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This project was co-led by Dr. Sheila Mcllraith and Prof. Richard Fikes. Substantial research 
results and published papers describing those results were produced in multiple technology areas, 
including the following: 

Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net 

The Reverne Water Gas Shift system (R WGS) is a complex physical system designed to produce 
oxygen fiom the carbon dioxide atmosphere on Mars. If sent to Mars, it would operate without 
human supervision, thus requiring a reliable automated system for monitoring and control. The 
RWGS presents many challenges typical of real-world systems, including: noisy and biased 
sensors, nonlinear behavior, effects that are manifested over different time granularities, and 
unobservability of many important quantities. In this portion of the project, we modeled the 
RWGS using a hybrid (discrete/cmtinuous) Qmamic Eqesiun Network (DEN), where the state 
at each time slice contains 33 discrete and 184 continuous variables. We showed how the system 
state can be tracked using probabilistic inference over the model. We investigated how to deal 
with the various challenges presented by the RWGS, and produced a suite of techniques that are 
likely to be usel l  in a wide range of applications. In particular, we produced a general 
framework for dealing with nonlinear behavior using numerical integration techniques, extendhg 
the successll Unscented Filter. We also showed how to use a fixed-point computation to deal 
with effects that develop at diffkent time scales, specifically rapid changes occurring during 
slowly changing processes. We tested our model using real data collected from the RWGS, 
demonstrating the feasibility of hybrid DBNs for monitoring complex real-world physical 
systems. 

A Formal Theory of Testing for Dynamical Systems 

Just as actions can have indirect effects on the state of the world, so too can sensing actions have 
indirect effects on an agent's state of knowledge. In this portion of the project, we investigated 
"what sensing actions tell us", i.e., what an agent comes to know indirectly fiom the outcome of a 
sensing action, given knowledge of its actions and state constraints that hold in the world, To this 
end, we developed a formalization of the notion of testing within a dialect of the situation 
calculus that includes knowledge and Sensing actions. Realizing this formalization required 
addressing the mmification problem for sensing actions. We formalized simple tests as sensing 
actions. Complex tests are expressed in the logic progmmming language Golog. We examined 



what it means to perform a test, and how the outcome of a test affects an agent’s state of 
knowledge. Finally, we developed automated reasoning techniques for test generation and 
complex-test verification, and precisely specified restrictions on when the techniques can be used. 
This work is relevant to a number of application domains including diagnostic problem solving, 
natural language understanding, plan recognition, and active vision. 

Diagnosing Hybrid Systems Using a Bayesian Model Selection Approach 

In this portion of the project, we examined the problem of monitoring and diagnosing noisy 
complex dynamical systems that are modeled as hybrid systems; i.e., as systems having 
continuous behavior interleaved by discrete transitions. In particular, we examhed continuous 
systems with embedded supervisory controllers that experience abrupt, paxtial, or Ml failure of 
component devices. We developed a mathematical formulation of the hybrid monitoring and 
diagnosis task as a Bayesian model tracking and selection problem, and developed a suitable 
tracking algorithm. The nonlinear dynamics of many hybrid systems present chalIenges to 
probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is 
problematic because the models of the system corresponding to failure modes are numerous and 
generally very unlikely. To focus tracking on these unlikely models and to reduce the number of 
potential models under consideration, we exploited logic-based techniques for qualitative model- 
based diagnosis to conjecture a limited initial set of consistent candidate models. We considered 
alternative tracking techniques that are relevant to different classes of hybrid systems, and 
focused specifically on a method for tracking multiple models of nonlinear behavior 
simultaneously using factored sampling and conditional density propagation. A motivating case 
study for this work was the problem of monitoring and diagnosing NASA’s Sprint AERCam, a 
small spherical robotic camera Unit with 12 thrusters that enable both linear and rotational 
motion. 
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Abstract 

The Reverse Water Gas Shjft .vyshm (RWGg is a 
complex physical system designed to produce oxy- 
gen fmm the &n dioxide atmosphere on Mars. I f  
sent to Mars, it would operate without human sup* 
vision, thus raquiring a reliable automated system fm 
monitoring and umtd  The RWGS presents many 
challenges typical of &-world systems. including: 
noisy and biased sensors. nonlinear behavior, effects 

and unobservability of many important quantities. In 
this papem we model the RWGS using a hybrid (& 
crete/eontinwus) Dynornic Brryesian Network (DBh!). 
where the state at each time slice contains 33 disc- 
and 184 continuous variables. We show how the sys- 
tem stamcanbetrackedusing probabilistic inference 
overthe model We discuss how to deal with the var- 
ious challenges presented by the RWGS, providing a 
suite of techniquesthat m likely to be usem in a 
wide range of applications. In particular, we describe 
a general framewd fm dealing with nonlinearbehav- 
ior using numerical mtegration techniques, srtendiag 
the successful Unscented Fb. We also show how 
to use a fixedPoit computation to deal with e k u  
that develop at ditferent time scales, spe4cally mpid 
changes occUning during slowly changing processes. 
We test our model using real data collectedfmm the 
RWGS, demonstrating the feasibility of hybrid DBNs 
for monitoring complex real-world physical systems. 

that are manifested overdiffkent time gran-, 

1 Introduction 
The Reverse Water Gas Shift System (RWGS) shown in 
Fig. 1 is a complex physical system designed and con- 

gen from carbon dioxide. NASA foresees a number of pos- 
sible uses for the RWGS, includingproducing oxygen from 
the atmosphere on Mars and converting carbon dioxide to 
oxygen within closed human living quarters. 

In a manned Mars mission, the RWGS would operate 
for 500 M more days without human intervention [Larson 
and Goodrich, 20001. This level of autonomy requires the 
development of robust and adaptive software for fault diag- 
nosis and contml. In this paper, we focus on two  key sub- 
tasks - monitoring andprediction. Monitoring, or track- 
ing the current state of the system, is a crucial component 

structed at NASA's Kermedy Space Center to produce OXY- 

Figure 1: The Pmtotype RWGS System 

of the contml system. prediction of the system's expected 
behavior is a basic tool in fault diagnosis - discrepancies 
between the predicted and the actual behavior of the system 
may indicate the presence of faults. 

The RWGS presents a number of sigmfmnt modeling 
and algorithmic challenges. From a modeling p p e e  
tive, the system is very complex, and contains many sub- 
tle phenomena that are difficult to model accurately. Var- 
ious phenomena in the system manifest themselves over 
dramatically different time d e s ,  ranging from pressure 
waves that propagate on a time scale of milliseconds to 
slow changes such as gas composition that take hours to 
evolve. From a tracking perspective, the system dynamics 
are complex and highly nonlinear. Furthermore, the sen- 
sors give only a limited view of the system state. Some key 
quantities of the system are not measured, and the available 
sensors are noisy and biased, with both the noise level and 
the bias varying with the system state, 

In this paper we model the RWGS using a hybrid (dis- 
creWcontinuous) Dynamic Bayesian Network (DBN), and 
show how the system state can be tracked using probabilis 
tic inference over the model. We focus on the umtinuous 
part of the model, assuming all the discrete variables are 
known. We discuss how to deal with the various challenges 
presented by the RWGS, both in terms of modeling and in 
tenus of inference. We provide a suite of techniques that 
are likely to be useful in a wide range of applications, in- 



cluding the w e  where the discrete variables are not ob- 
served. 

Perhaps the most interesting modeling problem pre 
sented by the RWGS is the issue of diffexmt time granu- 
larities. A naive solution is to discretize time at the h e s t  
granularity. Unfortunately, this approach is generally in- 
feasible both because of the computational burdm and b e  
cause the number of observations is effectively reduced to 
one for every few thousand time steps, leading to serious 
inaccmcies. Instead, we take the approach of modeling 
the system at the time granularity of the observations. We 
show how to deal with the almost instantaneous changes 
relative to our time discretization by modeling a part of our 
system as a set of fixed-point equations. 

For the inference task, we provide some new insights 
into the problem of tracking nonlinear systems. This task 
is commonly performed using the Extended Kalman El- 
ter m [Bar-Shalom et al., 20011 or the simpler and 
more accurate Unscented Rlter (VF) [Julia and UhImaun, 
19971. We view the problem as a numerical integration 
problem and demonstrate that the UF is an instance of a 
numerical integration technique. More importantly, our ap- 
proach naturally leads to important generalizations of the 
UF: We show how to take advantage of the structure of the 
DBN and present a spectrum of filters, trading off a c c u r ~  
with computational effort. 

We tested our model using real data collected fiom the 
RWGS prototype system. Our results demonstrate the po- 
tential of using hybrid DBNs as a monitoring tool for com- 
plex real-world physical systems. 

2 Preliminaries 
In this papex, we characterize physical systems as discrete- 
time stochastic processes. System behavior is described in 
terms of a system state which evolves stochastically at dis- 
crete time steps I = 0 . 1 . 2 . .  . . We assume that the system 
is Marbvian and stationary, i.e., the state of the system 
at time I + 1 only depends on its state at time I ,  and the 
probabilistic dependencies are the same for all I .  

The system state is modeled by a set of random vari- 
ables .I' = I.\-, . . . . , S,,). We partition the state vari- 
ables .V into a set of evidence (observed) variables, E, and 
a set of hidden (unobserved) variables, W. Physical sye 
tems commonly comprise both Continuous quantities (e.g., 
flows, pressures, gas compositions) and discrete quanti- 
ties (e.g., valve opedclosed, compressor odoff). Conse- 
quently, we model such systems as hybrid system, with .Y 
comprising both discrete and continuous Variables. 

We model the process dynamics of our system using a 
Dynamic Bayesian Network (DBM [Dean and Kanaza~a ,  
19891. A DBN is represented as a Bayes Net hgment 
called a ZTBN, which defines the transition model P( X' I 
X) where X' = {.I-, . . . . , Y,,,) denotes the variables at 
time / + 1 and X = {.I-, , . . . , .I-,[) denotes some subset of 
the variables at time I which are persistent, in that their val- 
ues directly infh~ence the next state. More formally, a DBN 

is a directed acyclic graph, whose nodes are random vari- 
ables in two consecutive time slices, X and x'. The edges 
in the graph denote direct probabilistic influence between 
the parents and their child. For every variable S' at time 
I + 1 we denote its parents as Par( S') C X U X'. Each 
S' is also annotated with a Conditional Probability Dis- 
tribution (CPD), that defines the local probability model 
P (S' I Par( S')). In our hybrid model, discrete nodes do 
not have continuous nodes as parents. 

The tracking problem in DBNs is to find the beliefstate 
distrhtionBel(X') 2 P( X' I e', .... d ) ,  where XI typ 
i d l y  consists of the persistent variables X at time I ,  and 
c l . . . . , ~ '  aretheevidencevariableshmtime 1 totime/. 
The belief state summarizes our belief5 about the state of 
the system at time I ,  given the observations from time 1 
to time I .  As such, it makes current and ftture predictions 
independent of past data. The -king algorithm is an it- 
erative process that propagates the belief state. We start 
with the belief state at time I ,  Bel( X') and perform three 
steps. We first compute P(x' ,  I cl, ..., P I )  as the 
productBel(X')P(X'+' I X'). Next wemarginalize out 
XI resulting in a distribution over XI+'. Finally, we con- 
dition on e'+', and the result is the belief state at I + 1 ,  
Bel( X'+l ) .  

Linear models are an important class of DBNs. In a 
linear model, all the variables in X are continuous and 
all the dependencies are 1inear.with some added Gaussian 
noise. More precisely, if a node .Y has parents T i  , .... T j  
then P( S I 1;. ..., Ti.) = E:=, w;Ti + I', where the w;'s 
are constants and I' has a normal distribution .2'(/1. n?). 
In a dynamic linear model, tracking can be done using a 
Kalmunflfer [Kalman, 19601, where the belief state is rep- 
resentedparmetrically as a muhariate Gaussian in terms 
of the mean vector and the covariance matrix. Kalman fiI- 
ters therefore allow a compact belief state representation, 
which can be propagated in polynomial time and space. 

When the dependencies in the model are nonlinear, the 
resulting distributions are generally non-Gaussian and can- 
not be represented in closed form. Consequently, the belief 
state is generally approximated as a multivariate Gaussian 
that preserves the first two moments of the true distribu- 
tion. The traditional method for doing this approximation 
is using an &tended Kalman filter (M) [Bar-Mom et 
al., 20011. Assume that X' = j ( X ) ,  where J is some 
nonlinear function and X - .A-(p. 5). Note that we can 
always assume that J is detenninistic: If the dependency 
between X and X' is stochastic we can treat the stochas- 
ticity as extra random variables that j takes as arguments. 
The EKF finds a linear approximation to J around the mean 
of X, i.e., we approximate J using the first-orda Taylor 
series expansion around 11. The result is the linear func- 
tion JCX) zz J ( p )  + TJll, (X - p),  where '7Jll, is the 
gradient of j evaluated at It.' 

'A secondader EKF approximation exists, but its mueased 
complexity tends to limit its use. 



The EKF has two serious disadvantages. The first is its 
inaccuracy - the EKF is accurate only if the second and 
higher-order tenus in the Taylor series expansion are neg- 
ligible. In many pra&cal situations, this is not the case 
and using the EKF leads to a poor approximation. The 
second disadvantage is the need to compute the gradient. 
Some nonlinear functions may not be differentiable (e.g., 
the inm fuuction), preventing the use of an EKF. Even 
if the function is differentiable, computing the derivatives 
may be hard if the fimction is represented as a black box 
rather than in some analyticat form. 

The Unscented Fifter m) [Julier and Uhbnm, 19971 
provides an alternative appacb  to tracking nonlinear be- 
havior. As with the EKF, the UF assumes that X' = X ) 
and X h- .4'(it, 5). The UF works by detenninbtically 
choosing 21 + 1 points T 0 ,  _. . , ~ 2 . 1 ,  whae r n  = j t  and the 
other points are symmeiric around it (the actual points de- 
pend on s). Associated with each point is a weight w;. 
The UFcomputes = j(z;) fori = n, 1 , .  . . ,%f,result- 
ingin 2d+ 1 points in IR"', f b m  which it estimates the first 
two moments of X' as a weighted average of the TI'S. In 
particular, the mean E[X'] is approximated as w,r:. 

The UF has several signtficant advantages over the EKF. 
First, it is easier to implement and use than the EKF -no 
derivatives need be computed, and the function J is simply 
applied to ?d + 1 points. Second, despite its simplicity, the 
UF is more accurate than the EKF: The UF is a third-order 
approximation, Le., inaccuracies are induced only by terms 
of degree four or more in the Taylor series expansion. Fi- 
nally, instead of just ignoring the higher-order tenns, the 
UF can account for some of their effects, by tuning a pa- 
rameter used in the point selection. As shown in [Julier and 
uhlmann, 19971, the UF can be extremely accurate, even in 
cases where the EKF leads to a poor approximation. 

3 The RWGS System 

The purpose of the RWGS is to decompose carbon &OX- 
ide (CO?) (abundant on Mars) into oxygen (02) and carbon 
monoxide (CO). The system, shown in Fig. 2(a) [Goodrich, 
20021, comprises two loops: a gas loop that converts CO? 
and hydrogen (H?) into H10 and CO, and a water loop that 
electrolyzes the H?O to produce O? and H?. Under normal 
operation, CO? at line (1) is combined with H? rehlmed 
from the electrolyzer via line (12), and a mixture of CO?, 
H? , and CO from the reactor recycle line ( 1 1). This mixture 
enters a catalyzed reactor (3) heated to 400°C. Approxi- 
mately 1O?h of the CO? and H? react to form CO and H?O: 

(702 + 112 = cn + If70 
The H . 0  is condensed at (4) and is stored in a tank (5). The 
remaining gas mixture passes through a separation mem- 
brane (9), which sends a fraction of the CO to the vent ( 13) 
while direaing the remaining mixture into the recycle line 
(11). A compressor (10) is used to maintain thenecessary 
pressure diffemtial across the membrane. In the water 
loop, the H20 in tank (5) has some CO? dissulved in it, 
which would be detrimental to the electrolyzation process. 

To remedy this, the H?O is pumped into a second tank (0, 
and has H? bubbled through it to purge the CO?. From 
there, the H.0 is pumped into the electrolyzer (8), which 
separates a portion of it into O1 and H? . The H? reenters 
the gas loop via (12), while the remaining H.0, along with 
the 0 2 ,  goes into tank (7), where the mixture is cooled and 
separated. The H.0 returns to the electrolyzer, while the 
0 2  leaves the system through (14). 

In addition to its normal operating mode, the system 
may operate without the electrolyzer and water pumps. In 
this mode, the H? for the reaction is supplied by a supply 
line (15) paralleling the CO? supply line. This option is not 
feasible for operation on Mars, but has p v m  useful for 
testingthe physical system while under development. 

The RWGS is an interconnected nonlinear system 
where the various components intluence each other in com- 
plicated and sometimes unexpected ways. For example, 
during runs without the electrolyzer, it is necessary to 
empty the water tanlr (5) paiodically, to prevent water fiom 
accumulating and eventually overflowing the tank. This 
causes the gases in the tank to expand, and thus creates a 
sigruficant and sudden pressure drop, which affects the flow 
throughout the whole system. This phenomenon is demon- 
stratedin Fig. 2@), taken from [Whitlow, 20011. The graph 
shows the flow through the CO vent (13) as it evolves over 
time - the spikes correspond to emptying the water tank. 

A challenging property of the RWGS is that phenomena 
in the system manifest themselves over at least three differ- 
ent time scales. Pressure waves in the RWGS propagate 
essentially instantaneously (at the speed of sound). Gases 
flow around the gas loop on the order of seconds. Finally, 
gas compositions in the gas loop take on the order of hours 
to reach a steady state. Meanwhile, the sensors collect data 
at a sampling rate of one second 

An additional challenge of the RWGS is its sensitivity 
and unidentfibility, i.e., parts of the system state are very 
sensitivetoin~paramatersandarenotdirectlymeasured. 
For example, the H:! and CO? compositions in the gas loop 
cannot be practically measured. However, the balance be- 
tween these compositions is almost neutrally stable, thus 
a small shift in the input conditions or the membrane b e  
havior will cause the balance to gradually drift to a si&- 
cantly different value. 

As in any real system, the RWGS semsors do not record 
the underlying state exactly. In addition to some impor- 
tant quantities, such as the gas compositions, which are not 
measured at all, the existing sensors are noisy and biased. 
The noise level of the sensors depends on many factors and 
can change over time. An example is shown in Fig. 2(c), 
where the diffbence in the readings of the pressure sensors 
?? and P4 (both located at (2) in Fig. 2(a)) is plotted over 
time. The main reason for the noise in time steps 0-800 
is the physical proximity of the sensors to the compressor 
that sends pressure waves throughout the system. Since 
the sensors are not synchronized with the compressor, they 
take measurements at various phases of the pressure waves 
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Figure 2: (a) The RWGS Schematic. (b) Effects of emptying a water tank. (c) Pressure difference between Px and P.+. 

and thus measure significantly different values. After 796 
seconds the compressor shuts down and the noise level d e  
creases dramatically. * More interestingly, we note that 
the two sensors are placed very close together and thus the 
average difference should be zero. However, as the plot 
demonstrates, this is not the case, indicating that the sen- 
sors are not well calibrated and some bias is present. Fur- 
thermore this bias depends on the system state, as shown by 
the change in the average difference when the compressor 
shuts off. 

