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This project was co-led by Dr. Sheila Mcllraith and Prof. Richard Fikes. Substantial research
results and published papers describing those results were produced in multiple technology areas,
including the following:

Monitoring 2 Complex Physical System using a Hybrid Dynamic Bayes Net

The Reverse Water Gas Shift system (RWGS) is a complex physical system designed to produce
oxygen from the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without
human supervision, thus requiring a reliable automated system for monitoring and control. The
RWGS presents many challenges typical of real-world systems, including: noisy and biased
sensors, nonlinear behavior, effects that are manifested over different time granularities, and
unobservability of many important quantities. In this portion of the project, we modeled the
RWGS using a hybrid (discrete/continuous) Dynamic Bayesian Network (DBN), where the state
at each time slice contains 33 discrete and 184 continuous variables. We showed how the system
state can be tracked using probabilistic inference over the model. We investigated how to deal
with the various challenges presented by the RWGS, and produced a suite of techniques that are
likely to be useful in a wide range of applications. In particular, we produced a general
framework for dealing with nonlinear behavior using numerical integration techniques, extending
the successful Unscented Filter. We also showed how to use a fixed-point computation to deal
with effects that develop at different time scales, specifically rapid changes occurring during
slowly changing processes. We tested our model using real data collected from the RWGS,
demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical
systems.

A Formal Theory of Testing for Dynamical Systems

Just as actions can have indirect effects on the state of the world, so too can sensing actions have
indirect effects on an agent’s state of knowledge. In this portion of the project, we investigated
“what sensing actions tell us”, i.e., what an agent comes to know indirectly from the outcome of a
sensing action, given knowledge of its actions and state constraints that hold in the world. To this
end, we developed a formalization of the notion of testing within a dialect of the situation
calculus that includes knowledge and sensing actions. Realizing this formalization required
addressing the ramification problem for sensing actions. We formalized simple tests as sensing
actions. Complex tests are expressed in the logic programming language Golog. We examined




what it means to perform a test, and how the outcome of a test affects an agent’s state of
knowledge. Finally, we developed automated reasoning techniques for test generation and
complex-test verification, and precisely specified restrictions on when the techniques can be used.
This work is relevant to a number of application domains including diagnostic problem solving,
natural language understanding, plan recognition, and active vision.

Diagnosing Hybrid Systems Using a Bayesian Model Selection Approach

In this portion of the project, we examined the problem of monitoring and diagnosing noisy
complex dynamical systems that are modeled as hybrid systems; i.e., as systems having
continuous behavior interleaved by discrete transitions. In particular, we examined continuous
systems with embedded supervisory controllers that experience abrupt, partial, or full failure of
component devices. We developed a mathematical formulation of the hybrid monitoring and
diagnosis task as a Bayesian model tracking and selection problem, and developed a suitable
tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to
probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is
problematic because the models of the system corresponding to failure modes are numerous and
generally very unlikely. To focus tracking on these unlikely models and to reduce the number of
potential models under consideration, we exploited logic-based techniques for qualitative model-
based diagnosis to conjecture a limited initial set of consistent candidate models. We considered
alternative tracking techniques that are relevant to different classes of hybrid systems, and
focused specifically on a method for tracking multiple models of nonlinear behavior
simultaneously using factored sampling and conditional density propagation. A motivating case
study for this work was the problem of monitoring and diagnosing NASA’s Sprint AERCam, a
small spherical robotic camera unit with 12 thrusters that enable both linear and rotational
motion.
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Abstract

The Reverse Water Gas Shift system (RWGS) is a
complex physical system designed to produce oxy-
gen from the carbon dioxide atmosphere on Mars. If
sent to Mars, it would operate without human super-
vision, thus requiring a reliable automated system for
monitoring and control. The RWGS presents many
challenges typical of real-world systems, including:
noisy and biased sensors, nonlinear behavior, effects
that are manifested over different time granularities,
and unobservability of many important quantities. In
this paper we model the RWGS using a hybrid (dis-
crete/continuous) Dynamic Bayesian Network (DBN),
where the state at each time slice contains 33 discrete
and 184 continuous variables. We show how the sys-
tem state can be tracked using probabilistic inference
over the model. We discuss how to deal with the var-
ious challenges presented by the RWGS, providing a
suite of techniques that are likely to be useful in a
wide range of applications. In particular, we describe
a general framework for dealing with nonlinear behav-
ior using numerical integration techniques, extending
the successful Unscented Filter. We also show how
to use a fixed-point computation to deal with effects
that develop at different time scales, specifically rapid
changes occurring during slowly changing processes.
We test our model using real data collected from the
RWGS, demonstrating the feasibility of hybrid DBNs
for monitoring complex real-world physical systems.

1 Introduction

The Reverse Water Gas Shift System (RWGS) shown in
Fig. 1 is a complex physical system designed and con-
structed at NASA’s Kennedy Space Center to produce oxy-
gen from carbon dioxide. NASA foresces a number of pos-
sible uses for the RWGS, including producing oxygen from
the atmosphere on Mars and converting carbon dioxide to
oxygen within closed human living quarters.

In a manned Mars mission, the RWGS would operate
for 500 or more days without human intervention [Larson
and Goodrich, 2000]). This level of autonomy requires the
development of robust and adaptive software for fault diag-
nosis and control. In this paper, we focus on two key sub-
tasks — monitoring and prediction. Monitoring, or track-
ing the current state of the system, is a crucial component

Figure 1: The Prototype RWGS System

of the control system. Prediction of the system’s expected
behavior is a basic tool in fault diagnosis — discrepancies
between the predicted and the actual behavior of the system
may indicate the presence of faults.

The RWGS presents a number of significant modeling
and algorithmic challenges. From a modeling perspec-
tive, the system is very complex, and contains many sub-
tle phenomena that are difficult to model accurately. Var-
ious phenomena in the system manifest themselves over
dramatically different time scales, ranging from pressure
waves that propagate on a time scale of milliseconds to
slow changes such as gas composition that take hours to
evolve. From a tracking perspective, the system dynamics
are complex and highly nonlinear. Furthermore, the sen-
sors give only a limited view of the system state. Some key
quantities of the system are not measured, and the available
sensors are noisy and biased, with both the noise level and
the bias varying with the system state,

In this paper we model the RWGS using a hybrid (dis-
crete/continuous) Dynamic Bayesian Network (DBN), and
show how the system state can be tracked using probabilis-
tic inference over the model. We focus on the continuous
part of the model, assuming all the discrete variables are
known. We discuss how to deal with the various challenges
presented by the RWGS, both in terms of modeling and in
terms of inference. We provide a suite of techniques that
are likely to be useful in a wide range of applications, in-



cluding the case where the discrete variables are not ob-
served.

Perhaps the most interesting modeling problem pre-
sented by the RWGS is the issue of different time granu-
larities. A naive solution is to discretize time at the finest
granularity. Unfortunately, this approach is generally in-
feasible both because of the computational burden and be-
cause the number of observations is effectively reduced to
one for every few thousand time steps, leading to serious
inaccuracies. Instcad, we take the approach of modeling
the system at the time granularity of the observations. We
show how to deal with the almost instantaneous changes
relative to our time discretization by modeling a part of our
system as a set of fixed-point equations.

For the inference task, we provide some new insights
into the problem of tracking nonlinear systems. This task
is commonly performed using the Extended Kalman Fil-
ter (EKF) [Bar-Shalom et al, 2001] or the simpler and
more accurate Unscented Filter (UF) [Julier and Uhlmann,
1997]. We view the problem as a numerical integration
problem and demonstrate that the UF is an instance of a
numerical integration technique. More importantly, our ap-
proach naturally leads to important generalizations of the
UF: We show how to take advantage of the structure of the
DBN and present a spectrum of filters, trading off accuracy
with computational effort.

‘We tested our model using real data collected from the
RWGS prototype system. Our results demonstrate the po-
tential of using hybrid DBNs as a monitoring tool for com-
plex real-world physical systems.

2 Preliminaries

In this paper, we characterize physical systems as discrete-
time stochastic processes. System behavior is described in
terms of a system state which evolves stochastically at dis-
crete time steps / = 0.1.2, ... We assume that the system
is Markovian and stationary, i.e., the state of the system
at time { 4 1 only depends on its state at time /, and the
probabilistic dependencies are the same for all /.

The system state is modeled by a set of random vari-
ables 1' = {\;....,X,). We partition the state vari-
ables .U into a set of evidence (observed) variables, E, and
a set of hidden (unobserved) variables, H. Physical sys-
tems commonly comprise both continuous quantities (e.g.,
flows, pressures, gas compositions) and discrete quanti-
ties (e.g., valve open/closed, compressor on/off). Conse-
quently, we model such systems as hybrid systems, with .V’
comprising both discrete and continuous variables.

‘We model the process dynamics of our system using a
Dynamic Bayesian Network (DBN) [Dean and Kanazawa,
1989]. A DBN is represented as a Bayes Net fragment
called a 2TBN, which defines the transition model P( X' |
X) where X’ = {X;...., X,») denotes the variables at
time/+1and X = {\7,...,.\,) denotes some subset of
the variables at time / which are persistent, in that their val-
ues directly influence the next state. More formally, a DBN

is a directed acyclic graph, whose nodes are random vari-
ables in two consecutive time slices, X and X’. The edges
in the graph denote direct probabilistic influence between
the parents and their child. For every variable X at time
I + 1 we denote its parents as Par( \") C X U X’. Each
X" is also annotated with a Conditional Probability Dis-
tribution (CPD), that defines the local probability model
P(X' | Par{ \"}). In our bybrid model, discrete nodes do
not have continuousnodes as parents.

The tracking problem in DBNS is to find the belief state
distributionBel(X ') % P(X" | ', ... "), where X' typ-
ically consists of the persistent variables X at time /, and
e, ..., ¢ are the evidence variables from time 1 to time /.
The belief state summarizes our beliefs about the state of
the system at time /, given the observations from time 1
to time /. As such, it makes current and future predictions
independent of past data. The tracking algorithm is an it-
erative process that propagates the belief state. We start
with the belief state at time /, Bel(X') and perform three
steps. We first compute (X', X'*' | ¢',...,¢') as the
product Bel( X ) P(X‘*" | X'). Next we marginalize out
X' resulting in a distribution over X‘*". Finally, we con-
dition on ‘1!, and the result is the belief state at / + 1,
Bel(X'*").

Linear models are an important class of DBNs. In a
linear model, all the variables in X are continuous and
all the dependencies are linear with some added Gaussian
noise. More precisely, if a node X" has parents }7,.... 73
then P(\ | V7. .., Y%) = So5_, w;Y; + V", where the ;’s
are constants and 1" has a normal distribution A’( 1. o7).
In a dynamic linear model, tracking can be done using a
Kalman filter [Kalman, 1960), where the belief state is rep-
resented parametrically as a multivariate Gaussian in terms
of the mean vector and the covariance matrix. Kalman fil-
ters therefore allow a compact belief state representation,
which can be propagated in polynomial time and space.

When the dependencies in the model are nonlinear, the
resulting distributions are generally non-Gaussian and can-
not be represented in closed form. Consequently, the belief
state is generally approximated as a multivariate Gaussian
that preserves the first two moments of the true distribu-
tion. The traditional method for doing this approximation
i8 using an Extended Kalman Filter (EKF) [Bar-Shalom et
al.,, 2001]. Assume that X' = f(X), where [ is some
nonlinear function and X ~ A'(y1.¥). Note that we can
always assume that [ is deterministic: If the dependency
between X and X' is stochastic we can treat the stochas-
ticity as extra random variables that [ takes as arguments.
The EKF finds a linear approximationto [ around the mean
of X, i.e,, we approximate [ using the first-order Taylor
series expansion around ys. The result is the linear func-
tion f(X) =~ f(y) + lel, (X — jr), where Vfl,, is the
gradient of [ evaluated at ;1.!

'A second-order EKF approximation exists, but its increased
complexity tends to limit its use.



The EKF has two serious disadvantages. The first is its
inaccuracy — the EKF is accutate only if the second and
higher-order terms in the Taylor series expansion are neg-
ligible. In many practical situations, this is not the case
and using the EKF leads to a poor approximation. The
second disadvantage is the need to compute the gradient.
Some nonlinear fimctions may not be differentiable (e.g.,
the max function), preventing the use of an EKF. Even
if the function is differentiable, computing the derivatives
may be hard if the function is represented as a black box
rather than in some analytical form.

The Unscented Filter (UF) [Julier and Uhlmann, 1997]
provides an altemative approach to tracking nonlinear be-
havior. As with the EKF, the UF assumes that X' = f(X)
and X ~ A(y1,%). The UF works by deterministically
choosing 2d + 1 points =, ..., #2,,, where = = jr and the
other points are symmetric around ;¢ (the actual points de-
pend on ¥). Associated with each point is a weight 1r;.
The UF computes =} = f(=;) fori =0,1,...,2d, result-
ingin 2d-+1 points in IR"™”, from which it estimates the first
two moments of X’ as a weighted average of the »/’s. In
particular, the mean /-[X'] is approximated as 3", -z’

The UF has several significant advantages over the EKF.
First, it is easier to implement and use than the EKF —no
derivatives need be computed, and the function [ is simply
applied to 2d + 1 points. Second, despite its simplicity, the
UF is more accurate than the EKF: The UF is a third-order
approximation, i.e., inaccuracies are induced only by terms
of degree four or more in the Taylor series expansion. Fi-
nally, instead of just ignoring the higher-order terms, the
UF can account for some of their effects, by tuning a pa-
rameter used in the point selection. As shown in [Julier and
Uhlmann, 19971, the UF can be extremely accurate, even in
cases where the EKF leads to a poor approximation.

3 The RWGS System

The purpose of the RWGS is to decompose carbon diox-
ide (CO-) (abundant on Mars) into oxygen (O-) and carbon
monoxide (CO). The system, shown in Fig. 2(a) [Goodrich,
2002], comprises two loops: a gas loop that converts CO-
and hydrogen (H,) into H,O and CO, and a water loop that
electrolyzes the H-O to produce O-» and H,. Under normal
operation, CO- at line (1) is combined with H, retumed
from the electrolyzer via line (12), and a mixture of CO-,
H>, and CO from the reactor recycle line (11). This mixture
enters a catalyzed reactor (3) heated to 100°C. Approxi-
mately 10% of the CO- and H. react to form CO and H-O:
COr+ 1T = CO + 110
The H-O is condensed at (4) and is stored in a tank (5). The
remaining gas mixture passes through a separation mem-
brane (9), which sends a fraction of the CO to the vent (13)
while directing the remaining mixture into the recycle line
(11). A compressor (10) is used to maintain the necessary
pressure differential across the membrane. In the water
loop, the H-O in tank (5) has some CO- dissolved in it,
which would be detrimental to the electrolyzation process.

To remedy this, the H-O is pumped into a second tank (6),
and has H- bubbled through it to purge the CO-. From
there, the H-O is pumped into the electrolyzer (8), which
separates a portion of it into O, and H». The H- re-enters
the gas loop via (12), while the remaining H.0O, along with
the O-, goes into tank (7), where the mixture is cooled and
separated. The H-Q returns to the electrolyzer, while the
O- leaves the system through (14).

In addition to its nonmal operating mode, the system
may operate without the electrolyzer and water pumps. In
this mode, the H- for the reaction is supplied by a supply
line (15) paralleling the CO- supply line. This optionis not
feasible for operation on Mars, but has proven useful for
testing the physical system while under development.

The RWGS is an interconnected nonlinear system
where the various components influence each other in com-
plicated and sometimes unexpected ways. For example,
during runs without the electrolyzer, it is necessary to
empty the water tank (5) periodically, to prevent water from
accumulating and eventually overflowing the tank. This
causes the gases in the tank to expand, and thus creates a
significant and sudden pressure drop, which affects the flow
throughout the whole system. This phenomenon is demon-~
strated in Fig. 2(b), taken from [Whitlow, 2001]. The graph
shows the flow through the CO vent (13) as it evolves over
time — the spikes correspond to emptying the water tank.

A challenging property of the RWGS is that phenomena
in the system manifest themselves over at least three differ-
ent time scales. Pressure waves in the RWGS propagate
essentially instantaneously (at the speed of sound). Gases
flow around the gas loop on the order of seconds. Finally,
gas compositions in the gas loop take on the order of hours
to reach a steady state. Meanwhile, the sensors collect data
at a sampling rate of one second.

An additional challenge of the RWGS is its sensitivity
and unidentifiability, i.e., parts of the system state are very
sensitive to input paramaters and are not directly measured.
For example, the H» and CO, compositions in the gas loop
cannot be practically measured. However, the balance be-
tween these compositions is almost neutrally stable, thus
a small shift in the input conditions or the membrane be-
havior will cause the balance to gradually drift to a signifi-
cantly different value.

As in any real system, the RWGS sensors do not record
the underlying state exactly. In addition to some impor-
tant quantities, such as the gas compositions, which are not
measured at all, the existing sensors are noisy and biased.
The noise level of the sensors depends on many factors and
can change over time. An example is shown in Fig. 2(c),
where the difference in the readings of the pressure sensors
s and P4 (both located at (2) in Fig. 2(a)) is plotted over
time. The main reason for the noise in time steps 0—800
is the physical proximity of the sensors to the compressor
that sends pressure waves throughout the system. Since
the sensors are not synchronized with the compressor, they
take measurements at various phases of the pressure waves
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Figure 2: (a) The RWGS Schematic. (b) Effects of emptying a water tank. (c) Pressure difference between 7 and ;.

and thus measure significantly different values. After 796
seconds the compressor shuts down and the noise level de-
creases dramatically. 2 More interestingly, we note that
the two sensors are placed very close together and thus the
average difference should be zero. However, as the plot
demonstrates, this is not the case, indicating that the sen-
sors are not well calibrated and some bias is present. Fur-
thermore this bias depends on the system state, as shown by
the change in the average difference when the compressor
shuts off.

