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Project Integration Architecture:
Application Architecture

William Henry Jones
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture
which encapsulates all of the information associated with any application. The architecture allows the progress of a
project to be tracked and documented in its entirety. Additionally, by bringing all of the information sources and sinks of

a project into a single architectural space, the ability to transport information between those applications is enabled.

1 Introduction

In the late 1980’s, the Integrated CFD and Experiments
(ICE) project [1, 2] was carried out with the goal of pro-
viding a single, graphical user interface (GUI) and data
management environment for a variety of CFD codes and
related experimental data. The intent of the ICE project
was to ease the difficulties of interacting with and inter-
mingling these disparate information sources. The project
was a success on a research basis; however, due to various
technical limitations (for instance, the difficulty of devel-
oping object-oriented constructs in a non-object-oriented
language) and the loss of key personnel, it was deemed
inappropriate to advance the effort beyond the successes
achieved to that point. Thus, a re-engineering of the
project was initiated in 1996. The effort was first renamed
the Portable, Redesigned Integrated CFD and Experments
(PRICE) project and then, as the wide applicability of the
concepts came to be appreciated, the Project Integration
Architecture (PIA).

Two key re-engineering decisions were made: the C lan-
guage used by the ICE project would be abandoned in favor
of the now-available C++ object-oriented extension to that
language and the graphical user interface would be elimi-
nated as a product element of the project. The first decision
was but a matter of circumstances; had C++ been available
to the original ICE team at project outset, it would almost
certainly have been selected for use. The second decision,
to remove the GUI from the project product set, was taken
only after a period of time and reflected two truths: first,
that a cross-platform GUI with the scope of functionality
envisioned was far beyond the resources of the PIA project
and, second, that such a GUI was duplicative of other ef-
forts within the Agency.
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During the intervening years, work has proceeded and
an operational demonstration of the PIA project has been
achieved. The current effort has not achieved the com-
plete range of functionality developed in the original ICE;
however, the architectural dividing line has been more thor-
oughly defined and adherence to it has been more rigorous.
Portability of the architecture, not only across platforms,
but to distributed object architectures, has been demon-
strated. This path ahead is more clearly defined.

2 Goals

Put in simple terms, the basic goal of the PIA effort is to
capture in its entirety the usage of any application in a sin-
gle, useful, well-defined form. This capturing is not limited
to the simple output of the application itself, but further
includes coordinating information and the specialist’s own
insights into the meaning of the information.

The nature of a ‘application’ is, by project design, nebulus:
it is considered to be any computer-realized ‘thing’ which
provides or generates useful information. This may include
geometry definitions extracted from Computer Aided De-
sign (CAD) programs, geometry or other specifications de-
rived from design code predictions, results of experimen-
tal investigations, analysis, simulation and modeling, and
more. Furthermore, applications are not considered to be
limited to technical areas; business models, quotation sys-
tems, financial analysis, and the like may also be viewed as
‘applications’ by PIA, thus allowing the intermingling of
all information about a project.

By bringing all of the information of the process into one
architectural design, a number of advantages are expected
to (and, it is believed, do) accrue.



1. The information about the information (referred to in
some conceptions as the meta-data) is encapsulated
with the information itself. Information about the con-
ditions at which the information was generated, or the
merit of the information, is no longer separately stored
in a specialist’s unlocatable journal.

2. A common tool set for the use of applications is pos-
sible. A single GUI with a single look-and-feel can
be devised so as to reduce the specialist’s learning
curve for additional applications to that solely related
to the application. The specialist’s habits of exploring
a problem can now be the same from one application
to the next.

3. Common browsers and search engines may be imple-
mented to peruse the supply of information in detail
and convert it into information in general for end con-
sumers of that knowledge.

4. By wrapping every application in a well-defined arch-
itecture, it is now possible to code into such applica-
tions the knowledge to acquire information automat-
ically from other applications. Because of the archi-
tectural design, such coded knowledge is based upon
the kind of information desired, rather than upon the
application generating that kind of information.

5. Wrapped applications coded to obtain information
based upon its kind may then be combined in a di-
rected application graph to build, in effect, super-
applications. Applications of differing fidelities and
disciplines may be mixed together as appropriate to
the project.

6. The building of super-applications enables project-
wide optimization and/or sensitivity analysis to be
conducted.

3 Self Revelation

Perhaps the key technology that enables the goals above
is that of self revelation, the ability of a thing to reveal to
others its own nature. Such a capacity can be implemented
by many different techniques; however, this capacity is a
very natural element of object-oriented technology.

The concept of self revelation as discussed in the two sec-
tions below can be very quickly understood by the simple
analogy of meeting a new person at a party. One of the
natural things to do in such a situation is to ask what the
person does; if that person answers, for example, that she
is a medical doctor, an entire course may be set based upon
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the inquisitor’s needs. If the inquisitor has a medical con-
dition for which he desires a free opinion, it may be ap-
propriate to inquire further as to the doctor’s specialty. On
the other hand, if the inquisitor has not the first interest in
medical topics, it may be time to discretely spill something
and hurry off for a napkin.

To see the importance of this concept, consider the anal-
ogous alternative: what if one did not have the ability to
inquire of new people met at a party? In that event one
would be either non-functional as a party animal, or par-
ties would have to be incredibly rigid in their formulation
so as to meet the practical breadth of programmed expec-
tation in the participants. Either no conversations could be
permitted because the ability to predict the relevance would
be entirely lacking, or all guest-to-guest interactions would
have to be predetermined and pre-scripted so as to assure
that one talked with others about relevant subjects. In ei-
ther case, a lack of self revelation would be quickly seen as
truly confining.

3.1 Self Revelation of Kind

The revelation of kind identifies the essential character of
the revealing entity. In the object-oriented implementation
of PIA, this sets expectations as to the kind of informa-
tion and functionality a particular object has: it is a free-
stream Mach number parameter, or it is an operation that
may or may not be enabled and, if enabled, will execute
and do something, or it is an application offering parame-
ters, identifications, and operations, or it is any one of an
almost unlimited variety of other things. The key feature
is that, upon finding out its kind, precise expectations as to
what it has and what it is willing to do may be confidently
inferred.

The revelation of kind is effected in two ways by PIA: an
interrogative form and a declarative form. In the interroga-
tive form, a predicate of kind is posed to the object and ei-
ther affirmed or denied. In the declarative form, an inquiry
is made of the object and a value is returned declaring the
type of the object.

Because of the derivational nature of object technology,
both of these revelational forms support the concept of
depth. That is, an object may be of a particular kind at
some derivational depth but, because of further derivation,
may not appear to be of that kind on its surface. The
examination of such layers of meaning is referred to in
the PIA nomenclature as ecdysiastical analysis (from the
Greek ekdysis, ekdyein, to get out of, strip off).



3.2 Self Revelation of Content

The revelation of content identifies the extent to which ex-
pectations based upon the revelation of kind are, in fact,
fulfilled. Here, the revealed kind of an object allows one
to expect that it has content of a given nature, but that na-
ture may yet be nebulus by design, or may be variable in its
amount, or may be variable in other specified ways.

Consider for example an application object. As will be dis-
cussed shortly, an application object is known to have a set
of operations encapsulated in operation objects; however,
by specification, it is not known whether or not there ac-
tually are any operation objects (that is, the set could be
null), nor if there are any such operation objects, precisely
which kinds will be present. Code consuming an applica-
tion object must deal with it on that basis; that while an
operation object set is defined, it may be empty and, if it
is not empty, that further interrogation of individual oper-
ation objects will be necessary to determine the nature of
the operations available.

4 Application Architecture

Building upon the concept of self revelation, an applica-
tion architecture as depicted in Figure 4.1 has been devised.
While the structure may, at first, appear daunting, it is, in
fact, a quite orderly thing which may be easily understood.

An application presented in the image of PIA begins with
a central application object, labeled PacAppl in the upper
center of the figure, which is the root structure from which
all further components emanate. Four principal compo-
nents are currently provided by the PacAppl object:

1. A set of operations that the application is willing to
perform,

2. A mass of data which the application currently con-
tains,

3. A structure by which the contained data is identified,
and

4. An ecdysiastical sorting of the information-bearing
objects in the application.

The first three components are depicted in the figure in the
upper left, the upper central to lower left diagonal, and the
central right, respectively. The fourth component is not de-
picted due to its structural complexity. Each of these com-
ponents is taken up in its own subsection below.
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4.1 Application Components
4.1.1 Parameter Configurations

The architectural discussion begins with the holders of pa-
rameters (the objects which hold application data of all
forms) depicted as the structure proceeding to the lower left
from the PacAppl object. These objects, labeled PacCfg in
the figure, are called ‘configurations’. If one considers the
aggregate of all data in an application (both input and out-
put of all types and forms) to constitute an n-dimensional
space (where, admittedly, n can be quite a large number),
then a parameter configuration is considered to identify ex-
actly one point in that dimensional space. Put less formally,
a configuration is simply a distinct set of input data and (as
appropriate) the output data it gives rise to.