4 Modeling the RWGS 

We model the RWGS using a hybrid DBN, as described in 
Section 2. The 2TBN has 293 nodes, 227 of which are con- 
tinuous. Currently the discrete variables in the model are 
all known and correspond to computer-controlled switches 
and sensor faults. The continuous variables in OUT model 
capture the continuous-valued elements of our systm (e.g., 
pressure at various points in the system, IIOW rates, tem- 
peratures, gas composition, etc.). Of the 227 continuous 
nodes, 43 represent the time / belief state X and 184 repre 
sent the variables X’ at time I + 1 . Of the latter, 43 variables 
are belief state variables for I + 1,72 variables are encup- 
sulated variables, as discussed in Section 5.4, and the rest 
are either sensor variables or transient variables. 

When constructing the model, we used four techniques 
for parameter estimation. Some of the parameters were 
known physical constants or system properties. Of the em- 

*The sensor’s noise is literally noise that can be heard - the 
pressure waves are the sound waves generated by the compnssor. 

pirical parameters, many came from physical models. The 
others (specifically, some parameters for the compressor, 
the separation membrane and the overall system pressure 
changes) were determined using oommoll equations that 
model the particular system behavior. All the variables in 
these equations were directly observed in the data, and thus 
we could use least-squares techniques to find the best fit for 
the parmetem. The remaining parameters were estimated 
using prior knowledge of the domain. 

4.1 Sensor Modeling 

As discussed in Section 3, one of the challenges we address 
in modeling the RWGS is dealing with noisy and biased 
sensors. We deal with noisy sensms in the obvious way: 
by increasing the variance of the predicted measurement 
values to match the noise level in the data. 

Sensor biases present a more interesting modeling prob- 
lem. The biases are not easily modeled using a simple pa- 
rameter since they are unknown and can drift over time. In- 
stead, we address the problem by adding hidden variables 
to the belief state that model the different biases of the sen- 
sors. Biases start with zero mean and a reasonably large 
variance and persist over time, i.e., Bias‘+’ = Bias‘ + \-, 
where 1’ represents whitenoise with a relatively small vari- 
ance, allowing for some mount of drift to occur over time. 

This idea works quite well, but it tends to overfit the 
data: By letting the bias account for every discrepancy b 
tween the model predictions and the actual sensor measure+ 
ments, the tracking algorithm might settle in an incorrect 
steady state. To fix the problem we must make sure that 
the model biases r e k t  true sensor biases - biases should 



be kept as small as possible and allowed to grow only if 
there is a real reason far that. We implement this idea by 
introducing a contraction factor 7 < 1 (empirically set to 
be 0.97) into the bias formula: Bias‘” = 7 . Bias‘ + I,-. 
Thus, biases tend to go to zero unless doing so introduces 
a systematic discrepancy with the predicted system state. 

4.2 Sensivity and UnidentiEabWy 

Recall that the equations govaning the H?/C@ balance in 
the gas loop are sensitive to slight variations in the physical 
parctllaeters. Thus even using the most exact form of these 
equations in the model will result in (at least) the same level 
of sensitivity - both to variations in the physical pmame- 
tm, and inherent errors in the parameters. Moreover, the 
model value is also sensitive to model effects such as cal- 
culation errors and sensor errors that do not affect the real 
value. We therefore use equations for the H?/CO? balance 
that contain an intentionally non-physical component-a 
stabilizing t-that reduces the sensitivity. This term 
drives the balance to a pre-determined point, which in this 
case is our expected value for the balance. The magnitude 
of this term is manually adjusted to provide an optimum 
tradeoff between physical accuracy and model stability. 

43 D~eringTimeScales 

As described in Section 3, we must deal with differingtime 
scales in modeling the RWGS. The naive solution to this 
problemistomodeltheDBNataveryfinetimegranularity. 
However, it is completely impractical to model the behav- 
ior of the pressure waves using a discretized-time model. 
To do so would require time steps three orders of magni- 
tude smaller than the time between measurements, which 
is a sigdcant waste of resources. Furthermore, it would 
require a much more complete description of the system 
than is practical, and tracking the slowly-evolving aspe-cts 
ofthe system with a step size many orders ofmagnitude b e  
low their time scale would allow substantial errors to build 
UP. 

Thus, we approximate the pressure waves as occurring 
instantaneously and instead of modeling their transient b 
havior, we model the quasi-steady-state results at each time 
step after they have reached an equilibrium. The equa- 
tions in this case are substantially simpler, and require far 
fewer empirical constants. The difficulty, however, is that 
these equations must be solved simultaneously; a change 
in any part of the system will affect all of the other parts. 
These equations include both the compressor equation and 
an approximation to the membrane equations developed 
in [Whitlow, 20011; thus, they are fairly large and nonlin- 
ear, and no direa simultaneous solution form exists. In- 
stead, we use these equations to create a new equation that 
converges to a fixed point solution. 

We must insert this 6xed-point equation into a (nonlin- 
ear) CPD to use it in our DBN model of the RWGS. The 
equation solves for the five m o a  variables 2 that account 
for the flows and pressure of the gas loop. In order to solve 

for all five variables, their eight parents must also be present 
in the CPD. Hence, we have a vector CPD for 2 whose def- 
inition is essentially procedural: given a value of the eight 
parents it executes an itemtive fixed-point computation un- 
til convergence, and outputs the values 2. 

5 ”kacking in Nonlinear Systems 
In this section, we address the pmblem of inference, fo- 
cusing on tracking in complex nonlinear systems, such as 
the RWGS. In these models, the probabilistic dependen- 
cies, including sensors, can be either linear or nonlinear 
functions with Gaussian noise. We restrict our attention to 
the task of tracking the continuous state, assuming all the 
discrete values are known. Note that although the results in 
this section are presented in terms of dynamical systems, 
the analysis also applies to probabilistic inference in static 
nonlinear Bayes nets. 

5.1 Exploiting DBN Structure 

Recall the setup from Section 2: We have a Gaussian belief 
state Bel(X) where X E w” and a 2TBN rqnwenting 
f (X‘ I X )  as a deterministic fimction X‘ = JCX). Om 
goal is to find an approxiniation of P(  X‘) as a multivariate 
Gaussian. The classical approach, used in the EKF and 
the UF, is to find the entire distribution f (X’) directly by 
treating 1 as a function fiom W~ to IR”’. AII alternative 
approach is to decompose J by defining Sl = J;(Y;) for 
i = 1 ,... . in ,  where Y ;  = Par(.Y:). In most practical 
cases the 1;’s have a lower dimension than J ;  as we shall 
see, this reduction in the dimension lets us approximate the 
resulting distributionmore accurately and efficiently. 

As discussed in Section 2, the first step in the be 
lief state propagation process is to compute a multivari- 
ate Gaussian over {X. X’). We begin with our Gaus- 
sian Bel(X), and add the variables from X’ one at a 
time, using the procedure described in Section 5.2. The 
key insight is that, as X,! is conditionally independent of 
{X - Y;, .Vi. . . . . .Yj-, 1 given Y; ,  it suffices to approx- 
imate the Gaussian f (Yi. .\-:). We can then compute 

which, for Gaussians, can be accomplished using simple 
linear algebra operations. 

A more difficult case arises when the DBN contains not 
only inter-temporal edges from X to X’, but also intra- 
temporal edges between X’ Variables. In this case we 
sort the variables X,! in topological order, and gradually 
build up the joint distribution P(  X, Si. . . . . .Vi). The 
topological order ensures that when we need to compute 
P (Y;. .I-,!), we have already computed a Gaussiau over 
Yi 5 XU {S:. . . . , 1. This approach, however, may 
introduce some new inaccuracies, because we now also use 
a Gaussian approximation for the distribution of the rele- 
vant variables fhm {.V{. . . . , .Y,!-l 1. 

Even in cases where we introduce extra inaccufdcies, 
this method is ofien superior to the UF. The reason is that, 
by reducing the dimension of the functions involved, we 

f ( X .  .\-;,.. . ,.y) = rex,.\-;. ... ..Y;-l)P(.Y; I Y;),  



~811 use more accurate techniques to approximate the first 
two moments of the variables in X' with the same compu- 
tational r w w e s .  In general, there is a tradeoff between 
the superior precision we achieve for each variable and the 
potential for extra inaccuracies we introduce. The extra in- 
accuracies depend on the quality of our Gaussian approxi- 
mation for P( X. .I-;. . . . , Xl-, ), and on the extent of the 
nonlinearity of the dependencies within X'. If the depen- 
dence of .Y: on {Xi, .  . . , .Y,!-, 1 is lmear, then there are 
no extra erzllrs introduced. In this case the first two mo- 
ments of .Y,! are only influenced by the first two moments 
of { S:, . . . .Y,!-, ) which can be captured correctly by our 
Gaussian approximation. It is somewhat reassuring that the 
better our approximation of P(X')  as a Gaussian is, the 
less s ignihnt  the extra errors we introduce are, a9 the en- 
tire fnrmework is based on the assumption that P( X') can 
be well approximated by a Gaussian. 

5.2 Numerical Integration 
We now tun our attention to the task of appximating 
P ( Y ; ,  X,!) as a multivariate Gaussian. To simplify our 
notation, let S be a variable which is a nonlinear fun0 
tion of its parents Y = J i , .  . . .J;/, Le., S = j (Y) ,  
but the ensuing discussion also holds for the vector case of 
X = j (Y) .  Weassumethat P ( Y )  isaknownmultivariate 
Gaussian, and the goal is to find a Gaussian appximation 
for P(  Y. S). It d iux  to compute the first two moments: 

( 1) E [ S ]  = / P(Y)j(Y)rfY 

E[S ']  = / P ( Y ) / ' ( Y ) d Y  (2) 

E[S13 = / P ( Y ) J ( Y ) J y Y  (3) 

Note that the integrals only involve the direct parents 
of S, sigtu6cantly reducing their dimension. We can ef- 
fectively compute these integrals using a version of the 
Gaussian Qwhtm method called the Exact Monomial 
rules [Davis and Rabhovik, 19841. Generally speaking, 
Gaussian Quadrature approximates integrals using a for- 
mula of the form: 

v / I V ( T ) j ( T ) d Z  $I; w;J(r;) 
; =1 

where F17( T )  is a known function (a Gaussian in our case). 
The pomts r,; and weights rc;. are mefully chosen to en- 
sure that this approximation is exact for any polynomial j 
whose degree is at most p. The degtee p is called thepre- 
cision of the approximation. 

Finding a set of points with a minimal size .V for some 
precision p is not a trivial task. In the eimple form of Gaus- 
sian Quadrature, we choose points in one dimension and 
use them to create a grid of points in IR" with the obvious 
disadvantage that .V grows exponentially with d. Fortu- 
nately, we can do better. In [McNamee and Stenger, 19671 

(a) (b) 

Figure 3: (a) Density estimates for Y = ~'1;' + I;?. (b) 
Random samples from the RWGS network for the flow at 
point ( 16) and the pressure at point (2), and Gaussian esti- 
mates for the distribution. 

a general method is presented for .V = 0 (q) and pre- 
cision p = 2k + 1 (d  is the dimension of the integral, in 
our case IY I). In particular, rules are psented for 2d + 1 
points with precision 3, 2d2 + 1 points with precision 5 
and + $d + 1 points with precision 7. The precision 3 
rule is exactly the rule used for the Unscented Filter: It has 
exactly the same 2d + 1 pomta and weights. 

This view of the Unscented Filter has immediate p c -  
tical consequences: we can -de off between the accuracy 
of the computation and its computational requirements. For 
example, if we are interested in a more precise file than 
the Unscented Filter and are willing to evaluate the func- 
tion at O ( P )  points then we can use the exact monomid 
rule of precision 5.  Depending on the function, this may 
represent a sisruficant gain in accumq. 
As a simple example we consider the nonlinear fimction 

Y = dim where P O ; )  = .2'(2,4) and P() I 
Ji)=.4'(n.51i - 1,.7)(notethatbothJ; andl>havethe 
same variance4). Fig. 3(a) shows various estimates for the 
probability of \-. The optimal estimate is the best Gaussian 
approximation for the distribution of S computed using a 
very exact numerical integration rule. We can see that the 
exact monomial rules of precisions 3 and 5 provide a much 
better estimate than EKF, where the precision 5 rule leads 
to a mow accurate estimate than the precision 3 rule. 

5.3 Inoccursues in the Approximation 

Unfortunately, approximating r (Y, S) using numerical 
integration can lead to covariance mahices that are not 
semi-positive defhite, and hence illegal. One simple ap- 
proach to this problem is to use a more accurate integration 
rule, although the problem may persist. An alternative is to 
find the "closest" positive definite covariance matrix. W e  
cast this problem as a convex optimization problem follow- 
ing [Boyd and Vandenberghe, 2oO3 1. 

Consider once again the problem of appmximating 
P ( Y ,  .Y) as a multivariate Gaussian, where S is a non- 
linear function of its parents Y, i.e., .T = J(Y), and 
Y - . i'(/tl-,  5l-y). Let 1 denote the estimated covari- 



ana! matrix for P ( Y , S ) :  

0.45 
T 

I f f  and i lead to a matrix S that is not positive definite, 
then we need to find the closest v i  and 7 to rC and i ,  such 
that I: is positive definite. Given that Syy is already pos- 
itive definite, S is positive definite iff 7 - riTS&7c > 0. 
Thus, we cam formalize our problem as follows: 

Minimize 11 7t - t7 11' + ( I  - F)' (4) 
Subject to ~ r ~ C & t c  - 1 + t 5 0 (5 )  

where c is some small positive number. Since both Eq. 4 
and Eq. 5 are umvex we can solve this problem by form- 
ing the Lagrangian and solving the dual problem. We set 
the partial derivatives Of 7t  and 7 to zero and plug the result 
into Eq. 5. We get an equation over the Lagrangian multi- 
plier which can be solved easily as it involves a monotonic 
function. We omit details for lack of space. 

Our analysis treats the elements in 74 and 1 directly, 
but in fact these elements are not independent since i i j  = 
E[l; 1-1 - py, K [  Y] and ? = E[ Y2] - E[ 1-1'. It is desir- 
able to use this relation in Eq. 4 and 4 . 5  and represent the 
dependency between the various elements (e.g., a change in 
E[ 17 may fix many of the problems simultaneously). Un- 
fortunately, becaw of the term E[ Y]? the problem is no 
longer convex. Nonetheless, we can approximate the prob- 
lem as c o z ~ e x  (e.g., by replacing K [  Y]? by the best mnmt  
estimate), solve it and iterate. Again, we defer details to an 
extended version of this paper. 

5.4 Encapsulated Variables 

Just as we can use the DBN structure to decompose the de- 
pendency between X' and X, inmany cases we can further 
decompose the dependency S = j( Y ). For example, as- 
7 that j ( Y )  = d g i  (Yi ). g d y ? ) ) ,  where Yi , Yp C 
Y. Instead of directly evaluating the Gaussian over 
{Y, SI we can d e h e  two extra variables: TI = g1 (YI ) 
and 7; = p(Y?) .  We first approximate P(Y , .T l )  as 
a Gaussian and use it to find a Gaussian over {Y, TI 1. 
Next we approximate P( Y ?, T?) as a Gaussian and h m  it 
f(Y.Tl,T?). Finally,weappximate P('T,T?*.Y) asa 
Gaussian and use it to find the Gaussian approximation for 
f ( Y .  'Ti , T?, S). The same accuracy tdmffs that were 
discussed in the context of XI = J(  X) apply here: by 
reducing the dimension of the integrals we can solve each 
one more accurately, but may introduce further errors if the 
interaction between the extm variables is nonlinear. 

'E.g.. flow sensors give different results dependins on the ga9 
type. Assuming we have random variables rep~senting the total 
flow and the compositions of the &&rent gases in ik 91 and 92  
may each be a product of one of the gas compositions and the 
flow, thus repnSenting the net flow of a certain gas. The firno- 
tion .(I would be a weighted sum of these flows where the weights 
correspond to tb sensor's response for the di fka t  gases. 

OA3 
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Figure 4 Comparison with particle filtering on simulated 
data, showing the means and error bars of two staudard de- 
viations for our algorithm and particle filtaing. The S axis 
represents time, and the 1- axis the percentage of H? in the 
fbw at point (16). To increase readability, we shift the es- 
timates generated by our algorithm by 0.1 to the left and 
those genemted by particle filtering by 0.1 to the right. 

In principle, one could add TI and 7 2  to the DBN and 
treat them as regular variables. However, doing so makes 
these variables part of X', and thexeby increases the al- 
gorithm's space complexity, which is O( IX'I?) (for rep+ 
sentingthe covariance matrix of P(  X')). It is better to treat 
the extm variables as locat variables encupsulated within 
the CPD and unknown to the rest of the network. After 
computing the Gaussian approximation for the CPD vari- 
ables, we simply marginalize over the encapsulated ones. 
This approach is similar to the local computations in an 
OOBN model [Koller and PMer, 19971, where some of 
the CPD variables are encapsulated within the CPD. 

6 Experimental Results 
In this section we present results from a set of experiments 
that test the efficacy and robustness of our model and track- 
ing algorithm. Our computational model of the RWGS con- 
tains all of the components needed to monitor the full op- 
eration of the physical system, although data provided to 
date by KSC is for the reduced-operation mode with only 
the gas loop component operational. Our experiments were 
nm on a Pentium III 700MHz. 

We tested our algorithm with both real data and simu- 
lated data that was generated h m  our model. Although 
running with real data is the real test for our approach, nm- 
ning with simulated data is also of interest. The reason is 



that there are two somes of errors when using real data: 
model inaceuraCies and errors induced by the algorithm. 
When using simulated data, only errors of the second type 
are present and we can better test the paformance of the 
algorithm. 

6.1 Results on Simulated Data 

We first teated whether the belief state could be well ap- 
proximated as a Gaussian and whether our particular ap- 
proximation was a good one. To do so, we generated a set 
of samples from the model. We did not introduce any evi- 
dence so the samples were indeed sampled h m  the correct 
jomt distribution. In Fig. 3(b) we show the results for two 
particular variables: the fbw at pomt (16) and the pressure 
at point (2) (these variables were chosen because of their 
dependency on the wn-linear CPD of the membrane; other 
variables produd similar results). The samples appear to 
be drawn from a distrihtion that is either a Gaussian or 
close to one. F u r k m ~ x q  our estimate for the jomt distri- 
bution (depicted by the contours for one and two standard 
deviations) is very close to the Gaussian that was estimated 
directly from the samples. Thus, it is reasonable to expect 
that our techniques will lead to good approximations of the 
belief state. 

Next, we generated a trajectory of 500 time steps h m  
our model and tested our algorithm on it. We compared 
our results with the particle filtaing algorithm brdon et 
al., 19933, which approximates the belief state as a set of 
weighted samples where the weights of the samples corre- 
spond to the likelihood of the evidence given the sample. 
Our algorithm took 2Oms per time step, which included 
computing the Gaussian approximation to the belief state, 
with numerical integration when necessary, and condition- 
ing on the evidence. In comparison, generating a sample 
using particle filtaing took 1.5ms. Thus, one step of our al- 
gorithm to& as much time as generating 13 samples. How- 
ever, with just 13 samples particle filtering performed ex- 
tremely poorly and therefore in our experiments we used 
10,OOO samples at every time step, giving particle filtering 
a somewhat unfair actvantage. 