4 Modeling the RWGS

We model the RWGS using a hybrid DBN, as described in
Section 2. The 2TBN has 293 nodes, 227 of which are con-
tinuous. Currently the discrete variables in the model are
all known and correspond to computer-controlled switches
and sensor faults. The continuous variables in our model
capture the continuous-valued elements of our system (e.g.,
pressure at various points in the system, flow rates, tem-
peratures, gas composition, etc.). Of the 227 continuous
nodes, 43 represent the time / belief state X and 184 repre-
sent the variables X' at time /+1. Ofthe latter, 43 variables
are belief state variables for / + 1, 72 variables are encap-
sulated variables, as discussed in Section 5.4, and the rest
are either sensor variables or transient variables.

When constructing the model, we used four techniques
for parameter estimation. Some of the parameters were
known physical constants or system properties. Of the em-

2The sensor’s noise is literally noise that can be heard — the
pressure waves are the sound waves generated by the compressor.

pirical parameters, many came from physical models. The
others (specifically, some parameters for the compressor,
the separation membrane and the overall system pressure
changes) were determined using common equations that
model the particular system behavior. All the variables in
these equations were directly observed in the data, and thus
we could use least-squares techniques to find the best fit for
the parameters. The remaining parameters were estimated
using prior knowledge of the domain.

4.1 Sensor Modeling

As discussed in Section 3, one of the challenges we address
in modeling the RWGS is dealing with noisy and biased
sensors. We deal with noisy sensors in the obvious way:
by increasing the variance of the predicted measurement
values to match the noise level in the data.

Sensor biases present a more interesting modeling prob-
lem. The biases are not easily modeled using a simple pa-
rameter since they are unknown and can drift over time. In-
stead, we address the problem by adding hidden variables
to the belief state that model the different biases of the sen-
sors. Biases start with zero mean and a reasonably large
variance and persist over time, i.e., Bias't' = Bias' + V',
where 1" represents white noise with a relatively small vari-
ance, allowing for some amount of drift to occur over time.

This idea works quite well, but it tends to overfit the
data: By letting the bias account for every discrepancy be-
tween the mode! predictions and the actual sensor measure-
ments, the tracking algorithm might settle in an incorrect
steady state. To fix the problem we must make sure that
the model biases reflect true sensor biases — biases should



be kept as small as possible and allowed to grow only if
there is a real reason for that. We implement this idea by
introducing a contraction factor 4 < 1 (empirically set to
be 0.97) into the bias formula: Bias'*’' = 4 - Bias' + "
Thus, biases tend to go to zero unless doing so introduces
a systematic discrepancy with the predicted system state.

4.2 Sensitivity and Unidentifiability

Recall that the equations governing the H./CO- balance in
the gas loop are sensitive to slight variations in the physical
parameters. Thus even using the most exact form of these
equations in the model will result in (at least) the same level
of sensitivity — both to variations in the physical parame-
ters, and inherent errors in the parameters. Moreover, the
model value is also sensitive to model effects such as cal-
culation errors and sensor errors that do not affect the real
value. We therefore use equations for the H-/CO, balance
that contain an intentionally non-physical component-—a
stabilizing term—that reduces the senpsitivity. This term
drives the balance to a pre-determined point, which in this
case is our expected value for the balance. The magnitude
of this term is manually adjusted to provide an optimum
tradeoff between physical accuracy and model stability.

4.3 Differing Time Scales

As described in Section 3, we must deal with differing time
scales in modeling the RWGS. The naive solution to this
problem is to model the DBN at a very fine time granularity.
However, it is completely impractical to model the behav-
ior of the pressure waves using a discretized-time model.
To do so would require time steps three orders of magni-
tude smaller than the time between measurements, which
i8 a significant waste of resources. Furthermore, it would
require a much more complete description of the system
than is practical, and tracking the slowly-evolving aspects
of the system with a step size many orders of magnitude be-
low their time scale would allow substantial errors to build
up.

Thus, we approximate the pressure waves as occurring
instantaneously and instead of modeling their transient be-
havior, we model the quasi-steady-state resuits at each time
step after they have reached an equilibrium. The equa-
tions in this case are substantially simpler, and require far
fewer empirical constants. The difficulty, however, is that
these equations must be solved simultaneously; a change
in any part of the system will affect all of the other parts.
These equations include both the compressor equation and
an approximation to the membrane equations developed
in [Whitlow, 2001]; thus, they are fairly large and nonlin-
ear, and no direct simultaneous solution form exists. In-
stead, we use these equations to create a new equation that
converges to a fixed point solution.

‘We must insert this fixed-point equation into a (nonlin-
ear) CPD to use it in our DBN model of the RWGS. The
equation solves for the five model variables Z that account
for the flows and pressure of the gas loop. In order to solve

for all five variables, their eight parents must also be present
in the CPD, Hence, we have a vector CPD for Z whose def-
inition is essentially procedural: given a value of the eight
parents it executes an iterative fixed-point computation un-
til convergence, and outputs the values Z.

5 Tracking in Nonlinear Systems

In this section, we address the problem of inference, fo-
cusing on tracking in complex nonlinear systems, such as
the RWGS. In these models, the probabilistic dependen-
cies, including sensors, can be either linear or nonlinear
functions with Gaussian noise. We restrict our attention to
the task of tracking the continuous state, assuming all the
discrete values are known. Note that although the results in
this section are presented in terms of dynamical systems,
the analysis also applies to probabilistic inference in static
nonlinear Bayes nets.

5.1 Exploiting DBN Structure

Recall the setup from Section 2: We have a Gaussian belief
state Bel( X) where X € R" and a 2TBN representing
P(X' | X) as a deterministic function X' = f(X). Our
goal is to find an approximation of ’( X') as a multivariate
Guaussian. The classical approach, used in the EKF and
the UF, is to find the entire distribution ’( X') directly by
treating [ as a function from IR” to IR™. An alternative
approach is to decompose [ by defining X! = f;(Y;) for
i = 1,....m, where Y; = Par(X!). In most practical
cases the f;’s have a lower dimension than [; as we shall
see, this reduction in the dimension lets us approximate the
resulting distribution more accurately and efficiently.

As discussed in Section 2, the first step in the be-
lief state propagation process is to compute a multivari-
ate Gaussian over {X. X’). We begin with our Gaus-
sian Bel(X), and add the variables from X' one at a
time, using the procedure described in Section 5.2. The
key insight is that, as \"! is conditionally independent of
{(X-Y,, Nj...... i1} given Y, it suffices to approx-
imate the Gaussian /’(Y;. \!). We can then compute
P(X. X, X = (X, N VPN Y,
which, for Gaussians, can be accomplished using simple
linear algebra operations.

A more difficult case arises when the DBN contains not
only inter-temporal edges from X to X', but also intra-
temporal edges between X’ variables. In this case we
sort the variables '/ in topological order, and gradually
build up the joint distribution P(X, \7]...... \7). The
topological order ensures that when we need to compute
P(Y;. X!), we have already computed a Gaussian over
Y; C Xu{X}...., X{_,). This approach, however, may
introduce some new inaccuracies, because we now also use
a Gaussian approximation for the distribution of the rele-
vant variables from {\7...., X]_,}.

Even in cases where we introduce extra inaccuracies,
this method is often superior to the UF. The reason is that,
by reducing the dimension of the functions involved, we



can use more accurate techniques to approximate the first
two moments of the variables in X’ with the same compu-
tational resources. In general, there is a tradeoff between
the superior precision we achieve for each variable and the
potential for extra inaccuracies we introduce. The extra in-
accuracies depend on the quality of our Gaussian approxi-
mation for P(X. \{...., X}_,), and on the extent of the
ponlinearity of the dependencies within X’. If the depen-
dence of X7 on [X],...,X/_;] is linear, then there are
no extra errors introduced: In this case the first two mo-
ments of \/ are only influenced by the first two moments
of {X],..., X!_,} which can be captured correctly by our
Gaussian approximation. It is somewhat reassuring that the
better our approximation of ’(X’) as a Gaussian is, the
less significant the extra errors we introduce are, as the en-
tire framework is based on the assumption that /(X') can
be well approximated by a Gaussian.

5.2 Numerical Integration

We now tum our attention to the task of approximating
P(Y;, \!) as a multivariate Gaussian. To simplify our
notation, let \" be a variable which is a nonlinear func-
tion of its parents Y = V}3,....Yy, ie, ¥ = [S(Y),
but the ensuing discussion also holds for the vector case of
X = [(Y). We assume that (Y") is a known multivariate
Gaussian, and the goal is to find a Gaussian approximation
for P(Y . X). It suffices to compute the first two moments:

i) = [ rononay )
£x?Y = / PYYUY)dY V)
CINY] = / PIYY(Y)©;dY 3

Note that the integrals only involve the direct parents
of X, significantly reducing their dimension. We can ef-
fectively compute these integrals using a version of the
Gaussian Quadrature method called the Exact Monomial
rules [Davis and Rabinovitz, 1984). Generally speaking,
Gaussian Quadrature approximates integrals using a for-
mula of the form:

v
/I’V(:r)f(:r)d:r 2 Z w; flx;)
. e

where ¥1°(#) is a known function (a Gaussian in our case).
The points x; and weights »-; are carefully chosen to en-
sure that this approximation is exact for any polynomial f
whose degree is at most p. The degree p is called the pre-
cision of the approximation.

Finding a set of points with a minimal size .V for some
precision p is not a trivial task. In the simple form of Gaus-
sian Quadrature, we choose pomts in one dimension and
use them to create a grid of points in IR with the obvious
disadvantage that V grows exponentially with d. Fortu-
nately, we can do better. In [McNamee and Stenger, 19671

(b)

Figure 3: (a) Density estimates for \' = \/};" +175. (b)
Random samples from the RWGS network for the flow at
point (16) and the pressure at point (2), and Gaussian esti-
mates for the distribution.

a general method is presented for V = (O ( i{.i) and pre-
cision p = 2k + 1 (d is the dimension of the integral, in
our case |Y]). In particular, rules are presented for 2d + 1
points with precision 3, 2d° + 1 points with precision 5
and 34" + £d + 1 points with precision 7. The precision 3
rule i 1s exactly the rule used for the Unscented Filter: It has
exactly the same 2d + 1 points and weights.

This view of the Unscented Filter has immediate prac-
tical consequences: we can trade off between the accuracy
of the computation and its computational requirements. For
example, if we are interested in a more precise filter than
the Unscented Filter and are willing to evaluate the func-
tion at ()(d*) points then we can use the exact monomial
rule of precision 5. Depending on the function, this may
represent a significant gain in accuracy.

As a simple example we consider the nonlinear function

= I7 477 where P(37) = A(2,4) and (3% |
S,) = A(0.5Y7 — 1, 3) (note that both }7 and }> have the
same variance ). Fig. 3(a) shows various estimates for the
probability of \". The optimal estimate is the best Gaussian
approximation for the distribution of .\ computed using a
very exact numerical integration rule. We can see that the
exact monomial rules of precisions 3 and 5 provide a much
better estimate than EKF, where the precision 5 rule leads
to a more accurate estimate than the precision 3 rule.

5.3 Inaccuracies in the Approximation

Unfortunately, approximating (Y, .\") using numerical
integration can lead to covariance matrices that are not
semi-positive definite, and hence illegal. One simple ap-
proach to this problem is to use a more accurate integration
rule, although the problem may persist. An alternative is to
find the “closest™ positive definite covariance matrix. We
cast this problem as a convex optimization problem follow-
ing [Boyd and Vandenberghe, 2003].

Consider once again the problem of approximating
P(Y, X) as a multivariate Gaussian, where \ is a non-
linear function of its parents Y, i, V' = f(Y), and
Y ~ Ay, Eyv). Let T denote the estimated covari-



ance matrix for P(Y, \):

If % and  lead to a matrix Y. that is not positive definite,
then we need to find the closest n and t to # and ¥, such
that T is positive definite. Given that ¥y-y is already pos-
itive definite, ©. is positive definite iff » — wT E;.‘Yu > 0.
Thus, we can formalize our problem as follows:

Minimize || u — @ |° +(v ~ 7)° e))
Subjectto  w T3 w—1r 4 <0 5

where ¢ is some small positive number. Since both Eq. 4
and Eq. 5 are convex we can solve this problem by form-
ing the Lagrangian and solving the dual problem. We set
the partial derivatives of # and r to zero and plug the result
into Eq. 5. We get an equation over the Lagrangian multi-
plier which can be solved easily as it involves a monotonic
function. We omit details for lack of space.

Our analysis treats the elements in « and + directly,
but in fact these elements are not independent since #; =
FLIViN] = piy, F{X] and v = F[X7] — E[X]°. Itis desir-
able to use this relation in Eq. 4 and Eq. 5 and represent the
dependency between the various elements (e.g., a change in
I’{\] may fix many of the problems simuitaneously). Un-
fortunately, because of the term 7-[\]? the problem is no
longer convex. Nonetheless, we can approximate the prob-
lem as convex (e.g., by replacing [ Y']? by the best current
estimate), solve it and iterate. Again, we defer details to an
extended version of this paper.

5.4 Encapsulated Variables

Just as we can use the DBN structure to decompose the de-
pendency between X and X, in many cases we can further
decompose the dependency Y = f(Y"). For example, as-
sume that [(Y) = ¢(91(Y1). g2(Y2)), where Y1, ¥ » C
Y.} Instead of directly evaluating the Gaussian over
{Y, X'} we can define two extra variables: 77 = ¢:(Y)
and T» = g¢-(Y»). We first approximate P(Y;.77) as
a Gaussian and use it to find a Gaussian over {Y,T1}.
Next we approximate (Y -, 7>) as a Gaussian and from it
P(Y.T;, To). Finally, we approximate (77,7, .\') as a
Gaussian and use it to find the Gaussian approximation for
P(Y.Ty,T>, N). The same accuracy tradeoffs that were
discussed in the context of X' = [(X) apply here: by
reducing the dimension of the integrals we can solve each
one more accurately, but may introduce further errors if the
interaction between the extra variables is nonlinear.

3E.g., flow sensors give different results depending on the gas
type. Assuming we have random variables representing the total
flow and the compositions of the different gases in it, ¢; and g-
may each be a product of one of the gas compositions and the
flow, thus representing the net flow of a certain gas. The finc-
tion ¢ would be a weighted sum of these flows where the weights
correspond to the sensor’s response for the different gases.
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Figure 4: Comparison with particle filtering on simulated
data, showing the means and error bars of two standard de-
viations for our algorithm and particle filtering. The .\ axis
represents time, and the )’ axis the percentage of H» in the
flow at point (16). To increase readability, we shift the es-
timates generated by our algorithm by 0.1 to the left and
those generated by particle filtering by 0.1 to the right.

In principle, one could add 7; and T> to the DBN and
treat them as regular variables. However, doing so makes
these variables part of X, and thereby increases the al-
gorithm’s space complexity, which is (| X'|*) (for repre-
senting the covariance matrix of 7’( X*)). It is better to treat
the extra variables as local variables encapsulated within
the CPD and unknown to the rest of the network. After
computing the Gaussian approximation for the CPD vari-
ables, we simply marginalize over the encapsulated ones.
This approach is similar to the local computations in an
OOBN model [Koller and Pfeffer, 1997], where some of
the CPD variables are encapsulated within the CPD.

6 Experimental Results

In this section we present results from a set of experiments
that test the efficacy and robustness of our model and track-
ing algorithm. Our computational model of the RWGS con-
tains all of the components needed to monitor the full op-
eration of the physical system, although data provided to
date by KSC is for the reduced-operation mode with only
the gas loop component operational. Our experiments were
run on a Pentium 11T 700MHz.

We tested our algorithm with both real data and simu-
lated data that was generated from our model. Although
running with real data is the real test for our approach, run-
ning with simulated data is also of interest. The reason is



that there are two sources of errors when using real data:
model] inaccuracies and errors induced by the algorithm.
‘When using simulated data, only errors of the second type
are present and we can better test the performance of the
algorithm.

6.1 Results on Simulated Data

We first tested whether the belief state could be well ap-
proximated as a Gaussian and whether our particular ap-
proximation was a good one. To do so, we generated a set
of samples from the model. We did not introduce any evi-
dence so the samples were indeed sampled from the correct
joint distribution. In Fig. 3(b) we show the results for two
particular variables: the flow at point (16) and the pressure
at point (2) (these variables were chosen because of their
dependency on the non-linear CPD of the membrane; other
variables produced similar results). The samples appear to

. be drawn from a distribution that is either a Gaussian or
close to one. Furthermore, our estimate for the joint distri-
bution (depicted by the contours for one and two standard
deviations) is very close to the Gaussian that was estimated
directly from the samples. Thus, it is reasonable to expect
that our techniques will lead to good approximations of the
belief state.

Next, we generated a trajectory of 500 time steps from
our model and tested our algorithm on it. We compared
our results with the particle filtering algorithm [Gordon et
al., 1993}, which approximates the belief state as a set of
weighted samples where the weights of the samples corre-
spond to the likelihood of the evidence given the sample.
Our algorithm took 20ms per time step, which included
computing the Gaussian approximation to the belief state,
with numerical integration when necessary, and condition-
ing on the evidence. In comparison, generating a sample
using particle filtering took 1.5ms. Thus, one step of our al-
gorithm took as much time as generating 13 samples. How-
ever, with just 13 samples particle filtering performed ex-
tremely poorly and therefore in our experiments we used
10,000 samples at every time step, giving particle filtering
a somewhat unfair advantage.

