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SUMMARY 

Titanium matn;r composites (TMCs) have been extensively evaluated 
potential to replace conventional superalloys in high temperature structural app 
with significant weight-savings while maintaining comparable mechanical properties. 
New gamma titanium aluminide alloys and an appropriate fiber could offer an improved 
TMC for use in intermediate temperature applications (400-800°C). The purpose of this 
investigation is the evaluation of a gamma titanium aluminide alloy with nominal 
composition Ti-46.5Al-4(Cr,NbyTa,B)at.% as a structural material in future aerospace 
transportation systems, where very light-weight structures are necessary to meet the goals 
of advanced aerospace programs. 

Mechanical characterization testing of the alloy was performed over the potential 
usable temperature range. Thermal expansion behavior of the alloy was evaluated, as 
thermal mismatch of the constituents is an expected problem in composites employing 
this matrix material. Monotonic testing was conducted on rolled sheet material samples 
of the alloy at room temperature, 700"C, and 800°C to obtain material properties. The 
alloy exhibited good strength and stiffness retention at elevated temperatures, as well as 
improved ductility. The modulus degraded by 20% and 30% at 700°C and 800°C 
respectively. Yield strength similarly degraded by 20% and 27% at the two elevated 
temperatures, while ultimate strength only degraded by 4% and 17% respectively. The 
ductility, on the other hand, increased from less than 1% elongation to 2.7% at 700°C and 
over 20% at 800°C. 

Monotonic testing was also conducted on specimens exposed to elevated 
temperatures (700°C and 800°C) for 5 hours to determine the degradation effects of high 
temperature exposure and oxidation. The exposure did not significantly affect the alloy 
properties at elevated temperatures, although some slight improvement was observed. 
The materials were tested at the same temperatures at which they were exposed. The 
modulus of the exposed specimens remained the same as the unexposed specimens at 
700°C and increased by 8% at 800°C. Yield strength improved by about 10% at 700°C 
and 3% at 800°C. Ultimate strength was increased by less than 2% at each temperature. 
Ductility decreased from 2.7% elongation to 2.2% elongation at 700"C, but remained 
above 20% for the exposed specimen at 800°C. For the room temperature testing the 
same increases in strength and stiffness were observed for the exposed specimens 
compared to the unexposed specimens. The specimen exposed to 700°C had a negligible 
increase in modulus, a 12% increase in yield strength, and a 5% increase in ultimate 
strength. The specimen exposed to 800°C exhibited a 6% increase in modulus, a 6% 
increase in yield strength, and a 10% increase in ultimate strength. Room temperature 
ductility, however, decreased for specimens exposed to either elevated temperature, by 
54% and 28% for the exposures at 700°C and 800°C respectively. The exposure 
significantly decreased the already low room temperature ductility. 

Analytical modeling using AGLPLY software was conducted to predict the residual 
stress state after composite consolidation due to thermal mismatch as well as the potential 
mechanical behavior of [0]4 laminates with a y-MET matrix. Silicon carbide (Ultra-SCS) 

xvii 



and alumina (Nextel 610) fibers were selected as potential reinforcing materials for the 
analysis. High residual stresses were predicted due to the thermal mismatch in the 
materials. Laminates with Nextel 610 fibers were found to offer the best potential for a 
composite in this comparison, because they are a better thermal match for the matrix. 
Coupons of SCS-6Iy-MET were manufactured with different volume fi-actions. Both 
manufacturing attempts resulted in transverse cracking in the matrix fi-om the residual 
thermal stress. 
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CHAPTER 1 

On March 27, 2004, the X-43A research vehicle made aviation history with the 
fxst succ flight of a scramjet ered airplane at hypersonic 
speed of 7. A little over a year later, the last X-43A vehicle, wit 
thermal protection, bested its predecessor’s record by flying at nearly M 
demonstrating the present and immediate future of hypersonic flight. The ultimate 
applications of this technology include hypersonic airplanes and next generation reusable 

nent of these applications will be more 
can endure the extreme environments of 

1, 2003, the space shuttle Columbia and its 
g re-entry. Investigations into this disaster 

led to the conclusion that pieces of foam insulation broke off from the fuel tank during 
take-off and impacted the left wing, on TPS tiles there El]. 
This tragedy reminds us of the da , and the need to develop 
technologies to increase the safety an 

In the President’s Vision for Space Exploration, announced in February 2004, he 
emphasizes that: 

costs associated with space missions. 

Preparing for exploration and research accelerates the development of 
technologies that are important to the economy and national security. The 
space missions in this plan require advanced systems and capabilities that 
will accelerate the development of many critical technologies including 
power, computing, nanotechnology, biotechnology, communications, 
robotics, and materials [2]. 

Development of light-weight, high strength materials systems for TPS are necessary to 
reach the goals set forth in this program. The National Aeronautical and Space 
Administration (NASA) is evaluating several different advanced material systems to 
improve the durability of the TPS and prevent incidents like the Columbia tragedy. 
Current materials systems under investigation include nickel superalloys, nickel 
aluminides, iron aluminides, and titanium aluminides. 

Titanium aluminides and their composites are promising candidates as advanced 
structural materials for high temperature application because of their attractive 
combination of low density, oxidation resistance, high modulus, and strength retention at 
elevated temperatures [3-61. They offer a significant weight-savings and similar 
mechanical performance characteristics compared to nickel superalloys, which can help 
attain weight-savings and cost reduction- goals in future RLVs. The purpose of this 
research is to evaluate a potential candidate material, an advanced gamma titanium 
aluminide alloy, to provide a better understanding of the mechanical behavior of this 
material, as well as the behavior of composite systems with this matrix material. 



The main objectives of this research were to evaluate the mechanical properties of 
this alloy, and incorporate that data into modeling of composite laminates to assess the 
feasibility and performance of these systems at temperatures encountered during 
hypersonic flight. Monotonic tensile testing was performed on the alloy over a range of 
temperatures fi-om 2 1 "C-800°C. Thermal expansion testing was also performed in order 
to fully characterize the alloy for modeling. In an effort to determine the usable 
temperature range, tensile experiments were performed on materials that had been 
exposed to elevated temperatures in order to characterize the degradation effects of 
oxidation. The mechanical property data was implemented into a composite laminate 
code to analytically determine the stress-strain response of the constituents and predict 
overall laminate behavior. This data was used to determine the feasibility of 
manufacturing various composite systems. Finally, attempts were made to manufacture 
samples of a composite system using this matrix material. 

The remainder of this thesis is divided into six chapters. Chapter 2 provides the 
motivation and historical background information relevant to this research and these 
systems. Chapter 3 describes the alloy with respect to its composition, microstructure, 
and manufacturing processes, as well as detailing the geometry of the test specimens. The 
fibers considered for use in composite systems are also described. Chapter 4 gives 
descriptions of all test equipment and experimental procedures used during testing. It 
also discusses the analytical model used. Chapter 5 presents the results fiom the 
experimental testing, the analytical modeling, and the attempts at composite 
manufacturing. The results are summarized and discussed in Chapter 6, and the major 
conclusions are listed. Chapter 7 provides recommendations for future work in this field 
of research. 
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well as the status quo of the technologies. 

c Flight Programs 

NASA has a continuing need to develop new technologies to deliver payloads into 
orbit at reduced risk and cost. The technologies of particular interest to this research are 
high temperature structural materials (hot structures) for hypersonic vehicles; these are 
structures that do not require a separat 

Hot structures for hypersonic vehicles debuted in the late 1950s with the X-15, the 
rmal protection system (TPS). 

ersonic research vehicle [7, 81. It employed an Inconel-X and tit 
primary structure in a heat-sink design. Development in hot 

technologies refocused under the ambitious X-30, or National Aerospace Plan 
program which was initiated in 1987 to a 
Figure 2.1). It was originally conceived as 
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Figure 2.1 : X-15 research vehicle and X-30 National Aerospace Plane (NASA photos) 

The NASP program was followed by series of experimental (X) technology 
demonstrators (see Figure 2.2) aimed at lowering launch costs from $10,000 to $1,000 
per pound. They were to demonstrate technologies, including advanced material systems, 
for use in second generation Reusable Launch Vehicles (RLVs). Future RLV’s will 
require a greatly improved TPS to achieve the ambitious goal of reducing the cost of 
delivering a payload to orbit by an order of magnitude. The X-33, initiated in 1996, 
considered Inconel 617 and various titanium based alloys for its TPS [lo]. The X-34, 
also started in 1996, was to have all composite primary and secondary structures, 
including lightweight metal matrix composite airframe structures and advanced thermal 
protection systems [ 113. However, upon progress evaluation, both the X-33 and X-34 
programs were concluded in 2001 as the investment costs began to outweigh the benefits. 
The X-37, begun in 1999, was created to demonstrate technology as it operates in the 
orbital, re-entry, and landing phases of flight [ 121. 

Figure 2.2: Experimental (X) demonstrators: (a) the X-33, (b) the X-34, and (c) the X-37 
(NASA photos) 

NASA’s X-43A recently made aviation history with its first successhl flight of a 
scram-jet powered airplane at hypersonic speeds in March 2004 [13j. The research 
vehicle (see Figure 2.3) broke its own record in mid-November 2004, flying at nearly 
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Mach 9.8, demonstrating the present and immediate future of hypersonic flight, with its 
accompanying need for advanced lightweight material systems. 

Figure 2.3: B-52B takes off and Pegasus booster roc 
record setting flight on Nov. 16,20 

s to send the X-43A on its 

2.1.1 
unced a new “Vision for Space 

Exploration” that involves human and to the Moon and eventually to 
Mars and beyond. The vision sets fort de: returning the Space Shuttle 
safely to flight, completing the Internatio ace Station (ISS), sending robotic and 
then human expeditions to the Moon, and conducting robotic expeditions to Mars in 
preparation for future human expeditions. The sidential Commission for 
implementation of this policy identified as one of seventeen “enabling technologies” 
critical to attainment of these objectives: 

The Vision for Space Explo 
In January 2004, President 

Advanced structures - extremely lightweight, multi-function structures 
with modular interfaces, the building block *technology for 
advanced spacecraft [ 141. 

Clearly, investigation into lightweight, high temperature materials, such as 
to investigate new, gamma titanium aluminides, advances these goals. It is nec 

lightweight, durable materials for use on fbture hypersonic aircraft. 

2.1.2 Thermal Protection Systems 
In considering new materials for thermal protection systems, it is useful to begin 

with the current Space Shuttle TPS layout as a reference (see Figure 2.4). The primary 
structure is made of aluminum, and requires a thermal protection system to protect it 
fiom the extreme conditions encountered during flight - the leading edge surfaces can 
reach temperatures up to 3000°F during re-entry. The present silica tile and flexible 
ceramic blanket thermal protection system, applied to the majority of the shuttle surface, 
allows a decoupling of the structural design fiom the TPS to a large degree. However, 
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the need for a separate TPS results in increased weight as well as high costs associated 
with maintenance and repair. In one study, the maintenance burden for the thermal 
protection system was estimated at nearly 32,000 hours per mission [15]. 

Figure 2.4 Current Shuttle Thermal Protection System Layout 

Other concepts considered for thermal protection systems (see Figure 2.5) can be 
categorized into three groups: passive, semi-passive, and active. The latter groups 
include concepts for active cooling of the structure, whereas a passive TPS employs high 
temperature structural materials, such as hot structures. The use of hot structures 
technology, materials that meet structural requirements in addition to withstanding high 
temperature conditions, is desirable because of its simplicity. This technology allows for 
design without a separate TPS, saving size and weight. In addition, hot structures can be 
readily inspected. They offer good potential because they could possibly be designed to 
be damage tolerant using standard aircraft design practices [7] .  