Fig. 4 shows the estimates for the percentage of H? in 
the fbw at pomt (16) that were computed by our a l g o r i h  
and by particle filtering, as well as the actual value (known 
fkom the simulated data). We report the reeults on this p m  
ticdar variable because the gas compositions are not mea- 
sured by any sensors and are therefm a potential challenge 
to our algorithm. The error bars represent the uncertainty 
of the estimates as plus and minus two standard deviations 
(for particle filtering we computed the standard deviation 
induced by the weighted samples). 

Although under our setup particle !iltering was slower 
than our algorithm by a factor of 750, as Fig. 4 demon- 
strates, the estimates of particle filtaing are not as good as 
the estimates of our algorithm. Overthe entire sequence the 
average error of our algorithm was 0.nn9 while the average 
error of particle filtaing was 0.01 3. Nevertheless, the more 

dramatic difference is in the estimates of the variance. Of- 
ten, the estimated variance for particle filtering is extmnely 
small, even when the estimated value is not very accurate 
(e.g., time steps 72 and 73). In fact, over the entire se- 
quence, according to the estimated distribution of our algo- 
rithm, the correct value of the H? composition was within 
two standard deviations 96% of the time (this is consistent 
with the fact that the probability mass within two standard 
deviations h m  a Gaussian mean is 95%). In comparison, 
for particle filtering, the true value was within two esti- 
mated standard deviations only 20% of the time. The dif- 
ference was even more apparent when we computed the av- 
erage log-likelihood of the true value, given the two possi- 
ble estimates. For our algorithm the average log-likelihood 
was 3. I while for particle filtering it was only -5.59 . I  0’ ’ . 

The reason for this problem is the relatively high dimen- 
sion of the evidence which leads to a very high variance for 
the weights of the samples. Although we generated l0,OOO 
samples at each time step only a very small number ofthem 
had a sigmficant effect on the estimate. Over the entire se- 
quence, in 65% of the time steps one sample accounted for 
more than 0.5 of the total probability mass, in 27% one 
sample accounted for more than 0.9 of the mass, and in 
15% one sample accounted for more than 0.99. Obviously 
in cases where one sample completely dominates the rest, 
the estimates of particle filtering are not very reliable and 
in particular the variance estimates can be extremely small 
and misleading. 

Thus, not only is our algorithm faster than particle fil- 
tering with l0,OOO samples by a factor of 750, its estimates 
are much more reliable. 

6.2 Results on Real Data 

We next ran a set of experiments on real data. Our data set 
consisted of a long q e n c e  of 13,875 time steps, most of 
it collected while the system was nmning in steady state. 
We divided our data into a training set, used to e w e  
andtune themodel parameters, and a teat set on which we 
report our results. 

We conducted a variety of experiments in which we 
compared model predictions with the actual measurements 
recorded by the systern under various scenarios: steady 
state and noesteady state, removing sensors, and modify- 
ing the sensor models. In order to make the comparison 
informative, the model predictions for values at time I + 1 
as reported in this section are not adjusted with evidence at 
time I + 1, i.e., they are the predictions based on evidence 
frrrmtimesO,l, ... ./. 

Our first experiment, shown in Fig. 5(a), illushates the 
eBcacy of our tracking algorithm during steady-state op- 
eration of the system. In particular, the graph illustrates 
the predicted (thick lines) and measured (thin lines) pres- 
sures, Ps and P4 at point (2) in Fig. 2(a). Observe that 
the predicted value for /3 appears to be consistently lower 
than the measurement. This is the result of the model’s 
bias weightmg, 7 = 37, discussed in Section 4.1, which 
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Figure 5: Experimental Results Tracking the RWGS. The S axis represents time, and the J -  axis the value of the appropriate 
quantity. 

tends to pull the estimates slightly away fium the measured 
value. While, in this case, it produces a slightly poorer re 
sult, overall, the bias weighting technique does less data 
overfitting and works bette~ in non-steady state sequences. 

Next we experimented with 'kemovingn sensors from 
the system. (This is easily achieved by ignoring selected 
sensor evidence when nmning the tracking algorithm.) 
Sensor removal can be used to evaluate the robustness of 
the algorithm as well as to detemhe the importance of a 
sensor for monitoring the system. In Fig. S(b), we show 
the flow of gas from the compressor at point (1 1). The two 
overlaid lmes are our estimates of this flow value - one 
with all of the sensors, and the other with sensors Rs and 
R1 n (located at (13)) removed. In contrast, when &W sen- 
sor RS (located at (16)) is removed, the predicted flow rate 
quickly strays. These results indicate that, at least for this 
sequence, RS is a more valuable sensor than Rc, and R1n. 

We also tested the effects of changing the liquid level 
(LL) sensa noise parameter on our prediction of the gas 

model a sensor we introducedboth some Gaussian noise on 
the sensor and a hidden bias variable. We tried both a veri- 

flow RG at (13). Recall fnrm Section 4.1 that to correctly 

'The liquid level sensor is very noisy, as splashing and but+ 
bIing h m  the dissolved C@ and fhm drops splashing h m  the 
condenser hit the sensor md and m a t e  considerable noise in the 
sensorreading. 

ance value of 0 1 ,  which we estimated using "reasonable" 
prior knowledge, and a variance value of 4 which was M to 
the data Fig. 5(c) shows the ef€ect of the Variance of the LL 
sensor f a  the water tank at (5). With the fitted variance, the 
algorithm tracked quite well. In contrast, with the smaller 
variance, the paformance was poor and erratic, following 
the fluctuations in the LL measurements. 

The utility of the bias variables is shown in Fig. 5(d). 
The upper line is a prediction of the flow rate, made using 
a version of the model that contained no bias variables for 
the tlow sensors at (lo), (13) and (16). The middle line 
corresponds to the model with the bias variables present, 
but shows the prediction for the true (unbiased) flow (Le., 
the sensor prediction minus the bias). When we explicitly 
modeled the sensor bias, our (unbiased) predictions of the 
true system state better matched the measurements, an in- 
dication of a better estimate of the system state. 

Finally, we tested the ability of the model to track non- 
steady-state behavior - in particular, the behavior of the 
system when the CO2 supply is hrmed off during the shut- 
down process. Unfortunately, we only had one data set con- 
taining this transition, and thus we expect our parameters 
are still not tuned optimally. In addition, having only one 
such traasition in our data, we report results on the same 

Fig. 5(e) shows a comparison between the predicted and 
data that was used for training. 



measured output from pressure sensors P3 and PJ, for two 
versions of the model. The first set of predictions, shown in 
solid lines, was calculated using our best estimates of the 
empirical parameters, includingthe membraue area (calcu- 
lated &m other parts of the data set) of 27.1. The second 
set of predictions, shown in dashed lines, was calculated us- 
ing an earlier estimate of the membrane area of 3 1.6. While 
in the steady-state prior to timestep 220, the two predic- 
tions are equivalent as the differences were absorbed into 
the bias errors, in the transient part, +e model with inaccu- 
rate parameters underpredicts the initial dmp in pressure, 
and retaius this ermr throughout the rest of the sequence. 

Fig. 5(f)  presents the predictions of the correct model 
for the flows at Rs (16) and R12 (lo), over a longer period 
of time. Initially, when the CO? supply was cut off, the 
!lows dropped; however, gradually the CO and CO? in the 
system were vented andthe only remaining gas was H?. As 
the membrane presented less resistance to H? the flow rates 
started to go up. The model tracked this complex behavior 
surprisingly well. 

7 Conclusions and Future Work 

In this paper we address the problem of monitoring a large 
complex physical system - NASA’s Reverse Water Gas 
Shift system - perhaps the largest and most complex hy- 
brid DBN developed to date. This paper makes contri- 
butions both to the modeling and the monitoring of com- 
plex nonlinear systems. On the modeling side, we have 
shown how to model physical systems whose effects man- 
ifest themselves at dramatically diffexmt time scales, and 
that involve biased sensors, where the bias is state depen- 
dent and varies over time. On the monitoring side, we have 
presented a general framework for approximating nonlin- 
ear behavior using integration methods that extend the Un- 
scented Filter, improving the accuracy of the approxima- 
tion with minimal additional computation. Experimen- 
tal results indicate that this approach is much faster and 
m m  reliable than particle filtering. More generally, we 
have demonstrated the feasibility of hybrid DBNs for mon- 
itoring a complex real-world physical system such as the 
RWGS using real data. 

There are several interesting directions for fuhm work. 
The tracking algorithms presented in this paper assume a 
known mode of operation, i.e., all the discrete variables are 
observed. Our long-term goal is to diagnose the RWGS 
when components fail. In order to track both the discrete 
and continuous state, we intend to combine the results p m  
sented in this paper with algorithms that handle hidden dis- 
crete events such as Rao-Blackwellized Particle filtering 
(RBPF) [Doucet et al., 20001 or the algorithms presented 
in [Lemer and Parr, 2001; Lemer et al., 20001. The speed 
of our algorithm (taking just 2Oms to generate a Gaussian 
over all the state variables) is a promising indication that 
we can use these techniques for real-time fault diagnosis. 
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Abstract 

Just as actions can have indirect effects on the state ofthe 
world, so too can sensing actions have indirect effects on 
an agent's state of knowledge. In this paper, we investigate 
%hat sensing actions tell us", Le, what an agent egnesto 
kmw indirectlyhn the outcome ofa sansing action, givm 
knowledge of its actions and state u m t m i n t s  that hold in the 
wodd To this end, we propose a formalization of the no- 
tion of testing within a dialect of the situation calculus that 
inclu&s kmwledge and seming actions. Realiting this for- 
malization requires addressing the ramifidon p r c b h  for 
sensing actione. We formalize simple tests as sensing- 
tions. Complex tests are e x p s s e d  in the logic progranrming 
language Golog We examine what it mesas to m a  
test, and how tbe outcome ofatest &kctq an agent's state of 
knowledge. Finally, we propose automated resSaning tech 
niques for test gmelation and camplex-test verification, m 
der ~ r e s l r i c t i o n s .  The workpsented in this paper in 
relevaut to a number of ~pplicatim domains including diag- 
d c p r o b h  sol* natural langugc * Plan 
mmgnition, and active vision 

Introduction 
Agents equipped with perceptual capabilities must operate 
m a world that is only partially observable. To determine 
properties of the world that are not directly observable, an 
agent must use its knowledge of the relationship between 
objects m the world, and its limited perceptual capabili- 
ties to infer such unobservable properties. For example, if 
an agent performs a sense action and observes that there is 
steam coming out of an electric kettle, then the direct effect 
of that sensing action is that the agent knows there is steam 
coming out of the kettle. With appropriate knowledge of the 
functioning of kettles, the agent should also know that the 
electrical outlet has power, that the kettle is functioning, and 
that there is hot liquid mside the kettle - all as indirect ef- 
fects of the sensing action. Similarly, if the agent wishes to 
know whether there is power at an electrical outlet, but can- 
not directly sense this property of the world, the agent may 
potentially acquire this knowledge by attempting to boil wa- 
ter m a kettle plugged into this outlet. 
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Such a sequence of actions constitutes a test. If steam is 
observed, then the agent knows that there is power at the out- 
let; however if steam is not observed, the agent may or may 
not know that there is no power at the electrical outlet. The 
knowledge the agent acquxes fiom the test will depend on 
whether the agent knows that the kettle i s  functioning. Thus, 
this particular test is only guaranteed to provide knowledge 
about the existence of power at the electrical outlet under 
one test outcome. 

While resemhers have extended theories of action to 
include the notion of sensing or knowledge-pmducing ac- 
tions (e&, (Schal & Levesque 1993; Baal & Tran 1998; 
Golden & Weld 1996; Funge 1998)) and have charac- 
terized the effect of sensing actions on an agent's state 
of knowledge, and even how to plan (e.g., (Stone 1998; 
Golden & Weld 1996)) and to project (e.g., (De Giacomo 
& Levesque 1999b)) in certain cases, with sensmg actions, 
they have not addressed the problem of how to reason m 
a p d a l l y  observable environment'. More generally, they 
have not examined the problem of how sensing actions 
can be coupled with knowledge of the relationship between 
objects m the world to gain further knowledge, and how 
both sensing actions, and worldaltering actions change art 
agents state of knowledge m the presence of such world 
knowledge. Further, they have not examined the problem 
of how to select sensing actions to acquire knowledge of 
some prom of the world that is not directly o b m b l e .  
Perhaps the closest research is that of (Shaaahan 1m; 
199fA) who investigates the assimilation of sensing results 
for a mobile robot m a fixmework based on the event cal- 
culus, (McIlraith 1997) who assimilates observations mto 
situation calculus device models to perfinm dynamical di- 
agnosis, or (Baral, Mchith,  & Trim 2000) who do likewise 
m the language 13. 

In this paper, we examine these issues m a dialect of the 
situation calculus that has been extended with knowledge 
producing actions2 (Scherl8r Levesque 1993), but which 
does not include state constraints. Following (Mch i th  
2000), we add state constraints to this language m order to 

'Partially-Obmvable Markov Decision Processes (POhOPs) 
&ss this class of problems within a difhmt formalism, but 
they do not adcbess the testing issues we enamine here. 

zHenceforth refkred to simply as sensing actions. 



model the relationship between objects in the world, adopt- 
ing the associated solution to the ramification problem for 
world-altering actions. We show that this solution extends 
to solve the ramification problem in the presence of sene 
ing actions. Next, we define the notion of a test - how to 
design them and what knowledge can be drawn from their 
outcomes. the formalization, simple tests comprise a set 
of initial conditions and a primitive sensing action. Complex 
tests are expressed as complex actions in the logic program- 
ming language Golog. We examine what it means to per- 
form a test, and how the outcome of a test affects an agent's 
state of knowledge. Additionally, we examine tbe issue of 
selecting tests to confirm, refute, or discriminate a space of 
hypotheses. 

Finally, we investigate the automation of reasoning about 
tests. We show that regression may be used to venfy ob- 
jective achievement for complex tests written m a subset of 
Golog. Further restrictions on the form of the complex tests 
allows the same regression operators to serve as the basis 
for a simple regression-style planner that generates tests to 
increase an agent's lmowledge with respect to a space of hy- 
po-. 

Situation Calculus 
The situation calculus language we use, following (Rei- 
2OOO), is a first-order language for representing dynamically 
changing worlds in which all of the changes axe the direct 
result of named actions performed by some agent, or the in- 
direct result of state constraints. Situations are sequences 
of actions, evolving from an initial distinguished situation, 
designated by the consCant SO. If a is an action and .s a sit- 
uation, the result of performing a in s is the situation rep- 
resented by the function rlo(n. s). Functions and relations 
whose truth values vary from situation to situation, called 
Juents, are denoted by a predicate symbol takiug a Situation 
term as the last argument. Note that for the purposes of this 
paper, we assume that our theow contains no functional flu- 
ents. Finally, POSR(R. s) is a distinguished ftuent expressing 
that action a is possible to perform in sitdon .q. A situation 
calculus theory 2, comprises the following sets of axioms: 

0 foundational axioms of the situation calculus, X, 
0 successor state axioms, VSS., 
0 action precondition axioms, D,,,, 
0 axioms describing the initial situation, DDC;,, 
0 unique names for actions, P,,,,, 
0 domain closure axioms for actions, DD,/.-,,. 
Successor state axioms, originally proposed by (Reiter 

1991) to address the frame problem and extended by (e.g., 
(Lin & Reiter 1994; McIlraith 2000)) to address the ramifi- 
cation problem, are created by making a causal m t q e t a -  
tion of the ramification constraints and a causal complete- 
ness assumption and compiling effect axioms ofthe form3: 

Po.w(a..q) A y:(?: a: .9) 3 F(.F: rln(~n7 '1)) (1) 
PO.%9(0, a) A 7; l.3: -9) 3 TF(P, lfO(Q, a)), (2) 

and ramification (state) constraints of the form: 

17: (;F: s) 3 F(J?; .9) 

u;(2,.9) 3 +(,.F,.q), 

into Intermediate Successor State Axioms of the fomx 

(3) 
(4) 

E y;, (2? a, .9) v I$, (T, tlo(cc, a)) 

v ( F ( X  .) 
A ~(-(r,(Y.tz..q) V t ~ ~ , ( ~ ~ . l / ~ ( f l , . q ) ) ) ) :  (6) 

I.e., if an action is possible is Situation R, then it impliesthat 
the fiuent is true in h ( a .  .s) if€ an action made it true -or- 
a state constraint made it true -m it was already true and 
neither an action nor a state constmint made it false. 
Such intermediate successor state axioms provide a com- 

pact representation of a solution to the ramification problem 
for a common class of state constraints. (McIlraith 2000) 
shows that far what m d l l y  acyclic causal ramifi- 
cation consfmints, repeated regression rewriting (e.g., (Re- 
iter 1991)) of @>, , R* [@>,] = ap,, repeatedly d t e s  the 
d c a t i o n  constraints that are relativized to rlo(a, s) in (6) 
above, and is guaranteed to terminate m a formula whose 
fluents am relativized to situation R rather than cfo(a,s). 
Both the intermediate and the less compact (final) succes- 
sox state axioms which result h the regression provide 
close&form solutions to the h m e  and ramification problem 
for the designated class of state constraints. 

To illustrate sensing and testing in partially observ- 
able environments, we present a partial axiomatization of 
a car repair domain, derived h m  The Complete Idiot's 
Guide to Trouble-he Car Cam (Ramsey 1999). Our do- 
main includes world-altering actions such as t ~ L ~ R D ~ ( I )  and 
tt~rn-off(z), where z is radio or lighta. These have the 
effect that the radio or lights are odoff in the resulting situ- 
ation. Actions turn(kcy) and rc.frcl.w(kcc/) have the effect 
that the ignition is begin turned (ttrrnittgign), or not, in 
the resulting situation. These actions am defined in terms 
of effect axioms and are combined with the following self- 
explanatory state constraints to prvduce successor state ax- 
ioms. For notational convenience we abbreviate: transmis- 
sion - ft'071.9, inferlock - intt'lk, solenoid - aolmrf, engine - 
eiigit, battery - W t ;  ignition system - ipli-sys, stat  system - 
.9f rtd9t/<9. 