Because of this definition, a changed data value consti-
tutes a new data configuration and, commonly, results in a
new PacCfg object. Because the data set of a typical PIA-
wrapped application is expected to be large, it was decided
that simple replication of the entire data set each time a new
configuration occurred would be wasteful. Thus, as de-
picted in the figure, PacCfg objects are arranged in an n-ary
tree and the PacAppl object identifies the PacCfg acting as
the patriarch of that tree. Descendent PacCfg objects are
considered to inherit missing data components from their
ancestral configurations, thus eliminating the need to repli-
cate unaltered data.

The potential operation of this architecture can be seen in
the figure. The PacCfg object acting as the patriarch of
the configuration tree (that is, the PacCfg object directly
pointed to by the PacAppl object) will often contain the
fully populated data set of the problem being explored.
In the figure this would be the parameter objects labeled
A/Inl/Cfd through F/Noz/Cfd. Descendent PacCfg objects
would contain only the parameter objects being changed
in the course of research investigation. In the figure, the
first two direct descendents of the patriarch change only the
E/Duc/Cfd parameter object while the third direct descen-
dent also changes the F/Noz/Cfd parameter object. The
three further descendents of the first direct descendent go
on to hold modified values of the A/Inl/Cfd parameter ob-
ject. The bottom leftmost configuration thus has its own
A/Inl/Cfd parameter object, inherits its E/Duc/Cfd item
from its direct parent, and inherits all remaining parame-
ter objects of the comprehensive set from the patriarch.

Parameter objects within a configuration are maintained
as a map (implemented in fact as a balanced, binary
tree) sorted by a fully-qualified name (for example, the
A/Inl/Cfd name above). Duplicate names are not al-
lowed, so each parameter object must have a unique, fully-
qualified name. The reason for this arrangement is to avoid



PacCfg

Par: A/Inl/Cfd |
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Pur a/mi/cr | Pur a/my/crd | par: a/mi/cr |

Figure 4.1: PIA Application Architecture

the needless replication of data structure in cases where
only that structure uniquely identifies a particular param-
eter object to be held in modified form in a dependent con-
figuration. The structure of data is moved into the content
of the fully-qualified name so that only that particular pa-
rameter object need be replicated (in modified form) in a
descendent configuration.

To make this fully-qualified name concept more concrete,
consider a multi-block CFD code in which each block has
a set of repeated attributes whose particular value may vary
from block to block. Thus, block 1 would have the at-
tributes A, B, and C, as would block 2, block 3, and so on.
Without the movement of structure into the fully-qualified
name, it would be at least necessary to replicate blocks 1,
2, and 3 in order to change the B attribute of block 3 so
as to make it clear that the modified B attribute is, in fact,
the B attribute of the third block. By moving structure into
the fully-qualified name, perhaps by naming the attribute
B/Block3/SomeCfdCode, it is only necessary to replicate
the modified B attribute in the descendent configuration.
The fact that it is the B attribute of the third block is made
clear by the fully-qualified name.

By expanding the configuration tree as work progresses, a
researcher may parametrically explore a design space with
reasonable economy while leaving a comprehensive docu-
menting trail behind. As will be discussed in a later section,
a number of distinct policies may be implemented with re-
gard to the establishment of a new configuration as opposed
to the modification of an existing configuration.
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4.1.2 Parameter Identification

The configuration structure discussed above introduced the
concept of the fully-qualified name whose purpose was to
capture the structure of data without requiring the needless
replication of that structure within each parameter configu-
ration. The revelation of structure within the data (which is
a revelation of content for the PacAppl object) is taken up
by the identification structure depicted at the central right
of the Figure 4.1. These are the objects whose labels begin
Pid, each of which is followed by a name text.

This parameter identification element of the application
architecture is, again, arranged as an n-ary tree. In this
case, the tree structure is used to reveal the corresponding
data structure of the application. The fully-qualified name
of a parameter is developed by concatenating the names of
each of the tree elements leading to the final identification
of that parameter. In the example of the figure, all data pro-
ceeds from the application root, Cfd. Cfd has three major
data structures: Duc (Duct), Inl (Inlet), and Noz (Nozzle).
Descending from this level, Inl has three parameters, A, B,
and C, Duc has two parameters, D and E, and Noz has one
parameter, F. Thus, the fully-qualified name of the B pa-
rameter obtained by concatenating the names of the path
elements leading to its identification would be B/Inl/Cfd.

Beyond this point, the parameter identification structure is
unremarkable. The only point to be made is that, within
any group of siblings in the tree, the names of identified
data items/structures must be unique. Thus, the Noz iden-
tification cannot be repeated at its level. Shifting to the



example of the multi-block CFD code, this means that the
name ‘Block’ may not simply be repeated. Instead, names
such as ‘Block01’, ‘Block02’, ‘Block03’ and so on must
be generated (probably as a dynamic response to problem
setup) to make the multiple-block level of the data structure
unambiguous.

4.1.3 Operations

A key element of most applications is not solely that they
hold data, but that they do something with that data. Often
some algorithm is executed during which inputs are turned
into outputs. To reveal these operations, the PacAppl ob-
ject identifies a map of operational objects (labeled Op fol-
lowed by a name in upper left of Figure 4.1) sorted by op-
eration name, which must be unique. In the example of the
figure, three operations, Init (Initialize), Kill (Kill a run-
ning operation), and Run (take the input data and run the
operation to completion, acquiring new output data), are
provided.

Some operations may require specific interaction with the
researcher. For instance, an operation obtaining input from
a file may need to prompt the researcher to identify the
file to be used. For this purpose, a GUI call-back class,
PacGUI, is defined which provides a known, well-defined
set of such interactions. Such an object must be supplied to
each operation each time that operation is invoked.

While standards as to what a particular operation name
should connote are being contemplated (for instance, ‘Run’
will probably connote a batch style run to completion while
‘Start” would indicate an interactive operation initiation to
be terminated by some later ‘Stop’), there is no standard
or requirement for the operations that any particular PIA-
wrapped application is to provide. Thus it is that the High
Speed Research (HSR) Inlet Unstart test support (the first
application actually adapted to this architecture) provides
neither ‘Start’ nor ‘Stop’, but instead provides ‘LoadFrom-
File’ and ‘CreatePlaceHolder’ operations.

4.1.4 Object Sorting

A fourth structure has been defined and implemented, but it
is not shown in the figure. The structure provides a sorting
of objects of the application by their derivational heritage.
For example, a far-field Mach number parameter object is
sorted as being

1. A far-field Mach number parameter,

2. A Mach number parameter,
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3. A dimensional, double scalar parameter, which is, in
fact, non-dimensional,

A dimensional, double scalar parameter,
A double, scalar parameter,

A scalar parameter,

A parameter,

A describable application object,

© 2 =N ok

A directed graph object,
10. A status-bearing object, and, finally,
11. An object.

The need for this derivationally-exhaustive sorting arises
because a particular application may specialize parameters
beyond the level that is well known. Continuing the exam-
ple above, an application may define and use many particu-
lar, custom types of far-field Mach number parameters, but
have no parameter object instances that are exactly a far-
field Mach number parameter as defined for all applications
by the architectural standard. Without the derivationally-
exhaustive sorting, an inquiring application would have to
examine each parameter to determine if it was, in fact, a
kind of far-field Mach number, while with the sorting an
inquiry can be directed immediately to those specialized
parameter objects even though none may be exactly a far-
field Mach number parameter object.

This object-sorting structure has been unused to this point
since its utility is principally of use to search engines and
the like, which are themselves as yet unrealized.

4.2 Operating Context

By now the reader will be impatient to learn the signifi-
cance of the great, sweeping curves that run from each ter-
minal node of the parameter identification tree, and from
each node of the operation identification tree to the lower
leftmost node of the configuration tree. The answer is that
the objects of both these structures operate within the con-
text of a particular parameter configuration which must be
identified when certain functions are invoked.

Identifications and operations offer IsVisible and IsEnabled
member functions, respectively. These operations indicate
whether or not their presenting objects are active (after their
kind) within the context of the current parameter configu-
ration. By this means, an Initialize operation could refuse
to work when queried in the context of a parameter con-
figuration that either had or inherited a populated data set.



Similarly, an identification of, say, a turbulence model pa-
rameter would respond that no such parameter exists if the
turbulence model, itself, is turned off in the identified con-
figuration, even though it might well inherit such a parame-
ter from an ancestral configuration in which the model was
turned on.