6 



PASSIVE; 

SURFACE 

SURFACE 

s!z!& 
PASS!!! F; 

WORWNG 
FLUID 

ACTIVE: 
SURFACE 

AIR FLOW 

COOLANT 
FLOW 

Figure 2.5: Thermal protection system concepts [ 161 

High temperature metaIlic materials, such as iron, nickel and titanium aluminide 
intermetallics, and their composites are candidates for hot structures TPS. For example, 
the panels that made up the TPS on the X-33’s underside were made with Inconel 617 
(see Figure 2.6). These metallic panels are easily installed and removed, reducing costs 
associated with maintenance and repair. 

Figure 2.6: X-33’s Inconel 617 TPS panel [17] 
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Superalloys are generally considered for these applications because of their 
excellent creep, strength, toughness, oxidation resistance, and general long-tenn stability 
at temperature. However, those materials tend to be relatively heavy. Lower density 
high temperature metals currently in development could replace conventional superalloys 
in future metallic TPS concepts. For example, BF Goodrich Aerospace successfully 
manufactured a truss core of y-TiAl sheet fiom separately formed corrugations. Covering 
the top and bottom with face sheets of the same material results in the Figure 2.7 cross 
sections, which look like a corrugated box. This production process supports the 
potential use of TiAl for the skin of a future hypersonic vehicle [ 181. 

Figure 2.7: Truss core of TiAl sheet made by BF Goodrich Aerospace [18] 

2.2 Other High Temperature Applications 

As a hot structural material, gamma titanium aluminides are attractive for several 
other high temperature applications in the 550-750°C service range. They have been 
reviewed for use in turbine blades, turbine wheels (see Figure 2.8), engine components, 
and outlet-nozzles of large engines service in advanced turbine engines [18-201. For 
example, in the design of the large exhaust nozzle of High Speed Civil Transport (HSCT) 
propulsion system, several critical components are fabricated fi-om y-TiAl: the divergent 
flame uses wrought gamma, the nozzle sidewall is a hybrid fabrication of both wrought 
gamma face sheet and cast gamma substructure [20]. However, these concepts are 
generally still in the development stage. 
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Figure 2.8: y-TiAl turbine wheel casting by Howmet Corporation [ 181 

2.3 Metal Matrix Composites 

For high temperature applications, metal matrix composites (MMCs) have an 
advantage over polymeric matrix composites (PMCs) in that metals typically have a 
higher yield strength, modulus, and maximum application temperature than polymers. 
MMCs consist of a high strength and sti&ess rcing material embedded in a 
metallic matrix. These reinforcements are gener ntinuous fibers, discontinuous 
fibers (whiskers), or particulates. 

improved stifkess, but these 
reinforcements do little for impro ous fibers, on the other hand, 

s and strength of the laminate, as the fibers carry much of the 
irectional tensile loading, both the fibers and the matrix deform 

the longitudinal elastic modulus of the composite can be 
ixtures (Equation 2.1) 

EL = Egf + Emvm 

Discontinuous reinforced co 

(2.1) 
where E is the Young’s modulus, v is the volume f?action,fdenotes the fiber properties, 
m denotes the matrix properties, and L denotes the overall laminate properties. From this 
equation, one could deduce that a metal matrix (which is stiffer and stronger by an order 
of magnitude) would contribute more to the stiffness and strength of a composite than 
would a polymer matrix. Continuing with the loading, generally the matrix will yield 
plastically while the fiber remains elastic, resulting in a reduced modulus (see Figure 
2.9). 
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Figure 2.9: Longitudinal stress-strain diagram of a continuous fiber MMC [21] 

When the fibers are oriented in the transverse direction, 90" %om the loading 
directions, the fibers do not contribute much to the overall strength of the composite. 
They rather act as hard inclusions - and therefore stress concentrations, which lead to 
matrix cracking and interface debonding. Cross-plied laminates (0" and 90" plies) exhibit 
a slightly nonlinear response to longitudinal loading, as can be seen in Figure 2.10. This 
is due to the failure of the 90" plies below the ultimate strain of the composite; this failure 
point is called the knee. The initial modulus is easily calculated using the rule of 
mixtures mentioned earlier. The secondary modulus is predicted by assuming that none 
of the 90" plies are carrying any load, so that only the 0" plies contribute to the modulus. 
The composite then fails at the ultimate strain of the 0" plies. 

I' 

KNEE 

€Tt €Lt E 

Figure 2.10: Longitudinal tress-strain response of a cross-plied MMC [21] 
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The failure modes in MMCs can be grouped into four main categories [22]. The 
first, fiber dominated damage, is demonstrated in Figure 2.9; when the laminate strain 
reaches the ultimate strain of the tle fiber, fiactures in the fiber lead to composite 
failure. Matrix dominated damage s when the ultimate strain of the matrix is less 
than that of the fiber. In this case, the matrix cracks before the fibers such that the fibers 
must carry more load, reaching their ultimate stress more quickly, and leading to overall 
laminate failure. Or, during fatigue loading, cyclic yielding can cause fatigue damage 
and microcracking in the matrix, but not the fiber, leading to matrix-dominated damage. 
When the strain to failure is similar for both the fiber and matrix, cracks tend to 
propagate through both eqiially, leading to another damage mechanism called self-similar 
crack growth. Finally, the interface between the fiber and matrix is sometimes weaker 
than either of the constituent materials. Interface failure is the result of debonding 
between the fiber and matrix, which can occur before either of the constituents fails. 

As the metallic matrix contributes more to the strength of MMCs, they tend to 
have a more complex damage state than PMCs. When the brittle fibers and ductile 
matrix deform elastically, the behavior is relatively easy to predict using cl 
lamination theory. However, in MMCs, the o 11 composite deformat 
complicated when the matrix deforms plastically, and subsequent composite behavior 
becomes more difficult to predict. 

Additionally, since the matrix has an active contribution to the stress-strain 
behavior of MMCs, the fibedmatrix interface is a crucial aspect of the MMC behavior. 
Damage to the interface or de 
shear loading. In MMCs che at the constituent ce are also of great 
concern, during both processing and applicalion. These systems have a tendency toward 
corrosion at the interface between the matrix and fibers, especially at high temperatures. 
The reaction products are generally brittle, and can be a site of premature crack initiation. 
Coatings applied to the fibers have been shown to reduce the problem of fibedmatrix 
reactivity in different MMCs, but the coatings generally increase the cost of the fiber 

A coeficient of thermal expansion (CTE) mismatch can also be a problem with 

ur under transvers 

P11. 

MMCs. Cooling from consolidation temperatures can cause substantial residu 
in both the fiber and matrix, which als eates shear stresses in the interface. 
constituents are bonded together, 
does the matrix allow the fibers to contract freely. For example, for the 
temperature change depicted in Figure 2.1 1 , the unrestrained matrix would cont 
strain amount of amAT, whereas the 
amount of afAT (where (z denote 
denotes matrix properties, the 
temperature change). 

fibers do not allow the matrix to contract freely, nor 

11 



H 
Fiber 

Figure 2.1 1 : Coefficient of thermal expansion mismatch causing residual stresses 
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However, since they are bonded together, each constituent limits the other - they 
must strain to the same final amount, denoted &final. Therefore, the fiber restricts the 
matrix to the final overall laminate strain of &final, and the matrix forces the fiber to 
contract down to the final overall laminate strain of Ef. This induces a positive strain in 
the constrained matrix (a,AT - EL) to reach the overall laminate strain, and a negative 
strain in the fiber (afAT - EL). The example depicted would result in tensile residual 
stresses in the matrix, and compressive residual stresses in the fiber. This demonstrates 
what happens when the CTE of the matrix is higher than that of the fiber; upon cool- 
down fiom consolidation temperatures the matrix “wants” to contract more than the fiber. 
The residual stresses in both the matrix and the fibers are not negligible. If the residual 
stress is too great, a thermal mismatch can result in transverse cracking in the matrix fi-om 
the induced residual tensile stress. 

2.3.1 Titanium Matrix Composites 
Titanium matrix composites (TMCs) are attractive enabling materials because 

they display high strength and stifhess-to-density ratios at moderate to high temperatures 
(400-800°C). The Integrated High Performance Turbine Engine Technology initiative 
(IHPTET), with a basic goal of doubling engine capability by the year 2003, was a major 
driver in the development of TMCs [23]. In the intended application of rotating 
components, such as impellers, disks, and bladed disks (blisks), TMCs offer a weight 
savings of 30-50% over conventional nickel superalloys. They have demonstrated 
feasibility and performance capability in components such as engine shafts and fan 
blades. Their first application in a production aircraft is the actuator piston rods in the 
engine of the U S .  Air Force’s F-22 fighter plane. TMCs were also extensively studied 
during the NASP program for use in the aircraft skin. 

Several TMC systems have been extensively studied and characterized [23]. The 
titanium matrix materials of some of these TMCs include the following: Ti-15-3, 
TimetalB2 1 S, Ti-6-4, Ti-24- 1 1 , and orthorhombic titanium alloys (such as Ti-22A1- 
23Nb). A comparison of the strengths for several of these titanium alloys and their 
respective composite systems is given in Figure 2.12. Oxidation and creep limit the 
usage temperature for most of these alloys. Environmental degradation embrittles the 
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surface layer, and can increase the fibedmatrix reaction zone, reducing fatigue life and 
strength. Jin, et al. [24] found that oxidation was a function of applied load as well as 
temperature, noting an increased oxide scale under applied load than similar specimens 
with no loading. Prior to weakening the fiberhatrix interface, the surface oxide layer 
that forms has, however, been found to initially increase ultimate tensile strength and 
yield strength, though ductility is sacrificed [25]. 

Figure 2.12: Ultimate strength for a) several titanium alloys and b) their composite 
systems [23] 

The TMCs compared in Figure 2.12 are all reinforced with the continuous silicon 
carbide fiber, SCS-6, manufactured by Specialty Materials, Inc. (previously Textron, 
Inc.). Silicon carbide fibers have been the conventional choice for TMCs since their 
inception in the late 1 9 7 0 ~ ~  with a high strength (3600 MPa at room temperature) and low 
reactivity with the titanium matrix. The SCS-6 fiber is the industry standard. This fiber 
consists of silicon carbide deposited on a carbon monofilament core via chemical vapor 
deposition (CVD) processing. A thin coating of carbon minimizes the reaction zone 
between the fiber and the titanium matrix - a problem with boron and alumina fibers. In 
recent years, Specialty Materials has developed a new higher. strength silicon carbide 
fiber, designated the Ultra-SCS. Though similar to the SCS-6 in composition, these new 
fibers have a higher modulus and 50% higher tensile strength than the SCS-6 [26]. 

TMCs generally have a weak fiber-matrix interface. In a study of SCS-6/Tf 15-3 
laminates, Johnson, et al. [27] reported a knee at stress levels as low as 140-200 MPa, 
well below the matrix yield strength of 690 MPa, though the knee typically signifies 
failure of the off-axis plies. However, in this case the modulus was lower upon 
unloading, indicating damage to the laminate. The off-axis laminate plies suffered 
fibedmatrix interface hilures at stress levels as low as 138 MPa (20 hi) ,  significantly 
affecting the mechanical properties. Because of the weak interfaces, the systems suffer 
stiffhess loss and fatigue damage in just a few cycles. The interface is not only weak 
because of chemical reactions, but also due to the residual stresses that arise from the 
thermal mismatch of the constituents [28]. 
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Deformation and failure mechani 
plies in TMCs. In t 
microcracking and deb 
controlled by the fibers, 
plies. Also, the co 
TMCs, due to the residual thermal stresses 

Fatigue failure mechanisms in 0" laminates include fiber-dominated damage, 
crack initiation at damaged fibers, and preferential matrix cracking with fiber bridging. 
Fiber-matrix debonding and crack initiations at fiber-matrix interfaces are common in 90" 
laminates. The weak fiber-matrix interfaces in TMCs cause 90" plies to have a much 
shorter fatigue life than that of 0" [30]. Crack growth rates are improved in TMCs over 
the unreinforced matrix due to crack tip shielding and fiber bridging effects. Therefore, 
although TMC fatigue cracks often initiate early, crack propagation life can be very long 
[31]. Ironically, weak interfaces limit life by promoting crack initiation and growth in 
90" plies, and they extend life in 0" plies by with fiber bridging. Testing in isothermal 
fatigue and in-phase thermomechanical fatigue (TMF) result in fiber-dominated damage, 
while out-of-phase TMF is dominated by matrix damage [31-351. Several studies have 
shown that the stress in the 0" fiber can be used to correlate fatigue life of different 
laminates containing 0" plies [27, 32, 331. 