Fig. 4 shows the estimates for the percentage of H» in
the flow at point (16) that were computed by our algorithm
and by particle filtering, as well as the actual value (known
from the simulated data). We report the results on this par-
ticular variable because the gas compositions are not mea-
sured by any sensors and are therefore a potential challenge
to our algorithm. The error bars represent the uncertainty
of the estimates as plus and minus two standard deviations
(for particle filtering we computed the standard deviation
induced by the weighted samples).

Although under our setup particle filtering was slower
than our algorithm by a factor of 750, as Fig. 4 demon-
strates, the estimates of particle filtering are not as good as
the estimates of our algorithm. Over the entire sequence the
average error of our algorithm was 0.009 while the average
error of particle filtering was 0.013. Nevertheless, the more

dramatic difference is in the estimates of the variance. Of-
ten, the estimated variance for particle filtering is extremely
small, even when the estimated value is not very accurate
(e.g., time steps 72 and 73). In fact, over the entire se-
quence, according to the estimated distribution of our algo-
rithm, the correct value of the H» composition was within
two standard deviations 96% of the time (this is consistent
with the fact that the probability mass within two standard
deviations from a Gaussian mean is 95%). In comparison,
for particle filtering, the true value was within two esti-
mated standard deviations only 20% of the time. The dif-
ference was even more apparent when we computed the av-
erage log-likelihood of the true value, given the two possi-
ble estimates. For our algorithm the average log-likelihood
was 3.1 while for particle filtering it was only —5.50 - 10",

The reason for this problem is the relatively high dimen-
sion of the evidence which leads to a very high variance for
the weights of the samples. Although we generated 10,000
samples at each time step only a very small number of them
had a significant effect on the estimate. Over the entire se-
quence, in 65% of the time steps one sample accounted for
more than 0.5 of the total probability mass, in 27% one
sample accounted for more than 0.9 of the mass, and in
15% one sample accounted for more than 0.99. Obviously
in cases where one sample completely dominates the rest,
the estimates of particle filtering are not very reliable and
in particular the variance estimates can be extremely small
and misleading.

Thus, not only is our algorithm faster than particle fil-
tering with 10,000 samples by a factor of 750, its estimates
are much more reliable.

6.2 Results on Real Data

‘We next ran a set of experiments on real data. Our data set
consisted of a long sequence of 13,875 time steps, most of
it collected while the system was running in steady state.
We divided our data into a training set, used to estimate
and tune the mode] parameters, and a test set on which we
report our results.

We conducted a variety of experiments in which we
compared model predictions with the actual measurements
recorded by the system under various scenarios: steady
state and non-steady state, removing sensors, and modify-
ing the sensor models. In order to make the comparison
informative, the model predictions for values at time / + 1
as reported in this section are not adjusted with evidence at
time / + 1, i.e., they are the predictions based on evidence
fromtimes 0,1,... .1

Our first experiment, shown in Fig. 5(a), illustrates the
efficacy of our tracking algorithm during steady-state op-
eration of the system. In particular, the graph illustrates
the predicted (thick lines) and measured (thin lines) pres-
sures, I’ and /4 at point (2) in Fig. 2(a). Observe that
the predicted value for /- appears to be consistently lower
than the measurement. This is the result of the model’s
bias weighting, 1 = .07, discussed in Section 4.1, which
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quantity.

tends to pull the estimates slightly away from the measured
value. While, in this case, it produces a slightly poorer re-
sult, overall, the bias weighting technique does less data
overfitting and works better in non-steady state sequences.
Next we experimented with “removing” sensors from
the system. (This is easily achieved by ignoring selected
sensor evidence when running the tracking algorithm.)
Sensor removal can be used to evaluate the robustness of
the algorithm as well as to determine the importance of a
sensor for monitoring the system. In Fig. 5(b), we show
the flow of gas from the compressor at point (11). The two
overlaid lines are our estimates of this flow value — one
with all of the sensors, and the other with sensors R« and
R10 (located at (13)) removed. In contrast, when flow sen-
sor Rs (located at (16)) is removed, the predicted flow rate
quickly strays. These results indicate that, at least for this
sequence, Rsx is a more valuable sensor than R« and R1o.
We also tested the effects of changing the liquid level
(LL) sensor noise parameter * on our prediction of the gas
flow R. at (13). Recall from Section 4.1 that to correctly
model a sensor we introduced both some Gaussian noise on
the sensor and a hidden bias variable. We tried both a vari-

“The liquid level sensor is very noisy, as splashing and bub-
bling from the dissolved CO- and from drops splashing from the
condenser hit the sensor rod and create considerable noise in the

sensor reading.

ance value of 0.01, which we estimated using “reasonable”
prior knowledge, and a variance value of | which was fit to
the data. Fig. 5(c) shows the effect of the variance of the LL
sensor for the water tank at (5). With the fitted variance, the
algorithm tracked quite well. In contrast, with the smaller
variance, the performance was poor and erratic, following
the fluctuations in the LI, measurements.

The utility of the bias variables is shown in Fig. 5(d).
The upper line is a prediction of the flow rate, made using
a version of the model that contained no bias variables for
the flow sensors at (10), (13) and (16). The middle line
corresponds to the model with the bias variables present,
but shows the prediction for the true (unbiased) flow (i.e.,
the sensor prediction minus the bias). When we explicitly
modeled the sensor bias, our (unbiased) predictions of the
true system state better matched the measurements, an in-
dication of a better estimate of the system state.

Finally, we tested the ability of the model to track non-
steady-state behavior — in particular, the behavior of the
system when the CO- supply is turned off during the shut-
down process. Unfortunately, we only had one data set con-
taining this transition, and thus we expect our parameters
are still not tuned optimally. In addition, having only one
such transition in our data, we report results on the same
data that was used for training.

Fig. 5(¢) shows a comparison between the predicted and



measured output from pressure sensors s and Py, for two
versions of the model. The first set of predictions, shown in
solid lines, was calculated using our best estimates of the
empirical parameters, including the membrane area (calcu-
lated from other parts of the data set) of 27.1. The second
set of predictions, shown in dashed lines, was calculated us-
ing an earlier estimate of the membrane area of 31.6. While
in the steady-state prior to timestep 220, the two predic-
tions are equivalent as the differences were absorbed into
the bias errors, in the transient part, the model with inaccu-
rate parameters underpredicts the initial drop in pressure,
and retains this error throughout the rest of the sequence.
Fig. 5(f) presents the predictions of the correct model
for the flows at Rz (16) and R¢» (10), over a longer period
of time. Initially, when the CO» supply was cut off, the
flows dropped; however, gradually the CO and CO-, in the
system were vented and the only remaining gas was H». As
the membrane presented less resistance to H» the flow rates
started to go up. The model! tracked this complex behavior

surprisingly well.

7 Conclusions and Future Work

In this paper we address the problem of monitoring a large
complex physical system — NASA’s Reverse Water Gas
Shift system — perhaps the largest and most complex hy-
brid DBN developed to date. This paper makes contri-
butions both to the modeling and the monitoring of com-
plex nonlinear systems. On the modeling side, we have
shown how to model physical systems whose effects man-
ifest themselves at dramatically different time scales, and
that involve biased sensors, where the bias is state depen-
dent and varies over time. On the monitoring side, we have
presented a general framework for approximating nonlin-
ear behavior using integration methods that extend the Un-
scented Filter, improving the accuracy of the approxima-
tion with minimal additional computation. Experimen-
tal results indicate that this approach is much faster and
more reliable than particle filtering. More generally, we
have demonstrated the feasibility of hybrid DBNs for mon-
itoring a complex real-world physical system such as the
RWGS using real data.

There are several interesting directions for future work.
The tracking algorithms presented in this paper assume a
known mode of operation, i.e., all the discrete variables are
observed. Our long-term goal is to diagnose the RWGS
when components fail. In order to track both the discrete
and continuous state, we intend to combine the results pre-
sented in this paper with algorithms that handle hidden dis-
crete events such as Rao-Blackwellized Particle Filtering
(RBPF) [Doucet et al., 2000] or the algorithms presented
in [Lemer and Parr, 2001; Lemer et al., 2000]. The speed
of our algorithm (taking just 20ms to generate a Gaussian
over all the state variables) is a promising indication that
we can use these techniques for real-time fault diagnosis.

Acknowledgements

We are very grateful to Charlie Goodrich and the rest of
the RWGS team at the Kennedy Space Center — Bill Lar-
son, Clyde Parrish, Jon Whitlow, Curtis Ihiefeld, and Dan
Keenan — for their tremendous help and support. We also
thank Dan Clancy, Ronald Parr, and Stephen Boyd for use-
ful suggestions and discussions. This research was sup-
ported by ONR Young Investigator (PECASE) under grant
number N00014-99-1-0464, by ONR under the MURI pro-
gram “Decision Making under Uncertainty”, grant num-
ber N0O0O14-00-1-0637, and by NASA under grant number
NAG2-1337.

References

[Bar-Shalom et al., 2001] Y. Bar-Shalom, X. R Li, and
T. Kirubarajan. Estimation with Application to Tracking
and Navigation. John Wiley & Sons, 2001.

[Boyd and Vandenberghe, 2003] S. Boyd and L. Vandenberghe.
Convex Optimization. 2003. To appear.

[Davis and Rabinovitz, 1984] P. J. Davis and P. Rabinovitz.
Methods of Numerical Integration. Academic Press, 1984.

[Dean and Kanazawa, 1989] T. Deanand K. Kanazawa. A model
for reasoning about persistence and causation. Computational
Intelligence, 5(3):142-150, 1989.

[Doucet et al., 2000} A. Doucet, S. Godsill, and C. Andrieu. On
sequential Monte Carlo sampling methods for Bayesian filter-
ing. Statistics and Computing, 10(3):197-208, 2000.

[Goodrich, 2002] C. Goodrich. Reverse water gas shift system
presentation. Stanford University, April 2002.

[Gordon et al., 1993] N. J. Gordon, D. J. Salmond, and A. F. M.
Smith. Novel approach to nonlinear'non-Gaussian Bayesian
state estimation. [EE Proceedings-F, 140(2):107-113, April
1993.

[Julier and Uhlmann, 1997] S. Julier and J. Uhlmann. A new
extension of the Kalman filter to nonlinear systems. In Pro-
ceedings of AeroSense: The 11tk International Symposium on
Aerospace/Defence Sensing, Simulation and Controls, 1997.

[Kalman, 1960} R.E. Kalman. A new approach to linear filtering
and prediction problems. J. of Basic Engineering, 82:34-45,
1960.

[Kotler and Pfeffer, 1997] D. Koller and A. Pfeffer. Object-
oriented Bayesian networks. In Proc. UAI pages 302-313,
1997.

[Larson and Goodrich, 2000] W. Larson and C. Goodrich. Intel-
ligent systems software for human mars missions. In 2000
International Aeronautical Foundation Congress, 2000.

[Lerner and Parr, 2001] U. Lerner and R. Parr. Inference in hy-
brid networks: Theoretical limits and practical algorithms. In
Proc. UAI pages 310-318, 2001.

[Lemer et al., 2000] U. Lemer, R. Parr, D. Koller, and G. Biswas.
Bayesian fault detection and diagnosis in dynamic systems. In
Proc. A4AI, pages 531-537, 2000.

[McNamee and Stenger, 1967] J. McNamee and F. Stenger. Con-
struction of fully symmetric numerical integration formulas.
Numerische Mathematick, 10:327-344, 1967.

[Whitlow, 2001] J. E. Whitlow. Operation, modeling and analy-
sis of the reverse water gas shift process. In NAS4 CR-2001-(In
Press), 2001,



What Sensing Tells Us:
Towards A Formal Theory of Testing for Dynamical Systems

Sheila A. Mcllraith
Knowledge Systems Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9020
sam(@ksl.stanford.edu

Abstract

Just as actions can have indirect effects on the state of the
world, so too can sensing actions have indirect effects on
an agent’s state of knowledge. In this paper, we investigate
“what sensing actions tell us”, i.e., what an agent comes to
know indirectly from the outcome of a sensing action, given
knowledge of its actions and state constraints that hold in the
world. To this end, we propose a formalization of the no-
tion of testing within a dialect of the situation calculus that
includes knowledge and sensing actions. Realizing this for-
malization requires addressing the ramification problem for
sensing actions. We formalize simple tests as sensing ac-
tions. Complex tests are expressed in the logic programming
language Golog. We examine what it means to perform a
test, and how the outcome of a test affects an agent’s state of
knowledge. Finally, we propose automated reasoning tech-
niques for test generation and complex-test verification, un-
der certain restrictions. The work presented in this paper is
relevant to a number of application domains including diag-
nostic problem solving, natural language understanding, plan
recognition, and active vision.

Introduction

Agents equipped with perceptual capabilities must operate
in a world that is only partially observable. To determine
properties of the world that are not directly observable, an
agent must use its knowledge of the relationship between
objects in the world, and its limited perceptual capabili-
ties to infer such unobservable properties. For example, if
an agent performs a sense action and observes that there is
steam coming out of an electric kettle, then the direct effect
of that sensing action is that the agent knows there is steam
coming out of the kettle. With appropriate knowledge of the
functioning of kettles, the agent should also know that the
electrical outlet has power, that the kettle is functioning, and
that there is hot liquid inside the kettle — all as indirect ef-
fects of the sensing action. Similarly, if the agent wishes to
know whether there is power at an electrical outlet, but can-
not directly sense this property of the world, the agent may
potentially acquire this knowledge by attempting to boil wa-
ter in a kettle plugged into this outlet.
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Such a sequence of actions constitutes a test. If steam is
observed, then the agent knows that there is power at the out-
let; however if steam is not observed, the agent may or may
not know that there is no power at the electrical outlet. The
knowledge the agent acquires from the test will depend on
whether the agent knows that the kettle is functioning. Thus,
this particular test is only guaranteed to provide knowledge
about the existence of power at the electrical outlet under
one test outcome.

While researchers have extended theories of action to
include the notion of sensing or knowledge-producing ac-
tions (e.g., (Scherl & Levesque 1993; Baral & Tran 1998;
Golden & Weld 1996; Funge 1998)) and have charac-
terized the effect of sensing actions on an agent’s state
of knowledge, and even how to plan (e.g., (Stone 1998;
Golden & Weld 1996)) and to project (e.g., (De Giacomo
& Levesque 1999b)) in certain cases, with sensing actions,
they have not addressed the problem of how to reason in
a partially observable environment'. More generally, they
have not examined the problem of how sensing actions
can be coupled with knowledge of the relationship between
objects in the world to gain further knowledge, and how
both sensing actions, and world-altering actions change an
agents state of knowledge in the presence of such world
knowledge. Further, they have not examined the problem
of how to select sensing actions to acquire knowledge of
some property of the world that is not directly observable.
Perhaps the closest research is that of (Shanahan 1996b;
1996a) who investigates the assimilation of sensing results
for a mobile robot in a framework based on the event cal-
culus, (Mclliraith 1997) who assimilates observations into
situation calculus device models to perform dynamical di-
agnosis, or (Baral, Mcllraith, & Tran 2000) who do likewise
in the language (.

In this paper, we examine these issues in a dialect of the
situation calculus that has been extended with knowledge-
producing actions® (Scherl & Levesque 1993), but which
does not include state constraints. Following (Mcllraith
2000), we add state constraints to this language in order to

1 partially-Observable Markov Decision Processes (POMDPs)
address this class of problems within a different formalism, but
they do not address the testing issues we examine here.

2Henceforth referred to simply as sensing actions.



model the relationship between objects in the world, adopt-
ing the associated solution to the ramification problem for
world-altering actions. We show that this solution extends
to solve the ramification problem in the presence of sens-
ing actions. Next, we define the notion of a test — how to
design them and what knowledge can be drawn from their
outcomes. In the formalization, simple tests comprise a set
of initial conditions and a primitive sensing action. Complex
tests are expressed as complex actions in the logic program-
ming language Golog. We examine what it means to per-
form a test, and how the outcome of a test affects an agent’s
state of knowledge. Additionally, we examine the issue of
selecting tests to confirm, refute, or discriminate a space of
hypotheses.

Finally, we investigate the automation of reasoning about
tests. We show that regression may be used to verify ob-
jective achievement for complex tests written in a subset of
Golog. Further restrictions on the form of the complex tests
allows the same regression operators to serve as the basis
for a simple regression-style planner that generates tests to
increase an agent’s knowledge with respect to a space of hy-
potheses.

Situation Calculus

The situation calculus language we use, following (Reiter
2000), is a first-order language for representing dynamically
changing worlds in which all of the changes are the direct
result of named actions performed by some agent, or the in-
direct result of state constraints. Situations are sequences
of actions, evolving from an initial distinguished situstion,
designated by the constant Sy. If a is an action and s a sit-
uation, the result of performing a in s is the situation rep-
resented by the function do(a, ). Functions and relations
whose truth values vary from situation to situation, called
Sluents, are denoted by a predicate symbol taking a situation
term as the last argument. Note that for the purposes of this
paper, we assume that our theoty contains no functional flu-
ents. Finally, Poss(a. s) is a distinguished fluent expressing
that action a is possible to perform in situation s. A situation
calculus theory D comprises the following sets of axioms:

« foundational axioms of the situation calculus, X,

® successor state axioms, Dy,

e action precondition axioms, D, ,

o axioms describing the initial situation, Dg),

 unique names for actions, D,,,,,,

o domain closure axioms for actions, D 0.

Successor state axioms, originally proposed by (Reiter
1991) to address the frame problem and extended by (e.g.,
(Lin & Reiter 1994; Mcllraith 2000)) to address the ramifi-
cation problem, are created by making a causal interpreta-
tion of the ramification constraints and a causal complete-
ness assumption and compiling effect axioms of the form®:

Poss{a,s) Ay} (F,a,8) D F(T,dola, 3)) )
Poss(a,s) Ayr(F,a,8) D ~F(F,do(a, 3)), ?)