5 Configuration Policy

As illuminated above, the application architecture is quite
abstract and leaves an enormous amount of room for ma-
neuver in adapting an application to the PIA environment;
however, the architecture also leaves considerable lattitude
to the consuming tool (most commonly, a conforming GUI)
to make of things what it will. One of these areas is the
configuration policy to be applied when modifying a data
1tem.

As noted in the architecture section, the modification of a
data item identifies a new point in the n-dimensional data
space and, customarily, results in the generation of a new
configuration object attached to the configuration tree at a
point appropriate to inherit all the other unmodified param-
eter objects. This is a policy which is, itself, not actually
provided by the PIA implementation, nor is it necessarily
mandated by the architecture. The decision to actually im-
plement this policy is left to the consuming tool.

The reason for leaving this policy decision to the consum-
ing tool is that this is not the only reasonable policy. Sev-
eral additional policies are suggested in the following sub-
sections and it may be that a GUI might well wish to offer
some or all of these policies to the researcher to facilitate
the work being conducted.

5.1 Replication

This policy is the one initially suggested above. A new
configuration is generated and attached, presumably as the
direct descendent of the configuration containing the data
item to be modified, and the encapsulating parameter object
is replicated in that new configuration with the modified
value. This might be considered the basic step in design
space exploration.

5.2 Modification

If the data item is contained in a configuration with no de-
scendent configurations (or, for additional complexity, no
descendent configurations inheriting the data item), the en-
capsulating parameter object can be modified as it resides
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in the existing configuration, provided that no output re-
sults exist in that configuration or that such output results
as do exist are either marked invalid or are discarded. This
policy, while not so utterly clear as the previous, might be
useful when casting about trying to find a meaningful start-
ing point.

5.3 Invalidation/Re-execution

In this policy, the data item may be modified despite (in-
deed, because of) the fact that descendent configurations
inherit the data value. Here, the policy goes beyond sim-
ply invalidating the output data dependent on the data item
to be modified. The policy would specify the automatic re-
execution of the application to regenerate those results with
the effect that an entire design space might be analyzed as
the result of a single act. Note, though, that the semantics
of architecturally identifying the re-execution act have not
yet been devised; however, if and when the implementa-
tion of such a policy should come to hand, the development
of appropriate semantics would not seem to be a difficult
problem.

5.4 Subgraph Replication

The previous policy has the disadvantange of discarding the
previous results of the design space represented by the de-
scendents of the configuration. A further extension of the
policy could be to (1) replicate the encapsulating parame-
ter object for modification in a new, sibling configuration,
(2) replicate the descendent subgraph inheriting the origi-
nal value as a descendent subgraph inheriting the modified
value and, then, (3) invalidate and regenerate the output re-
sults in that replicated subgraph. This policy allows the
parametric study of complete design spaces while retaining
all of the previously generated results.

6 The Base Object

Very nearly all of the object classes involved in implement-
ing the PIA application architecture described above are
derived from a common base class, PacBObj. This base
class provides several key features:

1. The (inherited) ability to participate in a directed
graph,

2. The ability to be ‘described’,

3. The ability to transmit declared events, and



4. The ability to traverse upward through the application
structure.

6.1 Directed Graph Capabilites

The ability to participate in a directed graph allows the
direct implementation of the n-ary trees of the parameter
configuration and identification structures through inher-
ited characteristics. An n-ary tree is, after all, merely a
directed, acyclic graph in which only one immediate pre-
decessor is ever allowed.

As will be noted later, further use of the directed graph ca-
pability is made.

6.2 Descriptive Capabilities

The ability to be described brings a good deal of useful
function to the entirety of the architecture. The descriptions
that may be added to any such object include but are not
limited to

1. A name,
2. A set of access controls,
3. An annotation,
4. A short, descriptive text,
5. A change history,
6. A drop-down prompt,
7. One or more graphical descriptions,
8. A Universal Resource Locator (URL),
9. A descriptive, multi-line text,
10. A type,
11. A measurement unit description, and

12. A related parameter reference.

Indeed, virtually any sort of descriptive element can be de-
vised and added to the repertoire merely by deriving a class
from the appropriate descriptive base class (which is, itself,
derived from PacBObj and may, thus, be described).

Because not all objects will necessarily have descriptive el-

ements and certainly not all objects will have all descriptive
elements, it was desired to make the descriptive system one
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of minimal overhead. Thus, instead of a series of com-
ponents embedded in the PacBObj class, the only fixed
component of the descriptive system is a pointer to an or-
ganizing head which, if present, ecdysiastically sorts a set
of description objects by type. Thus, the only unavoidable
overhead is that of a single pointer which, occassionally,
may be null.

The only limitation of the descriptive system is that, within
a descriptive set, only one instance, at most, of any partic-
ular controlling descriptive type (that is, at most one name,
one annotation, one URL, etc.) is permitted. This limita-
tion is offset to an extent by the fact that the descriptive
system is implemented in a layered, hierarchial manner in
parallel with the derivational class hierarchy and that dis-
tinct descriptive sets may exist at each such level. Thus, for
example, a scalar double kinematic viscosity object might
be described at the level of

1. A kinematic viscosity,

2. A viscosity,

3. A dimensional scalar double parameter,
4. A scalar double parameter,

5. A scalar parameter,

6. A parameter, or

7. A PacBObj object.

This presumes, of course, that that is the derivational class
hierarchy of the object.

Within this descriptive hierarchy, the top-most description
(that is, the description of the most derived class level) of
any kind is considered to be the preferred description; how-
ever, the facilities exist to reveal the entirety of the descrip-
tive hierarchy should it be desired.

6.2.1 Engineering Logs

The multi-line, descriptive text form is provided as the pos-
sible basis of an engineering log facility. Here an indefinite,
expandable number of text string elements in an ordered list
can be associated with any PacBObj derived object. All
that is lacking is for the consuming GUI to provide an ap-
propriate editing facility to access, modify, and update the
text. This form does not offer any implicit time stamping;
however, if such a feature were desired, it could be added
easily enough in a derived class.



6.2.2 Change Histories

A change history descriptive form is provided. It provides
an implicitly time-stamped, ordered, multi-line descriptive
form. This form is implicitly used by the PacPara (pa-
rameter) base class to record parameter modifications as
previous value texts. All currently implemented parame-
ter classes utilize this capability in their corresponding Set-
Value services.

6.2.3 Access Controls

The final descriptive form worthy of further discussion
is the access control description. Again, any PacBObj-
derived object can attach access control descriptions
throughout its descriptive hierarchy. These descriptions,
while defined only in terms of base class functionality, typ-
ically consist of an ordered list of access control entries
against which an identified user is checked. The first en-
try matching the user provides the access characteristics
granted. Should no such match be made, a default policy
is applied. Since descriptions, and hence access control de-
scriptions, are themselves derived from PacBObj, access
controls may be applied to access controls. This recursive
loop is broken by a self-controlled access control which
provides access control characteristics not only for the ob-
ject it describes, but for itself as well.

Perhaps the most remarkable thing about the access control
descriptive form is that it was added to the descriptive sys-
tem on the order of a year after the descriptive system had
been designed, implemented and, in a project sense, ‘put to
bed’, thus illustrating the power and flexibility of the basic
descriptive concepts. It is also important to note that the
access control descriptive form (as with all the other de-
scriptive forms) incurs no object ‘cost’ beyond the single
map head pointer (which may be null) until it is actually
used.

6.3 Declared Events

The PacBObj base class implements an event facility in
which some utilizing entity may attach one or more objects
of PacEvent derivation to a PacBObj-derived object. This
event base class defines a number of different event types
but, as a base class, provides at most a default response
should the event be declared. The PacBObj base class im-
plements corresponding event functions which, if invoked,
will identify each attached event object and transmit the
event declaration to it.

Utilizing code is responsible for developing and attaching
derived event class forms which do something meaningful
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should an event be declared. Just exactly what act occurs
is left entirely to the utilizing code. Automated corrections
may be applied, email may be sent to a user, a notation
made in a log file, or nearly any other thing may occur in
response. Further, there is no requirement that the event ob-
jects used be of the same kind and, even beyond this, there
is no artificial limitation on the number of event objects that
may be attached to a particular PacBObj object, nor upon
the number of PacBObj objects that may be attached to a
particular event object.

As a facility defined and implemented in the PacBODbj
class, the event mechanism is available throughout virtually
all of the application architecture. Applications, parameter
configurations, operations, parameters, parameter identifi-
cations, descriptions, and more may all declare events for
notation, action, or other response by utilizing code.

6.4 Upward Reference

The basic direction of the application architecture is down
from encompassing components to more specific compo-
nents. Applications identify operations, configurations,
and parameter identifications, configurations identify pa-
rameters, parameters identify descriptions, and so on. In
implementation, though, it is frequently necessary to tra-
verse in the oppositive direction; an operation object may
need to identify its application object so that it can then
locate the parameter identification structure.

