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ABSTRACT 

It is exciting to contemplate the various space mission applications that Micro Electro 

Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The 

primary objective of this chapter is to both stimulate ideas for MEMS technology 

infusion on future NASA space missions and to spur adoption of the MEMS technology 

in the minds of mission designers. This chapter is also intended to inform non-space 

oriented MEMS technologists, researchers and decision makers about the rich potential 

application set that future NASA Science and Exploration missions will provide. The 

motivation for this chapter is therefore to lead the reader down a path to identify and 



consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS 

technology may have for future civilian space applications. A general discussion of the 

potential for MEMS in space applications is followed by a brief showcasing of a few 

selected examples of recent MEMS technology developments for hture space missions. 

Using these recent developments as a point of departure, a vision is then presented of 

several areas where MEMS technology might eventually be exploited in future Science 

and Exploration mission applications. Lastly, as a stimulus for future research and 

development, this chapter summarizes a set of barriers to progress, design challenges and 

key issues that must be overcome in order for the community to move on, from the 

current nascent phase of developing and infusing MEMS technology into space missions, 

in order to achieve its full future potential. 

2.1 INTRODUCTION 

We live in an age when technology developments combined with the innate human urge 

to imagine and innovate is yielding astounding inventions at an unprecedented rate. In 

particular, the past 20 years have seen the disruptive technology called Micro Electro 

Mechanical Systems (MEMS) emerge and blossom in multiple ways. The commercial 

appeal of the MEMS technologies are derived from their low cost in high volume 

production, their inherent miniature form factor, their ultra-low mass and power, their 

ruggedness, all with attendant complex functionality, precision and accuracy. The space 

community is exceedingly interested in utilizing MEMS technology for future missions 

for the very same reasons. 
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Recent dramatic progress has occurred in the development of ultra-miniature, ultra-low 

power and highly integrated MEMS-based microsystems that can sense their 

environment, process incoming information, and respond in a precisely controlled 

manner. The capability to communicate with other micro-scale devices and, depending 

on the application, with the macro-scale platforms they are hosted on, will permit 

integrated and collaborative system-level behaviors. Combine these attributes with the 

potential to generate power on the MEMS scale and one starts to see the potential for 

MEMS-based microsystems to not only enhance, or even replace, today’s existing macro- 

scale systems but also to enable entirely new classes of micro-scale systems. 

As will be described in detail in subsequent chapters of this book, the roots of the MEMS 

technology revolution can be found in the substantial surface (planar) micromachining 

technology investments made over the last 30 years by Integrated Circuit (IC) 

semiconductor production houses worldwide. Broadly speaking it is also a revolution that 

exploits the integration of multi-disciplinary engineering processes and techniques at the 

sub-millimeter (100’s of microns) device size level. The design and development of 

MEMS devices leverages heavily off of well established, and now standard, techniques 

and processes for 2-D and 3-D semiconductor fabrication and packaging. MEMS 

technology will allow us to field new generations of sensors and devices in which the 

hnctions of detecting, sensing, computing, actuating, controlling, communicating, and 

powering are all co-located in assemblies/structures with dimensions on the order of 100- 

200 microns or less. 
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Over the past several years, industry analysts and business research organizations have 

pointed to the multi-billion dollar sized global commercial marketplace for MEMS-based 

devices and microsystems in such areas as the automotive industry, communications, 

biomedical, chemical and consumer products. The MEMS-enabled ink jet printer head 

and the digital micromirror projection displays are often cited examples of commercially 

successful products enabled by MEMS technology. The MEMS airbag micro- 

accelerometer and the tire air pressure sensors are both excellent examples of commercial 

applications of MEMS in the automotive industry sector. Implantable blood pressure 

sensors and fluidic micropumps for in-situ drug delivery are examples of where MEMS 

serves in the biomedical arena. 

Given the tremendously rapid rate of technology development and adoption over the past 

100 years, one can confidently speculate that MEMS technology, especially when 

coupled with the emerging developments in Nan0 Electro Mechanical Systems (NEMS) 

technology, has the potential to change society as deeply as the introduction of the 

telephone in 1876, the tunable radio receiver in 1916, the electronic transistor in 1947, 

and the desktop Personal Computer (PC) in the 1970’s. In the not too distant future, once 

designers and manufacturers become more aware of the possibilities that arise from this 

technology, it may very well be that MEMS-based devices and microsystems become as 

ubiquitous and as deeply integrated into our society’s day-to-day existence as the phone, 

the radio and the PC are today. 



Perhaps it is somewhat premature to draw MEMS technology parallels to the 

technological revolutions initiated by such now commonplace household electronics. It 

is, however, very probable that as more specific commercial applications are identified 

where MEMS is clearly the competitively superior alternative, a confluence of two 

developments will occur: 1) the refinement of low-cost fabrication methods that will 

yield enhanced device qualityheliability, and 2) the formulation of industry standard 

packaging and integration solutions. Once these developments occur more companies 

focused solely on commercializing MEMS technology will emerge and rapidly grow to 

meet the market demand. What impact this will have on society is unknown but it is quite 

likely that MEMS (along with NEMS) will have an increasing presence in our homelife 

and our workplace as well as many points in between. One MEMS industry group has 

gone so far as to predict that before 2010 there will be at least five MEMS devices per 

person in use in the United States. 

