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Introduction

Fast space trips are important to intercept and rendezvous with an impacting asteroid or comet,
particularly those not detected many years in advance.  Fast trajectories can shorten space flight times and
allow orbit modification efforts to begin earlier.  The earlier the effort begins, the less change in velocity
(∆V) required to alter the object’s trajectory.  However, shorter trip times require more propellant to
provide enough thrust if the travel distance is fixed.  This additional propellant mass can be a burden to
the structural architecture of spacecraft.  Thus, it is necessary to trade off between flight time and propel-
lant mass.

Background

This report describes the approach and results of an end-to-end simulation to deflect a long-period
comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system.  The laser energy required
for providing sufficient deflection ∆V and an analysis of possible intercept/rendezvous spacecraft trajec-
tories are studied in this analysis. These problems minimize a weighted sum of the flight time and
required propellant by using an advanced propulsion system.  The optimal thrust-vector history and
propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial
object.  One goal of this analysis is to formulate an optimization problem for intercept/rendezvous space-
craft trajectories.

One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser
ablative propulsion (ref. 1).  A sufficiently intense laser pulse ablates the surface of a near-Earth object
(NEO) by causing plasma blowoff.  The momentum change from a single laser pulse is very small.
However, the cumulative effect is very effective because the laser can interact with the object over long
periods of time.  The laser ablation technique can overcome the mass penalties associated with other
nondisruptive approaches because no propellant is required to generate the ∆V (the material of the celes-
tial object is the propellant source).  Additionally, laser ablation is effective against a wide range of
surface materials and does not require any landing or physical attachment to the object.  For diverting
distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the
Earth may be too extreme to contemplate in the next few decades.  A hybrid solution would be for a
spacecraft to carry a laser as a payload to a particular celestial body.  The spacecraft would require an
advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful
electrical generator, which is likely needed for the propulsion system as well.  The spacecraft would
station-keep with the object at a “small” standoff distance while the laser ablation is performed.

____________________
7Chapter nomenclature available in chapter notes, p. 217.
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Trajectory Optimization Algorithm

For intercept and rendezvous trajectories, optimization problems (ref. 2) in three dimensions are for-
mulated to minimize flight time with moderate propellant mass.  Many problems in the design of modern
guidance and control systems require optimization of the trajectory, which minimizes (or maximizes)
some performance criterion. Using the theory of the calculus of variations, the formulation of these prob-
lems yields a two-point boundary-value problem (TPBVP). The resulting optimal trajectory also satisfies
the physical constraints and the given differential equations. The open-loop optimal trajectory can be used
as a reference trajectory for intercept or rendezvous with Earth-crossing asteroids or comets. To simplify
the presentation and focus more on the inequality constraint, we first present the necessary conditions for
an optimal control problem without the inequality constraint and then discuss the inequality constraint
separately. A general optimal control problem can be stated as follows:

Given the performance index, J, and radial velocity, u,

J u x t t L x t dtf f t

tf
( ) [ ( ), ] ( , , )= + ∫φ u

0
(1)

subject to the dynamic equations, ˙,x  and boundary conditions

˙ ( , , ), ( ) ,x f x t x t x t given= ≡u 0 0 0 (2)

and with free final time tf , find the control history u(t) to minimize J(u) with the prescribed terminal
constraints

Φ[ ( ), ]x t tf f = 0 (3)

Here x(t) ∈ Rn are the state variables, u(t) ∈ Rl are the control components, and Φ ∈ Rk. The Hamiltonian
function is defined with Lagrange multipliers Λ(t) ∈ Rn as

H L fT≡ + Λ (4)

The performance index in equation (1) is augmented and rewritten as

J x t t x t t H x dtf f
T

f f
T

t

tf
' [ ( ), ] [ ( ), ] ( ˙)= + + −∫φ ν Φ Λ

0
(5)

where ν is a constant multiplier vector of the dimension of the constraint Φ.  The Minimum Principle
requires that the optimal controls minimize the Hamiltonian function, H:

u u* * *( ) min arg ( , ,t H x
u

=
∈Ω

Λ , t) (6)

where Ω is the set of admissible controls and x* *, ,Λ  and u*  are the extremal states, costates, and
controls, respectively.  The initial time and the initial states are known. The conditions to be satisfied to
minimize J '  are found by taking the first variation of J '  and setting relations equal to zero.  From this,
the states, costates, and the Hamiltonian function satisfy the following conditions:

ẋ HT = Λ (7a)
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Λ̇T xH= − (7b)

Λ ΦT
f x

T
x
t t

t
f

( ) = +( ) =
φ ν (7c)

H tf t
T

t
t tf

( ) = − +( ) =
φ ν Φ (7d)

Hu = 0 (7e)

Equation (7e) can be solved for the control, so that the control is removed from equations (7a) and (7b).
There are n + k + 1 unknown values; n Λ’s; k ν’s; and the final time.  These values can be solved by using
the k terminal constraints, equation (3), the n equations, equation (7c), and equaton (7d).