3Notational convention: all formulae are universally quantified
with maximum scope unless otherwise noted.

and ramification (state) constraints of the form:

vF(Z,8) D F(T,s) 3
”;(fx 3) 2 —‘F(fy ‘q)a (4)

into Intermediate Successor State Axioms of the form:

Poss(a, s) D [Fi(#F, dola,s)) = $F,] where, ®)

B3, =2, (F,,9) V 0 dolay 5))
V (F(F,s)
A —'(Afl—-',- (#,a,8)V "‘I:; (&, dola, 5)))), 6)

I.e., if an action is possible is situation s, then it implies that
the fluent is true in do(a, s) iff an action made it true -or-
a state constraint made it true -or- it was already true and
neither an action nor a state constraint made it false.

Such intermediate successor state axioms provide a com-
pact representation of a solution to the ramification problem
for a common class of state constraints. (Mcllraith 2000)
shows that for what are essentially acyclic causal ramifi-
cation constraints, repeated regression rewriting (e.g., (Re-
iter 1991)) of 7., R*[®}.] = ®r,, repeatedly rewrites the.
ramification constraints that are relativized to do{a, s) in (6)
above, and i3 guaranteed to terminate in a formula whose
fluents are relativized to situation s rather than do(a, s).
Both the intermediate and the less compact (final) succes-
sor state axioms which result from the regression provide
closed-form solutions to the frame and ramification problem
for the designated class of state constraints.

To illustrate sensing and testing in partially observ-
able environments, we present a partial axiomatization of
a car repair domain, derived from 7The Complete Idiot's
Guide to Trouble-Free Car Care (Ramsey 1999). Our do-
main includes world-altering actions such as turn_on(z) and
turn.of f(x), where x i8 radio or lights., These have the
effect that the radio or lights are on/off in the resulting situ-
ation, Actions turn(key) and releasc(key) have the effect
that the ignition is begin turned (turning_ign), or not, in
the resulting situation. These actions are defined in terms
of effect axioms and are combined with the following self-
explanatory state constraints to produce successor state ax-
ioms. For notational convenience we abbreviate: transmis-
sion - trans, interlock - intrik, solenoid - solnd, engine -
engn, battery - batt; ignition system - ign_sys, start system -
stri_sys.

cmply(gas-lank.3) D —alariable(s) (]

abginirlk. 8) D —slarlable(s) @)

ablball. 3) D —slartable(a) ()]

ab{solnd, 3} D —slartable(s) (10)

ab(starier. 8) D —slarlable(s) 1)

awdotirana) A ningeartirans. 2) D ablinirlk. 3) 12)

manwal{lrans) A -depressedichudch, 8) D ablintrik, 3) 13)
lurningigni(s) A ablball, 8) D —noise(engn. 2) (14)

lurning_ign(a} A emplylgaatank, 8) D —noisc(engn. x) 15)



Turning_ign{a) A —ab(aoind.3) D noise(sobnd, » (16)

abiball, 3) A onfradie, 3) D —noise{radio, ») a7
ab(radio, 8} D —noise{radio, 8) 18)
—ablball. 8) A onilights. 3) D emila(light, 3) 19

Space precludes listing all the successor state axioms. There
is one (intermediate) successor state axiom for each fluent.
E.g., axioms (7){(11) compile into intermediate successor
state axiom (20):
Poss(a, s) D [startable(dola, 3)) =

—empty{gas_tank, do(a, s)) A ~ab(intrlk, do(a, s))

A —ablbatt, dola, 3)) A ~ab(solnd, do(a, 3))

A —ab(starter, dofa, s))} 20)

As described in (Mcliraith 2000), the axioms describing
the initial situation, Sy contain what is known of the initial
situation as well as the ramification constraints of the form
of (3) and (4), relativized to Sg.

Knowledge and the Ramification Problem

In (Scherl & Levesque 1993), the situation calculus lan-
guage without state constraints was extended to incor-
porate both knowledge and sensing actions.  World-
altering actions change the state of the world, sensing ac-
tions bave no effect on the state of the world but rather
change the agent’s state of knowledge. In our exam-
ple, sensing actions include check_fuel, checkscar start,
check _radio_noisc etc., which bave the effect of the agent
knowing empty(gastank,dola, 3)), startable(do(a, s)), and
noise(radio, do(a, 4)).

The notation Knows(o,s) (read as ¢ is known in
situation 3), where ¢ arbitrary formula, is an abbre-
viation for a formula that uses K. For example
KIIOWS(OH(I)IO("L],IJIO(‘L ), 9) abbreviates:

K(s',8) D onlblock,,blocks,s").
The notation Kwhether(e, 3) is an abbreviation for a for-
mula indicating that the truth value of ¢ is known.

Kwhether(s, 5) = Knows(o, s) V Knows( ¢, 3),

Following the notation of (Levesque 1996), each sense ac-
tion a has a sensed fluent, SF(a, s) associated with it, and
for each such a, D entails a sensed fluent axiom:

SF(a,s) = (), @n
which says that performing the sense action a tells the agent
whether the formula 1(s) is true or false. Thus, D |
Kwhether(¢, do(s, 5)) where a is an action with a sensed
fluent equivalent to .

For the sense action check_fucl the sensed fluent axiom
is:

SF(check_fuel, 3) = empty(gas_tank, s) (22)
which tells us whether or not the gas tank is empty. For
world-altering actions, D entails SF(a, s) = True.

In (Scherl & Levesque 1993), a successor state axiom for
the /i fluent is developed. Its form is as follows:
Successor State Axiom for I
Poss(a,s) D [K(s",dola,s)) =
3s'. Poss{a,s') A K(5',38) A (8" = dola, ) A
[SF(a,s') = §F(a,3)] 23)

which says that after doing action « in situation s, the agent
thinks it could be in a situation 5" iff s = do(a. <) and 5’
is a situation that was accessible from s, and where 5 and <
agreed on the truth value of SF(a, 3), e.g., the truth value
of empty(gastank). Thus, for all situations do(a, s), the I’
relation will be completely determined by the I\” relationat s
and the action a. This extends Reiter’s solution to the frame
problem (without ramifications and without knowledge) to
the case of the situation calculus with sensing actions.

Proposition 1 [n the situation calculus theory described
above, the agent knows the successor state axioms and the
ramification constraints.

This follows from the fact that the successor state axioms
are universally quantified over all situations, and the rami-
fication constraints explicitly hold in Sy and are entailed in
all successor situations, by the successor state axioms.

Theorem 1 (Correctness of Solution) The proposed solu-
tion to the frame and ramification problems for world-
altering and sensing actions ensures that knowledge only
changes as appropriate, as defined by Theorems 1, 2,
3 (Scherl & Levesque 1993). Furthermore, the agent knows
the indirect effects of its sensing actions.

Thus, the successor state axioms for world-altering and sens-
ing actions, together address the frame and ramification
problems.

Testing

The purpose of a test is to attempt to determine the truth
value of certain properties of the world, that may or may
not be directly observable. A test is often performed with
respect to a set of hypotheses, with the objective of elimi-
nating as many hypotheses as possible from the set of hy-
potheses being entertained. Testing has been studied ex-
tensively for the specific problem of IC circuit testing, but
there is little work on testing for rich dynamical systems
such as the ones we examine here. The notion of a static
test was briefly discussed in (Moore 1985, litmus example),
and further developed for static systems in (Mcllraith 1994;
Mcllraith & Reiter 1992). We build directly upon the work
in (Mcllraith 1994) with the objective of developing a for-
mal theory of testing for dynamical systems.

Informally, a simple test comprises a set of initial con-
ditions that may be established by the agent, together with
the specification of a primitive sensing action, which deter-
mines what the agent will directly come to know as the result
of the test. In our car repair domain, we can test the battery
by checking the radio for noise. The initial conditions for
such a test might be on(radio, s). Then we can perform the
sensing action cleck radio_noise to see whether the radio is
emitting noise. Note that the precondition for performing
the action check_radionoise, Poss(check radio_noise, s) =
inside{car, s), is different from the initial conditions of the
test. Both must hold and must be consistent with the theory
and with the current hypotheses being entertained, in order
to execute the test.

We distinguish between two types of tests, truth tests
which tell us whether the properties being sensed are true in



the physical world, and fiuncrional tests, which tell us what
values of the properties are true in the physical world. For
the purposes of this paper, we restrict our attention to truth
tests, and our sensing actions to so-called binary sense ac-
tions which establish the truth or falsity of a sensed formula.

Definition 1 (Simple Test)

A simple test is a pair, (I, a), where I, the initial conditions,
is a conjunction of literals, and « is a binary sense action
whose sensed formula contains no free variables.

(on(radio, 8), check radio_noisc) is an example of a simple
test, following the discussion above. We now define the no-
tion of a test for a particular hypothesis space, represented
by the set H1 . We restrict the hypotheses, H(s) € HY PP
to be conjunctions of fluents whose non-situation terms are
constants, and whose situation term is a situation variable s,
In our car repair domain, an example hypothesis space might
be {ab(batt, s), ab(solnd, 3), enpty(gastank, s)}.

Definition 2 (Test for Hypothesis Space HY P)

A test (I, a) is a test for hypothesis space HY P in situation
sif DAIAPoss(a,sYAH(s) is satisfiable for every H(s) €
HYP.

That is, the state the world must be in to execute
the sensing action must be satisfiable, under the as-
sumption that any one of the hypotheses in the hypoth-
esis space could be true. Consider that D entails the
safety constraint ~crplosion(s) and the axiom sparks(s) A
gasdeak(s) D erplosion(s), and that our hypothesis space
is {gasdeak(s),ab(spark plug,s)}. A reasonable test for
ab(spark._plug, s) is to try to create sparks at the plug. Unfor-
tunately such a test would cause an explosion in the presence
of a gas leak. The satisfiability check above precludes such
a test.

Definition 3 (Confirmation, Refutation)

The outcome « of the test (I,a) confirms H(s) € HY P
iff D AIA Poss(a,s) A H(s) is satisfiable and D A I A
Poss(a,s) | Knows(H D a,s). arefates H(s) if D A
IAPoss(a,s)AH(s) is satisfiableand DAIA Poss(a,s) =
Knows(H O -a, s).

If the outcome of test (on(radio, s), check. radio_noise) is
noisc(radio, do(a, 3)), then our test refutes the hypothesis
ab(batt, s), following Axiom (17), and we can eliminate
al(batt, s) from our hypothesis space, H1 P.

Observe that a test outcome that refutes an hypothesis
H (s) allows us to eliminate it from HY P, Unfortunately, a
test outcome that confirms an hypothesis is generally of no
deterministic value, resulting in no reduction in the space of
hypotheses. As we will see in a section to follow, there are
exceptions that depend on the criteria by which the hypoth-
esis space is defined.

In the sections to follow we use these basic definitions
to define discriminating tests and relevant tests. These tests
are distinguished by the effect their outcome will have on a
general space of hypotheses.

Discriminating Tests

Notice that in our example above, if we had observed
—noisc(radio,do(a, 3)), then by the definition, this would

have confirmed the hypothesis ab(batt, ), but it would have
been of little value in discriminating our hypothesis space.
All hypotheses remain in contention. Discriminating tests
are those tests (I, ) that are guaranteed to discriminate an
hypothesis space HY P, i.e., which will refute at least one
hypothesis in £ P, regardless of the test outcome.

Definition 4 (Discriminating Tests)

A test (I, a) is a discriminating test for the hypothesis space
HY P if D A I A Poss(a,s) A H(s) is satisfiable for all
H(s) € HYP, and there exists H;(s), Hj(s) € HY P
such that the outcome « of test (I, a) refutes either H;(s)
or H;(s), no matter what that outcome might be.
Propesition 2

After we perform a discriminating test, (I.a),
Knows(~H;. s), for some H;(s) € HY P.

In general, we would like a discriminating test to refute
half of the hypotheses in the hypothesis space, regardless of
the test outcome. By definition, a discriminating test must
refute at least one hypothesis in the hypothesis space.

Definition 5 (Minimal Discriminating Tests)

A discriminating test (I, a) for the hypothesis space HY P
is minimal iff for no proper subconjunct I' of I is (I'.a) a
discriminating test for HY P.

Minimal discriminating tests preclude unnecessary initial
conditions for a test.

In some cases, we are interested in identifying a test that
will establish the truth or falsity of a particular hypothesis.
An individual discriminating test does precisely this.
Definition 6 (Individual Discriminating Tests)

A test (I, a) is an individual discriminating test for the hy-
potheses H;(s) and —~H;(s) € HY P iff DAIA Poss(a. s)A
H(s) is satisfiable for all H(s) € HY P and the outcome «
of test (1, a) refutes either H;(s) or —H(3), no matter what
that outcome might be.

Proposition 3

After we perform an individual discriminating test (I.a),
Kwhether(H,, 5) for some H; € HY P.

The test ({},check_fuel) i3 such a test.  The out-
come will be one of -empty(gastank,dola,s)) or
empty(gestank,do(a,s)). Thus, as the result of per-
forming check_fuel in the physical world, the agent
Kwhether(cmpty(gas_tank, s)).

We can similarly define the notion of a minimal individual
discriminating test, and a minimal relevant test, below.

Relevant Tests

In the majority of cases we will not be so fortunate as to
have discriminating tests. Relevant tests are those tests
(I,a) that have the potential to discriminate an hypoth-
esis space HY P, but which cannot be guaranteed to do
so. Given a particular outcome ¢, a relevant test may re-
fute a subset of the hypotheses in the hypothesis space
HY P, but may not refute any hypotheses if —a is ob-
served. Since we can’t guarantee the outcome of a test,
these tests are not guaranteed to discriminate an hypothe-
sis space. (on(radio, s), checkradio_noise)is an example of
such a test.



Definition 7 (Relevant Tests)

A test (I,a) is a relevant test for the hypothesis space
HY P if D AT A Possla,s) A H(s) is satisfiable for all
H(s)inHY P, and the outcome « of test (I, a) either con-
firms a subset of the hypotheses in HY P or refutes a subset.

By definition, a relevant test confirms or refutes at least
one hypothesis in HY P, and it follows that every discrimi-
nating test is a relevant test.

In addition to discriminating and relevant tests, there is
a third class of tests. Constraining tests do not refute an
hypothesis, regardless of the outcome, but they do provide
further knowledge that is relevant to the hypothesis space
and which the agent can exploit in combination with other
tests. We discuss this notion in a longer paper.

Testing Hypotheses

In the previous section we observed that a test outcome that
refutes an hypothesis H(s) € HY P allows us to climinate
it from HY P, but that in general an outcome that confirms
H (9) has no value in reducing the hypothesis space. In this
section, following (McIlranh 1994), we show that when the
hypothesis space is determined using a consistency-based
criterion this is indeed true, but when the hypothesis space is
defined abductively, confirming test outcomes serve to elim-
inate those hypotheses that are not confirmed, i.e., that do
not explain, the test outcome.

Definition 8 (Consistency-Based Hypothesis Space)

A consistency-based hypothesis for D and outcome o of
the test (I,a) is any H(s) € HY P such that D AT A
Poss(a, s) A H(3) A ais satisfiable.

Proposition 4 (Eliminating C-B Hypotheses)

The outcome o of a test (I, a) eliminates those consistency-
based hypotheses. H{s) € HY P that are refuted by test
oulcome (.

Definition 9 (Abductive Hypothesis Space)

An abductive hypothesis for D and outcome o of the test
(I.a) is any H(s) € HY P such that D A I A Poss(a,s) A
H(5) is satisfiable, and D A I A Poss{a,s) A H(s) F a.

Proposition 5 (Eliminating Abductive Hypotheses)

The outcome « of a test (I.q) eliminates those abductive
hypotheses, H(3) € HY P that are not confirmed by test
outcome .

Thus, in the case of abductive hypotheses, unlike
consistency-based hypotheses, both confirming and refuting
test outcomes have the potential to eliminate hypotheses.

Proposition 6 (Efficacy of Tests)

Any outcome & of a relevant test (I,a) can eliminate abduc-
tive hypotheses, whereas only a refuting outcome can elimi-
nate consistency-based hypotheses. Discriminatory test out-
comes, by definition, can eliminate either consistency-based
or abductive hypotheses, regardless of the outcome.

Complex Tests

In the previous section, we defined the notion of a simple
test (I, a), and characterized the circumstances under which

the outcome of such a test would discriminate an hypoth-
esis space. Indeed, to discriminate an hypothesis space, we
may need a sequence of simple tests, interleaved with world-
altering actions in order to achieve the initial conditions for
a test. Likewise, the selection and sequencing of sensing
and world-altering actions may be conditioned on the out-
come of previous sensing actions. In the section to follow,
we examine the problem of generating tests using regres-
sion. As we will see, generating tests, especially tests that
involve sequences of sensing and world-altering actions is
hard. In many instances, we need not resort to computation.
The domain axiomatizer can articulate procedures for testing
aspects of a system, just as the author of The Idiot's Guide
has done in the domain of car repair. The logic programming
language, Golog (alGOl in LOGic) (Levesque et al. 1997)
provides a compelling language for specifying such tests, as
we describe briefly here.