I i i i p l ~ ( g a a - l ~ t n L .  a )  3 - d n r l n b l r ( n )  (7) 

d ( ~ i i I r 1 L  8 )  3 -a/nrlnlr lrfn) (8) 

~ r b ( b d / . a )  3 -a lnr lnb lc fa )  (9) 

~di(aolii i1 a )  3 -.nlnr/nblr(n) (10) 

nli(alni.lrr.. a )  3 - 4 n r / n b l r ( n )  (11) 

(12) 

(13) 

(14) 

(15) 

ni i lo ( l rnnr )  A ~ i n q r n r ~ t l m n s .  a )  2 t ~ b { i i i / i ~ l L .  n) 

n i u i t t d ( I r m i a )  A ~r / rpr r6ard (c~tc lch .  6 )  3 ~ i l ~ ( z i i l r . 1 ~ .  8 )  

I u r i i i i ~ q - i q n f a ~  A n/i(bu/l. 8 )  3 ~ i i o f a ~ ( r i i q i ~ .  8 )  

Itrriiiiig-iqnfn) /' r i n p l ~ f q t m l t t i i L .  a )  3 -itoinc'(riiqn. a )  



/iiriiiii,i.jgn(,q) fi. -nb(do/ l ld .  a )  3 noiai,(,qoIn:l. 8 )  

nh( r d i o .  8 )  3 -iiotar( radio. 8 )  (18) 

-cib(lo//. a )  A o i i ( / ig l i / a .  sl 2 t i n i / a ( I i g l ~ l ,  el (19) 

Space precludes listing all the successor state axioms. There 
is one (intermediate) successor state axiom for each fluent. 
E.g., axioms (7Hll) compile into intmediate successor 
state axiom (20): 

(16) 

,&bn//. n )  A oii(rn~Iio.  a )  3 -iioiar(rutlio, a )  (17) 

Poa.s(.a, d) 3 [atartlzWe(~fo~,n, .?)) _= 
-.rmpt.tj(gngnR_tnnk: h ( a ,  .9)) A -wth(intrlk, (lo(n, d ) )  

A -&(/matt, tfo(,ct, 8 ) )  A -vtb(d??d, tfO(,Ct, 3)) 

A inb(.?f(?.rtcr, tk(tZ, R))] (20) 
As described in (McIlraith 2000), the axioms describing 

the initial situation, SO contain what is known of the initial 
situation as well as the ramification constraints of the form 
of (3) and (4), relativized to SO. 

Knowledge and the Ftamification Problem 
In (Scherl C Levesque 1993), the situation calculus lan- 
guage without state constraints was extended to incor- 
porate both knowledge and sensing actions. World- 
altering actions change the state of the world, sensing ac- 
tions have no effect on the state of the world but rather 
change the agent’s state of knowledge. In our exam- 
ple, sensing actions include chcrk- f i d ,  r1wck-riirdstort. 
drrrk-radio-rw0i.w etc., which have the effect of the agent 
knowing cn /y t ! j ( , yaa~mk,  tlo(,n. 8) ) .  .stnrtcr!dc(t!o(~n, 4)) .  and 
noirc~(,rczrlio, ClO(C1,R)). 

The notation Knows(,i.s) (read as 6 is known in 
situation R), where 0 arbitrary formula, is an a b b e  
viation for a formula that uses I<. For example 
Knows(m(hlmk1, Uockz),  R) abbreviates: 

V.9’ K(n’,.q) 3 oir(1)lorh.l , blorkf, s‘). 
The notation Kwhether(0, .q) is an abbreviation for a for- 

mula mdicating that the truth value of + is known. 
Kwbetber(g, s) %‘ Kaom(~,  ,9) V Knows(-.+, s), 

Following the notation of (Levesque 1996), each sense ac- 
tion ta has a sensedjluent, SF(n, x) associated with it, and 
for each such a, D entails a sensed fluent axiom: 

SF(>Z, 3) I 1)(,9); (21) 
which says that performins the sense action n tells the agent 
whether the formula +(s) is true or Wie. Thus, 2, /= 
Kwhetber(;q*, do(,,?, R)) where n is an action with a sensed 
fluent equivalent to ‘cy. 

For the sense action clwck-f trcl the sensed fluent axiom 
is: 

(2) 
which tells us whether or not the gas tank is empty. For 
world-altering actions, D entails SF(n, 3) z T ~ c .  

In (Scherl & Levesque 1993), a successor state axiom for 
the ZC fluent is developed. Ita form is as follows: 
Successor State Axiom for K 

SF(clrcv-k-f a d ,  .v) E rmpt!j(,gnsfnnh., a) 

P O S S ( ~ 1 , . 9 )  3 [K(,.Y”; f lo(0,  .9)) I 

[SF(n, d) G SF(a, .?)I 
3-9’. Pon.s(i2, 8’) A I<(.?’, a) A (8’’ = tlo(i~, .9’)) A 

(23) 

which says that after doing action ci in situation $, the agent 
thinks it could be in a situation 5” iff .SI) = d d n .  6’) and s’ 
is a situation that was accessible from s, and where N and .Y’ 

agreed on the truth value of SF(a, R), ea., the truth value 
of cntpty(9cl.sfcmk). Thus, for all situations h ( a .  3), the I< 
relation will be completely determined by the I< relation at ,v 
and the action 0. This extends Reiter’s solution to the h e  
problem (without ramifications and without knowledge) to 
the case of the situation calculus with sensing actions. 
Proposition1 In the situation calculus theory described 
above. the agent knows the successor state axioms and the 
rami$cation constmints. 
This follows from the fact that the successor state axioms 
are universally quaatified over all situations, and the rami- 
fication constraints explicitly hold in SO and are entailed m 
all successor situations, by the successor state axioms. 
Theorem 1 (Correctness of Solution) The proposed solu- 
tion to the fMme and mmifiation problems for world- 
altering and sensing actwns ensures that knowledge only 
changes as appropriate. as dejined by %omm 1. 2. 
3 (&her1 & Levesque 1993). Furthermore, the agent knows 
the indirect effects of its sensing actions. 
Thus, the successor state axioms for world-altering and ms- 
ing actions, together address the h e  and d c a t i o n  
problems. 

Testing 
The purpose of a test is to attempt to determine the truth 
value of certain projmties of the world, that may or may 
not be directly observable, A test is often performed with 
respect to a set of hypotheses, with the objective of elimi- 
nating as many hypotheses as possible from the set of hy- 
potheaes being entertam ’ e d  Testing has been studied ex- 
tensively for the specific problem of IC circuit testing, but 
there is little wolk on testing for rich dynamical systems 
such as the ones we examine here. The notion of a static 
test was brierty discussed m (Moore 1985, litmus example), 
and fitrther developed for static systems in (McIlraith 1994; 
McIlraitb & Reiter 1992). We build directly upon the work 
in (McIIraith 1994) with the objective of developing a for- 
mal theory of testing for dynamical systems. 

Infomdy, a simple test comprises a set of initial con- 
ditions that may be established by the agent, together with 
the specification of a primitive sensing action, which deter- 
mines what the agent will directly come to know as the r d t  
of the test. In our cm repair domain, we can test the battery 
by checking the radio for noise. The initial conditions for 
such a test might be oi/(radio, .s). Then we can paform the 
sensing action rli~~rk~c~rlio-r)ois(’ to see whether the radio is 
emitting noise. Note that the precondition for performing 
the action rlwckmdio3ioi.w, Poan(rl/i~~k~cildio_l,oi?rc. s) 
insrrk,(rnr*. 9), is difFerent &om the initial conditions of the 
test. Both must hold and must be consistent with the theory 
and with the current hypotheses being entertained, in order 
to execute the test. 

We distinguish between two types of tests, truth tests 
which tell us whether the properties being sensed are true in 



the physical world, andfirnctional tests, which tell us whut 
values of the properties are true in the physical world. For 
the purposes of this paper, we restrict our attention to tnrth 
tests, and our sensing actions to so-called binary sense ac- 
tions which establish the tn~th or falsity of a sensed formula. 
Definition 1 (Simple Test) 
A simple test is apaic ( I .  a).  where I, the initial conditions. 
is a conjunction of literals, and a is a binary sense action 
whose sensed formula contains no f i e  variables. 
(on(rndio, .q), cltcc~l.ntfioJ,or.sc) is an example of a simple 
test, following the discussion above. We now debe  the no- 
tion of a test for a particular hypothesis space, represented 
by the set HI-P. We restrict the hypotheses, H ( a )  E HI-P 
to be conjunctions of fluents whose non-situation terms are 
constants, and whose situation term is a situation variable 3. 
In our car repair domain, an example hypothesis space might 

Deanition 2 (Test for Hypothesis Space HI-P) 
A test ( I .  a) is a test for hypothesis space H I - P  in situation 
s ~ ~ ~ Z ) A Z A P ~ F ~ ( ~ , . F ) A H ( S )  issatlsfiable foreveryH(s) E 
HI-P.  

That is, the state the world must be in to execute 
the sensing action must be satisfiable, under the as- 
sumption that any one of the hypotheses m the hypoth- 
esis space could be true. Consider that V entails the 
safety constraint v q l o a i o n ( a )  a d  the axiom .syar.ka(n) A 
gnshnk(.q) 3 rsy los io t~( .~) ,  and that our hypothesis space 
is {,guqJcak(a), ah( .~pr .ky l iq ,  -7)). A reasonable test for 
(uj,(.spr.k$wg, .s) is to try to create sparks at the plug. Unfor- 
tunately such a test would cause an explosion in the presence 
of a gas leak. The satisikbility check above precludes such 
a test. 

Deanition 3 (Confirmation, Refutation) 
The outcome of the test (I ,<&) codinus H ( s )  E HI'P 
if D A I A Pom(n. .q) A H ( s )  is satisfiable and 2, A I A 
Po.~s(n.s) Knowr(H 3 as). a refptes H ( s )  ilfD A 
IAPo.c.r(a, s ) A H ( s )  is satisfiableandVAZAPo.P.9(n. s) 

If the outcome of test (on(mfio. a), thcck-rndio-twiw) is 
noi.sr(rnrlio, &(a: a)), then our test refutes the hypothesis 
ah(lxztt.n), followmg Axiom (I>, and we can eliminate 
ddhztt, .q) h m  our hypothesis space, HI*P.  

Observe that a test outcome that refutes an hypothesis 
H ( R )  allows us to eliminate it h m  HI-P .  Unfortuaately, a 
test outcome that confirms an hypothesis is generally of no 
deterministic value, resulting m no reduction m the space of 
hypotheses. As we will see m a section to follow, there rn 
exceptions that depend on the criteria by which the hypoth- 
esis space is defined. 

In the sections to follow we use these basic defhtions 
to d e b  discriminating tests and relevant tests. These tests 
are distinguished by the effect their outcome will have on a 
general space of hypotheses. 

Dlscrimhating Testa 
Notice that m our example above, if we had observed 
-noisr(rdio,  h ( a .  a)), then by the definition, this would 

be (ab(6utt. J), ab(sohl .  -9): ctnpty(gn.sht>b. .s)}. 

Knows(H 3 -a. 8).  

have confirmed the hypothesis ob(hHZtt, ,q), but it would have 
been of little value m discrimhating our hypothesis space. 
All hypotheses remain m contention. Discriminating tests 
are those tests (I, a) that axe guaranteed to discriminate an 
hypothesis space H l - P ,  i.e., which will refute at least one 
hypothesis in HI -P, regardless of the test outcome. 
Definition 4 (Discriminating Tests) 
A test ( I .  a )  is a discriminating test for the hypothesis space 
H I - P  ifV A I A Poss(a. s) A H ( s )  is satisfiable for all 
H ( a )  6 HI'P. and there exists H,(s ) ,  H,(.q) 6 H I - P  
such that the outcome 0 of test ( I .  a)  refites either H,(.r) 
or H, (R). no matter what that outcome might be. 
Proposition 2 
Afier we perform a discriminating test. (1.n).  
Knows(iH,. 3). forsome H,(.u) E HI'P. 

In general, we would like a discriminating test to refbte 
half of the hypotheses m the hypothesis space, regardless of 
the test outcome. By definition, a discriminating test must 
refi& at least one hypothesis in the hypothesis space. 
Definition 5 (Minimal Discrimmating Tests) 
A discriminating test ( I .  a)  for the hypothesis space H I ' P  
is minimal iffor no pmper subconjunct I' of I is (If. a)  a 
discriminating test for HI-P .  

Minimal diacriminahg tests preclude unnecessary initial 
conditions for a test. 

In some cases, we are mterested m identifymg a test that 
will establish the fruth or falsity of a particular hypothesis. 
An mdividual discriminating test does precisely this. 
Definition 6 (Individual Discriminating Tests) 
A test ( I .  a )  is an individual dkcriminating testfir the h p  
potheses H,  (R) and -H, ( .F) E HI  ' P  @DA I A Poss(a. .q) A 
H ( a )  is sati@able for all H(.q) E HZ*P and the outcome CI 
of test ( I .  a )  rrrfittes either H , ( s )  or ~ H , ( . S ) ,  no matter what 
that outcome might be. 
Proposition 3 
Affer we perform an individual discriminating test ( I .  a) .  
Kwhether(H,, .r) for some H ,  E HI-P. 
The test ({},chwk-ftwZ) is such a test. The out- 
come will be one of -.cntyt(/(9~~sfc7n~,flo(u. s)) or 
rniyt(/(yaaf~znh..~loln(n, 9)). Thus, as the result of per- 
forming cIud.-ftwl in the physical world, the agent 
Kwhether(rntyt y (p .?_tank, .s) ) . 

We can similarly define the notion of a minimal individual 
discfiminating test, and a minimal relevant test, below. 

Relevant Tests 
In the majority of cases we will not be so fortunate as to 
have discriminating tests. Relevant tests are those tests 
(1.0) that have the potential to discriminate an hypoth- 
esis space H I - P ,  but which cannot be guaranteed to do 
so. Given a particular outcome cy, a relevant test may re- 
fute a subset of the hypotheses m the hypothesis space 
H I - P ,  tut may not refute any hypotheses if -a is ob- 
served Since we can't guarantee the outcome of a test, 
these tests are not guaranteed to discrMnate an hypothe- 
sis space. (on(r.ndio, .s), cltrtk-1.nrlio-i,~i.sc)is an example of 
such a test. 



Deanltion 7 (Relevant Tests) 
A test ( I , a )  is a mlevant test for the hypothesis space 
HE-P 1yV A I A Po.r.q(a. H) A H ( R )  is satisfiable for all 
H(x)i i iHl-P.  and the outcome N of test ( I .  a )  either con- 
$m a subset of the hypotheses in H I - P  or nzfites a subset. 

By definition, a relevant test confirms or refutes at least 
one hypothesis in HI-P ,  and it follows that every discrirni- 
nating test is a relevant test. 

In addition to discriminating and relevant tests, there is 
a third class of tests. Constraining tests do not refute an 
hypothesis, regardless of the outcome, but they do provide 
further knowledge that is relevant to the hypothesis space 
and which the agent can exploit in combination with other 
tests. We discuss this notion in a longer paper. 

Testing Hypotheses 
In the previous section we observed that a test outcome that 
refutes an hypothesis H(.r) E Hl’P allows us to eliminate 
it from HI-P ,  but that in general an outcome that confirms 
H (3) has no value m reducing the hypothesis space. In this 
section, following (McIlraith 1994), we show that when the 
hypothesis space is determined using a consistency-based 
criterion this is indeed true, but when the hypothesis space is 
defined abductively, confirm@ test outcomes serve to elim- 
inate those hypotheses that are not confbed, i.e., that do 
not explain, the test outcome. 
Definition 8 (Consistency-Based Hypothesis Space) 
A consistency-based hypothesis for V and outcome (Y of 
the test (I,a) is any H ( R )  E HI-P such that 2, A I A 
Pos.q(a. R) A H ( a )  A a is satisfiable. 
Proposition 4 (Eliminating C-B Hypotheses) 
The outcome n of a test ( I .  a) eliminates those consistency- 

based hypotheses. H ( R )  E HI-P that am mfuted by test 
outcome cy. 

De6nition 9 (Abductive Hypothesis Space) 
An abductive hypothesis for V and outcome (Y of the test 
( I .  a) is any H ( R )  E H l - P  such that V A I A Po.ss(a. a) A 
H ( s )  is satisjiable. andV A I A  Po.s.r(a,s) A H ( s )  
Proposition 5 (Eliminating Abdu&ve Hypotheses) 
The outcome ct of a test ( I .  a)  eliminates those abductive 

hypotheses, H(.P) E H I ’ P  that are not con$rmed by test 
outcome ct. 

Thus, in the case of abductive hypotheses, unlike 
consistency-based hypotheses, both confirming and refuting 
test outcomes have the potential to eliminate hypotheses. 
Proposition 6 (EfEcacy of Tests) 
Any outcome n of a relevant test ( la)  can eliminate abduc- 
tive hypotheses, whemas only u mfuting outcome can elimi- 
nate consistency-based hypotheses. Discriminatory test out- 
comes, by &$nition, can eliminate either consistency-based 
or abductive hypotheses, regardless of the outcome. 

a- 

Complex Tests 
In the previous section, we defined the notion of a simple 
test (I. a),  and characterizedthe circumstances under which 

the outcome of such a test would discriminate an hypoth- 
esis space. Indeed, to discriminate an hypothesis space, we 
may need a sequence of simple tests, interleaved with world- 
altering actions in order to achieve the initial conditions for 
a test. Likewise, the selection and sequencing of sensing 
and world-altering actions may be conditioned on the out- 
come of previous sensing actions. In the section to follow, 
we examine the problem of generating tests usmg regres- 
sion. As we will see, generating tests, especially tests that 
involve sequences of sensing and world-altering actions is 
hard. In many instances, we need not resort to com@on. 
The domain axiomatizer can articulate procedures for testing 
aspects of a system, just as the author of The Idiot’s Guide 
has done m the domain of car repair. The logic programming 
language, Golog (alGO1 in LOGic) (Levesque et al. 1997) 
provides a compelling language for specifying such tests, as 
we describe briefly here. 

Only a sketch of Golog is given here. See (Levesque et al. 
1997) for a full discussion of the language and also a Prolog 
interpreter. Golog provides a set of extralogical caostructs 
(such as action sequencing, if-then-else, while loops) for as- 
sembling primitive actions, defined in the situation calculus, 
into macros that can be viewed as complex actions. The 
macros are defined,through the predicate Do(6,s, s‘) where 
d is a complex action expression. Do(,d, s, s’) is intended to 
mean that the agent’s doing action ii in situation s leads to 
a (not necessarily unique) situation 3’. The inductive de6ui- 
tion of Do includes the following cases: 

DO(U, .q: .v’) - simple actions 
Do(Q?? s: a’) - tests ( m f d  to as Gtests m this paper) 

Do(,[& 1621, .?: 8‘) -nondeterministic choice of actions 
~o( (~ I . t . )d ,  ,q: .q’) - nondeterministic choice of pammetm 
Do(.ifn then 61 ebe 6 2 :  s, .Y’)- conditionals, where we 

restrict o to a Gtest 

Do(,while 9 do 6. .s: .9’) -while loops 

Do(,[& ; 621: 8: a’) - sequences 

Space does not permit giving the full expansion far each 
of the constructs, but they can be found in (Levesque et al. 
1997). The only change here is that the definition of the G- 
test construct (including the implicit G-test in the condition 
construct) must expand into a G-test involving knowledge4. 