It is not the intention of this chapter to comprehensively describe the far-reaching impact 

of MEMS-based microsystems on human society in general. That is well beyond the 

scope of this entire book, in fact. The emphasis of this chapter is on how the space 

community might leverage and exploit the billion-dollar worldwide investments being 

made in the commercial (terrestrial) MEMS industry for future space applications. Two 

related points are relevant in this context. In the first place, it is unlikely that without this 

significant investment in commercial MEMS, we in the space community would not be 

even considering MEMS technology for use in space. Secondly, the fact that each year 

companies around the world are moving MEMS devices out of their research laboratories 
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into commercial applications, in fields such as biomedicine, optical communications and 

information technology, at an increasing rate can only be viewed as a very positive 

influence on transitioning MEMS technology towards space applications. The global 

commercial investments in MEMS have created the foundational physical infrastructure, 

the highly trained technical workforce and, most importantly, a deep scientific and 

engineering knowledge base that will continue to serve as the strong intellectual 

springboard for the development of MEMS devices and microsystems for future space 

applications. 

Two observations can be made concerning the differences between MEMS in the 

commercial world and the infusion of MEMS into space missions. Firstly, unlike the 

commercial marketplace where very high-volume production and consumption is the 

norm, the niche market demand for space qualified MEMS devices will be orders of 

magnitude less. Secondly, it is obvious that transitioning commercial MEMS designs to 

the harsh space environment will not be necessarily trivial. Their inherent mechanical 

robustness will clearly be a distinct advantage in surviving the dynamie shock and 

vibration exposures of launch, orbital maneuvering, and hadplanetary landing. 

However it is likely that significant modeling, simulation, ground test and flight test will 

be needed before space qualified MEMS devices, which satisfy the stringent reliability 

requirements traditionally imposed upon space platform components, can routinely be 

produced in reasonable volumes. For example, unlike their commercial counterparts, 

space MEMS devices will need to simultaneously provide the following: 1) radiation 
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hardness or, at least, radiation tolerance, 2) the capability to operate over wide thermal 

extremes, and 3) an insensitivity to significant electricaYmagnetic fields. 

In the remainder of this chapter there will be a discussion of recent examples of MEMS 

technologies being developed for space mission applications. The purpose of providing 

this sampling of developments is to provide the reader insight into the current state of the 

practice as an aid to predicting where this technology might eventually take us. A vision 

will then be presented, from a NASA perspective, of application areas where MEMS 

technology can be exploited for Science and Exploration mission applications. 

2.2 RECENT MEMS TECHNOLOGY DEVELOPMENTS FOR SPACE 

MISSIONS 

It is widely recognized that MEMS technology should have and will have many useful 

applications in space. A considerable amount of the literature has been written describing 

the ways in which MEMS technology could enable: 1) constellations of cost-effective 

microsatellites’ for various types of missions, 2) highly miniaturized science instruments2 

for remote sensing applications and 3) unique, first-of-a-kind “Lab on a Chip” micro- 

sensors for in-situ chemical detection and analy~is.~ 

Recently, several of the conceptual ideas for applying MEMS in future space missions 

have grown into very focused technology development and maturation projects. The 

activities discussed in this section have been selected to expose the reader to some highly 
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focused and specific applications of MEMS in the areas of spacecraft thermal control, 

science sensors, mechanisms, avionics and propulsion. The intent here is not to provide 

design or fabrication details, as each of these areas will be addressed more deeply in the 

following chapters of this book, but rather to showcase the wide range of space 

applications in which MEMS can contribute. 

While there clearly is a MEMS-driven stimulus at work today in our community to study 

ways to re-engineer spacecraft of the future using MEMS technology, one must also 

acknowledge the reality that the space community collectively is only in the nascent 

phase of applying MEMS technology to space missions. In fact our community at large 

probably does not yet entirely understand the full potential that MEMS technology may 

have in the space arena. True understanding and the knowledge it creates will only come 

with a commitment to continue to create innovate designs, demonstrate functionality and 

rigorously flight validate MEMS technology in the actual space environment. 
I 

2.2.1 NMP ST5 Thermal Louvers 

The Space Technology 5 (ST5) project, performed under the sponsorship of NASA’s 

New Millennium Program (NMP), has an overall focus on the flight validation of 

advanced Microsat technologies that have not yet flown in space in order to reduce the 

risk of their infusion in future NASA missions. The NMP ST5 Project is designing and 

building three miniaturized satellites, shown in Figure 2.1, that are approximately 54 cm 

in diameter and 28 cm tall with a mass less than 25 kg per vehicle. As part of the ST5 

mission these three Microsats will perform some of the same functions as their larger 

counterparts. 
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One specific technology to be flight validated on ST5 is MEMS shutters for “smart” 

thermal control conceptualized and tested by NASA Goddard Space Flight Center 

(GSFC), developed by the Johns Hopkins University Applied Physics Laboratory 

(JHu/ApL) and fabricated at Sandia National Laboratory. In JHU/APL’s rendition, the 

radiator is coated with arrays of micro-machined shutters, which can be independently 

operated with electrostatic actuators thereby controlling the apparent emittance of the 

radiator.’ The latest prototype devices are 1.8 mm x 0.88 mm arrays of 150 mm x 6 mm 

shutters that are actuated by electrostatic comb drives to expose either the gold coating or 

the high emittance substrate itself to space. Figure 2.2 shows an actuator block with the 

arrays. Prototype arrays designed by JHU/APL have been fabricated at Sandia National 

Laboratories using their SUMMiT V process. For the flight units, about 38 elements with 

72 shutter arrays each will be combined on a radiator and independently controlled. 

The underlying motivation for this particular technology can be summarized as follows. 