Only a sketch of Golog is given bere. See (Levesque et al.
1997) for a full discussion of the language and also a Prolog
interpreter. Golog provides a set of extralogical canstructs
(such as action sequencing, if-then-else, while loops) for as-
sembling primitive actions, defined in the situation calculus,
into macros that can be viewed as complex actions. The
macros are defined through the pnedlcate Do(o s, ") where
4 is a complex action expression. Do{d, s, 5") is intended to
mean that the agent’s doing action 4 in situation s leads to
a (not necessarily unique) situation s’. The inductive defini-
tion of Do includes the following cases:

Dola, s,5") — simple actions
Do(?, 3, 5") — tests (referred to as G-tests in this paper)
Do([81;85], 5, s} — sequences
Do([5:]62], s, s") — nondeterministic choice ofacnons
Do((I1x)é, 3, s') — nondeterministic choice of parameters
Do(if & then &, else 4., s, 5')- conditionals, where we
restrict o to a G-test
Do(while ¢ dod,s,s ) — while loops
Space does not perm:t giving the full expansion for each
of the constructs, but they can be found in (Levesque et al.
1997). The only change here is that the definition of the G-
test construct (including the implicit G-test in the condition
construct) must expand into a G-test involving knowledge*.
The following is a partial example of a complex test writ-
ten in Golog, and derived from (Ramsey 1999). This par-
ticular procedure is designed to help discriminate the space
of hypotheses generated when a car won’t start, namely
{ab(intrlk, 3), empty(gas_tank, s), ab(batt, 3), ab(solnd, 3),
ab(ign_wires, s), ab( starter, s)}. In a diagnostic application
such as this one, Golog procedures may also be written to
combine testing with repair.

proc CARWONTS TART
if (- startable) them CHECKINTERLOCK;

*We are taking the simplest approach towards incorporating
sensing actions into Golog. All actions are on-line. In other words,
they are executed immediately without any possibility of back-
tracking. Other options for completely off-line execution (Lake-
meyer 1999) and a mixture of off-line and on-line execution (De
Giacomo & Levesque 1999a) have been discussed in the literature.



if (= AB(INTRLK)) them CHECK_GAS_TANK;

if (— EMPTY(GAS.TANK)) then CHECKBATTERY;
if (= AB(BATT)) them CHECKSOLENOID;

if (~ AB(SOLND)) then CHECKIGNWIRES;
if (- AB(IGN_WIRES)) then CHECKSTARTER;
if (— AB(STARTER)) then CHECKENGINE
end if end if end if end if end if end if end if
endProc

proc CHECKBATTERY
TURN_ON(RADIO); CHECK_RADIO_NOISE;
if (~ NOISE(RADIO))
then TURN.ON(LIGHTS); CHECK_LIGHTS
end if
endProc

Observe that complex tests often invoilve world-altering
actions which serve to establish the preconditions and initial
conditions for embedded simple tests. Also observe that in
achieving the preconditions or initial conditions for simple
tests, these actions change the state of the world, including
potentially changing the space of hypotheses. For exam-
ple, if a flashlight isn’t emitting light, and one hypothesis
is that the batteries are dead, a good way to test them is to
replace them with fresh batteries, and see whether the flash-
light then works. However, replacing the flashlight batteries
potentially changes the state of one of the hypotheses.

In diagnosis domains, such as the ones above, it is of-
ten desirable to combine fanlt detection (hypothesis testing)
with repair and to take actions to eradicate faults as easily as
to diagnose them (Mcllraith 1997; Baral, Mcliraith, & Tran
2000). However, in cases where it is desirable not to aiter
the truth status of the hypothesis space, care must be taken
to design and verify and/or generate tests that maintain des-
ignated knowledge constraints and world constraints. E.g.,
we don’t want to determine whether the gas tank is empty
by draining it!

Automated Reasoning About Tests

In the previous section we introduced the notion of a com-
plex test, demonstrating that such tests could sometimes be
specified in Golog. In this final technical section we briefly
examine the use of automated reasoning techniques, and in
particular the use of regression rewriting, for the purpose
of verifying certain properties of Golog-specified complex
tests, and for generating complex tests as conditional plans.
Our presentation draws upon (Lespérance 1994) and (Re-
iter 2000). Other related approaches to conditional plan-
ning include (Rosenschein 1981; Manna & Waldinger 1987;
Lobo 1998).

Consider the Golog complex test given above to help dis-
criminate the space of hypotheses generated when a car
won’t start. To verify that it is an individual discriminat-
ing test, it is necessary to ensure that for at least one of the
hypotheses H, Kwhether(H, s) holds, where s is the sit-
uation resulting from the execution of the Golog procedure,
ie. Do(CARWONTSTART, S, s). Thus, we would like to
be able to entail \/ ;. ;- p Kwhether(H, s), and in par-
ticular Kwhether(emply(gas_tank), ), for example. A
verification that the procedure is a discriminating test would

mvolve ensuring that for at least one H, Knows(-H, s)

holds in the final situation, i.e., \ ;;c ;- p Knows(—H. s).
In (Scherl & Levesque 1993), a form of regression (based

on the discussion in (Reiter 1991)) is developed for the sit-

uation calculus with sensing actions. Through the appli-
cation of regression, reasoning about situations reduces to
reasoning in the initial situation, So. Given a ground sit-
uation term (i.e. a term built on S, with the function do
and ground action terms) s,,, the problem is to determine

whether the axiomatization of the domain D entails G(s,,)

where (& (the intended objective of the procedure) is an arbi-

trary sentence including knowledge operators. This question
is reduced to the question of whether or not the axiomatiza-

tion of the initial situation entails the regression of G/(s,,),

i.e,R(G(s4,)). Since the result of regression is a formula in

an ordinary modal logic of knowledge (i.e. a formula with-
out action terms and where the only situation term is Sp) an
ordinary modal theorem proving method may be used to de-
termine whether or not the regressed formula is entailed by
the axiomatization of the initial situation, Dg,. In our case

G will be a formula made up of subformulae of the form

Kwhether(H, s) or Knows{—H, s), where H is an hy-

pothesis.

The regression operator R is defined relative to a set of
successor state axioms D,,. The first four parts of the defi-
nition of the regression operator’, R concern world-altering
actions and are taken from (Reiter 2000).

i. When V17 is a non-fluent atom, including equality atoms, and
atorns with the predicate symbol Poss, or when 117 is a fluent
atom or Knows operator, whose situation argument is the situa-
tion constant Sy, R{W] = 1",

ii. When F is a relational fluent (other than R) atom whose suc-
cessor state axiom in Dy is

then Poss(a,8) O [F(x1,... ,2a,do(a, s)) = or]

RIE(tys - s ta,do(8, o)) = Srfy) 0 000

iii. Whenever 11" is a formula,
R[-W] = ~R[¥,
R[(Vo)W] = (Vo)R[W],
R[(Fe)W] = (Fe) R[]

iv. Whenever 11", and 11", are formulas,
RV AWL] = RIUH]A RV,
RW v L] = R[WA] v R[],
RWH D W] = R[W,] D R{WI].

Following (Scher] & Levesque 1993), additional steps are
needed to extend the regression operatorto sensing actions®.
Two definitions are needed for the specification to follow.
When ¢ is an arbitrary sentence and s a situation term, then
*[s] is the sentence that results from adding an extra argu-
ment to every fluent of ;» and inserting s into that argument

SSome details are omitted here (e.g, regression of functional
fluents, and the equality predicate). Also note that the formula to
be regressed must be regressable. This concept is fully defined in
(Reiter 2000).

“Regression of sensing actions that make known the denotation
of a term (e.g. an action of reading a number on a piece of paper)
is not discussed here.



position. The reverse operation ;o' is the result of remov-
ing the last argument position from all the fluents in .

Step v covers the case of regressing a world-altering ac-
tion through the Knows operator. Step vi covers the cases of
regressing a sensing action through the Knows operator. In
the definitions below, 5’ is a new situation variable.

v. Whenever . is not a sensing action,
R[Knaws(IT’,do(a, 1))] =
Knows((R[W¥ [do(a, ™', s).
vi Whenever a is a semsing action, where 17 is a formula
such that D entails that t[s] is equivalent to SF(a,s),
R[Knows(W', do(a, s))] =
((¥(3) O Kmows(1; D R[W[do(a,s")]]™', ) A
(=v7i(s) > Knows(~v; D> R[W[do(a, )]}, 9))

An additional operator C needs to be defined to handle
the expansion of the complex actiops found in Golog, so
that we can apply regression’”. We are only considering a
subset of Golog programs — those composed of simple ac-
tions, sequencing, and conditionals. We also add the empty
action noOp or ﬁ (names for the same operation). Also note
that =, (#, s) stands for the preconditions of a() as speci-
fied in the action precondition axiom, D,,, Poss(a(#),s) =
7. (. 3).

vill. C(noOp, W s) =1"(s)
ix. C(fa(F);8), W, 3) = m.(F, 3) A C(6,W,do(a(F), s)) where

a( ) is a ground non-sensing simple action term.

x. C([if ¢ (¥) thend; else s}, W, 3) =

Kwhether(o(F), 3) A

[Knows(o(F), s) D C(6, W, 8)] A

[}(IIOWS(—'O(.‘E'), 3) > C(&z, w, 8)]
We are assuming that the agent is able® to execute the Golog
test procedure. In particular, the programmer (of the test
procedure) must have ensured that at the point where an
[if ¢ () thend, else d;] statement is encountered, the ex-
ecuting agent must Kwhether(o, 5). If not, the procedure
will fail.

In the following theorem (a generalization of Theorem 2
from (Lespérance 1994), recall R*(;>) indicates the repeated
regression of ;> until further applications leave the formula
unchanged.

Theorem 2 For any Golog procedure 4, consisting of sim-
ple actions, sequences, and conditionals, and G an arbitrary
closed regressable formula that may include knowledge op-
erators:

D k= 3s(Dold, So; 3) A G(s))iff

D.‘?o U Dnna F R (C((S, G, So))
Theorem 2 shows it may be verified that any Golog testing
routine (utilizing concatenation and conditionals) achieves
its intended objective G' through the use of regression fol-
lowed by theorem proving in the initial database. The suc-
cessor state axioms (D,,) are only used in the regression
procedure. This theorem can be extended to likewise verify
other properties of our Golog procedures.

"The C operator introduced here is based on (but generalizes)
the E operator of (Lespérance 1994).

*See (Lespérance et al. 2000) for a discussion of ability and
Golog programs. Related issues are discussed in (Lespérance 1994;
Lakemeyer 1999).

We can use the above regression operator as the basis
for a simple conditional planning algorithm for constructing
complex tests, Following (Lespérance 1994), we consider
only normal form conditional plans. These are conditional
plans in which the condition in a conditional (e.g. the ¢ in
[if & (F) then d; else J-]) must be a sensed formula. Thus
we can require that prior to any conditional with the G-test
o, there must be an action a such that a is a sensing action
and D | SF(a,s) = ¢(s). This guarantees that the pro-
gram executing the test will always Kwhether(¢, ) when
a conditional is encountered. For any complex test (that is
executable) consisting only of concatenation and condition-
als, there must be an equivalent test in this normal form.

Fori =1,2,3..., we can define the sentences I'; as:

To®G(s)

rie

Ze(FF(a= LA T (F)V ...
V IF(a = A, (F) A 74, ()]
A ’R,(I",'_l(zlo(a,s)))) v
Fa([3F (a = AUD) A 7as (D) A (SF(a,8) = () A
R(&1(F, do(a, ) D L. (dola, 5))) A
R(—o\(F, dola, s)) D Ti_r(do(a, 3)))]
AN
Fa([3Z(a = 1, (D) Aras (D)A(SF(a,$) = om(3))A
R (¥, do(a, 5)) DIy {dola, ) A
R(-0,(F, dola, 8)) D Ti~i(dola,s)))]
Each I'; is true if there is a plan of length i starting in s
and leading to a state satisfying & (Reiter 1995; Lespérance
1994). The following theorem (essentially Theorem 3 of
(Lespérance 1994)) establishes the soundness and complete-
ness of the regression-based test planning method.
Theorem 3 For Golog procedure & in normal form and G,
an arbitrary closed regressable formula that may include
knowledge operators:
D = 3s(Do(d, So, 3) A G(3)) iff for some n
DsoUDwna ETo(So) V... VI, (50)

This regression-based finite horizon method of generating
and evaluating all normal form conditional plans of greater
and greater size is certainly not designed for efficiency, but
the results can serve as the foundation for building more
efficient regression-based complex-test planning methods,
much as similar results have served as the foundation for
relatively more efficient regression based planming methods
(McDermott 1991; Lespérance 1994; Rosenschein 1981). In
future work we will evaluate the extension of current state
of the art planning techniques based on SAT and Graphplan,
to address the planning problems raised in this paper (Weld
1999).

Summary

In this paper we presented results towards a formal theory
of testing for dynamical systems, specified in the language
of the situation calculus. Our first contribution was to ad-
dress the ramification problem for sensing actions. We then
defined the notion of a test, examining how a test can be
designed and how the outcome of different types of tests af-
fect an agent’s state of knowledge. The realization of many



tests in the world requires a complex sequencing of world-
altering and sensing actions, whose selection and ordering is
conditioned upon the outcome of previous sensing actions.
We proposed specifying such complex tests in the logic pro-
gramming language Golog. We then demonstrated that re-
gression could be used both to verify the desired objective
of such complex tests, and to generate tests as conditional
plans under certain restrictions.

Sensing is integral to the operation of most autonomous
agents. The notion of complex and simple tests introduced
here extends the body of theoretical work on sensing in dy-
namical systems, and has practical relevance for building
agents for diagnostic problem solving, plan understanding,
or simply for mobile cognitive agents that need to interact in
complex environments with limited sensing.
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Abstract

In this paper we examine the problem of monitoring and di-
agnosing noisy complex dynamical systems that are modeled
as hybrid systems — models of continuous behavior, inter-
leaved by discrete transitions. In particular, we examine con-
tinuous systems with embedded supervisory controllers that
experience abrupt, partial or full failure of component de-
vices. Building on our previous work in this area (MBCG99;
MBCG00), our specific focus in this paper is on the mathe-
matical formulation of the hybrid monitoring and diagnosis
task as a Bayesian model tracking and selection problem, and
provision of a suitable tracking algorithm. The nonlinear dy-
namics of many hybrid systems present chalienges to prob-
abilistic tracking. Further, probabilistic tracking of a system
for the purposes of diagnosis is problematic because the mod-
els of the system corresponding to failure modes are numer-
ous and generally very unlikely. To focus tracking on these
unlikely models and to reduce the number of potential mod-
els under consideration, we exploit logic-based techniques for
qualitative model-based diagnosis to conjecture a limited ini-
tial set of consistent candidate models. In this paper we dis-
cuss alternative tracking techniques that are relevant to dif-
ferent classes of hybrid systems, focusing specifically on a
method for tracking multiple models of nonlinear behavior
simultaneously using factored sampling and conditional den-
sity propagation. To illustrate and motivate the approach de-
scribed in this paper we examine the problem of monitoring
and diagnosing NASA's Sprint AERCam, a small spherical
robotic camera unit with 12 thrusters that enable both linear
and rotational motion.

Introduction

‘We have been conducting an ongoing project to investigate
how to diagnose hybrid systems — complex dynamical sys-
tems whose behavior is modeled as a hybrid system. Follow-
ing the description in (MBCG99; MBCGO00), hybrid mod-
els comprise both discrete and continuous behavior. They
are typically represented as a sequence of piecewise con-
tinuous behaviors interleaved with discrete transitions (e.g.,
(Bra95)). Each period of continuous behavior represents a
so-called mode of the system. For example, in the case of
NASA’s Sprint AERCam, a spherical aitborne robot cam-
era unit, modes might include translate X-axis, rotate X-
axis, translate_Y-axis, etc. (AG98). In the case of an Airbus
fly-by-wire system, modes might include take-off; landing,
climbing, and cruise. Mode transitions generally result in

changes to the set of equations governing the continuous be-
havior of the system, as well as to the state vector that initial-
izes that behavior in the new mode. Discrete transitions that
dictate such mode switching are modeled by finite state au-
tomata, temporal logics, switching functions, or some other
transition system, while continuous behavior within a mode
is modeled by, e.g., ordinary differential equations (ODEs),
difference equations, or differential and algebraic equations
(DAEs). For the purposes of this paper, we restrict our at-
tention to discrete-time estimation for the class of systems
whose hybrid models contain no autonomous jumps. lLe,
all nominal transitions between system modes are induced
by a controller action; none are induced by the system state
and mode (Bra95).

In (MBCG99) we presented the hybrid diagnosis prob-
lem:

Given a hybrid model of system behavior, a history of

executed controller actions, a history of observations,

including observations of aberrant behavior relative to

the model, isolate the fault that is the cause for the

aberrant behavior.
Our task was to perform diagnosis online in conjunction
with the continued operation of the system. Hence, we
divided our diagnosis task into two stages, initial conjec-
turing of candidate diagnoses and subsequent refinement
and tracking to select the most likely diagnoses. We cast
the diagnosis problem as the problem of finding a model
and associated parameter values that best fit the data. In
that paper we focused on the problem of dealing with the
multitude of potential models of the system by exploiting
qualitative diagnosis techniques to generate a set of can-
didate qualitative diagnoses, and we described two param-
cter estimation techniques to deal with estimating the pa-
rameters associated with the model, particularly when er-
roneous behavior manifested itself some period of time
after the initial occurrence of a fault. (See (MBCGO00;
MBCG99) for details.) We did not discuss the specific prob-
lem of tracking multiple candidate models, nor did we dis-
cuss how to compare them.

In this paper, we formulate the hybrid monitoring and
diagnosis task as a Bayesian model tracking and selection
problem (e.g., (Mac91)). In particular, we wish to estimate
the state (model) of the system at successive time instants,
given a history of observations. The system diagnosis is de-



scribed by the value of a specific subset of the state variables
— namely those that designate whether components are nor-
mal or abnormal, and what their associated parameter values
are. We estimate state by tracking the posterior distribution
of the state, given the observations.