This need is met by a pointer member and supporting code
in the PacBObj class which references the next higher level
element of the application structure. Parameters, for ex-
ample, reference their containing parameter configuration
object.

The supporting code permits traversals of this upward link-
age in search of a particular kind of object. Thus, simple re-
quests may traverse several structural levels. Further, such
code need not be sensitive to the number of levels skipped
to locate the desired structural level. A description seek-
ing to locate the application object need not be concerned
whether or not it directly describes a parameter in a config-
uration of an application; its uplevel reference coding will
work equally well if it is a description of a description of
a description of a parameter in a configuration of an ap-
plication, or if it is a description of an identification of an
application, or a description of an operation of an appli-
cation. This allows wide application of coding that must,
itself, still traverse the structural form of applications.



7 Parameters

Data items to be placed in configurations are encapsulated
in objects derived from a common parameter base object,
PacPara, which is itself derived from PacBObj. As men-
tioned in the previous section, the PacPara class imple-
ments an implicit change history protocol which notes all
the previous values of the encapsulated data item as time-
stamped text entries kept in an ordered list.

7.1 Dependent Parameters

The parameter base class utilizes the directed graph capa-
bilities inherited by it to implement a dependent parame-
ter mechanism. PacPara provides implementing code to
regard each successor of a graph in which the presenting
object participates as being dependent upon the data value
which the presenting object encapsulates. In the event that
that value is changed, those objects dependent upon that
value (throughout the range of the graph) are informed.

Of somewhat greater complication than this is the realiza-
tion that the replication of a benefactor parameter requires
the replication of its dependent parameters. If a benefactor
parameter in a particular configuration is to be replicated
and modified in a descendent configuration, the dependent
parameters of that original benefactor cannot also be de-
pendents of the replicated parameter. In turn, the replicated
(and modified) benefactor cannot simply inherit the depen-
dents of the original parameter since their values (presum-
ably) represent correct dependent values for that original
parameter, not the modified value of the replicated parame-
ter. Thus, PacPara must (and does) provide code that will
correctly replicate the dependent subgraph of a replicated
parameter so that the modified value of the replicated bene-
factor may be correctly propagated to the replicated depen-
dents in that subgraph.

7.2 Infusion of Semantic Meaning into Parameter Ob-
jects

The self revelation of kind mechanism provided by the
foundation object of the developed class system is used by
the parameter object hierarchy to infuse semantic meaning
into parameters [3]. The first derivations of parameter ob-
jects specialize parameters by their basic structural forms;
scalar, vector, matrix, organizational, and the like. Further
derivation then associates an atomic kind; long, double,
Boolean, string, and the like with these forms as appro-
priate.

A further specialization of double parameter kinds declares
them to be dimensional in nature, that is being a measure-
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ment in some system of measurement such as the metric
system of measurement. (The concepts of dimensionality
are discussed in greater detail in [4].) From this point a
great majority of engineering parameters may then be de-
rived, each drawing upon the dimensional base facilities
to present themselves in the system of measurement re-
quested.

Many other engineering parameters are non-dimensional.
Thus, the next specialization of dimensional objects is,
paradoxically, to a non-dimensional form which may then
be used as a basis for these non-dimensional parame-
ters. The basing of non-dimensionality upon a dimensional
foundation allows the free combination of these parame-
ters with dimensional values. Thus, a Mach number may
be multiplied by a computed speed of sound to result in a
dimensional speed available in whatever system of units is
desired.

The related parameter descriptive mechanism is utilized to
associate other parametric information with semantically-
defined parameter objects. Consider the following utiliza-
tion of the capability.

1. A vector of double values is specialized through sev-
eral layers of derivation to be a one-dimensional-grid
of total-pressure values. (The derivation of the class is
shown in Figure 7.1.) That kind of parameter object is
then defined as associating through the related param-
eter descriptive mechanism a vector of linear position
measurements which reveal the X-coordinate values
of that one-dimensional grid.

2. Another parameter specialization through derivation
creates a vector of those one-dimensional-grid total-
pressure parameter objects which is declared to be a
time-history of those parameters. (The derivation of
the class is shown in Figure 7.2.) The related param-
eter descriptive mechanism is again used to locate a
time-value vector the elements of which are defined
as being the times associated with the corresponding
elements of the time history vector.

By working to the semantic meanings of these two classes,
a consumer of the second parameter object may discover it
to be a time history of one-dimensional-grid total-pressure
values for which it may further obtain (1) the times at which
each grid result is valid and (2) the positions of the grid
points.

This infusion of semantic meaning through derivational
specialization exposed through self revelation of kind and,
to an extent, content is an enabling technology for the prop-



agation of information between applications, as will be dis-
cussed shortly.
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Figure 7.1: Derivation of a One-Dimensional Grid of Total
Pressures
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Figure 7.2: Derivation of a Time History of One-
Dimensional Grid of Total Pressures
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8 Persistence

Saving the state of an encapsulated application, whether
implicitly or explicitly commanded, is a self-evident re-
quirement and was, in fact, one of the very first challenges
confronted. Review of various commercial data base prod-
ucts at the start of the project revealed all of them to be
generally intolerant of evolutionary change, which itself
was another requirement of the PIA effort. This was not
an overriding concern though because, for administrative
reasons, these products simply were not available to the
project.

To meet the persistence requirement, an object serializa-
tion capability was implemented. In this approach object
contents are written out to or read back from an archive
file (or other repository) under the control of a Serialize
function. (The ‘Serialize’ name is entirely arbitrary.) An
archive object keeps track of what objects have been seri-
alized or de-serialized so that redundant references to an
object are treated as such and do not cause redundant seri-
alizations or de-serializations of the object.

The drawback of this serialization is also its strong point: a
Serialize function must be manually coded for every class
that might participate in such an operation. For the most
part such coding amounts to mere tedium; however, it is
in this coding that the groundwork for evolutionary change
can be laid. If one takes the precaution of serializing an
archive version number as the very first step of object se-
rialization, then conditional code for the de-serialization of
old object versions can be generated when object revisions
are defined. By this means, old objects may be recovered
even when the base class of a class has been changed. This
allows quite extraordinary revisions to an implemented PIA
wrapping to be effected without loosing old, archived ver-
sions of the implementation.

As utilized in the C++ implementation of the architecture,
the serialization of objects is explicitly commanded and re-
sults in an act which saves the entire application wrapper
instance to persistent storage, or recovers that entire object
set from storage. As will be discussed later, the Common
Object Request Broker Architecture (CORBA) implemen-
tation of the architecture is implicitly persistent; however,
the same serialization mechanism is, in fact, used, but on
an object-by-object basis rather than across the entire ap-
plication wrapper object set as a whole.

9 Information Propagation

The infusion of semantic meaning into parameter objects
through derived class specialization and self revelation



mechanisms forms the basis for the interapplication trans-
fer of information by allowing one application to ‘look’ at
parameters of another application and discern on an auto-
matic basis the semantic nature of the observed parame-
ter objects. This basic technology enables a number of in-
terapplication information transfer modes from user-driven
collaborative exchanges through automated browser/search
engine harvesting of information to completely automated
application graphs for comprehensive engineering analysis
of a project as a whole.

Because the propagation of parametric information
throughout application graphs could be implemented en-
tirely within the PIA framework, it was the first form of
information transfer implemented by the PIA project [5].
The basic goal is as has been previously suggested: to ar-
range disparate applications into a cooperative graph whose
operation carries out all of the analyses relevant to an engi-
neering project as a whole.

Consider as an example of the arrangement of applications
into a graph for the purposes of information propagation
the situation depicted in Figure 9.1. Here, an analysis con-
trol application is made the initial node of the application
graph. This pseudo-application exists solely as a conve-
nient point for declaring new configurations of the overall
problem and setting parameters within those configurations
to control the analysis done. Two read-only applications, a
wrapping of CAD geometry information and a wrapping
of Particle Imaging Velocimetry data are the initial node’s
immediate sucessors, each leading to the ‘real’ application
in this example, a wrapping of an two-dimensional flow
solver. The design of this particular graph, then, is to pro-
vide three sources of information to the flow solver, each
of those pieces providing an independent part of the input
whole for that solver.

The basic conceptual view behind the arrangement of an
application graph is that there always exists some source
definition of a proposed configuration of the project which
then feeds as input to various analyses of that configura-
tion. Those analyses then produce results with two po-
tential aspects: intermediate values which are of use for
further forms of analysis and final answers contributing to-
ward a judgement of the engineering merit of the design.

Another aspect implicit in this view of information propa-
gation throughout directed application graphs is that such
applications operate in what might be called a batch mode
that reliably turns input information into output informa-
tion. The information propagation scheme as implemented
to date does not contemplate an interative cycle upon the
graph until some result balance is achieved. Note, though,
that the architecture does not preclude such a formulation
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at some future point.