Most spacecraft rely on radiative surfaces (radiators) to dissipate waste heat. These 

radiators have special coatings that are intended to optimize performance under the 

expected heat load and thermal sink environment. Typically, such radiators will have a 

low absorptivity and a high infrared emissivity. Given the variable dynamics of the heat 

loads and thermal environment, it is often a challenge to properly size the radiator. For 

the same reasons, it is often necessary to have some means of regulating the heat 

rejection rate in order to achieve proper thermal balance. One potential solution to this 

design problem is to employ the MEMS micromachined shutters to create, in essence, a 

Variable Emittance Coating (VEC). Such a VEC yields changes in the emissivity of a 
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thermal control surface to allow the radiative heat transfer rate to be modulated as needed 

for various spacecraft operational scenarios. In the case of the ST5 flight experiment, the 

JHU/APL MEMS thermal shutters will be exercised to perform adaptive thermal control 

of the spacecraft by varying the effective emissivity of the radiator surface. 

2.2.2 JWST Microshutter Array 

NASA’s James Webb Space Telescope (JWST) is a large (6.5 meter primary mirror 

diameter) infrared-optimized space telescope scheduled for launch in 201 1. JWST is 

designed to study the earliest galaxies and some of the first stars formed after the Big 

Bang. When operational, this infrared observatory will take the place of the Hubble 

Space Telescope and will be used to study the Universe at the important but previously 

unobserved epoch of galaxy formation. Over the past several years scientists and 

technologists at NASA GSFC have developed a large format MEMS-based microshutter 

array that is ultimately intended for use in the JWST Near Infrared Spectrometer 

(NIRSpec) instrument. It will serve as a programmable field selector for the spectrometer 

and the complete microshutter system will be composed of four 175 by 384 pixel 

modules. This device significantly enhances the capability of the JWST since the 

microshutters can be selectively configured to make highly efficient use of nearly the 

entire NIRSpec detector, obtaining hundreds of object spectra simultaneously. 

Micromachined out of a silicon nitride membrane, this device as shown in Figure 2.3 and 

Figure 2.4 consists of a two-dimensional array of closely packed and independently 

selectable shutter elements. This array functions as an adaptive input mask for the multi- 



object NIRSpec providing very high contrast between its open and closed states. It 

provides high transmission efficiency in regions where shutters are commanded open and 

sufficient photon blocking in closed areas. Operationally, the desired configuration of the 

array will be established via ground command, then simultaneous observations of 

multiple celestial targets can be obtained. 

Some of the key design challenges for the microshutter array include obtaining the 

required optical (contrast) performance, individual shutter addressing, actuation, latching, 

mechanical interfaces, electronics, reliability, and environment requirements. For this 

particular NIRSpec application, the MEMS microshutter developers also had to ensure 

the device would function at the 37 K operating temperature of the spectrometer as well 

as meet the demanding low power dissipation requirement. 

Figure 2.5 shows the ability to addredactuate and provide the required contrast. These 

critical functions were demonstrated on a fully functional 128 by 64 pixel module in 2003 

and development is proceeding on the 175 by 3 84 pixel flight-ready microshutter module 

that will be used in the JWST NIRSpec application. This is an outstanding example of 

applying MEMS technology to significantly enhance the science return from a space- 

based observatory. 

2.2.3 Inchworm M ic ro-Actua tors 
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The NASA Jet Propulsion Laboratory (JPL) is currently developing an innovative 

inchworm micro-actuators for the purpose of ultra-precision positioning of the mirror 

segments of a proposed Advanced Segmented Silicon Space Telescope (ASSIST). This 

particular activity is one of many diverse MEMS/NEMS technology developments for 

space mission applications being pursued at NASA/JPL.6 

2.2.4 NMP ST6 Inertial Stellar Camera 

NASA's NMP is sponsoring the development of the Inertial Stellar Compass (ISC) space 

avionics technology that combines MEMS inertial sensors (gyroscopes) with a wide 

field-of-view Active Pixel Sensor (AF'S) star camera in a compact, multifunctional 

p a ~ k a g e . ~  This technology development and maturation activity is being performed by 

the Charles Stark Draper Laboratory (CSDL) for a Space Technology 6 (ST6) flight 

validation experiment now scheduled to fly in 2005. The ISC technology is one of 

several MEMS technology development activities being pursued at CSDL' and, in 

particular, is an outgrowth of earlier CSDL research focused in the areas of MEMS- 

based Guidance, Navigation and Control (GN&C) sensors/actuators9 and low-power 

MEMS-based space avionics systems." 

The ISC, shown in Figure 2.6, is a miniature, low power, stellar inertial attitude . 

determination system that provides an accuracy of better than 0.1 degree (1-Sigma) in 

three axes while consuming only 3.5 watts and packaged in a 2.5 kg housing." 
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The ISC MEMS gyro assembly, as shown in Figure 2.7, incorporates CSDL’s Tuning 

Fork Gyro (TFG) sensors and mixed signal Application Specific Integrated Circuit 

(ASIC) electronics designs. Inertial systems fabricated from similar MEMS gyro 

components have been used in Precision Guided Munitions (PGM’s), autonomous 

vehicles, and other space related mission applications. The silicon MEMS gyros sense 

angular rate by detecting the Coriolis effect on a sense mass which is driven into 

oscillation by electrostatic motors. Coriolis forces proportioned to the rotational rate of 

the body cause the sense mass to oscillate out of plane. This change is measured by 

capacitive plates. A more detailed discussion of MEMS inertial sensors, both gyros and 

accelerometers, is presented in Chapter 10 (GN&C) of this book. 