Probabilistic tracking of complex hybrid systems for diag- -

nosis purposes presents a number of interesting challenges.
Kalman filtering techniques, traditionally used for tracking
linear dynamical systems with Gaussian noise, assume a
Gaussian density which is unimodal, making a Kalman fil-
ter (Kal60) inadequate for simultaneously tracking alterna-
tive candidate models. Multiple Kalman filters, one for each
candidate model, can sometimes be used to track multiple
candidate models of linear dynamical systems with Gaus-
sian noise (e.g., (Fra90)). More importantly, hybrid systems
often have complex nonlinear, nonGaussian and potentially
nondeterministic behavior. The nonlinearities come from
both the mode switching (faulty or normal modes of behav-
ior), and from the nonlinear dynamics within a mode. The
latter has been addressed in some cases by using local lin-
car (Taylor series) approximations of the nonlinear contin-
uous dynamics, such as is done with Extended Kalman Fil-
ters (e.g., (BF88)) or Iterated Extended Kalman Filters (e.g.,
(Jaz70)).

In this paper, following research on bootstrap filters, par-
ticle filters and the condensation algorithm (e.g., (GSS93;
1B98)), we use a factored sampling technique to sample and
represent our multimodal posterior distribution of the state
(models) given the observations. Such a technique enables
us to track multiple models of nonlinear systems simulita-
neously. Unfortunately, sampling techmiques for probabilis-
tic tracking focus on the most likely models within the dis-
tribution, whereas most fault models have low probability,
mitially. To overcome this bias, we show how to integrate
the qualitative diagnosis techniques described in (MBCGO00;
MBCG99) into the temporal prior of our Bayesian formula-
tion to focus sampling on models that are indicated by our
qualitative candidate diagnoses.

In the next section, we provide a brief description of
NASA’s Sprint AERCam, which we have used as a motivat-
ing example and which we will use to illustrate certain con-
cepts in this paper. In the section that follows the description
of the AERCam, we present a formal characterization of the
class of hybrid systems we study and the diagnosis problem
they present. Next, we describe our Bayesian formulation
of the problem and the algorithm we use for computing and
propagating posterior distributions. In the final section, we
summarize, discuss our continuing research in this area, and
reference some related work.

The AERCam

We are using NASA’s Sprint AERCam and a simulation of
system dynamics and the controller written in Hybrid CC
(HCC) (AG98) as a testbed for this work. To make this
paper somewhat self-contained, we condense and repeat the
description provided in (MBCG99). The AERCam is sim-
pler than many of the complex systems we intend to diag-
nose, but it serves well in illustrating the concepts developed

z
The body frame of reference and the directions of

velocities (u, v, w) are the components of the translation
velocity. (p, q, r) are components of the angular velocity.
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Three views of the AERCam, showing the thrusters,
and showing all the thrusters together in the cube
circumscribing the AERCam.

Figure 1: The AERCam axes and thrusters

here, and has provided an excellent testbed for our prelimi-
nary work. We describe the dynamic model] of the AERCam
system briefly, a more detailed description of the model and
simulation appear in (AG98).

The AERCam i3 a small spherical robotic camera unit,
with 12 thrusters that allow both linear and rotational mo-
tion (Fig. 1). For the purposes of this model, we assume the
sphere is uniform, and the fuel that powers the movement is
in the center of the sphere. The fuel depletes as the thrusters
fire.

The dynamics of the AERCam are described in the AER-
Cam body frame of reference. The translation velocity of
this frame with respect to the shuttle inertial frame of ref-
erence is 0. However, its orientation is the same as the ori-
entation of the AERCam, thus its orientation with respect
to the shuttle reference frame changes as the AERCam ro-
tates (i.e., it is not an inertial frame). The twelve thrusters
are aligned so that there are four along each major axis in
the AERCam body frame. For modeling purposes, we as-
sume the positions of the thrusters are on the centers of the
edges of a cube circumscribing the AERCam. Thus, for ex-
ample, thrusters 7. 7%, T3, T); are parallel to the »-axis and
are used for translation along the :r-axis or rotation around



the y-axis. Le., firing thrusters Ty and 7> results in transla-
tion along the positive x-axis, and firing thrusters 7', and T
results in a negative rotation around the y-axis. AERCam
operations are simplified by limiting them to either transla-
tion or rotation. Thrusters are either on or off, therefore, the
control actions are discrete. In a normal mode of operation,
only two thrusters are on at any time.

AERCam dynamics

A simplified model of the AERCam dynamics based on
Newtonian laws is derived using an inertial frame of ref-
erence fixed to the space shuttle. The AERCam position in

=
this frame is defined as the triple (x,y, >). Let 'V be the
velocity in the AERCam body frame, with its vector compo-
nents given by (u, v, w). The frame rotates with respect to
the inertial reference frame with velocity w = (p. ¢, 7), the
angular velocity of the AERCam. The rotating body frame
implies an additional Coriolis force acting upon the AER-
Cam. We assume uniform rotational velocity since in the
normal mode of operation, the AERCam does not transfate
and rotate at the same time (Arn78, pg. 130). Similar equa-
tions can be derived for the rotational dynamics (AG98).

d(m G)/dt =f‘ —2m({; X @)  Newton’s Law

V dm/dt + md(V)/dt =F —-2m(S x V)
The resultant equation for each coordinate:

dufdt = F, [m - 2(qw — vrr) — (n/m) e dmn/dt
dofdt = F,/m — 2(ru — pw) — (v/m) » dm/dt
dw/dt = F./m —2(pv — qu) — (in/m) + dm/dt,

where the force F" on each axis, is a function of the percent-

age degradation of the thrusters that are exerting force in that
direction as specified in Figure 1. Under normal operating
conditions, the thrusters operate at 100%.

‘We use these models to predict the position of the AER~
Cam attime ! + 1, given the position at time /. We add noise
to each of the models above. In this case the noise is white
Gaussian noise with a mean of zero and a standard deviation
a. As noted above, these models are implemented in HCC
and are used to compute the likelihood described in the next
section.

Position Control Mode of the AERCam

In the position control mode, the AERCam is directed to go
to a specified position and point the camera in a particular di-
rection. Assume the AERCam i8 at position A and directed
to go to position B. In the first phase, the AERCam rotates
to get one set of thrusters pointed towards B. These are then
fired, and the AERCam cruises towards B. Upon reaching a
position close to B, it fires thrusters to converge to B, and
then rotates to point the camera in the desired direction.

To facilitate the illustration of the diagnosis problem, we
use a simple trapezoidal controller, which we explain in two
dimensions. Suppose the task is to travel along the r-axis
for some distance, then along the y-axis. Such manoeuvres
are needed for navigating in the space shuttle. In orderto do

this, the AERCam fires its . thrusters for some time. Upon
reaching the desired velocity, these are switched off. When
the AERCam has reached a position close to the desired =
position, the reverse thrusters are switched on, and the AER-
Cam is brought to a halt— the velocity graph is a trapezium.
The process is analogous for the y direction.

Problem Formulation

In this section we describe our formulation of the hybrid di-
agnosis problem. Once again, the hybrid systems we ex-
amine are discrete-time hybrid systems. Observations and
state estimation are made at regularintervals 1,2,... [, {1 +
1..... Further, we assume that our systems contain no au-
tonomous jumps. lLe., all nominal transitions between sys-
tem modes are induced by a controller action, none are in-
duced by the system state and mode (Bra95). Autonomous
jumps are common in hybrid models where a mode with
complex nonlinear behavior has been simplified by creating
multiple modes of less complex behavior, with state-induced
antonomous jumps connecting them. Building on the con-
cepts in (MBCGO00):

Definition 1 (Hybrid System) A hybrid system is a 5-tuple

<-\4~ -Ys E, "’3 f>'

e 1 € M is the discrete state or mode of the system, where
M is a finite collection of variables. j, is the system
mode at time /. ‘

e r € X C R"is the continuous state vector of the system.
x, is the continuous state at time /.

e 7 € Y, is the discrete input, where ¥ is a finite collection

of actions. l.e., the controller actions that transition the

system between modes.

1 € V7 C R" is the continuous input.

f is the system dynamics function that maps the mode, the

continuous state, and the input into the mode and contin-

uous state at the next discrete time point. (jt;(,741) =

FQu, 2, 00,0, w), where wy € R™ is zero-mean white

noise of known pdf,and f : M x X x £ x R* x R™ —

M x X. f is often expressed as a collection of func-

tions, e.g., functions that describe the continuous behav-

ior within a specific mode, and a function that describes
the discrete transitions between modes, based on discrete
nput.

e obs € R? is the observation vector of the system. ols, is
the observation vector at time /. ol)s; is related to the con-
tinuous state vector r; by the function obs; = h(x;, 1)
where v, € R” is zero-mean white noise of known pdf,
and/1: X x R" — R”.

Definition 2 (System State) The state of a hybrid system at

time (, (y/, ) comprises the discrete mode of the system

and the continuous state at /.

To define the hybrid diagnosis problem, we augment Defini-

tion 1 as follows.

Definition 3 (Diagnosable Hybrid System) A diag-

nosable hybrid system, (M, X.X.V,f, COAMPS) is a

hybrid system comprised of m. potentially malfunctioning

components COM PS = (ry.... ,cy,) where



e For each ji € .M, ju includes a designation of whether
each ¢; € COM PS is operating normally, or abnormally,
i.e., []ab(c;).

o For each i, continuous state vector ¢ includes a set of
distinguished parameters ¢ associated with that mode.

o We assume that transitions to fault modes are achieved by
exogenous actions. Hence, ¥ = . U X, where
— X, is a finite set of controller actions, and
— ¥. is a finite set of exogenous actions.

We introduce the following additional notation,

e (), designates the observation history, the sequence of
time-indexed observations. (), designates the observation
history to time /.

e i denotes a faulty mode, i.e., a mode for which at least
one c; € COMPS is al(c;) in jep. Op denotes the pa-
rameters associated with ;i

In the case of the AERCam example, the potentially mal-
functioning components are the 12 thrusters, and a mode
¢ includes the behavior mode (e.g., translate-x, translate-
y, rotate-x, etc.) and [-]ab(T;),i = 1,....12, for each
thruster. The continuous state vector includes the r, y, =
position of the AERCam, velocity and acceleration. The pa-
rameter values, § associated with each 4 are the percentage
degradation of each of the thrusters. As we will see later
on, we make a Markov assumption with respect to comput-
ing the temporal dynamics of our system. Hence all relevant
state must be included explicitly in the state variables.

Definition 4 (Model) A model of 2 diagnosable hybrid sys-
tems is a time-indexed mode sequence and associated pa-
rameter values ([ft1, ... ; ftm];[61;... .0m]). The model to
time { is denoted ( 17,93 and the model at time ! is denoted
81 = (ju.9;). The model is a distinguished subset of the
entire system state.

In this paper we make several simplifying assumptions re-
garding our diagnosis task. In particular, we make a single-
time fault assumption. We assume that our systems do not
experience multiple sequential fauits. Further, we assume
that faults are abrupt, resulting in partial or full degradation
of component behavior. We cast the hybrid diagnosis task
as the problem of finding the most likely model for the ob-
servation history, P(s; | O), i.e, the mode and parameter
values (y1, 6;) that best fit the observations over time. To do
this, we appeal to a Bayesian formulation of the problem.

Bayesian Formulation

To monitor and diagnose a hybrid system, we must compute
the posterior probability distribution over models at time [,
given the observation history. Recall, using Bayes’ rule that
the posterior is proportional to the likelihood times the prior.
Le.,

p(model | observations) oc p(observations | model) p(model).

Our objective is to find the posterior probability distribu-
tion over models at time /, s,, given the observation history
up to time t, (J;. Le, we wish to compute p(s; | O;).

To compute the temporal dynamics of our system, we
make a Markov assumption, i.e.,

Pst | S1-15-.. .50) = p(si | 81-1)

Further, we assume that at each time point, there is a small
probability of an exogenous action, leading to a transition
to a failure mode. Finally, we assume that given the current
model s,, the current observations ols, and previous obser-
vation history (J,_, are independent.

Hence, in order to track our hybrid system, we can com-
pute the posterior distribution of the model at time { given
the observation history which, according to Bayes’ rule
and our assumptions above, is proportional to the likeli-
hood of the observation at time ¢ given the model at time
L (p(obs; | s¢)) and the temporal prior, the prediction
of the current model, given the observation history up to
L= 1,(p(s; } Os1). Le,

P31 ] O = kplobs | 51) plsi | Oi—4).

where & ensures that the distribution integrates to one.

The likelihood of the observations given the state is easily
evaluated for the AERCam following the model described in
the previous section. The temporal prior, i.e., the probability
of the current model given the observation history to { — 1
depends on the posterior over models at the previous time
point, p(s;—y | O—1) and the temporal dynamics, p(s; |
811 ) I.e.,

plst | O) = / Pis1 | s1-4) p(si—1 | Or—i)edsi—
-

The temporal prior expresses the probability of a partic-
ular model given the observation history up to that point.
In the case of a fault diagnosis, the likelihood of a fault
model will initially be very low. If we are tracking using a
finite number of parallel filters, or using a factored sampling
method as suggested in the next section, this may mean that
we will initially not track these fault models, or alternately
that we track many low probability models which is com-
putationally expensive. In order to focus the temporal prior
more quickly and accurately on the appropriate diagnostic
models, we make use of qualitative diagnosis techniques.

In (MBCG00; MBCG99), we proposed to use qualitative
diagnosis techniques to generate qualitative candidate diag-
noses — candidate mode and parameter values that were con-
sistent with observations O in some window of time,

Definition 5 (D-tuple (MBCG00)) A D-tuple is a 4-tuple
{C.ur,lr.0r), where yp is a fault mode, /p is the time
the fault mode commenced, #r is the parameter values as-
sociated with the fault mode behavior, and C is the set of
failed (abnormal) components in /.

Definition 6 (Candidate Qualitative Diagnosis (MBCG00))
Given a diagnosable hybrid system with model (ji, 6), in-
put history 7', and observation history, (), D-tuple
(C. 1tp,Lp.0r) is a candidate qualitative diagnosis iff there
exists a range of parameter values 8 = [§;.6,,], and time
range (r = [l;,(,] such that the occurrence of fault mode
/i with parameter values 6 in time range !> is consistent
with ©, Z and (ji. ).



We do not repeat the diagnosis algorithms here, but re-
fer the reader to (MBCG00; MBCG99) for details. These
generated diagnoses are used to propose a set of different
models to be tracked by the system. The candidate models
are generated by exploiting previous work on qualitative di-
agnosis of continuous systems (e.g., (MB99)), adapting the
authors’ causal propagation algorithms to deal with the dis-
crete state variables and mode transitions of the hybrid sys-
tems. To incorporate this so-called oracle into our Bayesian
formulation, we use it to bias or focus the temporal prior.
This will in turn more heavily weight the posterior for the
corresponding fault models, s,. In the case of particle filter-
ing, the technique we propose in the next section to compute
the posterior, this focusing of the temporal prior will help
the algorithm sample from the appropriate part of the dis-
tribution. To incorporate this qualitative diagnosis “oracle”
we may alter our view of the posterior we are computing as
follows.

pls; | Or,0racle) x  plobs, | s, oracle)
p(s1 | Oy, oracle)
o< plobs; | 50) pls; | Or—4,oracle)

where p(s; | O;-1,0racle) is equal to p(s; | O1—1) above,
when the observations are consistent with the current model,
and otherwise p(s; | O, oracle) is simply the normalized
probability of the faulty models, given the observations. To
ensure the speed of the oracle, and because of the lack of re-
liable numbers for such calculations, the probabilities gener-
ated by the oracle are normalized prior probabilities of dif-
ferent faults given the observations, as defined by the system
builder.

Once the posterior is computed, different models can be
compared by estimating the expected value of differentmod-
els, normalizing and comparing. For example, we may sum
the likelihoods for all samples having like [~]ab(r; ) desig-
nations, and compare these to determine which components
are likely malfunctioning.

Computing the Posterior

In the previous section we presented the problem of tracking
and diagnosing hybrid systems using a Bayesian formula-
tion. As noted in the introduction, there are many algorithms
for probabilistic tracking of dynamical systems, thoughmost
are not tailored to simultaneously tracking multiple candi-
date models nor to dealing with nonlinear dynamics. Our
posterior distribution p(s, | O;) will be a multi-dimensional,
multi-modal distribution, reflecting the multiple competing
diagnostic models. There is no closed-form (parametric)
representation for this distribution, as there is, for exam-
ple, for a unimodal Gaussian. Consequently, to compute this
posterior, we appeal to factored sampling techniques to pro-
vide an approximation of the distribution, and project this
distribution forward through time according to its dynamics,
using the Condensation algorithm (IB98), derivative of the
bootstrap algorithm (GSS93) and commonly referred to as a
particle filter,

! Previously referred to as the action history.

More specifically, the posterior distribution p(s, | O)),
is Tepresented as a set of N weighted samples {s''', ...,
s'™}, with associated weights {z'',... .z}, Intu-
itively, the larger the IV, the better the approximation, but
the more costly the computation. Hence we would like to
sample the distribution as sparsely as possible, while maxi-
mizing our coverage of our distribution, and thus weighting
samples more heavily in those parts of the distribution that
have greater volume.

At each time step, the basic algorithm comprises three
steps: select, predict, and update.

Select: We start with the posterior from the previous time
step, p{s;—1 | Os—y), represented as the factored sample
s'9,,79),i = 1,..., N. Sample N times with replace-
ment with probability x.”,, the sample {s!”, }, producing
the samples {s'\"'}. Note that samples with high weights
may be chosen muitiple times.