The following is a partial example of a complex test writ- 
ten in Golog, and derived from (Ramsey 1999). This par- 
ticular procedure is designed to help discriminate the space 
of hypotheses generated when a c a  won’t start, namely 
{ab(,intrlk7 .Y), c , n , y f ! / ( , ~ ~ . ~ f a n k ,  4): ab(,6ut t :  .q): nb(solt~4l, a); 
a~J(,;.9?,-IIritf!.q: .q); ub!stur.tc:r; .q)}. In a diagnostic application 
such as this one, Golog procedures may also be written to 
combine testing with repair. 

proc CARWONTSTART 
if(- startable) then CHECKINTERLOCK; 

4 ~ e  are taking the simplest appmach towards incarporatiag 
sell3ing action9 into Golog All actions are on-line. In O k  W O N h  

they m executed immediately without any possibility of back- 
tracking other OptiOlM for completely off-line execution (Lake- 
meyes 1999) d a mixtun? of off-line and on-line execution @e 
Gie~omo&Levesque1999a)have~diseussedinthcliteraturc. 



if(- AB(INTRLK)) then CHECKXAS-TANK; 

if(- AB(BATT)) then CHECKSOLENOID; 
if(- EMPTY(GAS-TANK)) then CHECKBATTERY; 

if(- AB(SOLND)) then CHECKIGNWIRES; 
if(-. AB(IGN-WIRES)) then CHECKSTARTER; 

If (1 AB(STARTER)) then CHECKENGINE 
end If end if end K end if end if end If end if 

endPmc 

pmc CHECKBATTERY 
TURN-ON(RADI0); CHECK-RADIONOISE; 

if(- NOISE(RADIO)) 

end if 
then lTJRNBN(L1GHTS); CHECLLIGHTS 

en- 
Observe that complex tests often mvolve world-dtering 

actions which serve to establish the preconditions and initial 
conditions for embedded simple tests. Also observe that m 
achieving the preconditions or initial conditions for simple 
tests, these actions change the state of the world, including 
potentially changing the space of hypotheses. For exam- 
ple, if a ibhhght isn’t exnittirig light, and one hypothesis 
is that the batteries are dead, a good way to test them is to 
replace them witb fieah baneries, and see whether the hsh- 
light then works. However, replacing the fiashlight batteries 
potentially changes the state of one of the hypotheses. 

In diagnosis domains, such as the ones above, it is of- 
ten desirable to combine fault detection (hypothesis testing) 
with repair and to take actions to eradicate faults as easily as 
to diagnose them (McIlraith 1997; Bard, McIlraith. & Tran 
2000). However, in cases where it is desirable not to alter 
the truth status of the hypothesis space, care must be taken 
to design and ver@ and/or generate tests that maintain des- 
ignated knowledge constraints and world constraints. E.g., 
we don’t want to determine whether the gas tank is empty 
by draining it! 

Automated Reasoning About Tests 
In the previous section we introduced the notion of a c m -  
plex test, demonstrating that such tests could sometimes be 
specified m Golog. In this final technical section we briefly 
examine the use of automated reasoning tecinuques, and m 
particular the use of regression rewriting, for the purpose 
of verifying certain pr0pemes of Golog-specified complex 
tests, and for generating complex tests as conditional plans. 

iter 2000). other related approaches to conditional plan- 
ning include (Rosenschein 198 1 ; Manna & Waldinger 1987; 
Lobo 1998). 

Consider the Golog complex test given above to help dis- 
criminate the space of hypotheses genemted when a car 
won’t start. To verify that it is an individual discriminat- 
ing test, it is necessary to ensure that for at least one of the 
hypotheses H ,  Kwhether(H. 3) holds, where .s is the sit- 
uation resulting fkom the execution of the Golog procedure, 
i.e. DO(CARWONTSTART. SO. 3). Thus, we would like to 
be able to entail VIIEIn-p  KwhethertH. s), and in par- 
ticular Kwhether(c.?izply(llnfl_lnllk). s), for example. A 
verification that the procedure is a discrimhating test would 

our presentation draws upon ( L e s m c e  1994) and (Re- 

mvolve ensuring that for at least one H, Knows(-JZ. R) 
holds in the final situation, i.e., Vir, ,,,. ,-, Knows(1H. s). 

In (Scherl & Levesque 1993), a form of regression (based 
on the discussion m (Reiter 1991)) is developed for the sit- 
uation calculus with sensing actions. Through the appli- 
cation of regression, reasoning about situations reduces to 
reasoning in the initial situation, SO. Given a ground sit- 
uation term (i.e. a term built on SO with the function do 
and ground action terms) .qgl., the problem is to determine 
whether the axiomatization of the d o h  2, entails G(R~, . )  
where C: (the mtended objective ofthe procedure) is an arbi- 
trary sentence includingknowledge operators. This question 
is reduced to the question of whether or not the axiomatiza- 
tion of the initial situation entails the regression of G(s,,.), 
i.e.,R(G(.qgl.)). Sincetheresultofregressionis a formulain 
an ordinary modal logic of knowledge (i.e. a formula with- 
out action terms and where the only situation term is SO) an 
or- modal theorem pmvmg metbod m y  be used to de- 
termine whether or not the regressed formula is entailed by 
the axiomatization of the initial situation, ’D,?,, . In our case 
G will be a formula made up of subformulae of the form 
Kwhether(H. 3) or Knows(7H. s), where H is an hy- 
pothesis. 

The regression operator R is deked relative to a set of 
successor state axioms 2,##. The first four parts of the de& 
nition of the regression operates, R concern world-altering 
actions and are taken from (Reiter 2000). 
L When IT- is a n o n - h t  atom, including equality atoms, and 

atom with the predicate symbol Am, or when I T ’  is a ftuent 
atom or Knom operator. whose situation argment is the situa- 

ll. When F is a relational fluent (other than A3 atom wbose suo. 
tion ccrnstant so, R[ITl = IT.. 

cessor state axiom in P.... is 

ill. whenever 11. is a formula, 
R[lI11 = -R[tT*]: 
R[(Vu)IT.] = ( V i ~ ) R ~ i - ] .  
R[(3ll)I1-1] = f31)R[IT-i]. 

iv. whenever (I’l a d  Ii.2 are formulas. 
R[II-i A 11’21 = R[I1-i] A ‘R.[U-i : 
RPT-1 V 11-21 = RPI’i] V R[1l‘i I : 
R[I1-i 3 11-21 = ‘R[IT-i] 3 ‘R[IT-i]. 

Following (Scherl & Levesque 1993), additional steps are 
needed to extend the regression operatorto sensing actions6. 
Two definitions are needed for the specification to follow. 
When 9 is an arbitrary sentence and R a situationtenn, then 
&] is the sentence that results from adding an extra argu- 
ment to every fluent of 9 and inserting .q mto that argument 

%me details are omitted hae (e.g regression of b t i d  
fluents, and the equality predicate). Also note that the formula to 
be regressed must be mgmsble. This concept is fully defined in 
(Rkter2Ooo). 

‘Regression of sensing actions that make known the denotaton 
of a term (e.& an action of reading a number on a piece of paper) 
isnotdiscwedhere. 



position. The reverse operation 9-' is the r d t  of remov- 
ing the last argument position from all the bents m 9. 

Step v covers the case of regressing a world-altering ac- 
tion through the Knows operator. Step vi covers the cases of 
regressing a sensing action through the Knows operator. In 
the definitions below, s' is a new situation variable. 
v. Wbenevernisnotasensingaction, 

R[Kmows(?l',clo(u, .))I = 
Knm((R.[ll'[do(u, .9')]])-- I ,  3). 

vi. Wbncver (1 is a sensing action, wbere y' is a formula 
such that D entails that 7q.91 is equivalent to SF(.n,.5). 

R.[Kaom(ll-: .'o(n, s))] = 
((,i'i,(,a) 3 Knows(.+, 3 R.[IT'[rlo(,n: .q')]]-' , .;)) A 
( l l q . 9 )  3 -(-e, 3 7qwpd+ .v )I]- , .9)) 

An additional operator C needs to be defined to handle 
the expansion of the complex actions found m Golog, so 
that we can apply regression'. We are only considering a 
subset of Golog programs - those composed of simple ac- 
tions, sequencin , and conditionals. We also add the empty 
action no0 or {(names for the same operation). &so note 
that r(,(?, stands for the pconditions of n ( ~  as speci- 
fiedin the actionpreconditionaxiom, Drip, P o s ~ ( n ( . ~ , s )  G 
xi, (,K -9). 
m. qnoop, 11: -9) = Il,-(..9) 
h. L'([u(a; a], 11; .q) = ir.(,i?, -5) A cl,6,11) do(fl(?), d)) where 

I. C(.[if+(,i!) then61 else&],Il',a) = 
u(,.i?) is a ground mm-sensing simple action tens 

Kwhether(+(Z), a) A 
[Kno%%(+(..i?), 8 )  3 c'($1,1173 .)] A 
[Knows(,-o(:q; d) 3 L1($2,11-: a)] 

We are asmming that the agent is able' to execute the Golog 
test procedure. In particular, the programmer (of the test 
procedure) must have ensured that at the point where an 
[if +.(,?) then6.l else&;] statement is encountered, the ex- 
ecutmg agent must Kwhether(,cb, .). Ifnot, the procedure 
will Ed. 

In the following theorem (a generalization of Theorem 2 
fivm(Lesphnce 1994),recall X*(u) mdicatestherepeated 
regression of 9 until fiather applications leave the formula 
unchanged. 
Theorem 2 For any Golog pmcedum 6. consisting of sim- 
p k  actions, sequences, andconditionah, and G an arbitmry 
closed regmsable fonmtIa that may include knowkdge o p  
emtors: 

 DO(.^, so, a) A G(,s)) iff 
2?C" u D,,,,, I= R.'(.C(,6, c; So)) 

Theoran 2 ahows it may be verifkd that any Golog testing 
routme (utilizing concatenation and conditionals) achieves 
its intended objective G through the use of regression fol- 
lowed by theorem proving in the initial database. The suc- 
cessor state axioms (D8J are only used m the regression 
procedure. This theorem can be extended to likewise verify 
other properties of our Golog procedures. 

'The C opemtor introduced hee is based on (but generalizes) 
the E -tor of (Lespirance 1994). 

"See (Lespkance et 01. 2000) for a discussion of ability and 
Golog programs. Related issues are discussed in (Lespkance 1994; 
Lalcemeya 1999). 

We can use the above regression operator as the basis 
far a simple conditional planning algorithm for constructing 
complex tests. Followmg (Lesphnce 1994), we consider 
only n o d  form conditional plans. These are conditional 
plans m which the condition in a conditional (e.g. the 0 in 
[if v (.?) then 0'1 else &I) must be a sensed formula. Thus 
we can require that prior to any conditional with the G-test 
h, there must be an action n such that n is a sensing action 
and 2? SF(n. 3) z +(.q). This guarantees that the pro-, 
gnun executing the test will always Kwhether(b. .Y) when 
a conditional is encountered For any complex test (that is 
executable) consisting only of concatenation and condition- 
als, there must be an equivalent test in this normal form. 

Fori = 1.2,3. . . , we can define the sentences ri as: 
r,,%(,.?) 

drr ri = 
&([3Z(n = -li(?) A r . 4 ,  (23 V . . . 

V3?(n=-l,,(.i!)A ~A,>(,.F))] 
A m.r,-, (#lo(a; .9)))) v 

R(eI (.Z, do(n, .s)) 3 r,- I (rlo(.n, .q))) A 
~([3i?(,n=.ll( ,~)')h;i~;(,~h(,SFl(Z,.9)E+i(~.s))A 

~ ( ~ o ~ ( z ; ~ l o ( . n , . q ) )  3 ri-, ( q n ; . 9 ) ) ) ]  

~ ( ~ o , ~ ( . + l o ( . o .  -9)) 3 r,-I ((lo(.o: .$)))I 

A . . . A  
%(,[33((n = -If(,?)A~il:, (,Z)A(SF(U? 9) E &,(:9))A 
R<+,,, (2, t/o(u: -9))  3 r,- I ( IM.~:  1))) A 

Each r i  is true if there is a plan of lengtb i starting in .9 

and leading to a state satisfying G (biter 1995; Les-ce 
1994). The following theorem (essentially Theorem 3 of 
(Lesphnce 1994)) establishes the wunbss and complete 
ness of the regression-based test planning method. 
Theorem 3 For Golog pmcedure 0' in normal form and G, 
an arbitrary closed mgmssable formula that may include 
knowledge opemtors: 

'D != 3a(,Do(d, so, +9) A c(s)) iffjbrsom n 
T?s, u a,, I= To!So) v . . . v r,, (So) 

This regression-based finite horizon method of genexating 
and evaluating all normal form conditional plans of greatex 
and greater size is certainly not designed far efficiency, but 
the r d t s  can serve as the foundation for building more 
efficient repaion-based complex-test planning methods, 
much as similar results have served as the foundation for 
relatively more e&ient regression based plarming methods 
(McDe~mott 1991; L e s p h c e  1994; Rosenschem 1981). In 
future work we will evaluate the extension of current state 
of the art planning techniques based on SAT and Graphplan, 
to address the planning problems raised in this paper (Weld 
1999). 

Summary 
In this paper we presented results towards a formal theory 
of testing for dynamical systems, specified in the language 
of the situation calculus. Our first cont r i ion  was to ad- 
dress the ramification problem for sensing actions. We then 
defined the notion of a test, examining how a test can be 
designed and how the outcome of different types of tests af- 
fect an agent's state of knowledge. The realization of many 



tests in the world requires a complex sequencing of world- 
altering and sensing actions, whose selection and ordering is 
conditioned upon the outcome of previous sensing actions. 
We proposed specifying such complex tests in the lo& p 
gramming language Golog. We then demonstrated that re- 
gression could be used both to verify the desired objective 
of such complex tests, and to generate tests as conditional 
plans under certain restrictions. 

Sensing is integral to the operation of most autonomous 
agents. The notion of complex and simple tests introduced 
here extends the body of theoretical work on sensing m dy- 
namical systems, and has practical relevance for building 
agents for diagnostic problem solving, plan understanding, 
or simply for mobile cognitive agents that need to interact in 
complex environments with limited sensing. 
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Abstract 
In this paper we examh the problem of monitoring and di- 
agwsing noisy dmplex dynamical systems that m modeled 
as hybrid systems - models of umtinuolrs behavior, inter- 
leaved by disnsts transitions. In particular, we examins cop 

experience abrupt, partial or full failme of component de 
vices. Building on our previous work in this area (MBCG99; 

matical formulation of the hybrid monitoring and diagnosis 
task maBayesian modeltracling andselection problem, and 
provision of a suitable tracking algmitbm. The wnlinear dy- 
namics of many hybrid systems m t  challenges to pmb 
abilistic tracking. Fur~ber, probabilistic tracking of a system 

els of the system cormponding to failure modes am numer- 
ous and g d y  very unlikely. To focus tracking on these 
unlikely models and to rsduce the number of potential & 
elswkrconsideration, weexploitlogic-bawdtechniquesfbr 
qualitah model-baseddiagnosis to conjecture alimitedini- 
tial set ofconsistent candidatemodels. In this paper wedis- 

fxent classes of hybrid systems, focusing specifically on a 
metbod fbr traekiag multiple models of wnlioear bebavior 

sity propagdtion. To illustrate and motivate the epproach de 

and diagnosing NASA's Sprint AERCam, a small spherical 
robotic camera unit with 12 thrusters that enable both l k a r  
d r o t a t i ~ m o t i o n .  

tiauous systems with embedded supervisory COntrolleR that 

MBCGOO), our specific focus in this paper is on the mrrtha 

forthep~~ofdiagoosisirproblematicbeca~the& 

cuss alt€anative tracking techniques that are mlevant to dif- 

s i m W u s l y  wing factomd sampling aad condtiioaal dm- 

scribedinthis paper we examine t h e ~ ~ o f m o n i ~  

Introduction 
We have been conducting an ongoing project to investigate 
how to diagnose hybrid systems - complex dynamic4 sys- 
tems whose behavior is modeled as a hybrid system. Follow- 
mg the description m (MBCG99; MBCGOO), hybrid mod- 
els comprise both discrete and continuous behavior. They 
are typically represented as a sequence of piecewise con- 
tinuous behaviors mterleaved with discrete &ansitions (e.6, 
(Bra95)). Each period of continuous behavior representa a 
so-called mode of the system. For example, in the case of 
NASA's Sprint AEiRCam, a spherical airborne robot cam- 
era unit, modes might mclude tmnslateX-axis, mtateX- 
axis, translate-Kais, etc. (AG98). In the case of an Airbus 
fly-by-wire system, modes might include take-ofi landing, 
climbing, and ctuke. Mode transitions generally result in 

changes to the set of equations govemingthe continuous be- 
havior of the system, as well as to the state vector that initial- 
izes that behavior m the new mode. Discrete transitions that 
dictate such mode switching are modeled by finite state au- 
tomata, temporal logics, switching functions, or some other 
transition system, while continuous behavior within a mode 
is modeled by, e.g., ordinary differential equations (ODES), 
difference equations, or differential and algebraic equations 
(DAEs). For the purposes of this paper, we restrict our at- 
tention to discrete-time estimation for the class of systems 
whose hybrid models contain no autonomous jumps. Le., 
all nominal transitions between system modes are induced 
by a controller action; none are induced by the system state 
and mode (Bra95). 

In (MBCG99) we presented the hybrid diagnosis prob- 
lem: 

Given a hybrid model of system behavior: a hbtory of 
executed conttvikr actions. a history of observations, 
including observations of abermnt behavior mlative to 
the model. isolate the f a d  thar is rhe cause for the 
abennnt behavior. 

Our task was to perform diagnosis online m conjunction 
with the continued operation of the system. Hence, we 
divided our diagnosis task into two stages, initial conjec- 
turing of candidate diagnoses and subsequent refinement 
and tracking to select the most likely diagnoses. We cast 
the diagnosis problem as the p b l e m  of finding a model 
and associated parameter values that best fit the data. In 
that paper we focused on the problem of dealing with the 
multitude of potential models of the system by exploiting 
qualitative diagnosis techniques to generate a set of can- 
didate qualitntive diagnoses, and we described two param- 
eter estimation techniques to deal witb estimaling the pa- 
rameters associated with the model, particularly when er- 
roneous behavior manifested itself some period of time 
after the initial occurrence of a huh. (See (MBCGOO; 
MBCG99) for details.) We did not discuss the specific prob- 
lem of tracking multiple candidate models, nor did we dis- 
cuss how to compare them. 

In this paper, we formulate the hybrid monitofing and 
diagnosis task as a Bayesian model tracking and selection 
problem (e.g., (Mac91)). In particular, we wish to estimate 
the state (model) of the system at successive time instants, 
given a history of observations. The system diagnmis is de- 



scribed by the value of a specific subset of the state variables 
- namely those that designate whether components are nor- 
mal or abnormal, and what their associated par&- values 
are. We estimate state by tracking the posterior distribution 
of the state, given the observations. 