Yet another feature of information propagation as presently
implemented by the architecture is the forced synchroniza-
tion of parameter configurations. Information propagation
is required by the implementing code to be from a par-
ticular parameter configuration and, potentially, the con-
figuration subgraph which it heads, to a precisely corre-
sponding parameter configuration in the receiving applica-
tion and, potentially, the configuration subgraph which it
either heads or which is created for the purposes of prop-
agation with the particular receiving parameter configura-
tion as its header. By this enforced stipulation, the concept
of a project configuration as encapsulated by the configu-
ration object scheme is made more real and, it is expected,
the problem of mismatched configurations within a project
analysis will be eliminated. No longer will the weight of
the thin tank wall be combined with the strength of the thick
tank wall to produce a winning design in all departments
except manufacturing.

To see this synchronization of configurations, consider first
the pre-propagation situation depicted for two application
graph members in Figure 9.2. The parameter configura-
tion graph of the successor application is, clearly, a subset
of the configuration graph of the predecessor application.
(The supposition here is that the configuration graph of the
successor application, in fact, corresponds exactly to the
left portion of the graph of the predecessor application, pre-
sumably because of prior acts of information propagation.)
After information propagation has occurred, as depicted in
Figure 9.3, new parameter configuration graph nodes have
been created in the graph of the successor appplication so
as to exactly duplicate the configuration node from which
the information propagation occurred and to duplicate the
subgraph which that configuration node heads, from each
element of which information propagation has also oc-
curred.

The information propagation implementation also recog-
nizes that not all applications are entirely reliable in their
operation. (Indeed, it was the twitchy nature of sophisti-
cated, high-fidelity CFD codes that gave part of the im-
petus to the PIA project in the first place.) To deal with
this, the information propagation support utilizes the event
mechanism built into the PacBObj base class to allow inap-
propriate operations to alert supposedly corrective entities,
whether automated or human-interactive. There is, through
this facility, the ability to apply corrective measures and
re-attempt a particular operation in the overall propagation
activity. Failing such corrective actions, the information
propagation system will mark the affected parameter con-
figurations as being defective and will prevent further prop-
agative acts based upon those configurations.
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Figure 9.1: A Simple Arrangement of Applications into a Graph for Information Propagation
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Figure 9.3: Parameter Configuration Graphs of Two Application Graph Members After Information Propagation

The process of information propagation as currently imple- 1. The process is begun by delivering a propagation com-
mented proceeds in the following general manner. mand citing a specific parameter configuration to an
application object which is, itself, a member of an ap-
plication graph. Typically, this application object will
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be acting as the initial node of that application graph.

2. The application object does what it may to convert
its own input information into output information.
Should this element of the process fail, information
propagation is discontinued.

3. The application then passes the propagation operation
on to each of its immediate successors in the applica-
tion graph. The identified parameter configuration is
passed on in this act.

4. Each receiving successor application establishes that
it has a corresponding parameter configuration, or cre-
ates such a corresponding parameter configuration in
its own configuration graph. Further it verifies that
it has, or it creates, a subgraph corresponding to any
subgraph headed by the identified source parameter
configuration.

5. Each receiving successor application then examines
the parameter objects available in the source param-
eter configuration (and in the subgraph which it may
head) and, based upon the semantic meanings re-
vealed by those parameters, acquires such information
as it may. The information is encapsulated in the cor-
responding parameter configuration(s) of the receiv-
ing application.

Each receiving successor application is free to exam-
ine the extended predecessor applications of its own
propagating immediate predecessor application, to the
extent that those may exist, to acquire information
from the parameters of those applications, too, in the
event that not all relevant input is available from its
own immediate predecessor applications.

6. When each receiving successor has received a propa-
gation act from each of its own immediate predecessor
applications, it then operates so as to convert its own
inputs into outputs and then passes the propagation act
on to its immediate successors.

7. The propagation of information continues in this man-
ner throughout the graph until terminal nodes of the
graph are reached and, recognizing that they have
no successors, those terminal applications return the
propagation act back up the graphical chain to the
originator of the act.

It should be remembered in all of this that it is the technol-
ogy of self revelation exposing infused semantic meaning
that makes the implementation of information propagation
tenable. Applications wrappers need only be coded to look
for the kinds of information they desire to acquire during
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propagation, as in a process of filtering that that is of in-
terest from that that is not. It is not necessary to code for
connection to a specific source application to obtain an ex-
pected kind of information, nor is it necessary to code for
specific topological arrangements of applications.

10 Documentation

Complete, class-by-class, member-by-member documenta-
tion has been generated in Hyper-Text Markup Language
(HTML) format and placed on a central server at the Glenn
Research Center. The documentation provides not only ba-
sic explanatory text as to what particular components do,
but also tries, when appropriate, to discuss why particular
choices were made, what expectations exist for the use of
particular capabilities, and the like. The root URL for this
documentation is

http://www.grc.nasa.gov/WWW/price000/index.html

It must be strongly emphasized that these pages are the in-
formal generation of the researcher involved and do not, in
any way, shape, or form, represent an official statement of
the Government of the United States.

11 Experience

To date, three applications have been wrapped in the C++
implementation of the PIA Application Architecture: a pre-
sentation of experimental data from an inlet unstart ex-
periment for the High Speed Research project (known as
HIU), a presentation of flowpath geometry information
from Computer Aided Design (CAD) sources accessed
through the Computational Analysis Programming Inter-
face (CAPRI) cross-vendor package, and an operational
wrapping of the Large Perturbation Inlet (LAPIN) analy-
sis code.

11.1 HSR Inlet Unstart

The wrapping of the HIU test was encouraging because, up
until the invitation to do that effort, experimental aspects of
the PIA task had been greatly de-emphasized. Penetration
of the ICE project into the experimental arena had been
shallow and, as a consequence, experimental data handling
by the PIA project was considered of minor importance.
Thus, it was gratifying to see the concepts conceived almost
entirely with analytical tools in mind bent so amiably to the
needs of the experimental environment.



On the other hand, the experience with the HIU test has
instantly and forcibly demonstrated the inadequacy of the
single virtual address space in which the C++ implementa-
tion of the PIA effort must live. The HIU test has generated
something on the order of 25 GigaBytes of experimental
data. Without lapsing to a meta-data concept, such a data
load is utterly crushing to the C++ implementation environ-
ment. While a meta-data solution is possible, other growth
directions (to be discussed shortly) mitigate against such an
implementation, even as a short-term solution.

One judgement that was derived from the HIU experience
is that the 25 GigaByte size was not an unusual thing. Ex-
perimental propulsion efforts are expected to often have
data volumes of this magnitude. Further, a comprehensive
CFD investigation saving all intermediate results and steps
as envisoned by the architecture could also produce data
volumes of this magnitude. Given the fact that the PIA
effort is to allow the researcher to browse from one such
volume of data to the next and, ultimately, migrate infor-
mation content between such repositories, the need to ex-
pand the implementation into a more accommodating form
is unavoidably clear.

It should be noted that the HIU implementation predated all
of the actual work related to the infusion of semantic mean-
ing into parameter objects. This was an expedient guided
by scheduling factors. Because no information propaga-
tion activity was projected within the useful lifetime of the
HIU application (indeed, information propagation was only
a distantly conceived notion at that time), this expedient
was consider entirely acceptable.

11.1.1 HIU Implementation

The data to be managed in the HIU application consists
of time-series data streams sampled at several thousand
samples per second from each of some 150 different data
sources. For the most part these data sources consist
of high-response pressure transducers variously distributed
between static and total pressure measurements; however, a
number of other inlet, engine, and free stream data sources
are also involved. The data from an individual data point
is provided as two computer files: an interleaved, binary
data file of all the data sources in round-robin order and
an associated, text-based format file identifying the precise
contents of the binary file.

It was immediately determined that each individual data
point from the experiment would be loaded into a single,
private parameter configuration object. To allow the re-
searcher to structure configuration objects into an easily
comprehensible arrangement, it was also decided to pro-
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vide a placeholder capability by which empty configuration
objects could exist as the direct parent of a series of related
data points.

Because of the essentially static nature of experimental
data, the HIU application required little further function-
ality. The following tasks were the only ones of any signif-
icance.

1. An operation to convert an empty PacCfg object into
a placeholder was developed. In the conversion pro-
cess, the subject PacCfg object took on a non-empty
appearance.

2. Several operations were developed to read a co-
ordinated format and data file pair and place the
parameter-encapsulated information into an empty
PacCfg object.

3. A CreateApplication member function (of the Hiu-
Appl application class derived from the PacAppl
class) was developed. The main task of this mem-
ber function override was to construct the identifica-
tion structure identifying all the data elements of a test
point.

