 
figure 16 to isolate small FOD events masked by noise. Whenever an FOD event is detected via either 
type of vibration analysis, FODID will display a time history chart and update the deviation table. 
 
Triggering a simulated FOD event within the ESS also causes ESS to cease generating and 
transmitting data after the set of data containing the FOD event is transmitted.  
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       Figure 32 – Example FOD detection chart with 100-point moving average violating red threshold line. 
 
 
Users may select whichever health parameter deviation or sensor deviation time trace they wish to 
view by using the right-button context menu option as displayed in Figure 33.  
 
                         

 
 
                                  Figure 33 – Context menu for FOD detection charts. 
  
Vibration sensor data may be plotted four different ways according to the 4 rightmost column 
headings:  
 

• Raw: the vibration data is plotted without any signal processing 
• Wave: the vibration data is processed using the Daubechies wavelet analysis  
• Mag: the vibration data is grouped into RMS-averaged blocks 
• ROC: the changes from block-to-block are plotted.     
 

Figure 34 illustrates these 4 choices for the fan bearing data and 6 levels of wavelet filtering. 
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A checkmark in the context menu (Fig. 33) indicates the currently selected plot. Users may print or 
save these plots, and can adjust the plot resolution using the same menu. 

 

 
 
                              Figure 34 – Four different signal processing plots for bearing vibration data. 
 
 
Data fusion – Since the detection of an FOD event is via the monitoring of many different parameters, 
some thermodynamic from the gas path analysis while others are vibration related, any one of which 
might trigger an alert, some means of consolidating all of this information is needed.  
Doing so with fuzzy logic yields a composite detection indicator that weighs the evidence provided 
by both the gas path and vibration analyses.  
 
In fact, even within the gas path domain the need for data fusion arises because we typically have 
multiple parameters for each component (e.g., efficiency and flow capacity) that may yield dissimilar 
diagnoses. Thus, we first fuse the gas path results for each component as well as the multiple 
vibration analysis results before fusing the gas path data with the vibration data (Figure 35). We chose 
to simply fuse two of the vibration measurements: the fan and LPT moving average bearing 
accelerations normalized by their respective threshold values.   
                          

NASA/TM—2005-213588 37



Finally, the gas path data fusion results can be fused to the vibration fusion results using the fused fan 
result.  
 

                       
 
       Figure 35 – Steps to fuse the gas path and vibration analysis results into a composite result.  
 
The fuzzy logic process to perform these steps requires defining a set of membership functions and 
combination rules that relate input values such as fan efficiency deviation to outputs (basic 
probability assignment, BPA) that ultimately determine a numerical score that represents the degree 
of belief that an FOD event has occurred (ref. 12). For example, we design the gas path membership 
functions and rules to yield an output value near zero for normal engine operation and near 1 if we are 
quite certain that an FOD event has occurred, accounting for all the evidence.  Intermediate values 
represent lesser degrees of certainty that a damaging FOD event has occurred.  Figure 36 displays the 
particular membership functions used by FODID. There are 3 fuzzy sets: normal, uncertain, and 
FOD. “Normal” represents normal operation with little suspicion that an FOD event has occurred.  
“Uncertain” means that the evidence is too weak to conclude that an FOD event occurred, but neither  
does the evidence strongly support a non-FOD event conclusion. “FOD” represents the cases where 
the evidence strongly supports that an FOD event occurred.   
 