Probabilistic tracking of complex hybrid systems for diag- 
nosis purposes presents a number of in t e re s~g  challagm. 
Kalman filtering techniques, traditionally used for trackiag 
linear dynamid systems with Gaussian noise, asBume a 
Gaussian density which is unimodal, making a Kalman fil- 
ter (Ka160) inadequate for simultanmusly tracking alterna- 
tive candidate models. Multiple Kalman filters, one for each 
candidate model, can sometimes be used to track multiple 
candidate models of linear dynamical systems with Gaus- 
sian noise (e.g., (Fra90)). More importantly, hybrid systems 
often have complex nonlinear, nonGaussian a d  potentially 
nondeterministic behavior. The nonlinearities come from 
both the mode switching (faulty or normal modes of behav- 
ior), and fiom the nonlinear dynamics within a mode. The 
latter has been addressed m some cases by using local lin- 
ear (Taylor series) approximations of the nonlinear contin- 

ters (e.g., (BF88)) or Iterated Extended Kahnan Filters (e.g., 
(Jaz70)). 

ticle filters and the condensation algorithm (e.g., (GSS93; 
IB98)), we use a lktured ssmpling technique to sample and 
represent our m u b d  posterior distribution of the state 
(models) given the observations. Such a technique enables 
us to track multiple models of nonlmear systems simulta- 
neously. unfortpnately, sampling techniques for probabilis- 
tic tracking focus on the most likely models within the dis- 
tribution, whereas most fsult models have low probability, 
initially. To overtime this bias, we show how to integrate 
the qualitative diagnosis techniques described m (MBCGOO; 
MBCG99) into the temporal prior of our Bayesian formula- 
tion to focus sampling on models that are mdicated by our 
qualitative candidate diagnoses. 
In the next eectiOn, we provide a brief description of 

NASA’s Sprint AERCam, which we have used as a motivat- 
mg example and which we will use to illustrate certain con- 
cepts m this paper. In the section that follows the desCription 
of the AERCam, we present a formal characterhtion of the 
class of hybrid systems we study and the diagnosis problem 
they present. Next, we describe our Bayesian formulation 
of the problem and the algorithm we use for computing and 
propagating posterior distributions. In the final section, we 
summarize, discuss our contmumg research m this area, and 
reference some related work. 

uous dynamics such BS is done with EX- Yalman Fil- 

In thi~ paper, following march on b00t-p e, par- 

The AERCam 
We are using NASA’s Sprint AERCam and a simulation of 
system dynamics and the conmller written m Hybrid CC 
(HCC) (AG98) as a testbed for this work. To make this 
paper somewhat self-contained, we condense and repeat the 
description provided m (MBCG99). The AERCam is im- 
pler than many of the complex systems we intend to diag- 
nose, but it serves well m illustrating the concepts developed 
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The body fiame of reference and the directions of 
velocities (u, v, w) are the components of the translation 
velocity. (p, q, r) am components of the angular velocity. 

X 
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Three views of the AERCam, showing the thusten, 
and showing all the thrusters together in the cube 
circumscribing the AERCam. 

Figure 1: TheAERCamaxesandthTusters 

h m ,  and has p v i & d  excellent teestbed for OUT prelimi- 
nary work. We describe the dynamic model of the AERCam 
system brielly, a more detailed description of the model and 
simulation appear in (AG98). 

The AERCam is a smail spherical robotic camera unit, 
with 12hSters  that allow both linear and r o t a t i d  mo- 
tion (Fig. l). For the purposes of this model, we assume the 
sphere is uniform, and the fuel that powers the movement is 
in the center of the sphm. The fuel depletes as the thrusters 
fire. 

The dynamics of the AERCam are described in the AER- 
Cam body frame of reference. The translation velocity of 
this fi-ame with respect to the shuttle inertial frame of ref- 
exmce is 0. However, its orientation is the same as the ori- 
entation of the AERCam, thus its orientation with respect 
to the shuttle reference fiame changes as the AERCam m 
tates (i.e., it is not an inertial frame). The twelve thrusters 
are aligned so that there are four along each major axis m 
the AERCam body frame. For modeling purposes, we as- 
sume the positions of the thrusters an on the centers of the 
edges of a cube circumscribing the AERCam. Thus, for ex- 
ample, thrusters TI . T.. . T: . TI are parallel to the x-axis and 
are used for translation along the x-axis or rotation around 



the y-axis. Le., firing thrusters TI and T? results in transla- 
tion along the positive x-axis, and f i g  thrustem TI and TI 
results in a negative rotation around the y-axis. AERCam 
operations are simplified by limiting them to eitber transla- 
tion or rotation. Thrustas are either on or off, therefore, the 
control actions are discrete. In a normal mode of operation, 
only two thrusters are on at any time. 

AERCam dynamics 
A simplised model of the AERCam dynamics based on 
Newtonian laws is derived using an inertial m e  of ref- 
erence fixed to the space shuttle. The AERCam position m 
this frame is defined as the triple (.r.g, :). Let $ be the 
velocity in the AERCam bocty h e ,  with its vector compo- 
nents given by ( IL. i ~ . m ) .  The frame rotates with respect to 
the inertial reference frame with velocity d l  = @. q. T ) ,  the 
angular velocity of the AERCam. The rotating body b e  
implies an additional Coriolis force acting upon the AER- 
Cam. We assume uniform rotational velocity since in the 
n o d  mode of operation, the AERCam does not translate 
and rotate at the same time (Am78, pg. 130). Similar equa- 
tims can be derived for the rotational dynamics (AG98). 

2 - - . A  

d(nt G ) / d t  =F - 2 n t ~  x d) ~ e w t o n ’ s ~ a w  

The resultant equation for each coordinate: 

du/dt = F, /nt - 2(qw - vt’) - ( o/nnl) din/& 
h / d t  = F,/m - 2(t’rr - prn) - ( v /n t )  * din/& 

diol& = F:/in - 2(1w - pu)  - ( io /m)  * dm/dt .  

where the force F on each axis, is a function of the percent- 
agedegradationofthethrustersthat areexertingforceinthat 
direction as specified in Figure 1. Under normal operating 
conditions, the thrusten operate at lOOO?. 

We use these models to predict the position of the MR- 
Cam at time 1 + 1, given the position at time 1. We add noise 
to each of the models above. In this case the noise is white 
Gaussian noise with a mean of zero and a standard deviation 
(T. As noted above, these models are implemented in HCC 
and are used to compute the likelihood d e s c r i i  in the next 
section. 

Position Control Mode of the AERCam 
In the position cmtrol mode, the AERCam is directed to go 
to a specified position and point the camem in a particular di- 
rection. Assume the AERCam is at position A and directed 
to go to position B. In the first phase, the AERCam rotates 
to get one set of thrustem pointed towards B. These are then 
fired, and the AERCam cruises towards B. Upon reaching a 
position close to B, it fires thrusters to converge to B, and 
then rotates to point the camem in the desired direction. 

To facilitate the illustration of the diagnosis problem, we 
use a simple trapezoidal controller, which we explain in two 
dimensions. Suppose the task is to travel along the .,.-axis 
for some distance, then along the y-axis. Such manoeuvres 
are needed for navigating in the space shuttle. In order to do 

this, the AERCam fires its x thrustem for some time. Upon 
reaching the desired velocity, these are switched off. When 
the AERCam has reached a position close to the desired r 
position, the rwerse thrusters are switched on, and the AER- 
Cam is brought to a halt - the velocity graph is a trapezium. 
The process is analogous for the y direction. 

Problem Formulation 
In this section we describe OUT formulation of the hybrid di- 
agnosis problem. Once again, the hybrid systems we ex- 
amine are discretetime hybrid systems. Observations and 
state estimation are made at regular intervals 1,2. . . . . I ,  1 + 
1.. . . . Further, we assume that our systems contain no au- 
tonomous jumps. Le., all nominal transitions between sys- 
tem modes are induced by a controller action, none are in- 
duced by the system state and mode (Bra95). Autonomous 
jumps are common m hybrid models where a mode with 
complex nonlinear behavior has been simplified by creating 
multiple modes of less complex behavior, with stateinduced 
autonomous jumps connecting them. Building on the con- 
cepts in (MBCGOO): 
Deenition 1 (Hybrid System) A hybrid system is a 5-tuple 
(-M.-Y.C. 17,f): 
0 14 E .tl is the discrete state or mode of the system, where 

.M is a finite collection of variables. 111 is the system 
mode at time I .  

0 .r E S R” is the continuous state vector of the system. 
.rl is the continuous state at time f . 
(T E C, is the discrete input, where C is a finite collection 
of actions. I.e., the controller actions that transition the 
systembetween modes. 

0 I’ E 1- C R’ is the continuous input. 
0 f is the system dynamics function that maps the mode, the 

continuous state, and the input into the mode and contin- 
uous state atthenextdiscretetime point. [/~/+I.TI+I) = 
f ( j t , .  . r / .  nl. u / .  u q ) ,  where L C ~  E IT” is zero-mean white 
noiseofknown@,and f : .M x S x C x R7’ x -+ 
.W x S. f is o b  expwssed as a collection of fimc- 
tions, e.g., functions that describe the continuous behav- 
ior within a specific mode, and a function that describes 
the discrete transitions between modes, based on discrete 
inpUt. 

0 d . 9  E R’’ is the observation vector of the system. oL.sl is 
the observation vedor at time 1. o l ~ 9 l  is relatedto the con- 
tinuous state vector xl  by the function o l ~ ~  = 11 (q . V, ) 
where VI E R’’ is zero-mean white noise of known pdf, 
and11 : S x RP -+ Rl’. 

Definition 2 (System State) The state of a hybrid system at 
time 1 ,  (p,. x / )  comprises the discrete mode of the system 
and the continuous state at 1 .  

To define the hybrid diagnosis problem, we augment Defini- 
tion 1 as follows. 
Definition 3 (Diagnosable Hybrid System) A diag- 
nosable hybrid system, (.V. S. Z. 1.. f. CO:\IPS) is a 
hybrid system comprised of 77) potentially malfunctioning 
components C(24tPS = (rl  , . . . . c,,,) where 



For each ir f -W, i i  includes a designation of whether 
each c, E CO:\IPS is operating normally, or abnormally, 
i.e., [7]d)(c1) .  

0 For each 11, con&uous state vector .r includes a set of 
distinguished parameters 8 associated with that mode. 

0 We assume that transitions to fault modes axe achieved by 
exogenous actions. Hence, C = C, U E,, where 
- E, is a fimite set of controller actions, and 
- C, is a finite set of exogenous actions. 

We introduce the following additional notation, 
0, designates the observation history, the sequence of 
timeindexedobservations. 01 designates the observation 
history to time I .  

p p  denotes a faulty mode, i.e., a mode for which at least 
one c+ E COMPS is n(r(c,) in p p .  Or denotes tbe pa- 
rameters associated with l i p .  

In the case of the AERCam example, the potentiaUy mal- 
functioning components are the 12 thrusters, and a mode 
/ r  includes the behavior mode (e.g., translate-x, translate- 
y, rotatex, etc.) and [ - I J ~ J ( T ~ ) ,  i = 1. .. . -12, for each 
thruster. The continuous state vector includes the 3, y, : 
position of the AERCam, velocity and acceleration. The pa- 
ram- values, 8 associated with each it axe the percentage 
degradation of each of the thrusters. As we will see later 
on, we make a Markov assumption with respect to cmput- 
mg the temporal dynamics of our system. Hence all relevant 
state must be included explicitly in the state variables. 
Dewtion 4 (Mode9 A model of a diagnosable hybrid sys- 
tems is a timeindexed mode sequence and associated pa- 
rameter values ( b i ~ .  . . . . pol ] .  [OI.. . . , &)]). The model to 
time 1 is denoted (g. @ and the model at time 1 is denoted 
R/ = ( p / . O / ) .  The model is a distinguished subset of the 
entire system state. 

In this paper we make several simplifying assumptions re- 
garding our diagnosis ta t .  In particular, we make a single 
time fault assumption. We assume that our systems do not 
experience multiple sequential fiults. Further, we assume 
that faults am abrupt, resulting m partial or full degradation 
of component behavior. We cast the hybrid diagnosis task 
as the problem of finding the most lilcely model for the ob- 
servation history, P(s, I U), i.e, the mode and paameter 
valuea (p,. 9,) that best fit the observations over time. To do 
this, we appeal to a Bayesian formulation of the pblem. 

Bayesian Formulation 
To monitor and diagnose a hybrid system, we must compute 
the posterior probability distribution over models at time 1 ,  
given the observation history. Recall, using Bayes’ rule that 
the posterior is proportional to the likelihood times the prior. 
Le., 

p(mode1 I observations) ‘x p(observati0ns I model) p(mode1). 

Our objective is to find the posterior probability distribu- 
tion over models at time I ,  11, given the observation history 
uptotimet, Or. I.e,wewishtocomputep(.s/ IO/). 

To compute the temporal dynamics of our system, we 
make a Markov assumption, i.e., 

Further, we assume that at each time point, there is a small 
probability of an exogenous action, leading to a transition 
to a failure mode. Finally, we assume that given the current 
model S I ,  the current observations o h ,  and previous obser- 
vation history C?/- I axe independent. 

Hence, in order to track our hybrid system, we can com- 
pute the posterior distrihtion of the model at time 1 given 
the observation history which, according to Bayes’ rule 
and our assumptions above, is proportional to the likeli- 
hood of the observation at time 1 given the model at time 
/ @(oh.$/ I XI)) and the temporal prior, the prediction 
of the current model, given the observation history UP to 
1 - l,@(.v I 01-1). Le., 

where k ensures that the distribution integrates to one. 
The likelihood of the observations given the state is easily 

evaluated for the AERCam following the model described in 
the previous section. The t e m m  prior, i.e., the probability 
of the current model given the observation history to 1 - 1 
depends on the posterior over models at the previous time 
point, p(.?/- I I or- I ) and the temporal dynamics, p(.q I 
R/ - I ) . Le., 

y(s/ I s/- I . .  . . ..Yo) = P(S/ I $1-  I )  

])(Si I (31) = kp(dS /  I .%)I?(S/  I C7r-l). 

P(S/ I C3-1) = P h  I .V-I)P(.%l I ( 3 / - l ) h - l  L, 
The temporal prior expresses the probability of a partic- 

ular model given the observation history up to that point. 
In the case of a fault diagnosis, the likelihood of a fault 
model will initially be very low. If we are tracking using a 
h i t 0  number of parallel filters, or using a factored sampling 
method as suggested in the next section, this may mean that 
we will initially not track these fault models, or alternately 
that we lrack many low probability models which is com- 
putationally expensive. In order to focus the temporal prior 
more quickly and accurately on the appropriate diagnostic 
models, we make use of qualitative diagnosis techniques. 

In (MBCGOO; MBCG99), we proposed to use qualitative 
diagnosis techniques to generate qualitative candidate diag- 
noses - candidate mode and parameter values that were con- 
sistent with observations (3 in some window of time. 
Dehition 5 @tuple (MBCCOO)) A D-tuple is a 4-tuple 
( C . j i p . / p . B p ) ,  where / ir  is a fault mode, I y  is the time 
the fault mode commenced, Or is the parameter values BS- 
sociated with the fault mode behavior, and C is the set of 
failed (abnormal) components m / L  I.‘. 

Deanition 6 (Candidate Qualitative Diagnosis (MBCCOO)) 
Given a diagnosable hybrid system with model (@. i), in- 
put history Z’, and observation history, (3, D-tuple 
(C. l ip .  / p .  9,) is a candidate qualitative diagnosis iffthere 
exists a range of parameter values Or;. = [el. &I, and time 
range 1 p = [ ! I .  /J such that the occurrence of fault mode 
l i p  with parameter values O p  in time range / r is consistent 
with 0, z and (17.8). 



We do not repeat the diagnosis algorithms here, but re- 
fer the reader to (MBCGOO; MBCG99) for details. These 
generated diagnoses are used to propose a set of different 
models to be tracked by the system. The candidate models 
are generated by exploiting pxdous work on qualitative di- 
agnosis of continuous systems (e.g., (MB99)), adapting the 
authors’ causal propagation algorithms to deal with the dis- 
crete state variables and mode transitions of the hybrid sys- 
tems. To incorporate this so-called oracle into our Bayesian 
formulation, we use it to bias or focus the temporal prior. 
This will in hnm more heavily weight the posterior for the 
corresponding fault models, 3,. In the case of particle filter- 
ing, the technique we propose in the next section to compute 
the posterior, this focusing of the temporal prior will help 
the algorithm sample h m  the appropriate part of the dis- 
tribution. To incorporate this qualitative diagnosis “oracle” 
we may alter our view of the posterior we are computing as 
follows. 

p(sl I 0,. oracle) cx p(d~.s /  I s,, oracle) 

cx I ~ ( ~ . Y ,  I 81)  p(al I 0,- I ,  oracle) 
p(  sl 1 01 - I . oracle) 

where y(s/ I 01- 1. oracle) is equal to ~ ( $ 1  I 0,- I ) above, 
when the observations are consistent with the current model, 
and otherwise ~ ( - 9 1  I C’l- 1. oracle) is simply the normalized 
probability of the faulty models, given the observations. To 
ensure the speed of the oracle, and because of the lack of r e  
liable numbers for such calculations, the probabilities gener- 
ated by the oracle are nonnalized prior probabilities of dif- 
ferent fidts given the observations, as defined by the system 
builder. 

Once the posterior is computed, Merent models can be 
comparedby estimatingthe expectedvalue ofdifferentmod- 
els, normalizing and comparing. For example, we may sum 
the likelihoods for ail samples having like [ ~ ] n b ( r , )  desig- 
nations, and compare these to determine which components 
arelikelymalfimcli~g. 

Computing the Posterior 
In the previous Section we presented the problem of tracking 
and diagnosing hybrid systems using a Bayesian fonnula- 
tion. As noted m the mtroduction, there are many algorithms 
for probabilistic tracking of synamical systems, though most 
are not tailored to simultaneously tracking multiple candi- 
date models nor to dealing with nonlinear dynamics. Our 
posteriordishibutionp(.sl I 0,) willbeamulti-dimensional, 
multi-modal distribution, reflecting the multiple competing 
diagnostic models. There is no closed-form (parametric) 
representation for this distribution, as there is, for exam- 
ple, for a unimodal Gaussiun. Consequently, to compute this 
posterior, we appeal to factored sampling techniques to pro- 
vide an approximation of the distribution, and project this 
distribution forward through time according to its dynamics, 
using the Condensation algorithm (IB98), derivative of the 
bootstrap algorithm (GSS93) and commonly refared to as a 
particle filter. 

’Previously referred to as the action history. 

More specifically, the posterior distribution p ( s ,  I O,), 
is represented as a set of LY weighted samples {s( ‘ I. . . . , 
st’)), with associated weishts {r“] .... .d’]). ~ntu- 
itively, the larger the N, the better the approximation, but 
the more costly the computation. Hence we would like to 
sample the distribution as sparsely as possible, while maxi- 
mizing our coverage of our distribution, and thus weighting 
samples more heavily in those parts of the distribution that 
have greater volume. 