2.3.2 Modeling MMC Behavior 
Several micromechanical models have been developed in order to analytically 

predict the thermal and mechanical behavior of fibrous composites. Models used for 
predicting fatigue life vary from complex finite element methods [28, 36, 371, to life- 
fiaction models [38], to mechanistic approaches [39, 401. Strength of material models 
such as the multiaxial model in METCAN [41] and the vanishing fiber diameter (VFD) 
model in AGLPLY [42] have been used to obtain average stresses in the constituents. 
Many of these models can be modified to account for rate-dependent effects of the 
constituent phases. This is important because inelastic deformation of metal matrix 
materials at elevated temperatures is dominated by viscoplasticity [43]. In general, there 
is a trade-off between the accuracy of the solution and the efficiency of obtaining the 
solution. 

AGLPLY is a program that uses the VFD model to predict the elastic-plastic 
response of metal matrix composites. It has been used previously to accurately predict 0" 
stress-strain behavior as well as overall laminate response [22,27,44]. Another iteration 
of the program that also accounts for time-dependent behavior in the matrix is 
VISCOPLY. VISCOPLY has been used to model the fatigue behavior of Ti-15-3 and 
Timetal@:! 1 S subjected to a hypersonic flight profile, with predictions falling within 10% 
of the experimental results [44,45]. 

erse behavior (90" plies) of MMCs is challenging due to the 
onlinear material behavior, and presence of damage. More complex 

model proposed by Foulk et al. [36], attempt to account for 
as well as damage from material inelasticity, fibedmatrix 
g. Again, FEA models are computationally expensive and 

complex. It is known that matrix cracking generally reduces the fatigue response of 
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TMCs. This aspect can be capwed in less complex models such as AGLPLY by simply 
reducing the effective modulus of the matrix in the program. The degree of reducjtion 
varies with test type and amount of cracking, and must be determined 
experimentally. Other complex damage sms, such as the weak fibedmatrix 
interface, which is detrimental to the mechanical properties of 90" plies, call for more 

Johnson et al. [27] found that reducing the transverse 
modulus of the fibers in the 90" by 90% correctly modeled the debonding effects. 

ions to AGLPLY. 

2.3.2.1 AGLPLY 
AGLPLY is a two dimensional laminate code that runs fi-om a DOS prompt. The 

AGLPLY program predicts MMC properties using the VFD model, which was frst 
proposed by Dvorak and Bahei-El-Din [42]. It was designed to predict, in an average 
sense, lamina and laminate properties and stress-strain behavior. This model assumes the 
fibers have a very small (vanishing) diameter, yet they still occupy a finite volume 
fi-action of the composite. In 1, the fibers do not interfere with matrix 
deformation in the transverse or thickness directions, and only contribute to the stress 
state in the longitudinal (fiber) direction. The only constraint is in the longitudinal 
direction - the matrix and fiber must deform equally, which simplifies the governing 
equations so that complex numerical analysis is not required. 

The geometry of the AGPLPLY composite model is shown in Figure 2.13. It 
consists of a symmetric laminate of continuously reinforced fibrous composite layers. 
Each ply can consist of different fiber and matrix combinations and orientations, 
specified in the ith ply by the angle Qi. 

t t~ 
"t t r  

t" 

/ 

X l  

Middle 
Surface 

f n y  

Figure 2.13: AGLPLY ply coordinate system E461 

co 
an 
inputs to the-model 
material properties, 
stress-plastic strain curves, are input as a finction of user-selected temperatures. 
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Intermediate material properties are found by linear interpolation between the given data 
points. The program only models elastic behavior if lamina properties are specified. 
When fibedrnatrix properties are specified, the program assumes that the fiber is always 
elastic. The matrix, however, may have elastic-plastic properties. The matrix yield is 
determined by the Von Mises yield criteria. 

Any combination of inplane loads and temperature paths can be specified. The 
program has restart capabilities, allowing for input of piece-wise linear load-time 
functions in sequential steps. This allows for simulation of fabrication and subsequent 
loading in sequential job steps. The output consists of the overall elastic laminate 
properties and the average stresses and strains for both the fiber and matrix in each ply. 
Instantaneous laminate moduli and CTE are also reported for each load or temperature 
step [47]. 

2.4 Gamma Titanium Aluminides 

Gamma titanium aluminide alloys have been studied extensively in recent years. 
They are promising candidates as advanced structural materials for high temperature 
applications because of their attractive combination of low density (about 3.8 g/cm3), 
high melting temperature, good oxidation and bum resistance, high modulus and strength 
retention at elevated temperatures, and good creep properties [3-5, 481. The most cited 
limitations for widespread application of these materials are poor room temperature 
ductility, low fracture toughness, fast fatigue crack growth rates, and concern about 
oxidation resistance above 800°C [3-6, 48, 491. Generally, mechanical properties are 
linked to chemistry and microstructure, and they exhibit a trade-off between fracture 
toughness and ductility [3]. 

Gamma titanium aluminides have also recently received interest as potential 
matrjx material in TMCs [50-551. However, due to their low room temperature ductility 
and the high thermal mismatch between the alloy and silicon carbide fibers, initial 
attempts at fabrication of y-TiAl matrix composites resulted in extensive matrix cracking 
during consolidation [ 5 51. 

2.4. I History of Gamma Titanium Aluminide Development 
The earliest major work on gamma alloy development was initiated by the U.S. 

Air Force Materials Laboratory- This research, conducted by Pratt and Whitney from 
1975- 1983, recommended Ti-48A1- 1 V-(0. 1 C) as the best alloy composition based on 
ductility and creep resistance. The second major development program, again initiated 
by the Air Force and performed by General Electric from 1986-1991 identified a second 
generation of alloys, Ti-48A12(Cr or Mn)-2Nb with improved ductility, strength, and 
oxidation resistance [56]. In 1993, GE conducted successfd engine tests on a hll-set 
wheel of gamma blades, which improved overall confidence in the material [48, 561. 

The initial processing route for fabrication of g a m  components was investment 
casting. However, this processing route can lead to fluctuations in the AI content of more 
than k2 at.-%, leading to a non-uniform microstructure, and a significant variation in the 
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mechanical properties [5]. Powder metallurgy (P/M) technologies, on the other hand, 
provide more precise control f composition and microstructure, as well as helping 
reduce fabrication costs [57, 1. More recently, developments in P/M methods and 
alloying combinations have led to the production of prematerial that can be used for sheet 
rolling [5, 59, 601. Plansee AG developed an Advanced Sheet Rolling Process (ASFW), 
which allows processing on a conventional hot-rolling mill at low rolling speeds, 
producing thin sheet material with homogenous alloy composition [59]. Using this 
patented process, Plansee produces sheets of lmrn thickness which are commercially 
available. In addition, small foils with a thickness down to -150 pm have been rolled 
WI. 

The next processing step after producing u ’ gamma TjAl sheets is 
generating useful parts for aerospace and turbine applications. Superplastic forming 
(SPF) is a technology that enables fabrication of the sheet material into useful geometries 
[61]. Superplastic forming trials have been performed on a laboratory scale to show the 
formability of the sheet materials, producing true strains as high as 600% [59]. Other 
tests in industrial SPF facilities have demonstrated the feasibility of shaping complex 
geometries. Joining methods for these materials, such as brazing, liquid interface 
diffusion bonding, and laser welding methods have also been developed. These 
advances, many developed by BF Goodrich Aerospace Aerostructures Group, led to the 
successful manufacture of structures such as the truss core previously seen in Figure 2.7 
[62, 631. 

2.4.2 General Properties 

at.% A1 with 1-10 at.% ternary additions (see Figure 
of the y-TiAl phase with a small amount of a2-Ti3Al p 
ordered face-centered tetragonal structure, and 
structure. The ternary additions serve to improve properties such as: increasing the room 

ature ductility, improving high temperature properties, or refining the grain size [4, 
5, 481. For example, additions of V, Mn, Mo and Cr have been shown to increase the 
room temperature ductility. Oxidation resistance is improved with Ni, Ta, and Si. Creep 
resistance is improved with C, Si, N, Ta, and W. Fatigue strength is improved with the 
addition of Nb. And finally, small additions of B andor W can be used to refhe the 
grain size. 

The composition of engineering y-TiAl bas generally consists of 45-5 1 
They consist predominantly 

The y-TiAl phase has the L 1 
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Aluminum (at YO) 
Figure 2.14: Central part of the equilibrium Ti-A1 phase diagram [64] 

Generally, four distinct microstructures can be developed in TiAl alloys, 
depending on the thermo-mechanical treatment. The four distinct microstructures have 
been identified as: near-gamma (NG), duplex (DP), nearly lamellar (NL), and fully 
lamellar (FL) [3, 48, 58, 641. Heat treatments in the ai-y two-phase field at temperatures 
TI ,  T2, and T3 in Figure 2.14 normally result in NG, DP and NL respectively. When the 
alloy is heat treated in the c1 phase field (T4 in Figure 2.14), the FL microstructure results. 
The first two are hey-grain based (with grain sizes < 70p.m), and the latter are lamellar 
based, with larger grains (100-5OOpm). Generally, a NG structure contains equiaxed y 
grains and small a2 particles. A DP structure is composed of fine y grains and lamellar 
colonies with alternate y and a2 plates. The NL structure consists of coarse lamellar 
colonies with a small amount of fine y grains, while the FL structure consists of only 
lamellar colonies. Mechanical properties in y-TiAl alloys are reliant not only on alloy 
composition, but also strongly depend on microstructure and grain size. 

As can be seen in Figure 2.15, the room temperature (RT) tensile ductility of y- 
TiAl alloys only ranges from 0.3% to 4.0% elongation, and the RT tensile strength is 
typically in the 400-600 MPa range. These alloys demonstrate good strength retention up 
to about 8OO0C, and generally have a brittle-ductile transition temperature (BDTT) 
ranging between 600-820°C. Ductility increases and strength decreases rapidly at 
temperatures above the BDTT [64]. The near-gamma and duplex structures are 
associated with relatively low yield and tensile strength values, and moderately high 
ductility. On the other hand, hlly lamellar structures have high tensile strength values 
both at RT and elevated temperatures, though ductility values of specimens with lamellar 
structures is much lower [3,60]. 
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Tampemturn YCJ Temperature fC] 
Figure 2.15: Mechanical property trends of gamma TiAl based alloys with test 

temperature and microstructure [61] 

Fracture toughness values are dependent on microstructure, with values ranging 
from 10-35 MPadm [48, 651. Alloys with lamellar microstructures have higher fracture 
toughness than those with e grains, demonstrating the tradeoff between ductility 
and fracture toughness. acture toughness of these alloys improves with 

creep resistance is related to lower RT tensile ductility. 
It appears that the maximum application temperature for aluminides is determined 

by oxidation resistance rather than creep or strength retention [64]. In general, the 
oxidation resistance is higher than that of Ti-alloys, but is still much lower than NiA1- 
based alloys [5]. Oxidation resistance in alloys is based on the addition of an element 
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which will oxidize selectively and produce a protective surface oxide (such as A1203). 
Initial mass gain behavior of y-TiAl alloys is characterized by a 
curve, followed by linear behavior and extensive breakaway oxid 
elapse time duration. The time duration varies with increasing 
oxidation, a brittle surface layer forms - which can act as an ini 
upon loading [5]. The layer fomed has two distinct layers: a porous surface layer of pure 
oxide titania (TiO2) and a sublayer of intermixed titania and alumina (&os) between the 
surface and the interface. The titania forms on the surface and grows until the alumina 
can form a continuous layer and stop the growth of the transient oxide [69,70]. Alumina 
scales, because they have an extremely slow growth rate, are protective at temperatures in 
excess of 1200°C. However, intermixed alumindtitania scales are generally protective 
only to about 750-800°C because titania has a much higher growth rate [71]. 