The Placeholder Operation

The placeholder operation is quite simple. A protocol in-
ternal to the HIU application wrapper was established by
which the presense of a reading number parameter, known
internally by the name ‘RdngNo’, was considered to make
a configuration non-empty. Since the data loading opera-
tions would be coded to refuse to operate if a reading num-
ber parameter were present in the target configuration, it
was only necessary for the placeholder operation to place
an empty reading number parameter in the selected config-
uration to give it a non-empty, placeholding appearance.

As a side effect of the operation, the user is prompted to
provide a name for the placeholding configuration which
is then set into the descriptive system for the target Pac-
Cfg object. This allows the placeholding object to exhibit
a useful, memory-jogging name in all further operations.

The Data Loading Operations

Three data loading operation classes are, in fact, currently
provided by the HIU application. Each differs only in the
expected layout of an individual binary value in the data
file. This difference is effected by a function override in



data loading operation classes derived from the base data
loading operation. Thus, the real guts of the data loading
operation was written only once and was inherited by the
variant forms.

As would be deduced from the description of the place-
holder operation, the first significant step of data loading
is to assure that the target configuration object is, in fact,
empty based upon the established internal reading num-
ber parameter protocol. With that matter satisfactorily re-
solved, the user is then prompted via a supplied PacGUI
object to provide the names of the format and data files.

Most of the data loading operation is relatively uninspiring;
however, a few points of interest do exist which illustrate
the sort of implementation freedom which exists behind the
PIA architectural wall.

The first of these interesting points is the handling of the
mismatch between the data item names used in the format
file and the corresponding names used in the HIU applica-
tion. The experimentalists, out of whatever basis seemed
reasonable to them, used strictly upper-case alphanumeric
identifiers. The HIU application elected to use mixed-case
identifiers to achieve a more esthetically pleasing appear-
ance. To bridge the gap between these two selections,
a synonym table was added to the developed application
class, HiuAppl. When the format file specifies a data item
name that is not directly found in the identification struc-
ture, an attempt is made to resolve the problem through
application of the synonym table. Since this protocol is en-
tirely internal to the HIU application, the addition of the
facility to the derived application class is entirely appropri-
ate.

A related extension was touched on above: the location
of data items by name in the identification structure. It
was considered desirable not to code the data loading op-
eration with explicit knowledge of the structuralization of
the data encapsulated by the n-ary tree of the application
data identification structure. (To do otherwise would mean
that each alteration of the identification tree would have to
be matched by a coding change to the data loading opera-
tions.) On the other hand, the n-ary tree of the identifica-
tion structure offers no find-by-name facility since there is
no requirement that nodes of the tree have names unique
across the tree, even though that is in fact the case in
this particular application. (The directed graph class upon
which the identification structure is based does have a find
capacity, but it consumes an ordered set of names to make
branch selections as each node of the tree is traversed.)
Thus, it was considered expedient, though not absolutely
necessary, to provide in the patriarch of the identification
graph a map sorting identification objects by their simple
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names. By consulting this map, the data loading operation
is able to locate the identification object for a particular data
item, for instance the ‘RdngNo’ parameter, directly. Again,
since this mapping is a matter entirely internal to the HIU
application, it is something appropriately done behind the
PIA architectural wall.

The data loading operation provides a non-catastrophic re-
sponse in the event that the format file identifies a data item
that cannot be located in the existing identification struc-
ture. Subject to the consent of the user through the pro-
vided PacGUI interaction object, an entry is made in the
‘Found’ category of the identification structure using the
name supplied by the format file for the data item. Thus,
even though the wrapping of the HIU experiment is a rela-
tively static thing involving the production of programming
language code, a certain modest flexibility to adapt to new
data items on the fly is built in.

With regard to the actual mechanics of data loading, the
processing of the format file identifies the order of the data
items contained in the binary data file. As each such item
is identified, its identification object is located (through the
various internal mechanisms just discussed) and used to ob-
tain the fully-qualified name by which the corresponding
parameter object is to be sorted within the parameter con-
figuration. A new parameter object is obtained (in point of
fact, a PacParaArrDoub object), the fully-qualified name
associated with it, and it is placed in the data configuration
object. A pointer to the parameter object is also recorded
in an ordered list called the interleave list and automatic
change notation is turned off in the parameter object for the
duration of data loading. When all of this is accomplished
and the format file is exhausted, data loading commences
(after appropriate intialization of indicies to 0) by succes-
sively obtaining the next binary item from the binary file
and placing it in the next slot of the next parameter object
in the interleave list. As the process proceeds, the inter-
leave list is indexed most rapidly. Each time the interleave
list end is reached its index is reset to O and the next item
counter for the parameter arrays is incremented. When the
binary file is exhausted, data loading stops.

As mentioned previously, the actual obtaining of a single
binary data item is encapsulated in a separate member func-
tion of the data loading operation object. The base class im-
plementation of the data loading operation simply assumes
that binary data items are double items (that is, the prima-
tive C++ data type double) in the native form of the exe-
cuting machine. The other two derived operation classes
differ from the base class only in overriding the data item
acquisition function to load items as float items in native
format or as float items in byte-reversed format.



Identification Extension

An adjustment to the data identification process was needed
in the HIU application. As touched on above in the de-
scription of the data loading operation, the need to locate
identification objects directly by the simple name of the
data item was met. This capacity was introduced in the
HiuPid class which was directly derived from the PacPid
class. The actual creation of the empty map was added to
an override of the CreatelnitialNode member function and
additions to the map were made automatic through an over-
ride of the AddSuccessor member function. Since an object
of the HiuPid class is used as the patriarch of the identifi-
cation graph and since the inherited AddMember function
assures that a graph may only add members that are of or
derived from the class of the patriarch, it is certain that ev-
ery identification added to the HIU identification graph will
necessarily make an entry in this internally-defined map.

CreateApplication Function

The implementation of the CreateApplication member
function, while being a great mass of tedious drudgery, is
not particularly remarkable given the discussion above. A
few remarks are more than enough.

A script engine is executed to build the identification graph,
organizing the potpourri of some 150 data items provided
by the experimentalists into more manageable groupings
thought to be appropriate to the situation. By using identi-
fication objects of the HiuPid class, the internal mapping
from simple name to associated identification object is au-
tomatically constructed.

In building identifications, it was recognized that in an ex-
perimental data situation, the parameter inheritance mecha-
nism of the parameter configuration graph should be turned
off. In the course of testing, data items are lost due to in-
strumentation failures and the like. Sometimes bad data
are simply recorded and a record made that they are, in
fact, bad. Other systems succeed (often at some point
down stream from the point of acquisition) in discarding
such bad items. It was realized that should such bad items
be discarded by the time of presentation through the HIU
PIA wrapper, values inherited from previous configurations
when the item was good would not be appropriate for dis-
play. Thus, a small feature of the identification class requir-
ing that a parameter actually exist in the identified config-
uration was turned on to cure this problem. In practice, the
act required far less effort than its explanation.

A second script engine builds the synonym table in the Hiu-
Appl application object for the known text differences be-
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tween the experimental nomenclature and the names used
by the HIU application. Yet a third such engine obtains in-
stances of each of the implemented operations objects and
adds them to the application.

11.1.2 HIU Work Not Completed

The HIU implementation reported above was considered as
only an initial plunge into the demonstration. The experi-
mentalist involved wanted not merely to see and browse
the data, but to reduce that data through a number of de-
fined computations resulting in derived quantities such as
the local Mach number. It was planned to implement such
calculations as additional operations of the HIU applica-
tion, in accordance with general PIA design; however, due
to the demise of the entire High Speed Research Project, it
is doubtful that this work will ever be done, at least for the
HIU application.

This missing effort is brought up to illustrate a philosoph-
ical point of PIA design: that, to the extent the HIU appli-
cation is different from every other application, such com-
putations are appropriate specializations of the application
that are well encapsulated behind the PacOp operation ob-
ject architectural wall. A point of discussion may arise,
though, should one care to assert that the computation of
things such as local Mach number is, in fact, something
common across many applications. To the extent such an
assertion might be true, such operations would then prop-
erly fall beyond the PIA architectural wall into the province
of the code consuming the application, that being generally
a GUI. Since the PIA architecture does not constrain itself
to any particular operating environment, it might be that
different, specialized GUIs could be developed to address
such common, repeated operational needs.

Additionally, it should be noted that, even though a par-
ticular PIA application might provide such specialized op-
erations, the architecture cannot prevent consuming envi-
ronments from applying such inferential computations to
data which is exposed. This application of consuming en-
vironment operations becomes more likely, and is indeed
enabled, as more semantic information is provided by the
derivational specialization of parameter objects. In the HIU
application all data was placed in PacParaArrDoub pa-
rameter objects for the simple reason that PIA work had not
yet developed any more semantically meaningful classes.
As classes identifying the data as something on the order
of fluid flow total pressure, fluid flow static pressure, and
the like, become available, it is likely that specific, special-
ized consuming environments will be able and inclined to
provide common, computationally derived quantities even
though the specific application might also provide such



quantities.