At each time step, the basic algorithm comprises three 
steps: select, predict, and update. 
Seleck We start with the posterior h m  the previous time 
step, p(s,-l I OI-I), represented as the factored sample 
(s,-~. ( 8 )  K,- (1) I), i = 1. .  . . . Ar. Sample N times with replace- 
ment with probability x;!~, the sample {s)!~}, producins 
the samples {sf:’’}. Note that samples with high weights 
may be chosen multiple times. 
Predict: For each new sample s’j i l ,  propagate the sample 
forward according to the dynamics of the system to pro- 
duce new samples { s) ’)}. In the case of our AERCam, these 
are the dynamics described m the previous section, together 
with zero-mean Gaussian white noise. This new set of 9 1 ~ -  
ples approximates a fair random sample for the effective 
priorp(a/ I 01-1). Whatremainstocomputeisthe weights. 
update: compute the weights, $) = P(O~,RI I .Ti = sj’)). 
From the observations d ~ / ,  evaluate the likelihood of each 
sample, and normalize the likelihoods of the samples so they 
sum to 1. I.e., 

The above algorithm does not reflect OUT qualitative diag- 
nosis omcle. In order to suitably focus the temporal prior, we 
use a linear combination of the samples from the computed 
temporal prior, and samples from the oracle. This technique 
was inspired by (BF99), and could also be achieved using 
importance sampling. 

The sample approximation to the distribution, p ( , q  I 0 1 )  

can be usedto compute the expectedvalue for some moment 
f of the density, for example a mean of some state variable, 
].e., 

I- 

E[&) I O,] = C nj”f(sj”) 
i= I 

In this way, we can compare the sum of the likelihoods for 
each distmct model. 

Summary and Related Work 
In this paper we expanded the hybrid diagnosis framework 
described in (MBCG99; MBCGOO) to present a m a t h d -  
cal formulation and computational techniques for generating 
diagnoses of hybrid systems in terms of Bayesian tracking 
and model comparjson. We characterized the evaluation of 
our models (system mode and associated parameter values) 



as the computation of the posterior distribution of models 
given a history of observations. Exploiting a Markov as- 
sumption, we showed that this could be computed in terms 
of the likelihood of the observations at time 1,  given the 
model at time I ,  times a prior. Exploiting the work d e  
scribed in (MBCG99; MBCGOO) for generating qualitative 
diagnoses of hybrid systems, we treated our qualitative mon- 
itoring and diagnosis system as an oracle. Ifthe observations 
were consistent with the current model, then the qualitative 
monitoring and diagnosis system had no effect on the com- 
putation of the posterior. However, if the observations were 
inconsistent then the oracle would generate a set of cmdi- 
date diagnoses that would be used to a4ust the prior to focus 
the likelihood computation on that part of the model space 
that was indicated by the qualitative monitoring and d i a p  
sis en*. 

Since hybrid systems are generally nonlinear, and hence 
the distribution of the posterior multimodal and non- 
Gaussian, we represented the post&or distribution as dis- 
crete samples and exploited factored sampling techniques, 
used in particle filtering and in the Condensation algorithm, 
to propagate conditional probability densities over time. 

We are still in the early stages of experimenting with these 
techniques, but prelhbmy results look promising. Con- 
densation has proven effective for some near realtime visual 
tracking tasks (e.g., (IB98)), but we anticipate that more 
complex hybrid systems with large state spaces and par- 
tial observability will require further computation and larger 
amouuts of memory that will compromise realtime cmpu- 
tation, just as they do, for example, with POMDPs. Such 
systems will require new variants of many of the techniques 
we currently employ in model-baseddiagnosis including ex- 
ploiting problem decomposition, compact representations of 
state spaces, abstractions of problems, and approximation of 
inference. In summary, Bayesian tracking and model com- 
parison and factored sampling techniques for dynamical sys- 
tems provide a sound mathematical fonaalism and pmis -  
m g  tools for monitoring and diagnosing complex dynamical 
sy-. 

The problem of monitoring and diagnosing hybrid sys- 
tems has received little attention to date, although there is 
much related work. Within the AI community, t h m  has 
been a great deal of research on diagnosing static systems 
(e.g., (HCD92)), while much less on diagnosing discrete dy- 
namical systems (e.g., ((394; Mc198; WN96; BLPZB)), 
qualitative diagnosis of continuous systems (e.g.,. (MBW)), 
and tracking (e.g., (RK99)). Most recently, (LPKBW), have 
developed related techniques for monitoring and diagnosing 
Conditional Linear Gaussian hybrid systems using a Dy- 
namic Bayes Nets to compactly represent the conditional 
probability distribution, and proposing algorithms for hy- 
pothesis reduction and smoothing. Within the FDI commu- 
nity, the largest proportion of research has focused on diag- 
nosing continuous systems (e.g., (Ge198; Fra90)). These ap- 
proaches have ofien used observer schemes and/or Kalman 
filters to track continuous system behavior. Diagnosis of 
discrete-event systems has also been studied within the FDI 
community (e.& (SSLST96; Lun99)). Nevertheless, our 
work and the concurrent work of (LPKBOO) has been the 

first to propose a Bayesian tracking approach to diagnosing 
hybrid systems. Our use of hctored sampling techniques 
and particle filtering drawn from the statistics and computer 
vision communities, presents a significant contribution to a 
challenging problem. 
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Abstract. This pape~reporte on an owgoing Project to investigate techniques to 
diagnose COZIIP~X dynamical systems tbat ~UB modeled a~ hybrid systeme. In par- 
ticular, we examiae continuous systems witll embedded supervisory cantrollers 
that experience abrupt, partialor fidl %lure ofcomponent devices. We cast the 
diagnosis problem a a model selection problem. To reduce the space of potential 
models under mideratian, we exploit techniques firnu qualitative reasoning to 
conjecture an initial set of qualitative candidate diagnoses, which mduce a small- 
set ofmodels. We reak thesediagnom using parameter estimation and model 
Wig techniques. As a motivating case study. we have examined rhe problem of 
diagnosing NASA's Sprint AERCam, a small spberid robotic camea unit wih 
12 thrusters that enable both linear and rotational motion. 

1 Introduction 

The objective of our project has been to investigate how to diagnose hybrid systems 
- complex dynamical systems whose behavior is modeled as a hybrid system. Hybrid 
models comprise both discrete and continuous behavior. They are typically represented 
as a sequence of piecewise continuous behaviors mterleaved with discrete transitions 
(e.g., [q). Each period of contmuous behavior represents a so-called mode of the sys- 
tem. For example, m tbe case of NASA's Sprint AERCam, modes might include trans- 
latex-axis, mtateX-axis, tmnslate-Y-axir, etc. [ I]. In the case of an Airbus fly-by-wire 
system, modes might include take+& landing, climbing, and cnrke. Mode transitions 
g e n d l y  result m changes to the set of equations goveming the continuous behavior of 
the system, as well as to the state vector that initializes that behavior m the new mode. 
Discrete transitions that dictate mode switching are modeled by fisite state automata, 
temporal logics, switching functions, or some other transition system, while continuous 
behavior within a mode is modeled by, e.g., ordinary Meremtial equations (ODES) or 
differential and algebraic equation8 (DAEs). 

The problem we address in this paper is how to diagnose such hybrid systems. For 
the purposes of this paper, we consider the class of hybrid systems that are continuous 
systems with an embedded supervisory controller, but whose hybrid models contain no 
autonomous jumps. Le., all nominal transitions between system modes are induced by 
a controller action, none are induced by the system state and model [q. The class of 
systems we consider can be modeled as a composition of a set of component subsys- 
tems, each of which is itselfa hybrid system. We assume that the system operation is 
being tracked by a monitoring and observer system (e.g., [ 191) that ensures that the sys- 
tem behavior predicted by the model does not deviate sipficautly fium the observed 



behavior in nomlal system operation. When observations occur outside this range, the 
behavior is deemed to be aberrant and diagnosis is initiated In this paper, we consider 
faults whose onset is abrupt, and which result m partial or complete degradation of 
component behavior. The general problem we wish to address can be stated as follows: 
Given a hybrid model of sjwtem behavior: a hbtoty of executed contmller actions. a hb- 
tory of observations. including observations of abermnt behavior relorive to the model, 
isolate the fault that is the cause for the abwmnt behavior. Diagnosis is done online 
in conjunction with the continuedoperation of &e system. Hence, we divide our diag- 
nosis task mto two stages, initial conjecturing of candidate diagnosis and subsequent 
refinement and tracking to select the most likely diagnoses. 

In this paper we conceive the diagnosis problem as a model selection problem. The 
task is to find a mathematical model and associated parameter values that best fit the sys- 
tem data. These models dictate the components of the system that have malfunctioned, 
their mode of Wure, the estimated time of fkilure and any additional parameters that 
fiather characterize the failure. To address this diagnosis problem, we propose to ex- 
ploit AI techniques for qualitative diagnosis of continuous systems to generate an initial 
set of qualitative candidate diagnoses and associated models, thus drastically reducing 
the number of potential models for our system. This is followed by parameter estima- 
tion and model fitting techniques to select the most likely mode and system parametem 
for candidate models of system behavior, given both past and subsequent observations 
of system behavior and controller actions. The main contributions of the paper are: 1) 
fclnnulation of the hybrid diagnosis problem; 2) the exploitation of techniques for qual- 
itative diagnosis of continuous systems to reduce the diagnosis search space; and 3) the 
use of parameter estimation and data fitting techniques for evaluation and comparison 

In Section 2 we provide a brief description of NASA's S+t AERCam, which we 
have used as a motivating example and which we will use to illustrate certajn concepts 
m this paper. In Section 3 we present a formal characterization of the class of hybrid 
systems we study and the diagnosis problem they present. In Section 4 we describe our 
approach to hybrid diagnosis and the algorithms we use to achieve hybrid diagnosis. 
The generation of initial candidate qualitative diagnoses is described m Section 4.1, 
and the subsequent quautitative fitbag and tracking of cmdidate diagnoses and their 
models is described in Section 4.2. In the final two sections, we brieily discuss related 
work and summarize our conttibutions. 

of candidate diagnoses. 

2 Motivating Example: The AERCam 

We are using NASA's Sprint AERCam and a simulation of system dynamics and the 
controller written m Hybrid CC (HCC) as a testbed for this work. We describe the 
dynamic model of the AERCam system briefly, a more detailed description of the model 
and simulation appear m [ 11. 

The AERCam is a small spherical robotic camera unit, with 12 thrusters that &ow 
both linear and rotational motion (Fig. 1). For the purposes of this model, we assume 
the sphere is uniform, and the fuel that powers the movement is m the center of the 
sphere. The fuel depletes as the thrusters fire. 
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Fig. 1. The AERCnm axes and thrusters 

The dynarmcs of the AERCam are described in the AERCam body frame of refer- 
ence. The translation velocity of this frame with respect to the shuttle inertial m e  of 
reference is 0. However, its orientation is the same as the orientation of the AERCam, 
thus its orientation with respect to the shuttle ref'erence h e  changes as the AERCam 
rotates (i.e., it is not an inertial frame). The twelve thrusters are aligned 50 that t h m  
are four along each major axis m the AERCam body M e .  For modeling purposes, 
we assume the positions of the thrusters are on the centers of the edges of a cube cir- 
cumscribing the AERCam. Thus, for example, thrusters TI, Tz, T& TI are parallel to 
the r-axis and are used for translation along the .,.-axis or rotation around the y-axis. 
Le., firing thrusters TI  and T2 results in translation along the positive x-axis, and firing 
thrusters TI and TI results in a negative rotation aroundthe y-axis. AERCam operations 
are simplified by limiting them to either translation or rotation. Thrusters are either on 
or off, therefore, the control actions are discrete. In a normal mode of operation, only 
two thrusters are on at any time. 

2.1 AERCam dynamics 

A simplified model of the AERCam dynamics based on Newtonian laws is derived us- 
ing an inertial frame of reference k e d  to the space shuttle. The AERCam position in 
this fiame is defined as the triple (r. y. I). Let be the velocity in the AERCam body 
frame, with its vector components given by ( t i .  1'. w).  The frame rotates with respect 
to the inertial reference M e  with velocity = (p. q. r) ,  the angular velocity of the 
AERCam. The rotating body frame implies an aational Coriolis force acting upon the 
AERCam. We assume uniform rotational velocity since in the n o m 1  mode of opera- 



tion, the AERCam does not translate and rotate at the same time [2, pg. 1301. Similar 
equations can be derived for the rotational dynamics [ 11. 
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The resultant equation for each coordinate: 
du/dt = F , / m  - 2 ( p i  - vr) - ( n / m )  * dni/rlt 
rlv/r l t  = F,,/na - 2(.1.f~ - pu) - (~ /nb)  * dnr/rlt 
dui/rlt = F - / m  - 2(1~1-  qu) - (ro/nt) * dni/dt 

2.2 Position Control Mode of the AERCam 

In the position control mode, the AERCam is directed to go to a specified position and 
point the camera in a particular direction. Assume the AERCam is at position A and 
directed to go to position B. In the first phase, the AERCam rotates to get one set of 
thrusters pointed towards B. These are then fired, and the AERCam cruises towards B. 
Upon reaching a position close to B, it h s  thrusters to converge to B, and then rotates 
to point the camera in the desired direction. 

To facilitate the i l l u ~ a t i m  of the diagnosis problem, we use a simple trapzoidal 
controller, which we explain m two dimensions. Suppose the task is to travel along 
the .r-axis for some distance, then along the y-axis. Such manmums are needed for 
navigating in the space shuttle. In order to do this, the AERCam h s  its .r thrusters 
for some time. Upon reaching the desked velocity, these are switched off. When the 
AERCam has reached a position close to the desired .r position, the reverse thrusters are 
switched on, and the AERCam is brought to a halt -the velocity graph is a trapezium. 
The process is analogous for the y direction. 

3 Problem Formulation 

In this section we provide our formulation of the hybrid diagnosis problem. 

Definition 1 (Hybrid System). A hybrid system is a 5-tuple (,W, S. 3. S. qj), where 
- .V,finitesetofsystemmodes(it~ .... .ILL.). 
- S C R”, continuous state variables. :r( I )  is the continuous behavior at time I .  
- P, finite set of functions { f i t , .  . . . , f , L b } ,  and associated parameter values 0 such 

that for each mode, / I , ,  fp8 ( l .@, . r ( / ) )  : R x R x S -+ S defines the continuous 
behavior of the system in i t ,  .I 

- S, finite set of actions (0 I . . . . . q), which transition the system between modes. 
- cp, transition function which maps an action, mode and system state vector into a 

new mode and initial state vector, i.e., (j : S x .bl x S + .W x S. 

To define the hybrid diagnosis problem, we augment Definition 1 as follows. 

’ Parameter value ranges may be associated with 8. 



Debition2 (Diagnosable Hybrid System). A diagnosable hybrid system, 
(.bf. S. ;F. S.O. COMPS) is a hybrid system comprised of 711 potentially malfunc- 
tioning components CO3fPS = (q . . . . . c,,,) where 
- For each 14 E .M, 1 4  includes a designation of whether each ci E COMPS is 

operating normally, or abnormally, i.e., (-)nb(ci). 
- We assume that transitions to fault modes are achieved by exogenous actions. 

Hence, Z = ,Yc U Ep, where 
0 Sr is a 6nite set of controller actions, and 
0 S, is a 6nite set of exogenous actions. 

- A, the controller action history, the sequence of time-mdexed controller actions 

- Sd,, S, continuous state variables that are observable. .r,,I,.J/) is the observa- 

- ~ 3 ,  the observation history, the sequence of time-mdexed observations. 

performed 

tions at time 1. 

For notational convenience, ltr denotes a faulty mode, Le., a mode for which at least 
m e  ci E COdfPS is nL(ci) m l i p .  0 p  denotes the parameters associatedwith f l r r .  

In the case of the AERCam example, the potentially malfunctioning components are 
the 12 thrusters, and a mode 11 includes the behavior mode (e.g., translatex, translate- 
y, rotate-x, &.) and (-)nD(T,). i = 1. .  . . .12, for each thruster. The continuous state 
vector includes the .r, 9, z position of the AERCam, velocity and acceleration. The 
parameter values, 0 associated with each fu m the percentage &gadation of each of 
the thrusters. 

Definition 3 (Model). A model, If ml of a diagnosable hybrid systems is a time-mdexed 
modesequenceandassociatedparametervalues ( [ i t1  ... . . / 1 , , , ] ,  [ e , .  . .. .0,,]) 

Notice that each model of the system, (p, 0) induces a corresponding time-mdexed 
piecewise continuous sequence of functions [ f i l l  . . . . . f,,",] dictating system behavior. 

In this paper we make several simplifymg assumptions regarding our diagnosis task. 
In particular, we make a singletime fault assumption. We assume that our systems do 
not experience multiple sequential faults. Further, we assume that faults are abrupt, 
resulting in partial or full degradation of component behavior. We cast the hybrid diag- 
nosis task as the problem of finding the most likely model for the observation history, 
P(4Inrl I 0). Le, the sequence ofmodes and parameter values (p. 0) that best fit the 
observations over time. Under normal operation, the model of the system ~ ~ I m i , ~ ~ ~ , , , , , ~  is 
fully dictated by the sequence of controller actions cl and the nominal parameter values, 
0. Once again, we assume that the system operation is beingtracked by a monitoringand 
observer system (e.g., [ 19l)that ensures that the system behavior predicted by the model 
does not deviate sigudicantly from the observed behavior m n o d  system operation. 
When observations occur outside this range, the behavior is deemed to be aberrant and 
diagnosis is initiated Given a diagnosable hybrid system (.U. S. F. E, +. CO:\IPS), 
a controller action history, A and a histoq of observations, 0 which includes observa- 
tions of aberrant behaviory the hybrid diagnosis task is to determine what components 
are faulty, what fault mode caused the abenant behavior, when it occurred, and what the 
values of the parameters associated with the fault mode are. In the AERCam system, a 
diagnosis might be that thruster Ti experienced a blockage fault of SO%, at time / i .  



Once JImll,,,,.l12,,! has been rejected, we must find a new most likely model from 
among the potentially exponential (in Co:\IPS) number of mode sequences, occurring 
within a large but bounded time range. We propose to exploit previous research on 
ternpod causal graphs for qualitative diagnosis of continuous systems [ 181, to compute 
a set of candidate qualitathe diagnoses that are consistent with OUT system, in order to 
identify a preliminary subset of candidate models, whose likelihood can be estimated. 

Definition 4 (&tuple). A D-tuple is a 4-tuple (C, r .  / p .  Or), where l i p  is a fault 
mode, / p is the time the fault mode commenced, Or is the parameter values associated 
with the fault mode behavior, and C is the set of failed (abnormal) components in p p .  

Definition 5 (Candidate Qualitative Diegnosis). Given a diagnosable hybrid system 
with model ~\Iocl= (p. 0) an action history A, and a history of observations, 8 which 
includes observations of aberrant behavior, D-tuple (C, r .  / p 0,) is a candidate qual- 
itative diagnosis iff there exists a range of parameter values Bp = [@!. @,,], and time 
range 1 r = [Ir . I .I such that the occurrence of fault mode i f  r with parameter values Or 
in time range / p  is consistent with 0, A and N m f .  

Hence, a candidate qualitative diagnosis stipulates a fault mode, including one or 
more faulty components. It also stipulates a lower and upper bound, [ / I .  I,,], on the time 
the fault mode occurred This range generally corresponds to the start times of the ccm- 
troller induced modes preceding and following the fault, or up to the point the fault was 
detected. This candidate diagnosis induces an associated candidate model, M m l ~  = 
( [p i . .  . . . / f i - / i r . / l :+ ,  . . . . ./L;,,J. [e,, . . . . ei, ~ r . & + ,  . . . . - O ; ~ J )  correspondingto i\fml 
withthefaultmodeicr andOp msertedat Ip.Everysubsequentmode, . p l l , ,  
has nh(c+). E C enforced, and every subsequent set of parameters has the param- 
eters associated with faulty c a m p -  C enforced Computing candidate qualitative 
diagnoses is discussed in Section 4.1. 