2.4.3 Properties After High Temperature Exposure 
As all of the potential applications of gamma alloys include high temperature 

exposure, it is critical to examine what influence this exposure can have on the 
mechanical properties of the materials. A number of investigators have examined the 
influence of elevated temperature exposure on a variety of gamma alloys. As noted 
earlier, the low room temperature ductility of gamma alloys is already a concern. 
However, after high temperature exposure, tensile ductility is generally reduced even 
lower. 

Dowling and Donlon [72] found the ductility reduced to half the original 
following exposures of 50 hours at 775"C, which was accompanied by the formation of a 
thin surface layer. Pather, et al. [73] found that exposure at temperatures higher than 
500-600°C significantly reduced the room temperature strength and ductility. They also 
noted this effect after very short times; for example they reported a 50% decrease in 
ductility after a 2 hour exposure at 700°C. They attributed this to surface residual stress 
and surface compositional changes as well as oxygen and hydrogen embrittlement. 
Kelly, et al. [74] &her found that a minimal exposure at 315°C for 10 hours reduced 
ductility, and that the post exposure ductility loss only occurs at temperatures below 
200°C. Lee, et al. 1751 investigated and generalized the findings to other alloys and 
microstructural conditions, indicating that all gamma alloys produce a detrimental brittle 
surface layer after elevated temperature exposure. 

Plank and Rosenberger [76] studied the effects of high temperature exposure on 
both the monotonic response of an alloy as well as on its fatigue properties. They, similar 
to the aforementioned studies, showed a loss of tensile ductility and strength at room 
temperature of preexposed specimens, though no decrease in ductility was noted at higher 
temperatures (540" and 760°C). They also noted that exposed specimens displayed a loss 
of fatigue strength that was most severe at 540"C, though less severe at 760"C, while at 
room temperature the decrease was less apparent. 
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2.5 GammaMET 

The gamma titanium aluminide alloy examined in this research is the y-MET 
alloy produced by Plansee in Austria. The nominal composition of the alloy is Ti-46.5A1- 
4(Cr,Nb,Ta,B)at.%, however the specific alloy content is proprietary to Plansee. The 
chromium is added to improve ductility, and the niobium and tantalum are added to 
improve oxidation and creep resistance. Trace amounts of boron are added to refine the 
grain sizes during heat treatments, as boron hinders grain growth during heat treatments 
in the alpha field [a]. 

This material is typically manufactured from powder metallurgy y-TiAl preforms. 
Final consolidation is achieved by hot-isostatic pressing (HI 
of 1000°C, 124 MPa (18 ksi) pressure, over a period of two hours [59 
is then subsequently rolled on a conventional hot-rolling mill u 
Advanced Sheet Rolling Process (ASRP) [77]. Afterwards, a heat treatment at 1000°C 
for 2 hours under vacuum gives a primary annealed (PA) microstructure. It is a fine 
grained, globular microstructure consisting mainly of y grains with some small amounts 
of a2 and other phases (such as p phase and borides) distributed at grain boundaries and 
triple points. Heating above the alpha-transus temperature (-1 320°C) gives a designed 
fully lamellar (DFL) microstructure. PA exhibits superior fatigue properties, while DFL 
shows better creep properties [ 621. 

2.5.1 Mechanical Properties 
There is a limited amount of mechanical property data in the literature for this 

specific alloy. Table 2.1 gives a summary of the data found in the literature, to the best 
of the author’s knowledge, as well as the data generated by previous graduate student 
Jason Craft. A degree of scatter appears in the room te data, even among 
publications that share authors. 
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Table 2.1 : Tensile properties of Ti-46.5A1-4(Cr,Nb,Ta7B)at.% 

etot (%) 
0.85 
1.5 
0.8 
1.4 
0.55 
0.35 
0.35 
2.8 
5.1 
37.5 

* Fractured before yielding ' Leholm, et al. in Gamma Titanium Aluminides 1999 [62] 
Leholm, et al. in Titanium '99: Science and Technology [78] 
Craft, J.S., MS Thesis, Woodruff School of Mechanical Engineering [79] 
Clernens, et al. in Gamma Titanium Aluminides 1999 1591 
Hales, et al. in Gamma Titanium Aluminides 2003 [80] 

% (%) -- 
-- 
0.26 

0.24 
0 
0 

2.62 

-- 

-- 
-- 

Figure 2.16 shows the trends for various tensile properties of this material over 
the full usage temperature range, as reported by Clemens, et al. [59]. As can be seen, the 
BDTT for this material occurs at approximately 750°C. Above this temperature, the 
ductility rapidly increases due to mechanical twinning and increased dislocation 
movements, and results in a drop of overall strength. 

Figure 2.16: Trends in strength and elongation of Ti-46.5Al-4(Cr7Nb,Ta,B)at.% as 
hnction of temperature [81] 
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Chatterjee, et al. {77] studied both fatigue (see Figure 2.17 for S-N curves) and 
creep behavior (see Figure 2.17) of the sheet material. The PA microstructure 
demonstrates higher fatigue properties than the DFL microstructure, though the 
properties demease with an increase in temperature to 700°C. Creep rates at 700°C are 

, though the values increase by an order of magnitude when increasing 
temperature to 800°C. 

Figure 2.17: S-N curves at RT and 700C of Ti-46.5Al-4(Cr,Nb,Ta3B)at.% with two 
different heat treatments [77] 

200 MPa 

Time in hrs 

: Creep curves for Ti-46.SAl-4(Cr,Nb,Ta,B)at.% at 700°C and 800°C and a 
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Pippan, et al. [82] studied fat 

seen in Figure 2.19, w 

vs. AKcurves can be seen in Figure 2.20 - this curve is significantly influenced by the 
stress ratio. 

Figure 2.19: Stress intensity range vs. crack extension for PA microstructure of y-MET 
E821 
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Figure 2.2 1 : Isothermal mass gain per unit area of samples oxidized for 48 hours at 
various temperatures [79] 

SEM inspection of cross-section views of the oxidized surfaces showed the 
typical multi-layered oxide scale previously documented for gamma titanium aluminide 
alloys at 800°C and higher. A thin layer of alumina and titania; were observed at 750°C 
and 775°C. However, only a few isolated islands of oxide were observed on samples 
exposed at 700°C. Electron dispersive x-ray (EDX) was also used to characterize the 
chemical composition for the various oxides and the base alloy as a hnction of distance 
through the cross section (see Figure 2.22). The outer layer was determined to be Ti02, 
the layer beneath it being & O 3 ,  and the mixed oxide layer adjacent to the alloy/scale 
interface consisted of a fine mixture of Ti02 and Ah03. 
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Figure 2.22: Oxide chemical composition vs. distance at 800°C [79] 

Mechanical properties after oxidation are the subject of ongoing research in this 
area. Development of ultrathin protective coatings to improve high temperature 
oxidation resistance for this material are also underway at NASA LaRC [83]. 
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itanium matrix 

echanical testing in 

typically manufactured fi-om powder metallurgy y-TiAl preforms. Final consolidation is 
achieved by hot-isostatic pressing (HIPing) at nominal conditions of 1000°C, 124 MPa 

ressure, over a period of two hours [59]. The prematerial is then subsequently 
a conventional hot-rolling mill using Plansee’s patented Advanced Sheet 

ocess (ASRP) [77]. Two 36 cm x 75 cm (14.2 in x 30 in) sheets of 1 
et material manufactured by Plansee were obtained &om 

Aerostructures. The nominal composition o alloy is Ti-46.5A1-4(Cr,Nb,T 
however the specific alloy content is propri 
improve ductility, and the niobium and t 
creep resistance. Trace amounts of boron 
treatments - boron hinders grain 

After the rolling process, 
heat treatment at 1000°C for 2 hours is applied which gives a primary-annealed 
microstructure. The PA microstructure consists of fine-grained globular or equiaxed y 

o Plansee. The chromium is added to 
improve oxidation and 
grain sues during heat 

in the alpha field [64]. 
e performed. Normal 
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Figure 3.1: Micrograph of etched y-MET sheet material [79] 

The sheet was plasma cut into smaller, workable pieces by the Georgia Tech 
Research Institute (GTRI) Machine Shop, as attempts to shear the material resulted in 
brittle cracking. Coupons were cut &om these smaller sections in the rolling direction 
and machined to final dimensions using electron discharge machining (EDM) facilities at 
the Mechanical Engineering Machine Shop at Georgia Tech. Thirty dogbone specimens 
were machined (see 
Figure 3.2) to use for tensile and fatigue testing. The coupons were 17 cm long, 2.54 cm 
wide at the grip area, 1.91 cm wide in the reduced section with a 3.175 cm radius of 
curvature, and 1 mm thick. Three additional samples with dimensions of 34.7 mm x 2.5 
mm were also machined for use in the dilatometer .for CTE testing. 

Figure 3.2: Dogbone coupon of the sheet material 

Prior to mechanical testing, the edges and faces of the coupons were polished 
using 400-grit sandpaper to remove any surface flaws developed during consolidation, 
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rolling, or final machining preparation. Of particular concern was eliminating the 
microcracks along the edges c 

ceived sheet material, several coupons were exposed 
to elevated temperatures before testing. These coupons were fust polished using 400-grit 
sandpaper to remove surface faces. They were then thoroughly 
cleaned before being placed in . Five coupons were heated to 800°C at a rate 

temperature to allow the formation of a thin 
"C at a rate of 2O0C/min and held for 5 
ooled ambiently; they were removed 

lowed to cool in room temperature 

d during the EDM machining process. 
In addition to using 

fi-om the &mace, place on a c 
air. 