 

 
 
                                                        Figure 36 – Fuzzy logic membership functions. 
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The 9 rules that combine 2 input values into a single output value are: 
 

1. If input 1 and input 2 are both normal, then the output is “Improbable” 
2. If input 1 and input 2 are both FOD, then the output is “Probable”  
3. If input 1 and input 2 are both uncertain, then the output is “Uncertain” 
4. If input 1 is normal and input 2 is FOD, then the output is “Uncertain” 
5. If input 2 is normal and input 1 is FOD, then the output is “Uncertain” 
6. If input 1 is normal and input 2 is uncertain, then output is “Unlikely” 
7. If input 2 is normal and input 1 is uncertain, then output is “Unlikely” 
8. If input 1 is FOD and input 2 is uncertain, then output is “Likely” 
9. If input 2 is FOD and input 1 is uncertain, then output is “Likely” 

 
To obtain a numerical BPA value from the 5 output sets, we assign them values as follows: 
 

probable     =  1.00 
likely          =  0.75 
uncertain    =  0.20 
unlikely      =  0.10 
improbable =  0.05 

 
We have used the same defuzzification rules for all 3 fusion processes, although this is quite arbitrary. 
The entire set of data fusion results may be displayed on a single chart using the context menu as 
illustrated in Figure 37. Here a 0.5 lb. object strikes the fan at 300 ft/s and 10 inches from the axis of 
rotation at time step 1500. The fused fan gas path results are strongly signaling fan damage, while the 
HPC and HPT are probably only slightly damaged, and the LPT undamaged.  Both the fused 
vibration result (solid red line) and the overall fusion result (dashed red line) are signaling a very high 
probability of an FOD event shortly after the actual event occurred. 
 

                       
 
Figure 37 – Typical data fusion results. FOD occurred at time 1500 for a 0.5 lb. object impacting the fan at 10 
inch radius and 300 ft/s. The fused vibration result is solid red, the overall fusion result is dashed red. 
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Concluding remarks  
 
Although the FODID tool is useful in its current state of development, it should be viewed as a 
prototype tool that could be strengthened by the addition of several key features. For example, the 
diagnostic accuracy could probably be enhanced if multiple gas path diagnoses were performed at 
different operating conditions. And it would be more convenient if users could specify the operating 
point via a few button clicks rather than the current manual procedure of editing the baseline NPSS 
input file. Perhaps most importantly, a more realistic control system model that included variable 
geometry schedules and limits, bypass valve schedules, temperature limits, acceleration schedules, 
and other control logic elements would be required to represent real engines. Adding such control 
system modeling is a significant challenge for many potential users since this information is rarely 
disclosed in the open literature. 
 
Another useful feature that could be added is a FOD detection threshold manager. Currently FODID 
uses fixed threshold values (or ratios) for the many different parameters being monitored.  Users 
cannot modify these limits, but it would be preferable to provide users the ability to set these limits 
separately for each monitored parameter. 
 
It would be advantageous to strengthen the data fusion technique in FODID. The fuzzy logic 
technique involves a host of membership function parameters and rules that currently require source 
code modification to change. A membership function manager would be a welcome addition. Also, 
alternative fusion strategies to the single representative one provided could be offered.  
 
Most of the tool development effort was devoted to implementing the detection/diagnostic 
methodology including alternative techniques for presenting data, calculating moving averages 
efficiently, and so forth. Proportionately less time was spent in detailed explorations of the conditions 
under which the methodology performs well. Hence, further effort in validating the FODID code and 
discovering its practical limits of applicability would be valuable.    
 
The thermodynamic engine model used in the charts represents a modern high bypass turbofan engine 
similar to a GE90, but FODID is not limited to this type of gas turbine engine. Any gas turbine that 
can be modeled with NPSS can be handled equally well. This basic flexibility was in fact one of the 
motivating factors in initiating this effort.  
 
On the other hand, the vibration analysis implementation is not generic – it represents a specific high-
bypass engine configuration. Structural dynamic model changes would require regenerating the 
dynamic response matrices externally (e.g., using the reduced-order DyRoBeS code or equivalent). 
Interfacing FODID with a structural dynamics code such as DyRoBeS would add considerable 
flexibility to the overall simulation.      
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Appendix A – Some Lessons Learned from Previous FOD 
Diagnostic Research 

 
Researchers have been pursuing the development of diagnostic methodologies of jet engine faults for 
several decades. A review of the pertinent literature has revealed several important “lessons learned” 
as enumerated below. 
 