The ISC technology, enabled by embedded MEMS gyroscopes, is a precursor of things to 

come in the spacecraft avionics arena as the push towards much more highly integrated, 

GN&C systems grow in the future. There are a wide range of Science and Exploration 

mission applications that would benefit from the infusion of the compact, low power ISC 

technology. Some envisioned applications include using the ISC as a “single sensor” 

solution for attitude determination on medium performance spacecraft, as a “Bolt On” 

independent safehold sensor for any spacecraft, or as an acquisition sensor for 

rendezvous applications. It has been estimated that approximately 1.5 kg of mass and 26 

Watts of power can be saved by employing a single MEMS-based attitude sensor such as 

the ISC to replace the separate and distinct star tracker and inertial reference units 

typically used on spacecraft.’’ So in this case, MEMS is an enhancing technology that 

serves to free up precious spacecraft resources. For example, the mass savings afforded 
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by using the MEMS-based ISC could be allocated for additional propellant or, likewise, 

the power savings could potentially be directly applied to the mission payload. These are 

some of the advantages afforded by using MEMS technology. 

2.2.5 Microthrusters 

Over the past several years MEMS catalytic monopropellant microthruster research and 

development has been conducted at NASA GSFC. l2  MEMS-based propulsion systems 

have the potential to enable missions that require micro-propulsive maneuvers for 

formation flying and precision pointing of micro-, nano-, or pico-sized satellites. Current 

propulsion technology cannot meet the minimum thrust requirements (10-1000 pN), or 

impulse-bit requirements (1-1000 pN-sec) or satis@ the severely limited system mass 

(<0.1 kg), volume (<1 cm3), and power constraints (4W) .  When compared to other 

proposed micro-propulsion concepts, MEMS catalytic monopropellant thrusters show the 

promise of the combined advantages of high specific density, low system power and 

volume, large range of thrust levels, repeatable thrust vectors, and simplicity of 

integration. Overall this approach offers an attractive technology solution to provide 

scalable micro-Newton level microthrusters. This particular MEMS microthruster design 

utilizes hydrogen peroxide as the propellant and the targeted thrust level range is between 

10-500 pN with impulse bits between 1-1000 pN-sec and a Specific impulse (Isp) of 

greater than 110 sec. 

Prototype MEMS microthruster hardware has been fabricated as seen in Figure 2.8, 

using GSFC's Detector Development Laboratory (DDL) facilities and equipment. 



Individual MEMS fabricated reaction chambers are approximately 3.0mm x 2.5mm x 

2.0mm. Thrust chambers are etched in a 0.5 mm silicon substrate and vapor deposited 

with silver using a catalyst mask. 

2.2.6 Other Examples of Space MEMS Developments 

The noteworthy space-related MEMS developments described above can be considered 

as very significant technological steps towards the ultimate goal of routine and systematic 

infusion of this technology in future space platforms. Clearly NASA researchers have 

identified several areas where MEMS technology will substantially improve the 

performance and functionality of the future spacecraft. NASA is currently investing at an 

increasing rate in a number of different MEMS technology areas. A review of the NASA 

Technology Inventory shows that in Fiscal Year (FY) 2003 there were a total of 11 1 

distinct MEMS-based technology development tasks being funded by NASA. Relative to 

FY 2002, where 77 MEMS-based technology tasks were catalogued in the NASA 

Technology Inventory, this is over a 40% increase in MEMS tasks. It is almost a 90% 

increase relative to FY 2001 where 59 MEMS R&D tasks were identified. The MEMS 

technologies contained in the NASA inventory include: 

Stirling coolers 

Liquid-metal microswitches 

Inertial sensors 

Microwave RF switches and phase shifters 

Thrusters 

Deformable mirrors 

Pressurehemperature sensors 
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0 Power supplies. 

In closing this section, it should be stressed that the few selected developments 

highlighted above are not intended to represent a comprehensive list l3?l4 of recent or on- 

going space MEMS technology developments. In fact, there are a number of other very 

significant space MEMS technology projects in various stages of development. Among 

these are: 

0 Flat plasma spectrometer4 for space plasma and ionospheric-thermospheric 

scientific investigations 

Miniature mass spe~trometer~’~ for planetary surface chemistry investigations 

Switch-reconfigurable antenna array elementlg for space based radar applications 

Micro-heat-sinks for microsat thermal control applications 

Tunable Fabry-Perot etalon optical filters for remote sensing applications5 

Two-axis fine-pointing micro-mirrors for inter-satellite optical communications 

applications.*l 

0 

0 

0 

0 

0 

2.3 POTENTIAL SPACE APPLICATIONS FOR MEMS TECHNOLOGY 

It should be apparent that the near-term benefit of MEMS technology is that it allows 

developers to rescale existing macrosystems down to the microsystem level. However, 

beyond simply shrinking today’s devices, the true beauty of MEMS technology derives 

from the system re-definition freedom it provides designers, leading to the invention of 

entirely new classes of highly-integrated Microsystems. 



It is envisioned that MEMS technology will serve as both an “Enhancing” and an 

“Enabling” technology for many future Science and Exploration missions. Enabling 

technologies are those that provide the presently unavailable capabilities necessary for a 

mission’s implementation and are vital to both intermediate and long-term missions. 

Enhancing technologies typically provide significant mission performance improvements, 

mitigations of critical mission risks, andor significant increases in mission critical 

resources (e.g., cost, power, and mass). 