Predict: For each new sample s'\’, propagate the sample
forward according to the dynamics of the system to pro-
duce new samples {s!"}. In the case of our AERCam, these
are the dynamics described in the previous section, together
with zero-mean Gaussian white noise. This new set of sam-
ples approximates a fair random sample for the effective
prior p(s; | Oi—1). What remains to compute is the weights.
Update: Compute the weights, rr,“) = plobs; | s = s,
From the observations obs,, evaluate the likelihood of each
sample, and normalize the likelihoods of the samples so they
sumto 1. Le.,

plobs; | s}”)
T, plobs | s™)

The above algorithm does not reflect our qualitative diag-
nosis oracle. In order to suitably focus the temporal prior, we
use a linear combination of the samples from the computed
temporal prior, and samples from the oracle. This technique
was inspired by (BF99), and could also be achieved using
importance sampling.

The sample approximation to the distribution, p(s, | O;)
can be used to compute the expected value for some moment
[ of the density, for example a mean of some state variable,
ie.,

71'1(') =

v
E[f(s01 0] =Y =" f(si™)
i=l
In this way, we can compare the sum of the likelihoods for
each distinct model.

Summary and Related Work
In this paper we expanded the hybrid diagnosis framework
described in (MBCG99; MBCGO00) to present a mathemati-
cal formulation and computational techniques for generating
diagnoses of hybrid systems in terms of Bayesian tracking
and mode} comparison. We characterized the evaluation of
our models (system mode and associated parameter values)



as the computation of the posterior distribution of models
given a history of observations. Exploiting a Markov as-
sumption, we showed that this could be computed in terms
of the likelihood of the observations at time (, given the
model at time /, times a prior. Exploiting the work de-
scribed in (MBCG99; MBCG00) for generating qualitative
diagnoses of hybrid systems, we treated our qualitative mon-
itoring and diagnosis system as an oracle. If the observations
were consistent with the current model, then the qualitative
monitoring and diagnosis system had no effect on the com-
putation of the posterior. However, if the observations were
inconsistent then the oracle would generate a set of candi-
date diagnoses that would be used to adjust the prior to focus
the likelihood computation on that part of the model space
that was indicated by the qualitative monitoring and diagno-
sis engine.

Since hybrid systems are generally nonlinear, and hence
the distribution of the posterior multimodal and non-
Gaussian, we represented the posterior distribution as dis-
crete samples and exploited factored sampling techniques,
used in particle filtering and in the Condensation algorithm,
to propagate conditional probability densities over time.

We are still in the early stages of experimenting with these
techniques, but preliminary results look promising. Con-
densation has proven effective for some near realtime visual
tracking tasks (e.g., (IB98)), but we anticipate that more
complex hybrid systems with large state spaces and par-
tial observability will require further computation and larger
amounts of memory that will compromise realtime compu-
tation, just as they do, for example, with POMDPs. Such
systems will require new variants of many of the techniques
we currently employ in model-based diagnosis including ex-
ploiting problem decomposition, compact representations of
state spaces, abstractions of problems, and approximation of
inference. In summary, Bayesian tracking and model com-
parison and factored sampling techniques for dynamical sys-
tems provide a sound mathematical formalism and promis-
ing tools for monitoring and diagnosing complex dynamical
systems.

The problem of monitoring and diagnosing hybrid sys-
tems has received little attention to date, although there is
much related work. Within the Al community, there has
been a great deal of research on diagnosing static systems
(e.g., (HCD92)), while much less on diagnosing discrete dy-
namical systems (e.g., (CT94; McI98; WN96; BLPZ99)),
qualitative diagnosis of continuous systems (e.g.,. (MB99)),
and tracking (e.g., (RK99)). Most recently, (LPKB00), have
developed related techniques for monitoring and diagnosing
Conditional Linear Gaussian hybrid systems using a Dy-
namic Bayes Nets to compactly represent the conditional
probability distribution, and proposing algorithms for hy-
pothesis reduction and smoothing, Within the FDI commu-
nity, the largest proportion of research has focused on diag-
nosing continuous systems (e.g., (Ger98; Fra90)). These ap-
proaches have often used observer schemes and/or Kalman
filters to track continuous system behavior. Diagnosis of
discrete-event systems has also been studied within the FDI
community (e.g, (SSLST96; Lun99)). Nevertheless, our
work and the concurrent work of (LPKB0O0) has been the

first to propose a Bayesian tracking approach to diagnosing
hybrid systems. Our use of factored sampling techniques
and particle filtering drawn from the statistics and computer
vision communities, presents a significant contribution to a
challenging problem.
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Abstract. This paper reports on an on-going project to investigate techniques to
diagnose complex dynamical systems that are modeled as hybrid systems. In par-
ticular, we examine continuous systems with embedded supervisory controllers
that experience abrupt, partial or full failure of component devices. We cast the
diagnosis problem as a model selection problem. To reduce the space of potential
models under consideration, we exploit techniques from qualitative reasoning to
conjecture an initial set of qualitative candidate diagnoses, which induce a smaller
set of models. We refine these diagnoses using parameter estimation and model
fitting techniques. As a motivating case study, we have examined the problem of
diagnosing NASA’s Sprint AERCam, a small spherical robotic camera unit with
12 thrusters that enable both linear and rotational motion.

1 Introduction

The objective of our project has been to investigate how to diagnose hybrid systems
— complex dynamical systems whose behavior is modeled as a hybrid system. Hybrid
models comprise both discrete and continuous behavior. They are typically represented
as a sequence of piecewise continuous behaviors interleaved with discrete transitions
(e.g., [7]). Each period of continuous behavior represents a so-called mode of the sys-
tem. For example, in the case of NASA’s Sprint AERCam, modes might include trans-
late_X-axis, rotate_X-axis, translate_Y-axis, etc. [1]. In the case of an Airbus fly-by-wire
system, modes might inchude take-off, landing, climbing, and cruise. Mode transitions
generally result in changes to the set of equations goveming the continuous behavior of
the system, as well as to the state vector that initializes that behavior in the new mode.
Discrete transitions that dictate mode switching are modeled by finite state automata,
temporal logics, switching functions, or some other transition system, while continuous
behavior within a mode is modeled by, e.g., ordinary differential equations (ODEs) or
differential and algebraic equations (DAEs).

The problem we address in this paper is how to diagnose such hybrid systems. For
the purposes of this paper, we consider the class of hybrid systems that are continuous
systems with an embedded supervisory controller, but whose hybrid models contain no
autonomous jumps. Le., all nominal transitions between system modes are induced by
a controller action, none are induced by the system state and model [7]. The class of
systems we consider can be modeled as a composition of a set of component subsys-
tems, each of which is itself a hybrid system. We assume that the system operation is
being tracked by 2 monitoring and observer system (e.g., [ 19]) that ensures that the sys-
tem behavior predicted by the model does not deviate significantly from the observed



behavior in normal system operation. When observations occur outside this range, the
behavior is deemed to be aberrant and diagnosis is initiated. In this paper, we consider
faults whose onset is abrupt, and which result in partial or complete degradation of
component behavior. The general problem we wish to address can be stated as follows:
Given a hybrid model of system behavior. a history of executed controller actions, a his-
tory of observations, including observations of aberrant behavior relative to the model,
isolate the fault that is the cause for the aberrant behavior. Diagnosis is done online
in conjunction with the continued operation of the system. Hence, we divide our diag-
nosis task into two stages, initial conjecturing of candidate diagnosis and subsequent
refinement and tracking to select the most likely diagnoses.

In this paper we conceive the diagnosis problem as a model selection problem. The
task is to find a mathematical model and associated parameter values that best fit the sys-
tem data. These models dictate the components of the system that have malfunctioned,
their mode of failure, the estimated time of failure and any additional parameters that
further characterize the failure. To address this diagnosis problem, we propose to ex-
ploit Al techniques for qualitative diagnosis of continuous systems to generate an initial
set of qualitative candidate diagnoses and associated models, thus drastically reducing
the number of potential models for our system. This is followed by parameter estima-
tion and model fitting techniques to select the most likely mode and system parameters
for candidate models of system behavior, given both past and subsequent observations
of system behavior and controller actions. The main contributions of the paper are: 1)
formulation of the hybrid diagnosis problem; 2) the exploitation of techniques for qual-
itative diagnosis of continuous systems to reduce the diagnosis search space; and 3) the
use of parameter estimation and data fitting techniques for evaluation and comparison
of candidate diagnoses.

In Section 2 we provide a brief description of NASA’s Sprint AERCam, which we
have used as a motivating example and which we will use to illustrate certain concepts
in this paper. In Section 3 we present a formal characterization of the class of hybrid
systems we study and the diagnosis problem they present. In Section 4 we describe our
approach to hybrid diagnosis and the algorithms we use to achieve hybrid diagnosis.
The generation of initial candidate qualitative diagnoses is described in Section 4.1,
and the subsequent quantitative fitting and tracking of candidate diagnoses and their
models i8 described in Section 4.2. In the final two sections, we briefly discuss related
work and summarize our contributions.

2 Motivating Example: The AERCam

We are using NASA’s Sprint AERCam and a simulation of system dynamics and the
controller written in Hybrid CC (HCC) as a testbed for this work. We describe the
dynamic model of the AERCam system briefly, a more detailed description of the model
and simulation appear in [1].

The AERCam is a small spherical robotic camera unit, with 12 thrusters that allow
both linear and rotational metion (Fig. 1). For the purposes of this model, we assume
the sphere is uniform, and the fuel that powers the movement is in the center of the
sphere. The fuel depletes as the thrusters fire.
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Fig.1. The AERCam axes and thrusters

The dynamics of the AERCam are described in the AERCam body frame of refer-
ence. The translation velocity of this frame with respect to the shuttle inertial frame of
reference is 0. However, its orientation is the same as the orientation of the AERCam,
thus its orientation with respect to the shuttle reference frame changes as the AERCam
rotates (i.e., it is not an inertial frame). The twelve thrusters are aligned so that there
are four along each major axis in the AERCam body frame. For modeling purposes,
we assume the positions of the thrusters are on the centers of the edges of a cube cir-
cumscribing the AERCam. Thus, for example, thrusters 7', T, T3, T are parallel to
the r-axis and are used for translation along the :r-axis or rotation around the y-axis.
Le., firing thrusters T and T, results in translation along the positive .r-axis, and firing
thrusters T; and T results in a negative rotation around the y-axis. AERCam operations
are simplified by limiting them to either translation or rotation. Thrusters are either on
or off, therefore, the control actions are discrete. In a normal mode of operation, only
two thrusters are on at any time.

2.1 AERCam dynamics

A simplified model of the AERCam dynamics based on Newtonian laws is derived us-
ing an inertial frame of reference fixed to the space shuttle, The AERCam position in
this frame is defined as the triple (. y. =). Let V be the velocity in the AERCam body
frame, with its vector components given by (u, v, w’). The frame rotates with respect
to the inertial reference frame with velocity w = (p. q,7), the angular velocity of the
AERCam. The rotating body frame implies an additional Coriolis force acting upon the
AERCam. We assume uniform rotational velocity since in the normal mode of opera-



tion, the AERCam does not translate and rotate at the same time [2, pg. 130]. Similar
equations can be derived for the rotational dynamics [1].

d(m V)/dt =F —2m(V x 3)  Newton's Law

v dm/dt + md(i})/tlt =F —2m(@ x \7)
The resultant equation for each coordinate:

dufdt = F,./m = 2(quw — vv) — (u/m) «dm/dt

dofdt = F,/m — 2(ru— puw) — (v/m) « dm/dt

dw/dt = F. /m = 2(pv — qu) — (w/m) + dm/dt

2.2 Position Control Mode of the AERCam

In the position control mode, the AERCam is directed to go to a specified position and
point the camera in a particular direction. Assume the AERCam is at position A and
directed to go to position B. In the first phase, the AERCam rotates to get one set of
thrusters pointed towards B. These are then fired, and the AERCam cruises towards B.
Upon reaching a position close to B, it fires thrusters to converge to B, and then rotates
to point the camera in the desired direction.

To facilitate the illustration of the diagnosis problem, we use a simple trapezoidal
controller, which we explain in two dimensions. Suppose the task is to travel along
the :r-axis for some distance, then along the y-axis. Such manoeuvres are needed for
navigating in the space shuttle. In order to do this, the AERCam fires its .» thrusters
for some time. Upon reaching the desired velocity, these are switched off. When the
AERCam has reached a position close to the desired . position, the reverse thrusters are
switched on, and the AERCam is brought to a halt — the velocity graph is a trapezium.
The process is analogous for the y direction.

3 Problem Formulation

In this section we provide our formulation of the hybrid diagnosis problem.

Definition 1 (Hybrid System). A hybrid system is a 5-tuple (M, X, F, ¥, ¢), where

- .M, finite set of system modes (ju1,... , ).

- X C IR, continuous state variables. (/) is the continuous behavior at time (.

~ F, finite set of functions {f,.,.... , f., }, and associated parameter values ¢ such
that for each mode, jt;, f,,; (1.0, 7(1)) : R x R x X — X defines the continuous
behavior of the system in j,.!

- X, finite set of actions (ay. . .. , 5;), which transition the system between modes.

— ¢, transition function which maps an action, mode and system state vector into a
new mode and initial state vector,ie.,¢: ¥ x M x X > M x X.

To define the hybrid diagnosis problem, we augment Definition 1 as follows.
! Parameter value ranges may be associated with 6.




Definition 2 (Diagnosable Hybrid System). A diagnosable hybrid system,
{M. X, F, %X, 0,COMPS) is a hybrid system comprised of 1 potentially malfunc-
tioning components COMPS = (ry,... ¢, ) where
— For each ;¢ € M, j includes a designation of whether each ¢; € COMPS is
operating normally, or abnormaily, i.e., (=)ab(c;).
— We assume that transitions to fault modes are achieved by exogenous actions.
Hence, ¥' = Y. U Y, where
o T isa ﬁmte set of controller actions, and
e Y, is afinite set of exogenous actions.
- A, the controller action history, the sequence of time-mdexed controller actions
performed.
- Xoss € X, continuous state variables that are observable. (1) is the observa-
tions at time /.
- (), the observation history, the sequence of time-indexed observations.

For notational convenience, j¢r- denotes a faulty mode, i.e., a mode for which at least
one ¢; € COMPS is al(c;) in yep. Op denotes the parameters associated with f,, ..

In the case of the AERCam example, the potentially malfunctioning components are
the 12 thrusters, and a mode ;: includes the behavior mode (e.g., translate-x, translate-
y, rotate-x, etc.) and (-)al(T;),i = 1,... .12, for each thruster. The continuous state
vector includes the =, y, - position of the AERCam, velocity and acceleration. The
parameter values, 6 associated with each f, are the percentage degradation of each of
the thrusters.

Definition 3 (Model). A model, A/ od of a diagnosable hybrid systems is a time-indexed
mode sequence and associated parameter values {[jt1,... . ftn]. [015--- . On])

Notice that each model of the system, (s, 8) induces a corresponding time-indexed
piecewise continuous sequence of functions [f,,, ... . f,,, ] dictating system behavior.

In this paper we make several simplifying assumptions regarding our diagnosis task.
In particular, we make a single-time fault assumption. We assume that our systems do
not experience multiple sequential faults. Further, we assume that faults are abrupt,
resulting in partial or full degradation of component behavior. We cast the hybrid diag-
nosis task as the problem of finding the most likely model for the observation history,
P(Mod | ). Le, the sequence of modes and parameter values (4, @) that best fit the
observations over time. Under nomal operation, the model of the system M od,,or s 18
fully dictated by the sequence of controller actions .4 and the nominal parameter values,
6. Once again, we assume that the system operation is being tracked by a monitoring and
observer system (e.g., [ 19]) that ensures that the system behavior predicted by the model
does not deviate significantly from the observed behavior in normal system operation.
‘When observations occur outside this range, the behavior is deemed to be aberrant and
diagnosis is initiated. Given a diagnosable hybrid system (M, X', F, ¥, 6, COM PS),
a controller action history, .4 and a history of observations, (? which includes observa-
tions of aberrant behavior, the hybrid diagnesis task is to determine what components
are faulty, what fault mode caused the aberrant behavior, when it occurred, and what the
values of the parameters associated with the fault mode are. In the AERCam system, a
diagnosis might be that thruster T experienced a blockage fault of 50%, at time /;.



Once M od,orma has been rejected, we must find a new most likely model from
among the potentially exponential (in C' O AL P.S) number of mode sequences, occurring
within a large but bounded time range. We propose to exploit previous research on
temnporal causal graphs for qualitative diagnosis of continuous systems [18], to compute
a set of candidate qualitative diagnoses that are consistent with our system, in order to
identify a preliminary subset of candidate models, whose likelihood can be estimated.

Definition 4 (D-tuple). A D-tuple is a 4-tuple (C, jip, LF,0r), where jup is a fault
mode, /1~ is the time the fault mode commenced, £ is the parameter values associated
with the fault mode behavior, and C is the set of failed (abnormal) components in 4.

Definition § (Candidate Qualitative Diagnosis). Given a diagnosable hybrid system
with model A od = (u, ) an action history .4, and a history of observations, O which
includes observations of aberrant behavior, D-tuple (C, jir. L. 0r) is a candidate qual-
itative diagnosis iff there exists a range of parameter values ¢ = {0,.0,], and time
range ! = [!;. l,,] such that the occurrence of fault mode j¢ i with parameter values 61
in time range [ is consistent with (7, .{ and 3/ od.

Hence, a candidate qualitative diagnosis stipulates a fault mode, including one or
more faulty components. It also stipulates a lower and upper bound, [/,, {,.], on the time
the fault mode occurred. This range generally corresponds to the start times of the con-
troller induced modes preceding and following the fault, or up to the point the fault was
detected. This cand’idate diaggosis induces an asso'ciated canfiidate model, Mod¢ =
Uit st P figys oo e i )s (015 - - 05,807,044, ... .8,,]) correspondingto A od
with the fault mode ¢ and 61 inserted at /. Every subsequent mode, y1;41,... . ftm,
has ab(e;),r; € C enforced, and every subsequent set of parameters has the param-
eters associated with faulty components C' enforced. Computing candidate qualitative
diagnoses is discussed in Section 4.1.