3.2 Foil Matrix Material 

The thin sheets used in the attempt to manufacture titanium matrix composites, a 
process that will be described in the subsequent chapter, were produced at NASA LaRC. 
The processing route to produce the very thin sheets (- .007 in or 0.178 mm thick) of the 
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Figure 3.3: RF plasma spray deposition facility at NASA LaRC: (a) schematic of plasma 
torch and (b) superstructure [SO] 
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Figure 3.4: Thin sheets of foil produced by plasma spray deposition of pre-alloyed 
powers ready for VHP consolidation 

Previously in this research program, graduate student Jason Craft mechanically 
tested two “fiber-less” panels of this consolidated material [79]. Those two panels 
consisted of 4 plies of the foil matrix material without any reinforcing fibers. However, 
the consolidation varied between the two panels. In one case, the plies were misaligned 
and delamination was noted between the plies in some areas sheet. Rough regions 
where voids formed were present on the surface of both panels of the material. Flaws 
noted in the composite panels can be seen in Figure 3.5. 
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a b C 

Figure 3.5: Flaws in the consolidated “fiberless” panels included: a) surface asperity, b) 
delaminated sections, and c) surface markings [79] 

Monotonic tensile testing in both load control and strain control of the 
consolidated material led to brittle failure below the yield point, as can be seen in Figure 
3.6. The total strain of the material in both cases was around 0,35%, which is much 
lower than the room temperature strain seen in the sheet material. NASA LaRC has 
reported some slightly higher strains-to-failure in their testing of consolidated panels 
[SO], with an average of 0.55%. The low strain-to-failure of the consolidated material is 
attributed to surface roughness and residual macro- and micro-porosity in the material. 
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Figure 3.6: Monotonic results of consolidated material at 2 1 “C: a) load control test b) 
strain control test [79] 
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3.3 6 and Ultra-SCS Silicon Carbide Fibers 

The industry standard fibers us + years are silicon 
carbide fibers, specifically the SCS-6 fi 
(previously Textron, Inc.) 
stifhess and high tensil 

modulus of -415 GPa (10% higher than the SCS-6 modulus of 380 GPa) and tensile 
strength of -5865 MPa (50% higher than SCS-6 strength of 3450 MPa), the combination 
of which results in a higher strain to failure for the Ultra-SCS fiber. Both fibers consist 
of silicon carbide deposited on a carbon monofilament core via chemical vapor 
deposition (CVD) processing. Both fibers have a diameter of around 140 pm, and also 
have similar density and CTE properties. A cross-sectional diagram of the Ultra SCS 
fiber can be seen in Figure 3.7. 

3.3 pm Mult5- 
layered Coating 

lmprn- 

Figure 3.7: Cross-sectional diagrams of the Ultra-SCS fiber [26] 

In order to evaluate the strongest option for titanium matrix composites, the 
analytical modeling used the Ultra-SCS fiber properties to determine the best potential 
composite properties. The actual composite manufacturing done at NASA LaRC 
employed the SCS-6 fibers. 

3.4 Nextel 610 Alumina Fiber 

Alumina fibers have received attention in recent years as potential reinforcements 
in gamma titanium aluminide composites [50-52,541. Although they have lower strength 
and stiffness characteristics, the CTE of alumina fibers is typically higher than that of 
silicon carbide fibers, which leads to a closer thermal match with gamma titanium 
aluminides. The Nextel 610 alumina fiber, manufactured by 3M, was selected as an 
alternative reinforcement for comparison purposes. .The fiber is composed of a-Al203 
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and has a smaller diameter of 10-12 pm. The small diameter creates difficulties in 
manufacturing a TMC with these fibers, as a large number of fibers would be necessary 
to achieve even a small fiber volume fraction. The large number of fibers has the 
disadvantage of difficult/poor fiber distribution and a higher probability of fibers 
touching, which would have a detrimental effect on mechanical properties. A larger 
diameter alumina fiber, such as the sapphire A1203 single crystal fiber produced by 
Saphikon Inc., with a diameter of -125pm, would be another possible alumina 
reinforcement, though the cost of this fiber hinders its manufacturability and it is not yet 
commercially available. 
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A variety of laboratory equipment was necessary to conduct mechanical 
characterization studies of the y-MET rolled sheet material in this program. The 
following sections discuss the equipment used for both CTE and mechanical testing as 
well as the procedures 

4.1.1 DiZatometry 
d dilatometer was used to find the CTE property data for the alloy 
utilized a standard resistance h a c e ,  alumina pushrods, and a 

sapphire reference. A flowing argon atmosphere was used to prevent exce 
of the samples. Together with the furnace, the dual pushrod dilatometer used a linear 
variable differential transformer (LVDT) to measure specimen displacement. A 
thermocouple junction floating roughly lmm directly above the sample monitored 
temperature. The equipment was located in laboratories managed by Dr. Robert Speyers 
of the School of Materials Science and Engineering; graduate student Ben Church 
assisted in operation of the equipment. 
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Figure 4.1 : Dilatometry laboratory configuration with data acquisition 

For the CTE testing, 3 samples of the MET rolled sheet material were cut to a 
dimension of 34.7 mm x 5 mm. One sample was in the longitudinal rolling direction, and 
the other two samples were transverse to the rolling direction. A sapphire reference 
material certified by the National Institute of Standards and Testing (NIST) was used to 
calibrate the dilatometer, as its CTE is well-known. The furnace was heated uniformly at 
a constant rate of 2"C/min fiom room temperature to a final temperature of about 
1250°C. The LVDT measured the expansive displacement of the gamma sheet material 
relative to the expansion of the sapphire reference material. 

The data acquisition recorded running time, fbrnace temperature, control 
temperature, and change in length of the sample relative to the sapphire reference 
material. The percent change in length relative to the sapphire reference material was 
applied to the known expansion data of the sapphire to calculate the total expansion of 
the gamma titanium aluminide sample at each point. The coefficient of thermal 
expansion was calculated &om the displacement versus temperature data. With the raw 
dilatometer data of AMo versus T (where lo is the length at room temperature and T is 
temperature), the CTE, ET, was calculated by a linear regression over small temperature 
intervals using Equation 4.1 : 

where xi represents a T datum point, yi represents a Al/& datum point, and n is the range 
over which each regression is performed. The value of n = 41 was used in the 
calculations, which roughly equates to a 20°C temperature range. A more detailed 
discussion on the selection of this particular interval can be found in Ben Church's Ph.D. 
dissertation [85]. The value of ET, calculated for each regression was assigned to the 
median temperature for each particular regression range. It should be noted that these 
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values of - a ~  may vary fi-om other calculated values of CT 
specified temperature range, as has been describe 

such as the mean a over a 
James, et al. [86]. 

4.1.2 Microscopy 

composite The 
with softwae that enabled taking 
changed, and meshing those images together for a composite 
every depth. 

An scop used to look at 

4.1.3 Mechanical Testing Equipment 
The mechanical testing equipment consisted of an MTS 810 servo-hydraulic test 

fkame and its peripheral equipment (see Figure 4.2). The test firame is rated at 10 metric 
tons of force and is equipped with a Teststar computer control with data acquisition, MTS 
model 647.10A hydraulic grips, and an Ameritherm SP-2.5 induction heater. The 
computer software is capable of conducting either monotonic or cyclic testing in either 
load control, displacement control, or strain co 

, -  

Figure 4.2: Servo-hydraulic Test Frame and peripheral equipment 
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An Epsilon high temperature extensometer (Model 3448) with ceramic rods was 
used for strain measurement. The extensometer secured to the test specimen with 
ceramic fiber cords attached to springs applied in tension. The extensometer measured 
strain over a gage length of 2.5 cm and was capable of measuring strains up to 0.1 
W m m .  It has the ability to travel &lo%. For the room temperature tests, a Oo/900 strain 
gauge rosette was used along with the extensometer. The strain gauges were bonded to 
the test specimens following the procedures outlined in ASTM E1237-93 [87]. The strain 
gauges were used to measure the Poisson effect in the material, as well as to validate the 
room temperature results and the experimental setup. 

The gripping inserts used during testing had a diamond-toothed surface ( S / N  
647617-02). The inserts were water-cooled, so that the induction coil could be in close 
proximity to the grips. The hydraulic grips have manual pressure controls which allow 
the user to optimize the gripping pressure for a specific work piece size, geometry, and 
material. 

The Ameritherm induction heater consisted of a main power unit and a remote 
heating station. The heater is rated at 2.5kW. The main power unit had an Omega Series 
CN-7 100 series programmable temperature controller. The controller took manual input 
and self-tuned accordingly. The remote heating unit provided the heat source and was 
attached to the test frame directly behind the specimen. Water was supplied to the main 
power unit, which sent the flow to the remote heater, through coil, back to the remote 
heater, and finally to a drain. The water provided cooling to the copper tubing induction 
coil. 

The induction coil itself was designed and manufactured in-house. The initial coil 
design was based on observations of existing coils that had been used successhlly in the 
past for high temperature experiments. Rick Brown, the technician, gave advice and 
direction f7om his observations of past successful coils for the initial iterations. These 
initial iterations involved making coils with copper tubing of different diameters (1/8”, 
3/16”, and 1/4”) and with different numbers of turns. The final coil used can be seen in 
Figure 4.3, it was manufactured of 3/16” tubing. The concept for the coil design is for 
the coil to loop around the specimen in a spiral configuration. The coil turns are spaced 
at 2.5 cm to allow a gap for the extensometer tips to fit through and attach to the 
specimen. 
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Fig ure 4.3: Indi ictio In c lrs heated and glowing 

As the test specimens were only 1 , it ifficult to design an induction 
coil that could be turned close enough to couple with the specimen causing it to heat up, 
and yet still allow enough water through the tubing so that the coil itself does not 
overheat. Therefore two susceptors were used (see Figure 4.3 and Figure 4.41, in order to 
add to the cross sectional area inside the coil. The susceptors heated 
the coil on either side of the specimen, and in turn conducted heat 
through direct contact with it. The susceptors were held in’place 
specimen with ceramic ropes. 

The susceptors were made of Inconel 718, chosen becaus 
minimal tendency to oxidate at the testing temperatures, 
the test specimen with outside oxidation. The bars were machined b 
shop using the EDM equipment. Th 
sectional area of 0.625”x0.285”. Susc 

s. The width was c 
contact of the susceptor with the specimen, but still allow 
temperature extensometer. 

The coupon was held at ze 
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A3"C of the desired temperatu length, as specified by ASTM 
Standard E-21 [88]. A thermoc ide of one of the susceptors was 
also monitored during calibrat the specimen temperature and 
the outer thermocouple readin men test temperatures. As that 
temperature gradient was repeatable, it was used as a monitor for the specimen 
temperature during testing. 

Figure 4.4: IN-7 18 susceptors with thermocouple welded to outside (top) and groove for 
specimen thermocouples (bottom) 

4. I .  3. I Mechanical Testing Procedures 
Monotonic tensile tests were conducted on the sheet material to obtain the general 

stress-strain behavior of the material. The tests were conducted under isothermal 
conditions at room temperature, 700"C, and 800°C respectively. 

The first set of testing was conducted under load control under a constant load 
rate of 10.95 lbflsec. This loading rate was selected as equivalent to a stress rate of 2.56 
MF'dsec - which was used by previous testing of TMCs conducted by Johnson et al. 
[44], Mirdamadi et a1.[45], and previously in this program by Craft [79]. At a steady 
loading rate, the local strain rate increased rapidly above the yield point. For brittle 
materials, such as this alloy, an accurate stress-strain curve is difficult to obtain under a 
steady loading rate due to the rapid, almost immediate fiacture that is expected to occur 
beyond the yield point. Data acquisition was configured to sample time, crosshead 
displacement, axial load, and axial strain measurements at each incremental change in 
strain of 0.0005 mm/mm. Load control testing was conducted on one sample at each of 
the three test temperatures (room temperature, 7OO0C, and 800°C). 