MEMS technology should have a profound and far-reaching impact on a many of 

. NASA’s future space platforms. Satellites in low earth orbit, deep space interplanetary 

probes, planetary rovers, advanced space telescopes, lunar orbiters and lunar landers 

could all likely benefit in some way from the infusion of versatile MEMS technology. 

Many see the future potential for highly integrated spacecraft architectures where 

boundaries between traditional, individual bus and payload subsystems are, at a 

minimum, blurred or, in some extreme applications, non-existent with the infusion of 

multi-functional MEMS-based microsystems. 

NASNGSFC has pursued several efforts not only to increase the general awareness of 

MEMS within the space community but also to spur along specific mission-unique 

infusions of MEMS technology where appropriate. Over the past several years the space 

mission architects at the GSFC Integrated Mission Design Center (IMDC), where 

collaborative end-to-end mission conceptual design studies are performed, have evaluated 

the feasibility of using MEMS technology in a number of mission applications. As part of 
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this MEMS technology “push” effort many MEMS-based devices emerging from 

research laboratories have been added to the IMDC’s component database used by the 

mission conceptual design team. The IMDC also is a rich source of hture mission 

requirements and constraints data that can be used to derive functional and performance 

specifications to guide MEMS technology developments. Careful analysis of this 

requirements and constraints information will help to identify those missions where 

inhsing a specific MEMS technology will have a significant impact or conversely, 

identifying where an investment in a broadly applicable “crosscutting~y MEMS 

technology will yield benefits to multiple missions. 

The remainder of this section will cover some high priority space mission application 

areas where MEMS technology infusion would appear to be beneficial. 

2.3.1 Inventory of MEMS-Based Spacecraft Components 

It is expected that MEMS technology will offer NASA mission designers very attractive 

alternatives for challenging applications where power, mass, and volume constraints 

preclude the use of the traditional components. MEMS technologies will enable 

miniaturized, low mass/power, modular versions of many of the current inventory of 

traditional spacecraft components. 

2.3.2 Affordable Microsatellites 

A strong driver for MEMS technology infusion comes from the desire of some space 

mission architects to implement affordable constellations of multiple microsatellites. 



20 

These constellations, of perhaps as many as 30- 100 satellites, could be deployed either in 

loosely controlled formations to perform spatialhemporal space environment 

measurements or in tightly controlled formations to synthesize distributed sparse aperture 

arrays for planet finding. 

A critical aspect to implementing these multi-satellite constellations in today’s cost- 

capped fiscal environment will be application of new technologies that reduce the per 

unit spacecraft cost while maintaining the necessary functional performance. The 

influence of technology in reducing spacecraft costs has been studied and carehlly 
, 

evaluated by NASA22. The through analysis of historical trend data has lead to the 

conclusion that, on average, the use of technologies that reduce spacecraft power will 

reduce spacecraft mass and cost. Clearly a large part of solving the affordable 

microsatellite problem will involve economies of scale. High volume production will 

serve to bring down the cost of the Nth unit built relative to the cost of the initial unit. 

Identifying exactly which technologies have the highest likelihood of lowering spacecraft 

cost is still a work in progress. However, a case can be made that employing MEMS 

technology, perhaps in tandem with the Ultra-Low Power electronics technology23 being 

developed by NASA and our partners will be a significant step towards producing 

multiple microsatellite units in a more affordable way. 

It should also be pointed out that another equally important aspect to lowering spacecraft 

costs will be developing architectures that call for the use of standard-off-the-shelf and 

modular MEMS-based microsystems. Also, there will need to be a fundamental shift 
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away from the current “hands on” labor intensive limited-production spacecraft 

manufacturing paradigm towards a high-volume, more “hands off’ production model. 

This would most likely require implementing new cost effective manufacturing 

methodologies where such things as parts screening, subsystem testing, spacecraft-level 

integration & test, and documentation costs are reduced. 

So one can anticipate the “Factory of the Future” which produces microsatellites that are 

highly integrated using MEMS-based micro-subsystems, composed of miniaturized 

electronics, devices and mechanisms, for communications, power, and attitude control, 

extendable booms and antennas, micro-thrusters and a broad range of micro-sensor 

instrumentation. The multi-mission utility of having a broadly capable nano/micro 

spacecraft has not been overlooked by NASA mission architects. New capabilities such 

as this will.generate new concepts of space operations to perform existing missions and, 

of greater import, to enable entirely new types of missions. 

Furthermore, because the per unit spacecraft cost has been made low enough through the 

infusion of MEMS technology, the concept of flying “replaceable” microsatellites is both 

technically and economically feasible. In such a mission concept, the requirements for 

redundancyheliability will be satisfied at the spacecraft level, not at the subsystem level 

where it typically occurs in today’s design paradigm. In other words, MEMS-based 

technology, together with appropriate new approaches to lower spacecraft-level 

integration, test and launch costs, could conceivably make it economical to simply 
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perform an on-orbit replacement of a failed spacecraft. This capability opens the door to 

create new operational concepts and mission scenarios. 