Since each candidate qualitative diagnosis only conjectured ranges for the time of
the fault mode, / » and parameter values associated with the fauit mode, &, the asso-
ciated candidate models are underconstrained. In Section 4.2, we discuss methods for
estimating unique values for /r and @5 and for estimating a posterior probability for
each of the candidate models, M od+, given O.

Definition 6 (Candidate Diagnosis). Given a diagnosable hybrid system, a history of
controller actions .4, and a history of observations O, D-tuple (C, jir, Lp,0Fr) with
associated model Ao is a candidate diagnosis for the hybrid system, iff P(AM od¢: |
O) > o, for defined threshold value o € [0. 1].

4 Diagnosing Hybrid Systems

In this section we discuss one method for computing hybrid diagnoses. In Section 4.1
we discuss a technique for generating candidate qualitative diagnoses, and their associ-
ated candidate models, In Section 4.2 we discuss techniques for model fitting and for
model (and hence diagnosis) comparison. In particular we discuss techniques for esti-
mating the parameters of the candidate models, and the likelihood of the models, and for



continued monitoring and refinement of the candidate models as the system continues
to operate and observations continue to be made.

We illustrate these techniques with the following simple AERCam example. Con-
sider the scenario depicted in Fig. 2. In the first accelerate phase, the AERCam is being
powered by thrusters 7'1 and 7°2. Assume that at some point in this phase, a sudden leak
in the T2 thruster causes an abrupt change in its output. As a consequence, the AER-
Cam starts veering to the right of the desired trajectory, as illustrated by the left-most
dotted lines in Fig. 2. (The other dotted lines represent other potential candidate diag-
noses consistent with the point of detection of the failure.) Soon after this occurs, the
supervisory controller commands the AERCam to turn off Thrusters 7'1 and T2 with
the objective of getting the AERCam to cruise in a straight line. In the faulty situation,
the AERCam has some residual angular velocity about the z-axis, so it continues to
rotate in the cruise mode. Then the controller turns on thrusters 73 and T4, to decel-
erate the AERCam with the objective of bringing it to a halt. Again, this objective is
not entirely achieved in the the faulty situation. Next, thrusters 7°5 and T'6 are switched
on, to move the AERCam in the y direction. However, since the AERCam is not in the
desired orientation after the failure, the position error due to faulty thruster T2 accumu-
lates causing a greater and greater deviation from the desired trajectory of the system.
The position of the AERCam is being continuously sensed, filtered for noise and mon-
itored. At some point within the y translation the trajectory exceeds the error bound,
ie., P(Mod,ormat < o) and is flagged by the monitoring system as aberrant relative
to Mod,,0rmail- At this point, the diagnosis task begins,

} y-axis
BT
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Trajectory ! i
7 Fault
3 detected
-
s
H g
................. BrrorBouds 0 |/f Possible
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Fig. 2. Possible fault trajectories of AERCam ( simplified for illustration purposes).

4.1 Qualitative Candidate Generation

Given the current system model Mod = (u,8) (commeonly M od,,orp.1), @ history of
controller actions .4, and a history of observations (? including one or more observa-



tions of aberrant behavior, we wish to generate a set of candidate qualitative diagnoses
{C.pp,lr,0r), and associated candidate models as described in Definition 5. To do
s0, we extend techniques for generating qualitative diagnoses of continuous dynamic
systems to deal with hybrid systems with multiple modes. The model and propagation
mechanism, as applied to continuous systems diagnosis, is described in [18].

In the case of our AERCam example, the action history .4 is [(on(T'1}, on(T2)),
(off(T'1), off{T2)), (on(T'3), on(T4)), (off(T'3), off(T4), on(T'3), on(T6)), (off(T3),
off(T'G))]; the model, M 0l o ;. i8 the time-indexed sequence [{arcelerate_r, ~al(T1—~
T12), 8), (cruise_r, ~ab(T1-T12), 8),(deceleraler, ~ab(T1-T12), 6), (accelerale_y,
=-ab(Tt — T12),9),(cruisesy, —~al(T1 —T12), 8)], where 8 is a vector of length 12 all
of whose entries are 0 (percent degradation in thrusters).

To generate candidate qualitative diagnoses we construct an abstract model of the
dynamic system behavior, A/ od,,,, . a8 a temporal causal graph. A part of the tem-
poral causal graph for the AERCam dynamics is shown in Fig. 3. The graph expresses
directed cause-effect relations between component parameters and the system state vari-
ables. Links between variables are labeled as: (i) +1, implying direct proportionality,
(if) —1, implying inverse proportionality, and (iii) [, implying an integrating relation.
An integrating relation introduces a temporal delay in that a change on the cause side of
the relation affects the derivative of the variable on the effect side. This adds temporal
characteristics to the relations between variables. Some edges are labeled by variables,
implying the sign of the variable in the particular situation defines the nature of the rela-
tionship. The candidate generation algorithm is invoked for every initial instance of an

Fig. 3. A subset of the temporal causal graph showing the relations between Thrusters T'1 — 7'8
and the x and y positions of the AERCam.

aberrant observation. The aberrant observation plus the controller action history .4 are
input to a backward propagation algorithm that operates on the temporal causal graph.



The algorithm operates backwards from the last mode in the mode sequence of M od:

Step 1 For the current mode, extract the corresponding temporal causal graph model,
and apply the Identify Possible Faults algorithm. Details of this algorithm are presented
in [18], but the key aspect of this algorithm is to propagate the aberrant observation ex-
pressed as a + value, backward depth-first through the graph. For example, given that
the y—position of the AERCam has deviated — (i.e., below normal), backward prop-
agation implies d(y)/d! is —, and so on, till we get T~ and T, implying thrusters
T35 and T6 are possibly faulty with decreased thrust performance. Propagation along a
path can terminate if conflicting assignments are made to a node. The goal is to system-
atically propagate observed discrepancies backward to identify all possible candidate
hypotheses that are consistent with the observations. In our example, the component
parameters, COM PS = {T1,. .. ,T12} form the space of candidate faults.

Step 2 Repeat Step 1 for every mode in the mode sequence, to #¢| . The system model
needs to be substituted as the algorithm traverses the mode sequence backwards. There-
fore, back propagation will be performed on a different temporal causal graph for each
mode in the controller history?.

The output of this step is a set of qualitative diagnoses (C, jtr.(r,0r), each with
an associated candidate model, as described in Section 3. Returning to our AERCarn
example, three qualitative candidate diagnoses are generated. The first candidate diag-
nosis is that 7°2 failed in the :r acceleration phase. The time of the fault mode transition
is {t4, 2], and the parameters associated with the failure — the percentage degradation
of the component is in the range [0, 100]. So the first candidate qualitative diagnosis
is (T'2, (accelerater, al(T2), ~al(T1,T3 — T12),0r), [t1, 12], [0, 100]). The candi-
date model simply has (acrelerale_r, al(T2), ~ab(T1), —ab(T3—-T12)) inserted after
the mode (acceleraler, —alh(T1 — T12)), and al(T2) enforced in every subsequent
mode. The second candidate qualitative diagnosis is that T'4 failed in the deceleration
phase of  translation, i.e., (T4, (decelerale_r, ab(T4), ~al{T1-T3,T5-T12),6r),
[t3, t4]. [0, 100]). The third candidate is that 76 failed during y acceleration, i.e., (76,
(accelerate_y, alb(T6), ~ab(T1 - T3,TT - T12),6r), [L41. D], [0, 100}]), where {p is
the time of detection of the aberrant behavior. In each case 0 is a vector of length 12
with every entry equal to 0 (percentage degradation), except the entries corresponding
to the faulty thrusters, (" which will have the range [0, 100].

4.2 Model Fitting and Comparison

Given the candidate qualitative diagnoses and their associated candidate models, the
next phase of the diagnosis process is quantitative refinement of the qualitative can-
didate diagnoses and their associated models through parameter estimation and data
fitting, followed by tracking of the fit of subsequent observations to the candidate mod-
els. The goal is to at least provide a probabilistic ranking of the plausible candidates, if
not a unique model (and hence diagnosis).

2 We may cut off back-propagation along the mode sequence beyond a time limit.



As observed in the previous section, the model associated with the candidate qualita-
tive diagnosis, M od- is underconstrained. Both the time of the fault mode occurrence,
{ and the parameters associated with the faulty behavior 8 are represented as ranges
and must be estimated. Further, the candidate qualitative diagnoses were generated from
initia] observations of aberrant behavior, and their consistency can be further evaluated
by monitoring the qualitative transients associated with each candidate. The refinement
process is performed by a set of trackers {211, one for each candidate diagnosis and
associated model. Each tracker comprises both a gualitative transient analysis compo-
nent and a quantitative model estimation, component. The two components operate in
parallel as described below.

Qualitative Transient Analysis

The qualitative transient analysis component performs a further qualitative analysis of
the consistency of candidate qualitative diagnoses based on monitoring of higher-order
transients whose manifestation is seen over a longer period of time. If the transients
of a candidate qualitative diagnosis do not remain consistent with subsequent observa-
tions, the candidate diagnosis will be eliminated and the model estimation component
informed. The technique we employ is derived from techniques for qualitative monitor-
ing of continuous systems. Details of the algorithm appear in [18].

Model Estimation

The purpose of the model estimation component is to perform quantitative modet fit-
ting, i.e., to provide a quantitative estimate of the parameters of the models and to assign
a probability to each of the candidate models (and hence candidate diagnoses), given
the noisy observed data. In particular, given a candidate model, A/ od- the model es-
timation component uses parameter estimation techniques to estimate both the time at
which the failure occurred, { -, and the value for the parameters, 8, associated with the
canjectured failure mode. In this paper we discuss two alternate approaches to our time
and parameter estimation problem. The first approach is based on Expectation Maxi-
mization (EM) (e.g., [8)), an iterative technique that converges to an optimal value for
L and O simultaneously. The second approach we consider employs General Likeli-
hood Ratio (GLR) techniques (e.g., [5]) to estimate the time of failure /-, and then uses
the observations obtained after the failure to estimate the fault parameters, 6, by a least
squares method. As described in Section 3, the outcome of both approaches is a unigue
value for {; and 9 and a measure of the likelihood of Afod given the observations.
The proposed approaches to model fitting have trade-offs and we are currently assess-
ing the efficacy of these and other alternative approaches through experimentation.

EM-Based Approach The Expectation Maximization (EM) algorithm (e.g., [8]) pro-
vides a technique for finding the maximum-likelihood estimate of the parameters of an
underlying distribution from a given set of data, when that data is incomplete or has
missing values. The parameter estimation problem we address in this paper is a vari-
ant of the motion segmentation problem described in [24]. Here, we define the basic
algorithm and the intuition behind our approach. (See [8] for more details.)

The time of failure, L = [, (,] of our candidate qualitative diagnosisdictates the
mode in which the failure is conjectured to have occurred. Let us call this mode ;.
The behavior of our hybrid system in mode j¢; is described by the continuous function



fy;» With known parameters 6;. At some (to be estimated) time point /> within the
predicted time period of j¢;, we have conjectured that the system experienced a fault
which transitions it into mode j¢;. The behavior of our hybrid system in mode ;i1 is
described by the continuous function f,, ., with unknown parameters, 6-. We also have
a set of data points O =[os(lt).. .. s Tons(li)] € O, which either reflect the behavior
of the system under f,,; or under f,..

Given all this information, our task is to find 1) values for parameters 8-, and 2) an
assignment of the data points O’ to either ji; or jur so that we maximize the fit of the
data to the two fimctions. The assignment of data points will in turn tell us the value
of /5. EM provides an iterative algorithm which converges to provide a maximum-
likelihood estimate for 6~ given @, ie., roughly we are calculating the likelihood of 6,
L(6) = P(O' | 0p, Modc).

The basic EM algorithm comprises two steps: an Expectation Step (E Step), and a
Maximization Step (M Step) [24]:
¢ Select an initial (random) value for 1.

o Iterate until convergence:
- E Step: assign data points to cither f,,; (6;) or f,..(#r), which ever fits it best.
- M Step: re-estimate #- using the data points assigned to f, . (0r).

The assignment of data points to y; and st provides an estimate for {». We may
exploit the fact that the assignment of data points is temporally correlated with all points
before {; belonging to /1, and all points after {; belonging to ;¢ ;. We may also exploit
the fact that data points at the beginning of the interval will belong to ;¢;, while those
at the end will belong to .. These task-specific qualities help our algorithm converge
more quickly.

EM provides a rich algorithm for maximum-likelihood parameter estimation when
we don’t know the value of /-, In some hybrid diagnosis applications, depending upon
the sensors in our system, and the level of noise in the sensors, we may be able to de-
velop monitoring techniques that will help isolate a reasonable value for / -, minimizing
the need for iteration in EM. In such cases, an alternative to the EM-based approach is
to first estimate { - using the Generalized Likelihood Ratio (GLR) method [5], followed
by parameter estimation of 6.

GLR + Least Squares Approach Here, we divide the parameter estimation problem
into two parts: (i) estimate the time of failure, { , using the Generalized Likelihood
Ratio (GLR) method, and (ii) apply a standard least squares method for parameter esti-
mation. The intuition is that solving the problem in two parts simplifies the estimation
process, and very likely mitigates the numerical convergence problems that arise in
dealing with complex higher-order models.

The GLR method for detecting abrupt changes in continuous signals is described
in [5]. We have applied it to fault transients analysis in complex fluid thermal systems
[16]. Here we provide an overview of the method for the single parameter case. Assume
that the signal under scrutiny is a time-indexed sequence of random variables y(k), with
probability density function, py,(y) in desired mode y¢;, and py.(y) in fault mode sip.
y is either contained in x,;; or computed from ;. We assume that a fault causes an
abrupt change in y(}). In the case of the AERCam, y captures the difference between
the observed and expected values of the, e.g., acceleration, as predicted by the model.



The central quantity in the change detection algorithm is the cumulative sum of the
log-likelihood ratio for a window of observations between times . and n,

S™(ar) = ltl’l?r(y(k))‘
mOr) =3 I )

Again, this ratio is a function of two unknowns: /r and 6r. The common statistical
solution is to use maximum likelihood estimates for these two parameters, resulting in
a double maximization:

gn = max sup S} (6r).
I<m<n gn :

If we assume that probability density functions, ps, (y) and py,.(y) are Gaussian,
then ¢,, reducesto:

2

1 1 n -
In = % 'llSl}fll;Su n—m+1 [Z (y(k) a Wi)] ?

k=m

where w; and 07 are the mean and variance for py, (y), respectively.

‘When processing a sequence of samples, the point of abrupt change, { ~, is computed
from min{n : ¢, > I}, where h is an appropriately defined threshold. Hence, the
smaller the value of h, the more sensitive the function to change, and unfortunately to
false alarms, so /» must be set carefully.

Once /- is estimated, data points observed after { i, are used to estimate the parame-
ter, & for a hypothesized fault using regression techniques. In the case of the AERCam,
the position vector of the AERCam is modeled as a set of quadratic functions in terms
of the thruster force. These functions contain one unknown, 4 -, the parameter that cor-
responds to the degree of degradation in the faulty thruster. The least squares estimate
for 85 is computed, and the the measure of fit of the candidate model to the observed
data used to estimated the probability of the candidate model (and hence, diagnosis).

Model Comparison

From the model estimation component, each tracker computes the likelihood of its
model Mod, and hence of the associated candidate diagnosis (C.pup. l.6F), as a
measure of fit of the observations to the model. As new data r,4(!) are observed, 9
and (, are adjusted and P(Modc | ¥ous(t)) computed. If the likelihood of Mo
falls below a predefined acceptable likelihood threshold, o, then its tracker is termi-
nated, and the associated candidate diagnosis (C, jir, L. Or) removed from the list of
candidate diagnoses. Tracking terminates when a unique diagnosis is obtained, or when
the diagnoses are sufficiently discriminated to determine suitable controller actions.

5 Related Work

The specific problem of diagnosing hybrid systems has received little attention to date,
although there is much related work. Within the Al community, there has been a great



deal of research on diagnosing static systems (e.g., [14]), while much less on diag-
nosing discrete dynamical systems (e.g., [17,25]), and qualitative representations of
continuous systems (e.g.,. [18]). Within the FDI community, the largest proportion of
research has focused on diagnosing continuous systems (e.g., [13, 11]). The most com-
mon model-based approaches use observer schemes{e.g., [12, 20]), where the goal is to
design residual generators based on observed discrepancies, such that individual resid-
uals are sensitive to a particular subset of faults. There is also complementary work by
Basseville [4], using model-based statistical processing techniques for early fault de-
tection and residual identification. [18] perform residual generation and analysis task in
a qualitative framework to address some of the computational issues that arise in han-
dling the complex dynamics that occur in fault transients, with some preliminary work
on building multiple observers for hybrid systems [19]. Diagnosis of discrete-event sys-
tems has also been studied within the FDI community (e.g, [22, 15]). Fabre et al. [10}
have employed stochastic Petri nets based on a Hidden Markov Model probabilistic
scheme for alarm analysis. Unfortunately, it is not clear how to systematically derive
such representations from the physical system models that we work with.

6 Summary

In this paper we addressed the problem of diagnosing hybrid systems. The main con-
tributions of the paper are 1) formulation of the hybrid diagnosis problem as model
selection; 2) the exploitation of techniques for qualitative diagnosis of continuous sys-
tems to reduce the diagnosis search space; and 3) the use of parameter estimation and
data fitting techniques for evaluation and comparison of candidate diagnoses. This work
continues with experimental analysis of the proposed techniques, and a more formal
characterization of our approach in terms of Bayesian model selection.
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