A second set of tests was conducted under displacement control at a constant 
displacement of 0.0004 in/sec. The crosshead displacement rate was chosen to 
approximate a strain rate of lo4 mm/mm/sec, which has been used in prior testing of this 
alloy [59, 62, 78, 791. Data acquisition was again configured to sample time, crosshead 
displacement, axial load, and axial strain measurements at each incremental change in 
strain of 0.0005 mm/mm. Displacement control testing was conducted on samples at 
room temperature, 700"C, and 800°C. Additionally, two sets of samples were exposed to 
elevated temperatures for 5 hours before displacement control testing. The first set of 
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coupons were exposed to 800°C for 5 hours, and the second set of coupons were exposed 
to 700°C for 5 hours. A coupon fiom the first set was tested at temperature at 800"C, and 

each set of exposed 

main induction 

le coupons of y-MET 

of gamma titanium aluminide matrix composites with SCS-6 fibers were manufactured at 
NASA LaRC. The constituents were layers of plasma-sprayed y-MET foil (described in 
Section 3.2) as the matrix material and two plies of SCS-6 fiber mat. In the first run, the 
fiber mat was used without modification. In the second run, every other fiber in the mat 
was removed to reduce the resulting fiber volume fraction (see Figure 4.5). The 
laminates were consolidated via vacuum hot pressing. 
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(b) 
Figure 4.5: Fiber mat (a) before and (b) after removal of every other fiber 

The samples were laid up by hand (see Figure 4.6a). The foil matrix layers were 
0.007” thick. The lay-up was as follows: two layers of foil, 1 ply of fibers, 2 layers of 
foil, 1 ply of fibers, 2 layers of foil. The fiber orientation for both plies was the same, 
giving an [0]2 lay-up. The lay-up was placed in a 12.7 cm x 7.6 cm molybdenum die. 
The lay-up also included thin sheets of molybdenum sandwiching the laminate on either 
side to protect the laid up material and the die. The VHP facility (pictured in Figure 4.6) 
has a load capacity of 1 . 6 9 ~ 1 0 ~  N (190 tons) applied to 30.5 cm diameter molybdenum 
platens. It operates at temperatures up to 1200°C and a vacuum level in the lo5 to lo4 
Pa range. 
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The vacuum hot press cycle used for this work was comprised of a pressure of 
103.4 MPa (15 h i )  applied for 2 hours at 1050°C. A typical temperature profile can be 
seen in Figure 4.7 . For the panel labeled VHP-110, the load was removed when the 
specimen temperature reached 900°C. For the second panel, labeled VHP-113, the load 
was removed immediately after consolidation at the consolidation temperature of 
1050°C. 
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Figure 4.7: Typical VHP temperaturelforce profile [SO] 

4.3 Analytical Modeling Using AGLPLY 

AGLPLY is a 2-D laminate analysis code that predicts the elastic-plastic response 
of metal matrix composites to thermal and/or mechanical loads. It is also described in 
Section 2.3.2.1. The model predicts the laminate response based on the constituents’ 
properties, which can be entered either as fiber and matrix properties or overall lamina 
properties. The program runs on a DOS prompt. It employs the vanishing fiber diameter 
(VFD) model, first proposed by Dvorak and Bahei-El-Din [42]. This model assumes that 
the cylindrical fibers have a vanishing diameter, yet occupy a finite volume in the 
composite. In this model, the fibers contribute to the longitudinal stress state, but do not 
interfere with the transverse deformation of the matrix. This assumption models the 
orthotropic symmetry of the composite by creating a uniform stress state in the transverse 
plane. The governing equations are simplified by the single-constraint condition in the 
axial direction, which eliminates the need for complex numerical analysis. 
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Inputs to AGLPLY can be entered as lamina properties or fiber and matrix 
properties. These properties include Young’s modulus, Poisson’s ratio, coefficients of 
thermal expansion (CTE), yield stress, and stress-plastic strain curves. Each material 
property can be specified as a piece-wise function of temperature. Property data is 
linearly interpolated between specified points. AGLPLY has been used extensively to 
estimate modulus and strengths of various metal matrix composites [22, 27, 893. 
AGLPLY is used in this study since no time dependent properties are available for the 
gamma titanium being studied. If time dependent properties were available, the next 
iteration of the program, VISCOPLY would have been used, as it accounts for 
viscoplastic behavior. 

For AGLPLY, loads that can be simulated include in-plane stress, out-of-plane 
normal stress, and uniform temperature change. The program has restart capabilities, 
allowing for input of piece-wise linear load-time functions in sequential jobs. This option 
allows for simulation of fabrication and experiments in sequential job steps. Spectrum 
load conditions can be applied as well. The program is capable of simulating load- 
control and strain-control conditions. 
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CHAPTER 5 

RESULTS AND Drscussroiv 

In this chapter, the results fiom the mechanica 
analytical results from AGPLY modeling are presented 
composite manufacturing attempts are also presented. 

haracterization testing and the 
discussed. The results of the 

5.1 Experimental Tests 

Experimental tests were conducted to characterize the y-MET titanium aluminide, 
so that this information could be used to predict the behavior of the material in a 
composite system. The results from the CTE testing, tensile testing, and fatigue testing 
are presented in the following sections. 

5.1.1 Coefficient of Thermal Expansion 
CTE was determined fiom dilatometry testing and according to the procedure 

described in Section 4.1.1. Three specimens were tested to ensure the repeatability of the 
results. The results from the CTE testing for the three y-MET sheet material specimens 
are plotted as a hnction of temperature in Figure 5.1. 
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Figure 5.1 : Coefficient of thermal expansion vs. temperature for 3 specimens 

All three specimens have similar CTE data fiom room temperature up to around 
900-925*C, at which point they begin to diverge. The “dip” in the curve for the specimen 
that was longitudinal to the rolling direction can perhaps be attributed to the thinness and 
flatness of the specimens. The thinness of the specimens may have allowed them to bend 
or curl slightly, which would result in an abnormal change in length reading by the 
dilatometer, as part of the expansion may have been out of plane fiom what the pushrods 
in the dilatometer could detect. 

The AGLPLY analysis required the value of the CTE of the matrix material up to 
900°C, and the three specimens correlated very well up to that value. Data points used 
for the analysis were chosen so that the linear interpolation between them would 
correspond with the average measured CTE values, as can be seen in Figure 5.2. 

48 



I H Average Measured CTE 
1s 

14 

fi 13 
0, 
E 

E - 11 
’f 

j 12 

E g  
z 10 
x 

8 

7 
0 100 200 300 400 500 600 700 800 

Temperature (“e) 
Figure 5.2: Average measured CTE with the linear interpolation of the data used in 

AGLPLY simulations 

5.1.2 Poisson’s Ratio 
to tensile testing, a series of cylic tests was conducted to verify the room 

temperature modulus and determine Poisson’s ratio. In load control, the load cycled 5 
times in the elastic zone. The results fi-om the Oo/900 strain gage rosette fi-om one of 
these cyclic tests can be seen in Figure 5.3. After 5 tests, conducted to veri@ the 
repeatability of the experiments, the average Poisson ratio was 0.237. The average 
Young’s modulus was 153 GPa. This test was only conducted at room temperature, as 
the strain gages were not rated for elevated temperatures. 

49 



250 

200 

n 

150 

v1 

g 100 
cn 

50 

0 
-0.05 0 0.05 0.1 0.15 0.2 Strain (%) ' 

Figure 5.3: Poisson's ratio measured at room temperature under cyclic loading 

5.1.3 Tensile Testing 
Tensile testing of the rolled sheet material was done in both load and 

displacement control. The curves generated fiom the load control testing at room 
temperature, 700"C, and 800°C can be seen in Figure 5.4. Tabulated results from the 
tensile tests are provided in Table 5.1. The alloy shows good stifhess retention at 
elevated temperatures. At room temperature, the modulus is 152 GPa; it degrades by 
only 12% and then 42% at 700°C and 800°C respectively. The RT modulii correlate well 
with the previously published data seen in Error! Reference source not found., where 
the reported RT modulus ranges from 139-162 GPa. At 700"C, the modulus is 18% 
higher than one literature source [79], and 2% lower than another source [81]. At 800°C 
it is 26% higher than one literature source [62] and 30% lower than another source [81], 
thus falling between the two. Ductility improves with temperature, with inelastic 
elongation increasing fiom 0.56% at room temperature up to 4.72% at 800°C. The 
results also show good strength retention. The high yield strength at room temperature 
was degraded by only 18% and 28% at 700°C and 800°C. The ultimate tensile strength, 
on the other hand, remained relatively unchanged with increasing temperature. The 
increase in ductility at elevated temperatures and unchanged high tensile strength result in 
a tougher material at elevated temperatures. 

The failure occurred at the top or bottom edges of the reduced section for both the 
elevated temperature tests. This was attributed in part to the large thermal gradient 
occurring at those locations, as only the center of the specimens were inductively heated. 
Another possible reason for the failure occurring near the ends of the reduced section is 
possible poor alignment. The bottom of the test machine can rotate, which would induce 
an additional torsional load that would be greatest at the ends of the reduced sections. 
Additionally, stress may have been induced in the specimens during gripping if the 
pressure used to grip the thin specimens was not optimal. 

For brittle materials such as this alloy, an accurate stress-strain curve is difficult to 
obtain under a steady loading rate due to the rapidly incieasing strain rate above the yield 
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stress. Therefore, it is not unexpected that the ductility data from these 
those reported from strain-controlled testing in Table 2.1. 
ductility with temperature, however, remained the same. 

The trend of increasing 
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Figure 5.4: Stress-strain curves of sheet material fkom load control testing 

Table 5.1: Material properties results fkom load control testing 

Young's Temperature, 
"C Modulus, 

GPa 

800 88.5 

0.2% Yield 
Strength, 

MPa 

445 
365 
320 

Monotonic tensile tests in 
rate chosen to approximate a strain 
temperature, 700"C, and 800°C. Two tests were performed at room temperature. Typical 
stress-strain curves fiom those tests can be seen in Figure 5.5. Tabulated data for the 

fkom this testing can be examined in T 
esting were very similar to those fi-om 1 
temperature, by about 20% and 30% 

respectively. The ductility again increased with temperature, though in greater amounts. 

lacement control, with a crosshead di 
of 10" d m m / s e c ,  were a ~ s o  perfor 



This is unsurprising, as load control testing of brittle materials often leads to lower 
ductility findings. At 800"C, the specimen strained by more than 20% before breaking 
which correlates well with the data given in the literature. Good yield strength retention 
was seen again, with an average degradation of 20% and 27% at 700°C and 800°C. The 
ultimate tensile strength did not appear to degrade in this case until the testing at 800°C. 

Temperature, 
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Figure 5.5: Stress-strain curves of sheet material from displacement control testing 

Table 5.2: Material properties results fiom displacement control testing 

The test at 700°C again resulted in failure near the end of the reduced section, 
although the specimen tested at 800°C failed near the middle of the gage length. This is 
attributed to the lesser temperature gradient that occurs when the specimen is heated to 
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as the temperature at the ends of the reduced section is higher and ductility there 

Additional monotonic tensile testing was performed on 
is increased. 

eclmens that had been 
exposed to elevated temperatures "C and 8000C respect ly) for 5 hours. The 
specimens exposed to 800°C formed a visible thin, brittle whitish oxide layer, whereas 
only a few, very thin isolated islands of the whitish oxide were observed on the 
specimens exposed to 700°C. Those specimens were slightly discolored with yellow and 
rust colored tones, however, compared to the silver metallic color of the unexposed 
specimens. The stress-strain curves generated from tensile testing of those specimens can 
be seen in Figure 5.6 and Figure 5.7 along with comparison curves from tensile testing of 
unexposed samples. 
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Figure 5.6: Stress-strain curve comparisons of unexposed specimens and specimens 
exposed to 700°C for 5 hours 

The testing of specimens exposed to 700°C was disappointing in that several 
est and the test at 

e. This specimen did not demonstrate any plastic strain, 
loss of room temperature ductility. Though no significant visible 

oxide layer was fonned, the discoloration of these specimens indicates some oxygen or 
hydrogen uptake that had an embrittling effect. As mentioned previously, Pather, et al. 
[73] observed a decrease in RT ductility of another gamma alloy after exposures as short 
as 2 hr at 700"C, which was also attributed in part to the surface residual stresses induced 
from the exposure. The exposed specimen tested at 700°C failed in the grip area, but did 
strain plastically before failure. From the data obtained, the exposure does not seem to 

specimens broke in the grip section during both the room temperatu 
one exposed specimen that failed in 
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indicate a great loss of ductility at 700°C - the loss was ab 
failure occurred in the grip area. The exposure did not 
ultimate tensile strength at room temperature 
exhibited an increase in 0.2% yield st at b 
5.3. 
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Figure 5.7: Stress-strain curve comparisons of unexposed specimens and specimens 
exposed to 800°C for 5 hours 