2.3.3 Science Sensors and Instrumentation 

As described in Chapter 7 of this book, the research topic of MEMS-based science 

sensors and instruments is an incredibly rich one. Scientists and MEMS technologists are 

collaborating first to envision and then rapidly develop highly integrated, miniaturized, 

low mass and power efficient sensors for both Science and Exploration missions. The 

extreme reductions in sensor mass and power attainable via MEMS technology will make 

it possible to fly multiple high performance instrumentation suites on Microsatellites, 

Nanosatellites, planetary landers and autonomous rovers, entry probes and inter-planetary 

platforms. The ability to integrate miniaturized sensors into lunar or planetary In Situ 

Resource Utilization (ISRU) systems andor robotic arms, manipulators and tools (i.e., a 

drill bit) will have high payoff on future Exploration missions. Detectors for sensing 

electromagnetic fields and particles, critical to several future science investigations of 

solar terrestrial interactions, are being developed in a MEMS format. Sensor technologies 

using micromachined optical components, such as microshutters and micromirrors for 

advanced space telescopes and spectrometers are also being matured. One exciting 

research area is the design and development of adaptive optics devices made up of either 

very dense arrays of MEMS micromirrors or membrane mirrors to perform wavefront 

aberration correction functions in future space observatories. These technologies have the 

potential to replace the very expensive and massive high-precision optical mirrors 

traditionally employed in large space telescopes. Several other MEMS-based sensing 

systems are either being actively developed or are in the early stages of innovative 
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design. Examples of these include, but are not limited to, micromachined mass 

spectrometers (including MEMS microvalves) for chemical analysis, microbolometers 

for infrared spectrometry, and entire Laboratory-on-a-Chip device concepts. One can also 

envision MEMS-based environmental and state-of-health monitoring sensors being 

embedded into the structures of future space transportation vehicles and habitats on the 

lunar (or eventually on a planetary) surface as described in the following section on 

Exploration applications for MEMS. 

. 

2.3.4 Exploration Applications 

There are a vast number of potential application areas for MEMS technology within the 

context of the nation’s Vision for Space Exploration (VSE). We will explore some of 

those here. 

In the Integrated Vehicle Health Management (IVHM) arena, an emphasis will be placed 

upon developing fault detection, diagnosis, prognostics, information fusion, degradation 

management capabilities for a variety of Exploration space vehicles and platforms. 

Embedded MEMS technology could certainly play a significant role in implementing 

automated spacecraft IVHM systems and the associated crew emergency response 

advisory systems. 

Developing future ISRU systems will dictate the need for automated systems to collect 

lunar regolith for use in the production of consumables. Innovative ISRU systems that 

minimize mass, power, and volume will be part of future power system and vehicle 
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refueling stations on the lunar surface andor planetary surfaces. These stations will 

require new techniques to produce oxygen and hydrogen from lunar regolith, and looking 

further ahead new systems to produce propellants and other consumables from the Mars 

atmosphere will need to be developed. 

MEMS technology should also play a role in the development of the space and surface 

environmental monitoring systems that will be supporting exploration. Clearly the 

observation, knowledge, and prediction of the space, lunar and planetary environments 

will be important for exploration. MEMS could also be exploited in the development of 

environmental monitoring systems for lunar and planetary habitats. This too would be a 

very suitable area for MEMS technology infusion. 

2.3.5 Space ParticledMorphing Entities 

Significant technological changes will blossom in the next few years as the multiple 

developments of MEMS , NEMS, Micro-Machining, and Bio-Chemical technologies 

create a powerful confluence. If the space community at large is properly prepared and 

equipped, the opportunity to design, develop and fly revolutionary, ultra-integrated 

Mechanical, Thermal, Chemical, Fluidic, and Biological microsystems can be captured. 

These are the type of systems that cannot feasibly be built using conventional space 

platform engineering approaches and methods. 
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Some space visionaries are enthused by this huge “blue sky” potential to blaze 

completely new design paths over the next 15-25 years. One can envision the creation of 

such fundamentally new mission ideas as, for example, MEMS-based “spaceborne sensor 

particles” or autonomously morphing robotic space entities that would resemble today’s 

state of the art space platforms as closely as today’s ubiquitous PC’s resemble the slide 

rules used by an earlier generation of engineers. Swarms of these MEMS enabled 

“spaceborne sensor particles” could employ collaborative behaviors to perform very 

dense in-situ science observations and measurements. One can also envision these 

miniature robotic “spaceborne sensor particles” breaking the Earth-to-orbit (also known 

as the Access to Space) launch constraint, by being able to take advantage of novel space 

launch system innovations such as electromagnetic or light-gas cannon launchers where 

perhaps thousands of these MEMS-based “particles” could be dispensed at once. 

2.4 CHALLENGES AND FUTURE NEEDS 

In this section, it will be stressed that, while some significant advancements are being 

made to develop and infuse MEMS technology into space mission applications, there is 

much more progress to be made in this arena. There are still many challenges, barriers 

and issues (not all technical or technological) yet to be dealt with in order to hlly exploit 

the potential of MEMS in space. The following is a brief summary of some of the key 

considerations and hurdles to be faced. 
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2.4.1 Challenges 

History tells us that the infusion of new technological capabilities into space missions 

will significantly lag that of the commercialhndustrial sector. Space program managers 

and other decision makers are typically very cautious about when and where new 

technology can be infused into their missions. New technologies are often perceived to 

add unnecessary mission risk. 

Consequently, MEMS technology developers must acknowledge this barrier to infusion 

and strive to overcome it by fostering a two way understanding and interest in MEMS 

capabilities with the mission applications community. This motivates the need, in 

addition to continually maturing the Technology Readiness Level (TRL) of their device 

or system, to proactively initiate and maintain continuing outreach with the potential 

space mission customers to assure a clear mutual understanding of MEMS technology 

benefits, mission requirements/constraints (in particular the “Mission Assurance” space 

qualification requirements), risk metrics and potential infusion opportunities. 

2.4.2 Future Needs 

It is unlikely that the envisioned proliferation of MEMS into future Science and 

Exploration missions will take place without significant future technological and 

engineering investments focused on the unique and demanding space applications arena. 