Lesson 1 – The pure weighted least squares method is only adequate in an ideal situation – where 
there are no significant modeling or measurement errors. Attaining the ideal situation is nearly 
impossible, hence more sophisticated algorithms must be used to cope with such errors.  By itself, the 
weighted least squares underestimates the actual deviations – typically attributing half or more of the 
real faults to other faults and measurement errors. Researchers have used “augmentation methods” 
such as fault logic to improve accuracy.  
 
Lesson 2 – Defining an appropriate engine 
performance baseline to measure deviations is 
not nearly as simple as one might expect. 
Engine performance varies from one engine to 
another as well as versus time for any given 
engine. Consequently, it is critical to utilize 
baselines that characterize the specific engine 
in question. Figure A1 illustrates this point 
using six P&W FT4 turboshaft engines (ref. 
1). Therefore, it is not good enough to use an 
average fleet value or a new-engine 
thermodynamic cycle model for a baseline. 
The variations amongst the operational 
samples is of the same magnitude as the actual 
deviations for a specific sample. Each specific 
engine ought to have its own baseline – and 
preferably a baseline from recent measured 
performance since performance values 
deteriorate with operational time due to wear 
and tear.  
 
Lesson 3 – Typical measurement errors are of the same magnitude as the sought deviations. Hence, it 
is important to include these deviations as well as the obvious engine health parameter deviations. 
Doing so, however, increases the set of unknowns to a greater number than the set of measurements – 
hence, we will have an underdetermined set of linear equations and therefore increased mathematical 
complexity. Kalman filters can be used to help estimate sensor errors. Nevertheless, sensor 
inaccuracies and simply the lack of sufficient sensors seriously hinders this method. Temperature and 
pressure sensors only yield local values whereas the flowfields are really 2- or 3-dimensional. It 
would be beneficial if these sensors gave a more accurate representation of the bulk average values at 
a given station.  More sensors would improve the identification accuracy of defective components 
because multiple combinations of possible component faults yield similar system-level response 
deviations.   
 
Lesson 4 – One approach to diminish the uncertainty of the fault estimation results is to invoke the 
weighted least squares analysis at several discrete points instead of just a single operating point.  A 

Figure A1 – Engine-to-engine deviation in fuel 
flow. 
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previous investigation of this approach reduced the overall error index by about 50 percent using just 
2 discrete points, and about 70 percent using 4 points. This does not significantly increase the 
mathematical complexity, it just utilizes more of the available sensor input data. 
 
Lesson 5 – It is important to accurately represent the control system architecture, not just the basic 
flowpath components, in a diagnostic situation involving real engines. The reason is that the 
mathematical simulation must accurately represent the engine responses to component performance 
deviations and these can depend strongly on the control system behavior. For example, if the actual 
engine utilizes a variable compressor vane angle schedule with minimum/maximum angle limits, the 
engine response will differ from a hypothetical engine simulation that ignores such limits. 
Notwithstanding this point, developing and testing diagnostic methodologies can proceed without 
such control system fidelity. It is only needed during the application of the methodologies to actual 
engines.       
 
Lesson 6 – End users cannot be expected to interpret the raw results from the weighted least squares 
algorithm. A post-processing step must be included that interprets the output into an engine diagnosis 
that helps the user identify the appropriate corrective action.  
 
Lesson 7 – The engine industry has developed rather mature and sophisticated diagnostic software 
tools to cope with the multitude of uncertainties involved. General Electric’s TEMPER code (ref. 9) is 
an example. According to the literature, the airlines are already using these diagnostic tools to detect 
and isolate faults – not just in engine manufacturer’s test cells, but also in flight service.    

NASA/TM—2005-213588 44



Appendix B – Aircraft classes with representative 
summary characteristics 
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Appendix B – Aircraft classes with representative summary characteristics (continued) 
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Appendix B – Aircraft classes with representative summary characteristics (concluded) 
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