Also, it is expected that many parameter forms will provide
widely-applicable functionality peculiar to their kind. For
example, conversions from experimental values obtained in
differing flow regimes (for example, subsonic, transsonic,
supersonic, and hypersonic) to ‘true’ total pressure values
would be well included in a total pressure parameter class
where they could be utilized by experimental application
wrappers.

11.2 Cross-Vendor CAD Access

A wrapping application was developed which presents ge-
ometry information developed from CAD information ob-
tained through the cross-vendor CAPRI application pro-
gramming interface. This wrapping is reported in detail
in a companion publication [6].

The key achievement of this wrapper was to present a Pac-
ParaGeoBdry boundary object, along with its supporting
component objects. This object demonstrates key elements
of the parameter object concept. First, by its revelation
of kind, it presents the semansis of a logically-complete
boundary built upon the concatenation of a number of open
geometric faces. Then, after being recognized as a bound-
ary object, a number of defined services, among these the
ability to obtain open and closed cross sections and to com-
pute the area of such closed cross sections as might be ob-
tained. As will be discussed shortly, the Large Perturbation
Inlet (LAPIN) analysis code used this object with its known
services to obtain needed geometric input information.

Another aspect of the geometry wrapper was the con-
siderable behind-the-scenes maneuvering that went on in
achieving its function. The implementation of the CAPRI
interface and the CAD toolkit underneath that interface pre-
cluded a straightforward parent to child to grandchild pro-
gram structure to obtain the desired geometric information.
Instead, it was necessary for the wrapping process layer to
invoke a shell script (in actuality, a DOS batch file), which
in turn invoked the CAD toolkit, which at the direction of
the shell script connected to a Dynamic Link Library (DLL)
created to implement the needed geometry extraction func-
tionality, which in turn created the geometric parameter ob-
jects and ‘piped’ them through to the patriarchial wrapper
application layer by serializing them through a communi-
cations socket to that patriarchial layer. All in all, a rather
convoluted approach to information retrieval, and still en-
tirely transparent to the consuming code (in this case, the
PIA testbed GUI). As did the HIU experience in a different
way, this demonstrates the nature of the architectural mech-
anism: provided functionality (the acquisition of geometry
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data) was obtained through an apparently straightforward
interface while, in fact, highly convoluted maneuvers oc-
curred to implement that interface.

11.3 Large Perturbation Inlet Analysis

As with the geometry wrapper, the wrapper to the LAPIN
code is reported fully elsewhere [7]. This wrapper is more
representative of the expectations for a typical application
wrapper. It presents the comprehensive data set of the
LAPIN application and several operations. These oper-
ations include the ability to load the parameter set from
sources traditional for the legacy application and to oper-
ate the code and recover its output.

Of particular interest here is the parts of the wrapper sup-
porting information propagation. The specializations pro-
vided by this wrapper are, as expected by the general de-
sign of information propagation, relatively narrow, consist-
ing principally of code for the parameter harvesting stage
of the information propagation act. The implementation is
in the form of a filter looking for parameter objects of the
kind PacParaGeoBdry, the very kind the geometry wrap-
per works to present.

When the parameter harvesting operation is complete, the
following decision tree is executed.

1. A geometric item is selected. A geometric assembly
is selected in preference to geometric boundaries. If
other than exactly one geometric item parameter has
been identified, the geometry part of the information
propagation process is abandoned.

Currently, there is no discrimination applied between
multiple geomtric items; however, mechanisms do ex-
ist by which inappropriate items might be excluded
from consideration so that exactly one geometric pa-
rameter survives the harvesting process.

2. The geometric item is sectioned in the (X:Y) plane,
which is a service provided by both the PacParaGeo-
Asmb and PacParaGeoBdry classes.

3. Heuristics are applied to the obtained cross-section
curves to identify two open sections taken to be those
of the flow path. If two open sections cannot be iden-
tified by these rules, the geometry part of the informa-
tion propagation process is abandoned.

4. The obtained open sections are sorted and ordered to
proceed radially outward (that is, in ascending arith-
metic order for the Y coordinate values) and from fore
to aft (that is, in ascending arithmetic order for the X
coordinate values).



5. If the two sections are mirror images of each other
(a service provided by the PacGeoCuryv class which
encapsulates sectioning curves), a LAPIN type O in-
let formulation is generated from the outer curve and
the geometry part of information propagation is con-
cluded.

The type O inlet designation is an internal formulation
of LAPIN and merely designates an axisymmetric in-
let with no centerbody.

6. If the first section curve begins on the X axis (that is,
if the first curve point has a Y coordinate value that is
approximately 0.0), a LAPIN type 1 inlet formulation
with an axisymmetric assumption is generated from
the two section curves.

The type 1 inlet is, again, a designation internal to the
LAPIN code indicating an inlet with a translating cen-
terbody.

7. Should the decision process reach this point, the only
option (currently) left is that of a LAPIN type 1 in-
let with a two-dimensional (the alternative to axisym-
metric) assumption. Cowl and centerbody geometry
is generated from the two section curves. Duct width
geometry is computed to result in cross-sectional ar-
eas matching those obtained from the geometric item
parameter object. (The computation of cross-sectional
area is another service of the PacParaGeoAsmb and
PacParaGeoBdry classes.)

The interplay of parameter with consumer is illustrated in
the above process. The sectioning of boundaries and the
computation of cross-sectional areas are both tasks that are
considered to be relevant and common across a wide vari-
ety of consumers of objects of the PacParaGeoAsmb and
PacParaGeoBdry classes. Thus, once the LAPIN propa-
gation code identifies an object of that class, it is assured
not only of the kind of information available, but of the
services available for the useful transformation of that in-
formation.

11.4 Testbed GUI

Although a GUI is not considered to be a product of the
overall project, such a tool is nevertheless necessary for
testing purposes. Indeed, a GUI is the most expedient way
to see that the concepts described above do, in fact, work.

The first demonstration of the architecture is shown in Fig-
ure 11.1. This is a screen capture of the application se-
lection dialog box implemented by the GUI. The dialog al-
lows the user to select one of the available application types
through a mutually-exclusive radio button interaction.
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Figure 11.1: GUI Opening Application Query

The remarkable thing about the application selection dialog
is that it is generated on-the-fly by the GUI, rather than by a
static coding of the dialog. At the time of dialog initializa-
tion, a scan is done of all PIA classes, isolating those that
are derived from the type PacAppl. (The class PacAppl it-
self is excluded from this set.) A radio button is generated
for each such identified application class, drawing the name
text from the supporting class information. Thus, the figure
shows that, at the time this dialog was captured, two appli-
cations were supported: the HSR Inlet Unstart (HiuAppl)
application and the LAPIN (LapAppl) application.

In all of the GUI, there is only one spot in which
application-specific coding exists: in the implementation of
the document class a series of include statements transmit
comments to the linker that cause it to incorporate the class
code of the various PIA library components, even though
there is no reference to those classes and, thus, no need ap-
parent to the linker for that supporting code. It is expected
that once the migration of the architecture to the distributed
object environment of CORBA is complete, the need to
forcibly include code beyond the generic, well-known li-
brary levels will cease to exist, allowing new applications
to be introduced to the system without the necessity of re-
compiling every consuming tool.

Figure 11.2 illustrates nearly all the rest of the features
of the architecture as exercised by the testbed GUI. The
window labeled PacAppll:1 views a LAPIN application
choosen from an application selection dialog in the course
of GUI startup. The window labeled PacAppll:2 views a
second application, in this case an HIU application, that has
been created as a successor to the LAPIN application in the
application graph.

A window viewing an application lists from top to bottom

1. The parameter identification tree (which is not ex-
panded in either window of the figure for reasons of
space),

2. The parameter configuration graph,
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3. The operation tree,

4. The application graph predecessor list (except in the
case of the PacAppll:1 window which views the ini-
tial node of the graph which, by definition, has no pre-
decessors), and

5. The application graph successor list.

Comparing the differences between the two windows, in
particular the different operations lists, shows the self-
revealing nature of applications within the architecture.
The PacAppll:1 window lists the various LAPIN opera-
tions; the creation of LAPIN parameters, the loading of
LAPIN parameters from traditional Fortran namelist input,
the running of LAPIN, and the validation of the parame-
ter set as input to a potential LAPIN run. Meanwhile, the
PacAppl1:2 HIU window lists an entirely different set of
operations; the conversion of a parameter configuration to a
place holder and several different data-loading operations,
all as previously discussed. These differences are all as
a direct result of the GUI inquiring of the application as
to the application’s content and generating an appropriate
viewing window in response.