Several specific areas where such investments are needed are suggested below. 
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Transitioning MEMS microsystems and devices out of the laboratory and into operational 

space systems will not necessarily be straight forward. The overwhelming majority of 

current MEMS technology developments have been targeted at terrestrial, non-space 

applications. Consequently, many MEMS researchers have never had to consider the 

design implications of having to survive and operate in the space environment. An 

understanding of the space environment will be a prerequisite for developing “flyable” 

MEMS hardware. Those laboratory researchers that are investigating MEMS technology 

for space applications must first take the time to study and understand the unique 

challenges and demanding requirements imposed by the need to first survive the rigors of 

the short-term dynamic space launch environment as well as the long-term on-orbit 

operating environments found in various mission regimes. Chapter 4 of this book is 

intended to provide just such a broad general background on the space environment and 

will be a valuable reference for MEMS technologists. In a complementary effort, the 

space system professionals in industry and in government, to whom the demanding space 

environmental requirements are routine, must do a much better job of guiding the MEMS 

* 

technology community through the hurdles of designing, building and qualifjing space 

hardware. 

The establishment of much closer working relationships between MEMS technologists 

and their counterparts in industry is certainly called for. Significantly more Industry- 

University collaborations, focused on transitioning MEMS microsystems and devices out 

of the University laboratories, will be needed to spur the infusion of MEMS technology 

into future space missions. It is envisioned that these collaborative teams would target 
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specific space mission applications for MEMS. Appropriate mission assurance product 

reliability specifications, large scale manufacturing considerations, together with industry 

standard mechanical/electrical interface requirements, would be combined very early in 

the innovative design process. In this type of collaboration University-level pilot efforts 

would pathfind the development of viable low-cost production approaches. The 

expectation is that these pilot efforts would eventually result in standardized large volume 

industrial production processes yielding space-qualified Commercial-Off-The-Shelf 

(COTS) MEMS flight hardware. 

On a more foundational level, continued investment in expanding and refining the 

general MEMS knowledge base will be needed. The focus here should be on improving 

our understanding of the mechanical/electrical behaviors of existing MEMS materials 

(especially in the cryogenic temperature regimes favored by many space sensing 

applications) as well as the development of new exotic MEMS materials. New techniques 

for testing materials and methods for performing standardized reliability assessments will 

be required. The latter need will certainly drive the development of improved high- 

fidelity, and test-validated, analytical software models. Exploiting the significant recent 

advances in high performance computing and visualization would be a logical first step 

here. 

Another critical need will be the development of new techniques and processes for 

precision manufacturing, assembly and integration of silicon-based MEMS devices with 

macro-scale non-planar components made from metals, ceramics, plastics, and perhaps 
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more exotic materials. The need for improved tools, methods and processes for the design 

and development of the supporting miniature, low-power mixed-signal (analog and 

digital) electronics, which are integral elements of the MEMS devices, must also be 

addressed. 

The investigation of innovative methods for packing and tightly integrating the electrical 

drive signal, data readout and signal conditioning elements of the MEMS devices with 

the mechanical elements should be aggressively pursued. In most applications, significant 

device performance improvements, along with dramatic reductions in corrupting 

electrical signal noise, can be accomplished with moving the electronics as physically 

close as possible to the mechanical elements of the MEMS device. This particular area, 

focused on finding new and better ways to more closely couple the MEMS electronics 

and mechanical sub-elements, can potentially have high payoffs and should not be 

overlooked as an important research topic. 

Lastly it is important to acknowledge that a unified “big picture” systems approach to 

exploiting and infusing MEMS technology in future space missions is currently lacking 

and, perhaps worse, non-existent. While there clearly are many localized centers of 

excellence in MEMS microsystem and device technology development within academia, 

industry, non-profit laboratories and federal government facilities, there are few, if any, 

comparable MEMS Systems Engineering and Integration centers of excellence. Large 

numbers of varied MEMS “stand alone” devices are being designed and developed but 

there is not enough work being done currently on approaches, methods, tools, and 
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processes to integrate heterogeneous MEMS elements together in a “System of Systems” 

fashion. For example, in the case of the affordable microsatellite discussed above, it is 

not at all clear how one would go about effectively and efficiently integrating a MEMS 

micro-thruster or a MEMS micro-gyro with other MEMS-based satellite elements such a 

commandtelemetry system, a power system, or on-board flight processor. We certainly 

should not expect to be building future space systems extensively composed of MEMS 

microsystems and devices using the integration and interconnection approaches currently 

employed. These are typically labor intensive processes using interconnection 

technologies that are both physically cumbersome and resource (power/mass) consuming. 

The cost economies and resource benefits of using miniature mass produced MEMS- 

based devices may very well be lost if a significant level of “hands-on” manual labor is 

required to integrate the desired final payload or platform system. Furthermore, it is quite 

reasonable to expect that future space systems will have requirements for MEMS-based 

payloads and platforms that are both modular and easily reconfigurable in some “plug 

and play” fashion. The work to date on such innovative technology as MEMS harnesses 

and MEMS switches begins to address this interconnectiodintegration need but 

significant work remains to be done in the MEMS flight system engineering arena. 

In the near-term, to aid in solving the dual scale (Macro-to-MEMS) integration problem, 

researchers should pursue ways to better exploit newly emerging low poweriradiation 

hard micro-electronics packaging and high density interconnect technologies as well as 

Internet-based wireless commandtelemetry interface technology. Researchers should 

also evaluate methods to achieve a Zero Integration Time (ZIT) goal for MEMS flight 
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systems using aspects of today’s plug & play component technology which utilizes 

standard data bus interfaces. In the far-termy we most likely will need to identify entirely 

new architectures and approaches to accomplish the goal of simply and efficiently 

interconnecting MEMS microsystems and devices composed of various types of metals, 

ceramics, plastics, and exotic materials. 