The specimens exposed to 800°C exhibited behavior very similar to those 
exposed to 700°C. The brittle oxide layer that formed on the specimens exposed to 
800°C did not significantly affect the mechanical properties of the alloy when tested at 
800°C. When tested at room temperature, however, the oxide layer appeared to slightly 
strengthen and stiffen the alloy, increasing the modulus and yield strength by 6% and the 
ultimate tensile strength by 10%. The oxide formed was previously determined to be 
comprised of A1203 and TiO2. This strong, stiff, and very thin oxide layer may contribute 
slightly to the strength and stiffhess of the thin specimen. However, as has been seen 
with other gamma alloys, these effects were accompanied with a loss of room 
temperature ductility (of about 30% in this case) when compared to the unexposed 
material properties. The oxide layer is very brittle and can cause surface cracking; it 
provides preferential locations for microcracks to start on the surface or at the oxide/alloy 
interface. The material properties extracted fi-om these tests can be seen in Table 5.3. 
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5.1.4 Fractography 
The fiacture surfaces of the specimens tested were examined to evaluate the 

damage mechanisms. The micrographs provide a cross-sectional view of the entire 
thickness. Figure 5.8 shows fiacture surfaces for the material tested at room temperature. 
Both the unexposed and exposed materials showed brittle cleavage fiacture at room 
temperature. The brittle oxide layer on the exposed specimen is almost too thin to be 
discernible in the micrograph. The fiacture mechanism was not affected by the elevated 
temperature exposure, as brittle cleavage fiacture occurred in every case. 

a b 

Figure 5.8: Cross-sectional fracture surfaces of material tested at room temperature in 
conditions: a) unexposed and b) exposed to 800°C for 5 hours 

Unfortunately, at 700°C the specimens broke near the ends of the gage length. 
The fiacture surfaces there also involved brittle cleavage, similar to the surfaces seen in 
Figure 5.8. This is unsurprising, considering the temperature gradient fiom the hot center 
25.4 mm (1”) section at 700°C to the grips, which are estimated to be around 100°C. The 
susceptors were not “glowing” hot near the ends of the reduced section, implying the 
temperature is lower in those locations. The transition from cleavage fiacture to 
intergranular fracture usually occurs somewhere above 600°C for gamma titanium 
aluminides [4]; the fiacture location is not estimated to have been above that temperature. 

For the specimens tested at 800”C, fiacture did occur in the 25.4 mm (1”) gage 
section at 800°C. Unfortunately, with the susceptors in pldce, it was difficult to safely 
remove the fiacture surface &om the elevated temperatures without the surface oxidizing. 
The oxidation on the surface prevented determination of the fiacture mechanism. The 
specimen did exhibit necking behavior before fracture; and the fiacture surface was much 
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flatter than those tested at room temperature. Previous testing of the sheet material at 
650°C ,demonstrated a transition to more intergranular fracture at higher 
[79], as would be expected for these specimens. 

cal modeling was performed to assess the 
S and y-METNextel610aomposite systems. 

lay-up in order to mimic the lay-up of the samples manufact 
important to note that most high temperature applications w 
lay-up than the unidirectional setup modeled he 
consolidation attempts and the mechanical per 
previously were use calculate a "lock-up" te OC, as will be described. 
The subsequent analysis assumed this "lock-up' used the optimal matrix 
properties found in the literature to determine potential composite behavior. The first 
step of the analysis determined the residual stress-state that develops fiom thermal 
mismatch during cooling. The second step predicted subse nt loading behavior of the 
composite systems at various temperatures, including the re a1 stresses induced during 
cooling. 

As time-dependent material parameters were not available, the composite 
was based on the assumption of no time dependent effects. As mentioned earli 
dependent properties were available, the analysis would have utilized a code that takes 
those properties into effect, such as VISCOPLY. However, with the data available, the 
laminate code AGLPLY was used for this analysis. 

5.2.1 Material Parameters 
As this analysis was performed to find the potential performance of these 

composite systems, the higher properties seen in the literature for the alloy were used to 
determine the feasibility of manufacturing these laminates assuming that optimal matrix 
properties could be achieved. For the analysis, the tensile data published in Clemens et 
al. [59], shown graphically in Figure 2.16, was used to approximate the Young's 
modulus, yield strength, and stress-plastic strain behavior of the matrix material. Upon 
reviewing the other published property data of this alloy and experimental test results, the 
tensile results fiom Figure 2.16 exhibit higher stiffness and strength retention 
characteristics at elevated temperatures compared to the results reported in Table 2.1. It 
should be mentioned that mechanical properties vary significantly with alloy content and 
processing; the variance amongst reported data for material with the same nominal 
content could be seen in Table 2.1. 

Stress-strain curves were approximated using the published yield strength, 
ultimate tensile strength and failure strain data. The Poisson ratio was measured 
experimentally using a Oo/90" strain gage rosette under tensile cyclic loading, as 
described in Section 5.1.2. The experimental data for the CTE fi-om Section 5.1.1 was 
also used. A summary of matrix material properties used in AGLPLY is given in Table 
5.4. 
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Specialty Material’s Ultra-SCS silicon carbide fiber was one of the 
considered in the analysis. This fiber is de able because of its high stifkess and t 
strength, but it has a much more significant thermal mismatch with gamma titanium 
aluminides than the alumina fiber. Room temperature modulus was obtained for the 
Ultra-SCS fiber fi-om Specialty Materials. Temperature dependent property data is 
readily available for the SCS-6 fiber (also from Specialty Materials) [33, 451. As the 
composition of the two fibers is very similar, the assumption was made that temperature 
dependent trends would correlate between the SCS-6 and the Ultra-SCS fiber. The 
temperature dependent Young’s modulus of the Ultra-SCS fiber was estimated by 
applying a 10% increase to the modulus of the SCS-6 fiber at all temperatures. A 
summary of representative material property data used for the Ultra-SCS silicon carbide 
fiber is provided in Table 5.5. 

The other fiber considered in this analysis was 3M’s Nextel 610 alumina fiber. 
Though less stiff than the silicon carbide fibers, it has a higher CTE that is a closer match 
to the CTE of the matrix material. Room temperature Young’s Modulus and CTE 
property data for the Nextel 610 fiber was obtained fi-om 3M Corporation [go]. An 
estimate for Poisson’s ratio was used for A1203 [91]. Since temperature dependent 
property data was unavailable, mechanical properties were modeled as independent of 
temperature for the Nextel 610 fiber. As CTE generally increases with temperature, this 
model serves as a conservative estimate for the residual stresses that would occur, as the 
thermal mismatch may be less at higher temperatures. A summary of representative 
material property data used for the Nextel 610 alumina fiber is provided in Table 5.6. 
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5.2.2 Calculating the “Lock-up ’’ Temperature 
The “lock-up” temperature is essentially the temperature at which the fibers and 

matrix become perfectly bonded. Generally, it is not known at what temperature the fiber 
and matrix “lock-up” during cooling fi-om consolidation. In the past for TMCs, it has 
been assumed that creep relieves any thermal stresses that develop at temperatures greater 
than one half the melting point of the matrix [33]. This rule-of-thumb assumption would 
give a “ l o ~ k - u p ~ ~  temperature of about 725°C for a y-MET matrix system. However, the 
first step of the analysis, determining the residual stress state, is very sensitive to the 
“lock-up” temperature, such that a more accurate estimate for it was desirable. Therefore 
the “lock-up” temperature was calculated using observations of past consolidation 
attempts and data fi-om the previous experimental testing previously performed on the 
fiberless composite coupons in the AGLPLY analysis. 

In past consolidation attempts of a y-METISCS-6 laminate at NASA LaRC, 
transverse cracking due to thermal mismatch was observed for fiber volume fractions as 
low as -20%. This observation implies a higher “lock-up” temperature than the lnitially 
assumed 725”C, as no cracking is predicted assuming this lower “lock-up” temperature. 
Therefore an AGLPLY analysis of the residual stresses induced from thermal mismatch 
was run using a volume fraction of 20%, various “lock-up” temperatures, and the 
material properties fi-om Table 5.4 and Table 5.5. The tensile data for the fiber-less 
composite tested previously at MPRL demonstrated an ultimate stress of 497 MPa at 
room temperature (see Table 2.1). This data was used as the criterion for thermal 
mismatch cracking at room temperature. As the “lock-up” temperature used in the 
analysis increased, the residual stress predicted at room temperature increased. A “lock- 
up” temperature of 925°C was determined to induce a residual stress of 497 MPa at room 
temperature with a volume fi-action of 20%, which would presumably cause cracking. 
Therefore this “lock-up” temperature was assumed for all subsequent analyses. This 
temperature also correlates with the temperature at which the CTE results diverged for 
the three test specimen, as was seen in Figure 5.1. The temperature is also very similar to 
the assumed “lock-up” temperature used for other TMCs [92]. 

5.2.3 Residual Stresses 
After calculating the “lock-up” temperature, the next step was to analyze the 

residual stresses t h t  developed as a result of thermal mismatch during consolidation. 
The constituents are consolidated at high temperatures and then the materials are allowed 
to cool in the furnace to room temperature. As the CTE of the matrix is larger than that 
of the fiber, tensile residual stresses develop in the matrix upon cooling. If the stresses in 
the matrix exceed the material’s tensile strength, cracking will result. 

As could be seen in Table 2.1, the consolidated fiber-less samples resulting fi-om 
the recent trials at NASA LaRC do not possess the optimal properties that have been seen 
in this alloy. Therefore an analysis using the “lock-up” temperature determined above 
was used to determine the feasibility of manufacturing a SCS-6Iy-MET laminate 
assuming that optimal matrix properties could be achieved. The potential residual stress 
state was determined using the optimal matrix properties, listed in Table 5.4, and the 
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determined "lock-up" temperature. As the resulting residual axial tensile stress in the 
matrix material seems to be the limiting factor forthe manufacturing of these composite 
systems, these stresses for various fiber volumes of an [0]4 Ultra-SCSly-MET composite 
are shown in Figure 5.9. 
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Figure 5.9: Matrix residual axial stress due to thermal mismatch for various fiber volumes 
of an [0]4 Ultra-SCSly-MET composite 

The residual axial stress that develops in the matrix is high, with yielding 
predicted at about 225°C during cool-down for a composite with 30% volume fiaction. 
Ideally, the residual stress state would remain elastic in cooling to room temperature. 
Given the poor room temperature ductility of the fiberless consolidated material, which 
did not yield plastically at all in one case [79], it is pred that cracking w 
this laminate upon cooling to room temperature. To prevent cracking upon 
is necessary to reduce the fiber 
mismatch taking place. Whil 
down with a volume fiaction of 20 
considering the amount of additional 

ction in order to reduce the amount of thermal 
does not predict matrix yielding upon cool- 

is unclear when 
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this reason, no yielding was o 
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Figure 5.10: Matrix residual axial stress due to thermal mismatch for various fiber 
volumes of an [0]4 Nextel 610Iy-MET composite 

Since no mechanical loads were applied to the laminates, the residual stress 
contributions of the constituents must result in zero stress overall. As the constituents 
were contrained in the axial direction because of the interfacial bond, the stresses were 
governed by the rule of mixtures: 

CTL = VfOf+ (l'Vf)CT, = 0 (5.11 

The residual stresses in the fibers found fiom the analysis were compressive for both the 
Ultra-SCSly-MET and Nextel 6 lO/y-MET systems, as expected, and were increasingly 
compressive with increasing fiber volume fiaction. No shear residual stresses developed. 