Since each candidate qualitative diagnosis only conjectured ranges for the time of 
the fault mode, I p and parameter values associated with the fault mode, Bp, the asso- 
ciated candidate models are underconstrained. In Section 4.2, we discuss methods for 
estimating unique values for 1 r and @ p  and for esbimating a posterior probability for 
each of the candidate models, M o r l ~ . ,  given 0. 

Definition 6 (Candidate Diagnosis). Given a diagnosable hybrid system, a history of 
controller actions A, and a history of observations (3, D-tuple (C.pp. 1r .Op)  with 
associated model M m k  is a candidate diagnosis for the hybrid system, iff P(i\lrxlp I 
(3) > a, fur defiaedthresholdvalue o E [O. 11. 

4 Diagnosing Hybrid Systems 

In this section we discuss one method for computing hybrid diagnoses. In Section 4.1 
we discuss a technique for generating candidate qualitative diagnoses, and their associ- 
ated candidate models, In Section 4.2 we discuss techniques for model fittmg and for 
model (and hence diagnosis) comparison. In particular we discuss techniques for esti- 
mating the parameters of the candidate models, and the likelihood of the models, and for 



continued monitoring and reliuement of the caudidate models as the system continues 
to operate and observations continue to be made. 

We illustrate these techniques with the followmg simple AERCam example. Con- 
sider the scenario depicted in Fig. 2. In the first accelerate phase, the AERCam is being 
powered by thrusters T1 and T2. Assume that at some point m this phase, a sudden leak 
in the T2 thruster causes an abrupt change in its output. As a consequence, the AER- 
Cam starts veering to the right of the desired trajectory, as illustrated by the left-most 
dotted lines in Fig. 2. (The other dotted lines represent other potential candidate diag- 
noses consistent with the pomt of detection of the failure.) Soon after this occurs, the 
supervisory controller commands the AERCam to turn off Thrusters T1 and T2 with 
the objective of getting the AERCam to cruise m a straight line. In the fidty situation, 
the AERCam has some residual angular velocity about the z-axis, so it continues to 
rotate m fhe cruise mode. Then the controller turns on thrusters T3 and T-l, to decel- 
erate the AERCam with the objective of bringing it to a halt. Again, this obJective is 
not entirely achieved m the the faulty situation. Next, thrwters T5 a d  TG are switched 
on, to move the AERCam m the I/ direction. However, since the AERCam is not m the 
desired orientation after the M u r e ,  the position error due to faulty thruster T2 accumu- 
lates causing a greater and greater deviation from the desired trajectory of the system. 
The position of the AERCam is being continuously sensed, filtered for noise and mon- 
itored. At some pomt within the translation the trajectory exceeds the error bound, 
Le., P ( X o d l x w n , ~  < n) and is h u e d  by the monitoring system as aberrant relative 
to :\fmllx,,r,,la~. At this pomt, the diagnosis task begins. 

Error Bounds 

- - - - - - - - >  : ....................................................................... 
X-axis 

Flg. 2. Possible %ult tmjectorks of AERCam ( simplified for illushation purposes). 

4.1 Qualitative Candidate Generation 

Given the current system model Xorl = fp, 0) (commonly r\Id,,o,.,n~,~), a history of 
controller actions A, and a history of observations C’ including one or more observa- 



tions of abenant behavior, we wish to generate a set of candidate qualitative diagnoses 
(C. p p .  lr;.. Or;.), and associated candidate models as described in Definition 5. To do 
so, we extend techniques for generating qualitative diagnoses of continuous dynamic 
systems to deal with hybrid systems with multiple modes. The model and propagation 
mechanism, as applied to continuous systems diagnosis, is described m [ 181. 

In the case of our AERCam example, the action history A is [(on(Tl). on(T2)). 
(off(T1). off(T2)) .  (on(T3). on(T-l)), (off(T3). off(T4). on(TG), on(TG)), (off(T3). 
oWTG))]; the model, Af CX&,,,~,,,.,~ is the time-indexedsequence [(nccclcmlex. la / ) (  T1- 
T12). e), (mni.sc-r. -1nb(T1 -T12), t9),(deccfwrdcr. -.nb(Tl -T12). e), (nmlern/c-g ,  
-nh(T1 - T12), B), ( r r r~ iw-p.  ~ n b ( T 1  - 222). e)], where B is a vector of length 12 all 
of whose emtries axe 0 (percent degradstion in thrusters). 

To generate candidate qualitative diagnoses we construct an abstract model of the 
dynamic system behavior, Af C X ~ ) , ~ , . , , ~ , ~ ~  as a temporal causal graph. A part of the tem- 
poral causal graph for the AERCam dynamics is shown in Fig. 3. The graph expresses 
directed cause-effect relations between component parameters and the system state vari- 
ables. Links between variables are labeled as: (i) +l, implying direct proportionality, 
(ii) - 1, implying inverse proportionality, and (iii) J, implying an integrating relation. 
An integrating relation introduces a temporal delay m that a change on the cause side of 
the relation aff- the derivative of the variable on the effect side. This adds temporal 
characteristics to the relations between variables. Some edges are labeled by variables, 
implying the sign of the varieble in the particular situation defines the nature of the rela- 
tionship. The candidate generation algorithm is invoked for every initial instance of an 

-3. A subset of the temporal causal graph showing the relatiom between Thrusters 2'1 - 2'8 
and the x and y positions of the AERCam. 

aberrant observation. The aberrant observation plus the controller action history A are 
input to a backward propagation algorithm that operates on the temporal causal graph. 



The algorithm operates backwards from the last mode in the mode sequence of 3 I d  

Step 1 For the current mode, extract the corresponding temporal causal graph model, 
and apply the I&n@y Possible Fuultr algorithm. Details of this algorithm are presented 
in [ 181, but the key aspect of this algorithm is to propagate the abenant observation ex- 
pressed as a f value, backward depth-!irst through the graph. For example, given that 
the y-position of the AERCam has deviated - (i.e., below normal), backward prop- 
agation implies d(y ) /d /  is -, and so on, till we get Tc and Tr,  implying thrusters 
T.3 and TG are possibly faulty with decreased thrust performance. Propagation along a 
path can terminate if conflicting assignments are made to a no&. The goal is to system- 
atically propagate observed discrepancies backwd  to iden@ all possible candidate 
hypotheses that are consistent with the observations. In our example, the component 
parameters, COMPS = {TI,. . . . T12) form the space of candidate huh. 

Step 2 Repeat Step 1 for every mode m the mode sequence, to ii I .  The system model 
needs to be substituted as the algorithm traverses the mode sequence backwards. There- 
fore, back propagation will be performed on a different temporal causal graph for each 
mode in the controller history2. 

The output of this step is a set of qualitative diagnoses (C. irr. I F .  Or), each with 
an associated candidate model, as described in Section 3. Returning to our AERCam 
example, three qualitative candidate diagnoses are generated. The first candidate diag- 
nosis is that T2 W e d  in the .r acceleration phase. The time of the hult mode transition 
is [ I  I. 1-21, and the parameters associated with the Wure - the percentage degradation 
of the component is in the range [0, 1001. So the first candidate qualitative diagnosis 
is (T2. (nmlern1c-r. nb(T2). 4 i ( T l . T 3  - T12). e p ) .  [ I  I .  I ? ] .  [O. 1001). The candi- 
datemodel simply has ( w m l c m l e x .  nIi(T2). -d(Tl), *b(T3-T12)) insertedafter 
the mode (ncdwnlr - r .  4i(T1- T12)), and nb(T2) enforced m every subsequent 
mode. The second candidate qualitative diagnosis is that T4 failed in the deceleration 
phaseofr translation, i.e., (T-i. (c~wlernler .nO(T-i) .  -d(T1 -TXTS-T12).Op). 
[13.11]. [O. lOO]). The third candidate is that TG W e d  during ,y acceleration, i.e., (TG. 
(nrcdernle-y, ab(TG). lnO(T1 - TS. T7 - T12).Op). [ I  ID]. [O. 10O]), where I D is 
the time of detection of the abenan! behavior. In each case Or;. is a vector of length 12 
with every entry equal to 0 (percentage degradation), except the entries corresponding 
to the faulty thrusters, C which will have the range [O. 1001. 

4.2 Model Fitting and Comparison 

Given the candidate qualitative diagwses and their associated candidate models, the 
next phase of the diagnosis process is quantitative refinement of the qualitative can- 
didate diagnoses and their associated models through parameter estimation and data 
fitting, followed by tracking of the fit of subsequent observations to the candidate mod- 
els. The goal is to at least provide a probabilistic ranking of the plausible candidates, if 
not a unique model (and hence diagnosis). 

We may cut off back-pmpagation along the mode sequeoce beyond a time limit. 



As observed in the previous section, the model associated with the candidate qualita- 
tive diagnosis, i\Imlc is underconstrained. Both the time of the fault mode occurrence, 
/ p and the parameters associated with the faulty behavior Or are represented as ranges 
and must be estimated. Further, the candidate qualitative diagnoses were generated from 
initial observations of aberrant behavior, and their consistency can be further evaluated 
by monitoring the qualitative transients associated with each candidate. The refinement 
process is performed by a set of tmckers [21], one for each candidate diagnosis and 
associated model. Each tracker comprises both a quulitutiw transient unulysb compo- 
nent and a quantitative model estimtwn, component. The two components operate m 
parallel as described below. 

Qualitative lkansient Analysis 
The qualitative transient analysis component performs a M e r  qualitative analysis of 
the consistency of candidate qualitative diagnoses based on monitoring of higher-order 
transients whose manifestation is seen over a longer period of time. If the transients 
of a candidate qualitative diagnosis do not remain consistent with subsequent observa- 
tions, the candidate diagnosis will be eliminated and the model estimution component 
informed The technique we employ is derived from techniques for qualitative monitor- 
ing of continuous systems. Details of the algorithm appear m [ 181. 

Model Estimation 
The purpose of the model estimation component is to perform quantitative model fit- 
ting, i.e., to provide a quantitative estimate of the parameters of the models and to assign 
a probability to each of the candidate models (and hence candidate diagnoses), given 
the noisy observed data. In particular, given a candidate model, ~llorl~. the model es- 
timation component uses parameter estimation techniques to estimate both the time at 
which the failure occurred, 1 p ,  and the value for the parameters, Or, associated with the 
conjectured Mure mode. In this paper we discuss two alternate approaches to our time 
and parameter estimation problem. The h t  approach is based on Expectation Maxi- 
mization (EM) (e.g., [8]), an iterative technique that converges to an opthnal value for 
I p and 6 r simultaneously. The second approach we consider employs General Likeli- 
hood Ratio (GLR) techniques (e.g., [5]) to estimate the time of failure I r ,  and then uses 
the observations obtained after the hilure to estimate the fault parameters, 6 r, by a least 
squares method. As described in Section 3, the outcome of both approaches is a unique 
value for 1 p and B p  and a measure of the likelihood of _?Iorlc. given the observations. 
The proposed approaches to model fitting have trade-offs and we axe currently assess- 
ing the elkicy of these and other alternative approaches througb experimentation. 

EM-Based Approacb The Expectation Maximization (EM) algorithm (e.g., [8]) pro- 
vides a teclmique for finding the maximum-likelihood estimate of the parameters of an 
underlying distribution fmn a given set of data, when that data is incomplete or has 
missing values. The parameter estimation problem we address m this paper is a vaxi- 
ant of the motion segmentation problem described in [24]. Here, we define the basic 
algorithm and the mtuition behind our approach. (See [SI for more details.) 

The time of mure, I p = [ [ I ,  (4 of om candidate qualitative diapsisdictates the 
mode in which the failure is conjectured to have occurred Let us call this mode I f t .  
The behavior of our hybrid system in mode I t ,  is described by the continuous function 



f,,,, with known parameters 0,. At some (to be estimated) time point 1 p within the 
predicted time period of /i,, we have conjectured that the system experienced a fault 
which transitions it into mode l i p .  The behavior of our hybrid system m mode /ir is 
described by the continuous function f,,,, with unknown parameters, B p .  We also have 
a set ofdata points 0' = [.rO,,#(/l). . . . . . I - , , , ,~( / , , ) ]  C 8, which eitherrefiectthe behavior 
of the system under fit, or under f l l F .  

Given all this information, o'p task is to find 1) values for parameters Or;., and 2) an 
assignment of the data points 8 to eithm pi or / i  r so that we maximize the fit of the 
data to the two functions. The assignment of data points will in turn tell us the value 
of /I.'. EM p v i d e s  an iterative a!gorithm which converges to provide a maximum- 
likelihood estimate for @ p  given 0 , i.e., roughly we are calculating the likelihood of @, 

The basic EM algorithm comprises two steps: an Expectation Step (E Step), and a 
q e )  = P(O' I e r ,  A~o&.). 

Maximization Step (M Step) [a]: 
0 Select an initial (random) value for B p .  
0 Iterate until convergence: 

- E Step: assign data points to either fl,, (0,) or f,t, (Or), which ever fits it best. 
- M Step: reestimate Bp using the data points assignedto f,,, (OF). 

The assignment of data points to pj and /ip provides an estimate for 11.'. We may 
exploit the fact that the assignment of data points is temporally correlated with all pomts 
before / I  belonging to / I , ,  and all points after 11 belonging to / i f .  We may also exploit 
the fact that data pomts at the beginning of the intend will belong to / I , ,  while those 
at the end will belong to l i p .  These task-specific qualities help our algorithm converge 
more quickly. 

EM provides a rich algorithm for maximum-likelihood parameter estimation when 
we don't know the value of / r .  In some hybrid diagnosis applications, depending upon 
the sensors in our system, and the level of noise in the sensom, we may be able to de 
velop monitoringtechniques that will help isolate a reasonable value for / r ,  minimizing 
the need for iteration in EM. In such cases, an alternative to the EM-based approach is 
to first estimate 1 r using the Generalized LikelihoodRatio (GLR) method [5], followed 
by parameta estimation of O F .  

CLR + Least Squares Approach Here, we divide the parameter estimation problem 
into two parts: (i) estimate the time of failure, / r ,  using the Generalized Likelihood 
Ratio (GLR) method, and (ii) apply a standard least squares method for parameter esti- 
mation. The intuition is that solving the problem in two parts simplifies the estimation 
process, and very likely mitigates the numerical convergence problems that arise in 
dealing with complex higher-order models. 

The GLR method for detecting abrupt changes in continuous signals is described 
in [5]. We have applied it to fault transients analysis in complex k i d  thermal systems 
[ 161. Here we pmvide an overview of the method for the single parameter case. Assume 
that the signal under scrutiny is a timeindexed sequence of random variables y (k), with 
probability density function, po (g) in desked mode p i ,  and ~ , J , ( Y )  in fault mode lip. 
9 is either contained in . I - ~ / , ~  or computed from .r,,/,$. We assume that a fault causes an 
abrupt change in y(li). In the case of the AERCam, y captures the difference between 
the observed and expected values of the, e.g., acceleration, as predicted by the model. 



The ceatral quantity in the change detection algorithm is the cumulative sum of the 
log-likelihood ratio for a window of observations between times 7)). and n, 

Again, this ratio is a function of two unknowns: 1 p and Or. The common statistical 
solution is to use maximum likelihood estimates for these two parameters, resulting in 
a double maximization: 

If we assutne that probability density functions, po; ( 4 )  and po,(y) are Gaussian, 
thea gn reduces@: 

where 
When processing a sequence of samples, the point of abrupt change, 1 p ,  is computed 

fiom 7nin{n : g,J 2 I)}, where h is an appropriately defined threshold Hence, the 
smaller the value of It ,  the more sensitive the function to change, and unfortunately to 
Mse drams, so 11 must be set carefully. 

Once I p is estimated, data pomts observedafter 1 p ,  are usedto estimate the parame- 
ter, O p  for a hypothesized fault Using regressiontechniques. In the case of the AERCam, 
the position vector of the MRCam is modeled as a set of quadratic functions m terms 
of the thruster force. These functions contaiu one unknown, O p ,  the parameter that cor- 
responds to the degree of degradation in the faulty tbmster. The least squares estimate 
f a  Or;. is computed, and the the measure of fit of the candidate model to the observed 
data used to estimated the probability of the candidate model (and hence, diagnosis). 

Model Comparison 
From the model estimation component, each tracker computes the likelihood of its 
model Mmlc, and hence of the associated candidate diagnosis (C.pj-. 1 p. e,), as a 
measure of fit of the observations to the model. As new data .roc,*(!) are observed, Or 
and l p .  are adjusted and P(Almfc 1 r,,,,ll(f)) computed. If the iikelihood of 3 I d p  
Mls below a predefined acceptable likelihood threshold, R, then its tracker is texmi- 
nated, and the associated candidate diagnosis (C. 11 r;., 1 r;.. Or;.) removed from the list of 
candidate d i a g ~ ~ s e s .  Tracking termhates when a unique diagnosis is obtained, or when 
the diagnoses are sufficiently discrhninated to determine suitable controller actions. 

and 0: are the mean and variance for PO, ( y), respectively. 

5 Relatedwork 

The specific problem of diagnosing hybrid systems has received little attention to date, 
although there is much related work. Within the AI community, there has been a p a t  



deal of research on diagnosing static systems (e.g., [14]), while much less on diag- 
nosing discrete dynamical systems (e.g., [17,25]), and qualitative representations of 
continuous systems (e.g.,. [ 181). Within the FDI community, the largest proportion of 
research has focused on diagnosing continuous systems (e.g., [ 13,111). The most com- 
mon model-based approaches use observer schemes(e.g., [ 12,20]), where the goal is to 
design residual generators based on observed discrepancies, such that individual resid- 
uals are sensitive to a particular subset of faults. There is also complementaxy work by 
Basseville [4], usmg model-based statistid processmg techniques for early fault d e  
tection and residual identification. [ 181 perform residual generation and analysis task in 
a qualitative framewok to addresa some of the computational issues that arise in han- 
dling the complex dynamics that occur in fault transients, with some preliminary work 
on building multiple observers for hybrid systems [ 191. Diagnosis of discrete-event sys- 
tems has also been studied within the FDI community (e.& [22,15]). Fabre et al. [ 101 
have employed stochastic Petri nets based on a Hidden Markov Model probabilistic 
scheme for alarm analysis. Udorhmately, it is not clear how to systematically derive 
such representations fmm the physical system models that we work with. 

6 Summary 

In this paper we addressed the problem of diagnosing hybrid systems. The main cm- 
triiticms of the paper are 1) formulation of the hybrid diagnosis problem as model 
selection; 2) the exploitation of techniques for qualitative diagnosis of continuous sys- 
tems to reduce the diagnosis search space; and 3) the use of parameter estimation and 
data fitting techniques for evaluation and comparison of candidate diagnoses. This work 
continues with experimental analysis of the proposed techniques, and a more formal 
characterization of o w  approach in terms of Bayesian model selection. 
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