Balancing our collective technological investments between the intellectually stimulating 

goal of developing the next best MEMS stand-alone device in the laboratory and the real 

world problem that will be faced by industry of effectively integrating MEMS-based 

future space systems is a recommended strategy for ultimate success. Significant 

investments are required to develop new space system engineering approaches to develop 

adaptive and flexible MEMS flight system architectures and the supporting new MEMS- 

scale interconnection hardwarehoftware building blocks. Likewise the closely associated 

need to3est and validate these highly-integrated MEMS “System of Systems” 

configurations prior to launch will drive the need for adopting (and adapting) the 

comprehensive, highly autonomous Built-In-Test (BIT) functions commonly employed in 

contemporary non-aerospace commercial production lines. 

Research in this arena could well lead to the establishment of a new MEMS Micro- 

Systems Engineering discipline. This would be a very positive step in taking the 

community down the technological path towards the ultimate goal of routine, systematic 

and straightforward infusion of MEMS technology in future space missions. 
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There are several important inter-related common needs that span all the emerging 

MEMS technology areas. Advanced tools, techniques and methods for high-fidelity 

dynamic modeling and simulation of MEMS microsystems will certainly be needed, as 

will be multiple MEMS technology ground testbeds, where system functionality can be 

demonstrated and exercised. These testbed environments will permit the integration of 

MEMS devices in a flight-like Hardware-in-the-Loop (HITL) configuration. The findings 

and the test results generated by the testbeds will be used to update the MEMS dynamic 

models. The last common need is for multiple and frequent opportunities for the on-orbit 

demonstration and validation of emerging MEMS-based technologies for space. Much 

has been accomplished in the way of technology flight validation under the 

guidance/sponsorship of such programs as NASA’s NMP but many more such 

opportunities will be required to propel the process of validating the broad family of 

MEMS technologies needed to build new and innovative space systems. The tightly 

interrelated areas of dynamic models/simulations, ground testbeds, and on-orbit 

technology validation missions will all be essential to fully understand and to 

safely/effectively infuse the MEMS into fbture missions. 

2.5 CLOSING 

The success of future Science and Exploration missions quite possibly will be dependent 

on the development, validation and infusion of MEMS-based microsystems that are not 

only highly integrated, power efficient and minimally packaged but also flexible and 

versatile enough to satisfy multi-mission requirements. Several MEMS technology 
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developments are already underway for future space applications. The feasibility of many 

other MEMS innovations for space are currently being studied and investigated. 

The widespread availability and increasing proliferation of MEMS technology 

specifically targeted for space applications will lead future mission architects to evaluate 

entirely new design trades and options where MEMS can be effectively infused to 

enhance current practices or perhaps enable completely new mission opportunities. The 

space community should vigorously embrace the potentially disruptive technological 

impact of MEMS on how space systems are designed, built and operated. Our space 

community should consider striving for a robust MEMS technology development 

approach along the lines adopted by the Defense Advanced Research Projects Agency 

(DARPA) to revolutionize military capabilities. It is well known that over the past several 

years DARPA has significantly invested in the development and widespread infusion of 

MEMS-based microsystems. Decision makers interested in sponsoring the development 

of innovative MEMS-microsystems for space mission applications would do well to 

study the DARPA approach. Multiple high riskhigh payoff MEMS technologies have 

being aggressively pursued by DARPA to dramatically improve the agility, accuracy, 

robustness, and reliability of defense systems. There are lessons to be learned from this 

DARPA experience for the space community. Conceivably implementing a similarly 

strong MEMS technology "push" for space applications will directly support NASA's 

goals of improved system affordability, reliability, effectiveness and flexibility. 
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Transitioning MEMS microsystems and devices out of the laboratory and into operational 

space systems will present many challenges. Clearly much has been accomplished but 

several critical issues remain to be resolved in order to produce MEMS microsystems that 

will satisfy the demanding performance and environmental requirements of space 

missions. In the spirit of Rear Admiral Grace Murray Hopper ("If it's a good idea, go 

ahead and do it. It's much easier to apologize than it is to get permission") the community 

must continue to freely innovate with open minds. Otherwise, if we constrain our vision 

for MEMS microsystems in space, an opportunity may be missed to bend (or perhaps 

even break) the current space platform design and production paradigms. 
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Figures 2.1 - 2.8: 

Figure 2.1: The NMP ST5 Microsats (Source: NASA) 
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Figure 2.2: NMP ST5 MEMS Thermal Louver Actuator Block with Shutter Array 

(Source: J€€U/APL) 

Figure 2.3: A Two-Dimensional MEMS Microshutter Array (Source: NASA) 
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Figure 2.4: An Individual MEMS Microshutter Element (Source: NASA) 

Figure 2.5: MEMS Microshutter Array 128 by 64 Pixel Demonstration Module Under 

Test (Source: NASA) 
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Figure 2.6: The NMP ST6 Inertial Stellar Camera (Source: CSDL) 

Figure 2.7: NMP ST6 ISC MEMS 3-Axis 

Gyro Assembly (Source: CSDL) 

Figure 2.8: The completed MEMS “diamond pillar” monopropellant microthruster. A top 

view is shown, with the inlet at the bottom and the nozzle at the top of the figure. 

(Source: NASA) 
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