The two viewing windows also reveal the connection be-
tween the two applications as participants in an application
graph. The PacAppll:1 window views the initial node of
the application graph, as witnessed by the absense of a Pre-
decessor Applications element in its view. (An application
is made an initial node of an application graph as an im-
plicit part of the OnNewDocument process.) The Succes-
sor Applications list of that view shows the HIU applica-
tion viewed by the PacAppll:2 window as its successor.
The HIU application, in turn, lists the LAPIN application
of the PacAppll:1 window as its predecessor. The appli-
cation graph can be, of course, expanded to the practical
limits of the host machine; it is only for reasons of space in
the figure that just two applications in a direct parent child
relationship are shown.

The operation of the information propagation process
throughout the application graph is also illustrated by Fig-
ure 11.2. The parameter configuration graph of the LAPIN
application viewed through the PacAppll:1 window has
been expanded beyond is default single-patriarch form to
include two child configurations and a grandchild config-
uration attached to the second child. By the act of in-
formation propagation citing the root parameter configu-
ration of the LAPIN application (effected by first select-
ing the root parameter configuration of that application and
then double-clicking the application element of the view-
ing window), that parameter configuration graph is repli-
cated in the successor HIU application. This is further
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confirmed by the fact that the default parameter configu-
ration object names generated in the LAPIN application
as the configuration graph was expanded (for example,
LapCfg:00F939D0) are, in fact, replicated in the config-
uration graph of the HIU application. This is precisely as
expected by the act of information propagation as a result
of its effort to keep parameter configuration synchronized
between cooperating applications.

12 Future Directions

At this point, the road ahead for the PIA project seems rel-
atively clear. The key technology of self-revelation and its
ability to enable common tools, information propagation
throughout an application graph, and the like can be con-
sidered well demonstrated. Further work now must center
on two areas: making the application architecture practica-
ble by moving it to a distributed object environment, and
filling in the many semantic gaps so as to have a fully pop-
ulated set of information forms.

12.1 Distributed Object Implementation

As noted in the discussion of the HIU application, the de-
mands of real applications easily overwhelm the capacities
of a single virtual address space implementation of the ap-
plication architecture. There is no possibility of accommo-
dating multiple applications in a cooperative graph when
even a single application is beyond the range of reason.

For this reason of practicality alone, it is necessary to mi-
grate the application architecture to a distributed, served-
object architecture. This work has already begun uti-
lizing the Common Object Request Broker Architecture
(CORBA) technology standardized by the Object Manage-
ment Group (OMG, http://www.omg.org).

12.1.1 Distributed Object Fundamentals

The basic idea of the distributed object is to convince client
code that it is using an object within its own operational
space while, in fact, the actual object exists somewhere re-
mote from the client. Frequently, the idea of remote means
that the object exists on another machine accessed across a
network, not uncommonly that network being the Internet.

To understand the underlying mechanisms of distributed
objects as implemented by the CORBA standard, consider
the conceptual diagram presented in Figure 12.1. Con-
suming code at the upper left has pointers or references
to what are, in fact, client stubs of the distributed objects
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Figure 12.1: CORBA Distributed Object Technology

it believes it is working with. When a method is invoked
on a client stub, instead of performing the requested op-
eration, the method invokation along with its arguments
are passed through to the Object Request Broker (ORB)
resident in the consuming code which marshals the infor-
mation into a transportable message. The message is then
routed, frequently over the Internet, to a serving ORB. That
ORB cooperates with a object adapter (in earlier formula-
tions a Basic Object Adapter or BOA and, more recently,
a Portable Object Adapter or POA) to demarshal the mes-
sage and transmit the method invokation to an implemen-
tation skeleton object, which in many cases, simply passes
the invokation on to a final, implementing object.

When the remote method operation is complete, the
process is simply reversed. The results of the opera-
tion are passed back through the skeleton object to the
[BOA/POA]/ORB combination, which marshals them into
a responding message and routes that message back to the
ORB serving the client. The response is demarshaled and
passed back through the client stub objects to the waiting
consumer code. Except for the generally longer response
times, the consuming code is unaware that the operation
did not occur within its locally held object.
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12.1.2 Distributed Object Advantages

This distributed object technology brings with it a number
of key advances.

1. The CORBA standard offers a particularly relevant
feature called object service activation. Simply put,
a served object need not actively exist at all times, but
may instead reside in a dormant (or etherealized in
CORBA terminology) state on some secondary stor-
age device. Should a method invokation come in for
such an object, a protocol exists which allows the
server to first re-create (or incarnate) that object from
its dormant form before method delivery occurs. At
some later time, should the served object become in-
active, it may be placed back in its dormant state.

The key contribution here is that not all the objects of a
given application need to be active within the address
space of a server at any given time. An application
such as HIU may well have terabytes of data, but only
that data actively in use at any given moment needs to
be served by such a server.

. Distributed object technology allows PIA applications
to be served to consuming tools (and other applica-
tions) by multiple serving machines. Thus, it is not
necessary to get all of the data and implementing code



of all the wrapped applications onto one physical ma-
chine.

This ability to serve different wrapped applications
from different machines allows those machines to be
located with the groups supporting the applications.
For example, experimental data applications can be
served from machines supported by the data acquisi-
tion group while a consuming analysis application can
be served by a machine provided by the group generat-
ing and supporting that application. Furthermore, both
such applications can be used by a consuming client
widely separated from both distributed object servers.

. Distributed object technology separates the issues of
functionality from implementation. Thus, the ser-
vices of a PIA-wrapped application may be supplied
through distributed objects without exposing the im-
plementation of those services.

This feature is of particular interest to commercial
providers of applications who may wish to sell the
services of a particular application without revealing
the proprietary methods by which those services are
achieved. The PIA technology further facilitates this
by allowing general-purpose tools of potentially wide
availability to interact with such provided services,
thus eliminating the need for a custom access toolkit
for every such offered product.

12.1.3 Distributed Object Difficulties

The migration to a distributed object environment, while
necessary and advantageous overall, does bring with it cer-
tain difficulties.

1. Distributed objects, being exposed upon the net by
well-known services, are accessible by, literally, the
entire community of the net. Mechanisms must be
implemented to limit the accessibility of distributed
objects to those that should have access.

Having presumably eliminated those who should not
access distributed objects of a PIA implementation,
it must still be recognized that the remaining acces-
sor set has more than one element. It is, thus, still
necessary to arrange mechanisms to assure the in-
tegrity of PIA structural components even when quasi-
simultaneously accessed by members of that consum-
ing set [8].

12.1.4 Distributed Object Persistence

In the CORBA standard, the connection between client and
object does not define the period of existence of the object.
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An object may exist prior to a client connecting to it and it
may exist after the client has fulfilled its desires and exited.
Indeed, the CORBA standard provides no specification for
either the beginning or ending of a served object. The stan-
dard leaves such issues to the discretion of the application.

The PIA project provides answers for the question of the
beginning and ending of objects. The class (or, in the
CORBA nomenclature, the interface) information support
system provides a Createlnstance method which creates a
new instance of the supported class. To end such a created
object, every class implemented by the PIA project inherits
from the base class a SetDefunct method which declares
the termination of the presenting instance.

Between beginning and ending, the CORBA objects of the
PIA implementation exist without regard to the comings
and goings of either clients or servers. As indicated pre-
viously, when such an object appears to be idle, the server
program arranges to remove the object from active service
and saves its content to persistent storage through the se-
rialization mechanisms originated in the C++ implementa-
tion work. When a method invokation on such an object ar-
rives at some later time, the object is re-created and its con-
tents restored by a deserialization operation before method
delivery proceeds.

12.2 Populating the Semantic Set

The mechanism of self-revelation of kind depends upon
exacting definition of the semantic nature of a particular
object. In the work to date this has been relatively easy
since the definitions involved structural components; appli-
cations in a generic sense, parameter identifications, con-
figurations, and the like. Even the geometric parameter
kinds were defined with comparitive ease since the issue
of geometry is relatively well settled.

The usability of the PIA technology is closely related to
the supply of ‘building blocks’ available to the application
wrapper, particularly to the supply of semantically defined
parameter classes from which to choose. While the cod-
ing of parameters is often quite trivial, the need for experts
in the various disciplines who can formulate clear, broadly
applicable definitions of particular parameter forms cannot
be overemphasized.

13 Summary

An abstract, highly flexible, object-oriented application
architecture has been defined. The architecture has been
implemented in C++ and real applications have been



wrapped according to that architecture.  Applications
wrapped in this manner have been connected into directed
application graphs and the automatic propagation of in-
formation from source application to consumer has been
demonstrated.
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