5.2.4 Subsequent Monotonic Loading Capabilities 
The generic flight profile previously generated for TMCs in the NASP program [44, 

451 seen in Figure 5.11 was used as a guideline in evaluating the monotonic response of 
these laminates. Though this guideline was not developed necessarily for unidirectional 
laminates, it was used simply to determine the practicality of using these material systems 
in a generic high temperature application. Tensile stress-strain curves were generated for 
the laminates at 21"C, 400"C, and 700°C under isothermal conditions and monotonic 
loading. The flight profile calls a laminate stress of nearly 300 h4Pa at room 
temperature. The laminate must also carry a peak load of up to 350 MPa at 400°C. From 
Craft's work [79],the maximum allowable temperatme exposure with no significant 
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oxide degradation is 700°C, and thus the maximum load at this temperature is predicted 
as well. Matrix yielding is applied as the failure criterion since the room temperature 
ductility is very low. 

480 

roo 

Tim trcrc) 

Figure 5.1 1 : Generic hypersonic flight profile [45] 

Table 5.7 lists stiffhess and maximum laminate stress (based on pure elastic 
behavior in the constit ith various fiber volume 
&actions. With a RT criteria) of 3 15 MPa and 
an effective Young's Modu of 10% was close to a 
maximum reinforcement w laminate. At 400°C, 

allowable temperature without degradation, 700°C, the laminate is predicted to carry 
about the same load as the non-reinforced material, but again improves the stiffhess by 
about 20%. The addition of Ultra-SCS fibers to the y-MET matrix material therefore 
improves the stiffhess, but generally degrades the load carrying capacity of the non- 
reinforced matrix material. 

Table 5.7: Overall laminate rties of a-SCSIy-MET 
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The trends in stress-strain behavior of the Nextel 6 1 OIy-MET laminates were similar 
to laminates with silicon carbide reinforcement. One difference to note is a lower 
stiffness for equal fiber content because of the lower modulus of the alumina fiber. 
However, with lower residual stresses, larger fiber content can be used; this results in a 
stiffer laminate that can withstand higher loads. 

Table 5.8 lists stiffness and maximum laminate stress (based on pure elastic 
behavior in the constituents) for Nextel 610Iy-MET laminates with various fiber volume 
fi-actions. With a composite strength of 312 MPa and a modulus of 214 GPa at room 
temperature, a fiber volume &action of up to 30% could be achieved without sacrificing 
the usefulness of the laminate. At 4OO0C, the laminate with a fiber volume fraction of 
30% is predicted to carry a lower load than the non-reinforced matrix material, though 
the stifhess at this temperature is improved by almost 50%. The load carried by this 
laminate again meets the required 350 MPa load carrying capacity at 400°C from the 
generic hypersonic flight profile. Finally at 7OO0C, as the residual stresses relax, the vf = 
30% laminate improves both in stiffness as well as in load carrying capacity over the 
non-reinforced material. This combination of fibers and matrix provides an improved 
thermal match. Therefore the Nextel 610 alumina fibers can better improve the stifhess 
of the laminate compared to the non-reinforced matrix material without sacrificing as 
much load carrying capacity as the Ultra SCSly-MET combination. 

Table 5.8: Overall laminate properties of [0]4 Nextel 610ly-MET 

At 21°C At 400°C At 7OOOC 

As temperature increases, the toughness of the alloy increases while the stiffness 
decreases. The matrix residual stresses also relax with increasing temperature. The 
overall effect is that the laminate could carry more load, and thus these materials show 
great promise for elevated temperature application. However, it is important to note that 
even though the structures heat up during flight, significant loads would be applied at 
lower temperatures, during take-off and initial flight maneuvers. Therefore, focus on 
room temperature performance is critical. 

The analytical modeling results reinforce that thermal mismatch limits the use of 
gamma titanium aluminides in composite systems. With Ultra-SCS reinforcements, a 
maximum fiber content of 10% can be added without compromising the load carrying 
capability of the laminate. The result is an improvement in stifkess of 16% at room 
temperature compared with the un-reinforced alloy. The thermal mismatch is reduced 
when using alumina Nextel 610 fibers as reinforcements. A larger fiber content of 30% 
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used without compromising the load carrying capability of the laminate with 
ess in this case is improved by 38% ov un-reinforGed alloy. 

5.3 Manufacturing at NASA LaRC 

Figure 5.12: Cracking in [0]2 SCC-61 y-MET panel (VHP-110) after consolidation 

65 



The cracking is attributed to the thermal mismatch between the SCS-6 fibers and 
the gamma matrix material. The fiber volume fiaction, VI, was determined by a simple 
area ratio: 

where Af is the area covered by the fibers and AZot is the total area of a cross-sectional 
view of the consolidated sample (see Figure 5.13). The fiber volume fraction was 
calculated to be about 22% for VHP 1 10 and 11% for VHP 11 3. 

The cracking is unsurprising in the VHP 110 panel with the volume fiaction of 
fibers of 22%, as this is the cusp of the allowable volume fiaction noted in the AGLPLY 
analysis section. Additionally, internal cracking between adjacent fibers was seen in this 
panel. This is likely due to the close transverse spacing of the fibers, as can be seen in 
Figure 5.13(a). The fibers are spaced much more closely in the transverse direction than 
in the through thickness direction, and have a higher likelihood of fiber-touching in that 
direction. Even with the lower volume &action in the VHP 113 panel, the method of 
hand-laying up the plies can allow some fiber-touching, as can be seen in Figure 5.13(b), 
which is detrimental to the properties of the panel. 

The cracking in the VHP 113 panel was disappointing, as no matrix cracking was 
predicted with the lower volume fiaction of -1 1 %. In this case, the lower fiber volume 
fiaction should decrease the residual stresses resulting fiom the thermal mismatch. 
However, in the mechanical testing of the consolidated “fiber-less” plies, this material did 
not yield plastically at all, as was noted in Section 3.2. The already limited room 
temperature ductility of this alloy may be decreased even further during consolidation 
attempts with the foil sheets of the material. The quality of consolidation can also vary 
with these foil sheets, which was also noted in Section 3.2. These factors could lead to 
the matrix cracking that was seen during cool-down, as the thermal mismatch is too great 
for the thin foil sheets with the high limited room temperature ductility. The procedure 
used to manufacture the thin foil material and consolidate it with the fibers needs to be 
optimized in order to ensure successful and repeatable laminate consolidation. 
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@) 
Figure 5.13: Cross-sectional view of composite samples a) VHP 110 and b) VHP 1 13 
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CHAPTER 6 

CONCLUSIONS 

This research considered a gamma tita 
vehicles. The 
was conducted 

mismatch and 

fiactions were 

11 as monotonic tensile 
specimens exposed to 

n ratio of 0.237 was oom temperature with a 0°/900 

a1 strain just under 
ases with elevated 

uctility, and an increase in 
tensile strength. 
Elevated temperature exposure did not significantly affect the mechanical 
properties of the alloy when tested at elevated temperatures. 
A maximum use temperature of 7OO0C is suggested for high temperature 
applications. Above this threshold, formation of an oxide scale becomes a 
factor. 
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Modeling was conducted to predict the residual stresses that would occur due to 
thermal mismatch during composite consolidation of a laminate with a y-MET matrix. 
An [0]4 lay-up was chosen for the model to mimic the concurrent consolidation attempts. 
Alumina (Nextel 610) fibers and silicon carbide (Ultras-SCS) fibers were compared as 
reinforcing materials. Potential composite behavior to loading after consolidation was 
also predicted. Since viscoplastic parameters were not available, the analysis was 
conducted using AGLPLY. The following were significant findings from the analytical 
modeling: 

The “lock-up” temperature of the matrix and fibers was calculated to be 
around 925°C. 
Modeling of consolidation trials with a 30% fiber content predicted in 
high residual stresses matrix yielding in the Ultra-SCSIy-MET laminate 
and high residual stress in the Nextel 610Iy-MET laminate. Because the 
matrix is brittle at room temperature, cracking is expected above the yield 

0 

0 

point. 
With a higher CTE, the Nextel 610 is a closer thermal match with the y- rn 

MET alloy, and lower residual stresses develop as a result. 
For laminates with Ultra-SCS reinforcement, it was predicted that a 
maximum of -10% fiber content could be added, resulting in a laminate 
with an elastic modulus of 181 GPa and a maximum load capacity of 315 
MPa at room temperature without yielding in the matrix. 

-30% fiber content could be added, resulting in an effective modulus of 
214 GPa and a maximum load capacity of 312 MPa at rooin temperature 
without yielding in the matrix. 

for a stronger composite system, assuming optimal matrix properties could 
be achieved. 

Finally, attempts were made to manufacture coupons of an SCS-6Iy-MET 
laminate with two different volume fractions. The temperature at which the 103.4 MPa 
(1 5 ksi) of pressure applied during consolidation was released varied with the different 
attempts. From these composite consolidation attempts, the following observations are 
significant: 

0 

rn For laminates with Nextel 610 reinforcement, it was predicted that up to a 

rn From this analysis, it appears that Nextel 610Iy-MET offers the potential 

rn Even with low fiber volume &actions of about 20% and lo%, transverse 
cracking occurred in the matrix due to the thermal mismatch between the 
laminate constituents. 

0 Observations of foil fabrication and consolidation indicate that this 
process must be optimized to achieve optimal matrix room temperature 
ductility in order to successfully manufacture y-MET matrix composites. 
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CHAPTER 7 

RECOMMENDATIONS 

There are many areas for krther investigation into the properties of gamma 
titanium aluminides and their composite systems. Research is needed to further 
understand the behavior of this alloy and its response to elevated temperature exposure. 
Further work is also necessary in the composite area to address the thermal mismatch 
with reinforcing fibers for this TMC to become a viable structural material. 

The degradation of room temperature ductility of this alloy with a modest 
elevated temperature exposure time of 5 hours demonstrates a need for development of a 
protective coating for this alloy at elevated temperatures. At the conclusion of this 
research, the next generation of this alloy, in this case called y-MET-px, has already been 
developed and is undergoing mechanical characterization testing at the AFRL [94]. This 
next generation alloy has been modified to improve the room temperature ductility, creep 
resistance, and oxidation resistance amongst other mechanical property improvements. A 
next step after mechanical characterization of this next generation alloy would be to 
incorporate the mechanical property data into an analytical model to evaluate its potential 
use as a matrix material in advanced TMCs. 

For the alloy examined, y-MET, time dependent effects of the sheet material 
should also be evaluated. With this data, viscoplastic effects can then be incorporated 
into the analysis, and more accurate composite modeling could occur. In a possible 
application as a structural material for hypersonic vehicles, mechanical and thermal 
cycling would be expected. For this reason, additional testing should also investigate 
fatigue behavior of the alloy over the spectrum of usage temperatures. 

This research began the exploration of the effect of elevated temperature exposure 
on this alloy, however additional testing is necessary. Additional tests are needed to 
ensure the repeatability of the experimental results f?om the monotonic tensile tests. 
Also, fatigue testing should be conducted on specimens exposed to high temperatures in 
order to determine if any resulting degradation occurs at either room temperature or 
elevated temperatures. 

Of the two composite systems analyzed in this research, y-METINexteI 610 
showed the better potential for structural applications because they are a better thermal 
match than the y-METAJltra-SCS system. However, the small diameter of these fibers 
somewhat limits their practical use when attempting to manufacture laminates. Therefore 
it would be beneficial to investigate other fibers with a higher CTE and a larger diameter. 
The manufacturing results showed that even with a 10% volume fraction of SCS-6 fibers 
in the y-MET matrix that thermal mismatch is still a significant problem with this alloy. 
If the thermal mismatch camot be overcome, then investigations should pursue other 
titanium classes, such as the more compatible orthorhombic class of titanium aluminides, 
as matrix materials in advanced TMCs. 
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