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Introduction:  The water-content of Martian 

magmas is a topic of debate among researchers.  Some 
Martian basalts are characterized with melt inclusions 
of biotite, apatite and amphibole; phases typically as-
sociated with hydration reactions on Earth [1-3].  
However, the H-content of melt inclusions from these 
basalts is low, and bulk-rock H2O-contents range from 
a meager 0.013 to 0.035 wt. % in Shergotty [4].  None-
theless, researchers note that low present-day water 
contents do not preclude a once hydrous past [5].  
Since light lithophile elements (LLE), such as Li and 
B, partition into aqueous fluids at T > 350 °C, workers 
proposed that Li-B depletions in pyroxene rims of 
Nakhlite and Shergottite basalts reflect the loss of sev-
eral weight percent water from Martian magmas dur-
ing crystallization [6].  Since similar depletions were 
observed in pyroxene rims from completely dry lunar 
basalts, it is likely that alternative mechanisms also 
contribute to the distribution of elements such as Li 
and B [7].  Given that many Martian basalts have ex-
perienced considerable shock pressures (15-45 GPa), it 
is possible that shock and subsequent thermal meta-
morphism may have influenced the volatile element 
records of these basalts [8].  In order to better under-
stand the distribution of Li and B, we are studying the 
effects of crystal chemistry, shock pressure, and ther-
mal metamorphism in pyroxenes from lunar basalts.  
Below, we discuss results from experimentally 
shocked and thermally metamorphosed Apollo 11, 
10017 (A-11) and Apollo 17, 75035 (A-17) basalts. 

Methods:  A-11 and A-17 high-Ti basalts were 
experimentally shocked at the Johnson Space Center as 
described by [9].  An unshocked sample of A-11 basalt 
was heated under vacuum (~10-4 atm) following the 
approach of [10,11].  Pyroxenes were imaged with a 
JEOL JSM-5800 LV SEM and analyzed with a JEOL 
JXA-8200 EMP using a 0.5 µm beam diameter, 20 kv 
accelerating voltage and 20 nA current.  Pyroxenes 
were analyzed for 7Li, 9Be, 11B, 88Sr, 140Ce, 146Nd, and 
174Yb using a Cameca ims 4f. Thin sections were 
soaked in 1 % mannitol solution, rinsed in ultrapure 
(18 MΩ) water and rastered to reduce effects of B con-
tamination.  Analyses were made by bombarding sam-
ples with a 15 nA current of primary O- ions under a  
10 kv potential focused to a 10-15 µm spot diameter.  
Sputtered secondary ions were energy filtered with a 
sample offset voltage of 75 V and an energy window 
of ±25 V.  The effect of 27Al3+ on 9Be was investigated 
by analyzing 9Be at a higher mass resolution. 

Sample Description:  Unshocked A-11 sample is 
a high-Ti, low-K, medium grained, subophitic basalt 
with abundant clinopyroxene, calcic plagioclase, il-
menite, minor interstitial glass and pyroxferroite.  Un-
shocked A-17 sample is a high-Ti, medium-grained, 
subophitic basalt consisting of clinopyroxene, calcic 
plagioclase, ilmenite, cristobalite, pyroxferroite, native 
iron, troilite, and some mesostasis.  Both basalts crys-
tallized at f O2 ≈ IW -1 under extremely dry conditions 
[12].  A-11 and A-17 basalts were shocked at the JSC 
at pressures ranging 34.8 to 78.5 GPa and 9.3 to 99.9 
GPa, respectively [9]. A sample of A-11 basalt was 
heated for 7 days at 1000° C [10,11].    

Results & Discussion:  Results show that mecha-
nisms of coupled substitution utilized by major and 
minor elements are important to the distribution of 
LLE in pyroxenes.  All pyroxenes express well-
defined compositional zoning with augitic cores and 
pigeonite rims in pyroxene quadrilateral components 
(Figures 1, 2).  A-17 pyroxenes exhibit a more exten-
sive enrichment in Fe-content than A-11 pyroxenes.  
Shock does not affect zoning in En, Fs, and Wo-
components.  Figure 3 shows that pyroxene cores are 
enriched in Ti and Al relative to rims.  A-17 analyses 
plot tightly along the line of ½ slope, irrespective of 
shock pressure or distance along transect, showing a 
clear preference for coupled substitution mechanism: 
[(Ti4+)VI+2(Al3+)IV ] ↔ [(R2+)VI+2SiIV] [13].  This 
mechanism is also dominant for A-11 pyroxenes.  Fur-
thermore, results suggest that Ti-Al partitioning is 
more important at higher Ca-contents (Figure 4).  Ca is 
a large M2-site cation (>0.10 nm S-P ionic radius) that 
likely stretches neighboring M1 and tetrahedral sites, 
thus facilitating substitution of the Ti-Al couple.  Fig-
ures 5 and 6 illustrate plots of Li vs. Li/Ce and B vs. 
B/Ce, respectively.  Ce is a light REE and behaves 
incompatibly, increasing in concentration toward rims.  
Pyroxene rims are depleted in Li and B, expressing 
lower Li/Ce and B/Ce values than cores. Late-stage Li-
partitioning into pyroxenes may be affected by de-
creases in Ca-content (Figure 7).  Ca influences the 
behavior of Al, which in turn can substitute as an octa-
hedrally coordinated cation that couples with Li for 
respective M1 and M2-site occupancy.  For example, 
Figure 8 shows that pyroxenes with higher Li-contents 
have greater abundances of octahedrally coordinated 
Al.  These observations are not consistent with the 
experimental results of [14], which support limited Ca 
and Al affects on Li and B partitioning.  Alternatively, 
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Figure 4.  Al/Si vs. Wo-content plot for A-17 pyroxenes. 
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results of this work also document the coupled substi-
tution of Li (M2) and Cr3+ (M1) during pyroxene crys-
tallization.  In these pyroxenes, loss of Cr occurs with 
increasing degrees of crystallization.  With decreasing 
Cr-content, Li-partitioning was less significant during 
rim formation than during earlier periods of Cr-
availability.  It is noteworthy that Cr was not included 
in the starting compositions of [14].  Higher shock 
pressures can significantly redistribute B in pyroxenes 
but have no notable effects on Li.  It is likely that 
shock and subsequent thermal metamorphism facilitate 
Li-B mobility among melt inclusions, pyroxene grains 
and zones of surrounding mesostasis.  Measurements 
indicate that mesostasis contains up to 50 times more 
Li and B than pyroxenes. Given the extremely dry na-
ture of lunar basalts, fluid activity cannot explain the 
Li-B rim depletions observed in this study.  However, 
Li and B distributions are influenced by changes in 
mineral composition during crystallization, shock 
pressure and subsequent thermal metamorphism.     

Cores 
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Figure 1.  Variation in quadrilateral components for A-11 pyroxenes. 
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Figure 2.  Variation in quadrilateral components for A-17 pyroxenes. 
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Figure 3.  Ti vs. Al plot for A-17 pyroxenes. 
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Figure 5.  Li (ppm) vs. Li/Ce plot for A-17 pyroxenes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  B (ppm) vs. B/Ce plot for A-11 & A-17 pyroxenes.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.  Li (ppm) vs. Wo-content for A-17 pyroxenes. 

 
 
 
 
 
 
 
 
 
 

 
Figure 8.  (Al3+)VI vs. Li (ppm) plot for A-11 & A-17 pyroxenes.  
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