The control inequality constraint is represented as

u u umin max( )≤ ≤ ≤ ≤t t tf0 (8)

Control variable inequality constraint is augmented to the cost function and additional necessary
conditions are obtained as a result (refs. 3 and 4).  The optimal trajectory is composed of two types of
control—nominal control [ ( ) ]min maxu u u< <t  and boundary control [ ( ) ].min maxu u ut or=   The nomi-
nal control satisfies the same necessary conditions as the unconstrained problem.  For boundary control,
the inequality constraint becomes an equality constraint.  Many classical problems in the calculus of
variations treat constraints of this form very well.  A new Hamiltonian function with control variable
inequality constraint is redefined as

˜ ( ) ( )max minH H= + − + −µ µ1 2u u u u (9)

where

µ µ

µ µ
1 1

2 2

0 0

0 0

( )

( )

max

min

u u

u u

− = ≥

− = ≥

⎫
⎬
⎪

⎭⎪
(10)

The necessary conditions and controls for active constraints are

˙ ˜x HT = ΛΛ (11)

˙ ˜ΛΛ == −−Hx (12)

H̃u = 0 (13)

We use the control u(t) from the condition Hu = 0 when the control constraints are not active.  For the
problem with active inequality constraints, equations (11) and (12) are the equations of state and costate
variables.  For the Lagrange multiplier µ i , i = 1,2 must necessarily satisfy that

µ

µ
i

i

if the associated constra is not active

if the associated constra is active

=

≥

0

0

int

int
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and µ i  can be obtained from solving H̃u = 0 for µ i .  Hence, when u(t) < umin, the control and the
Lagrange multipliers are u(t) = umin, µ1  = 0, µ2  = Hu .  When u(t) > umax, the control and the Lagrange
multipliers are u(t) = umax, µ2  = 0, µ1 = −Hu .

Many numerical algorithms to solve optimal control problems have been developed. Indirect methods
are theoretically based on the Minimum Principle, which characterizes the set of optimal states and con-
trols in terms of the solution of a boundary value problem.  One indirect method is the shooting method,
which yields solutions of high precision.  The shooting method is a second order method and hence is
very sensitive to small changes of costate initial conditions.  Shooting methods have the associated diffi-
culties caused by instability of the initial value problem for the system of differential equations and by the
requirement for good initial guesses for the iterative solutions of nonlinear problems.  In this analysis, a
shooting method is used to solve the comets or asteroids intercept or rendezvous trajectory problems.

Problem Statement

Propulsion

Many future propulsion systems have been proposed and analyzed. One potential propulsion approach
that has been examined for a Comet/Asteroid Protection System (CAPS) deflection capability is the
Variable Specific Impulse Magnetoplasma Rocket (VASIMR).  VASIMR is a high power magnetoplasma
rocket that gives continuous and variable thrust at constant power (ref. 5).  Hydrogen plasma is heated by
radio frequency (RF) power to increase exhaust velocity up to 300 km/s.  The power output of the engine
is kept constant, thus thrust and specific impulse, Isp, are inversely related. Thrust is increased propor-
tional to the power level.  The engine can optimize propellant usage and deliver a maximum payload in
minimum time by varying thrust and Isp (ref. 6).  Therefore, VASIMR can yield the fastest possible trip
time with a given amount of propellant by using constant power throttling (CPT).  A10-kW space demon-
strator experiment has been completed, and a VASIMR engine with 200-MW power could be available
around the year 2050.  The specific impulse range of the engine would be 3000 s to 30000 s, and the
corresponding thrust range would be approximately 13600 N to 1360 N (assuming 100 percent power
efficiency of 200 MW).  To calculate acceleration, a, and spacecraft mass flow rate, the following rela-
tionships are used.  The thrust, T mve= ˙ , and exhaust velocity, v I ge sp o= , are described by specific

impulse, Isp, and the acceleration due to gravity at the Earth’s sea level, go .  Mass flow rate, ˙ ,m  is itself

negative value.

The power, p, required to expel mass at the mass flow rate, ˙ ,m  is εp m ve= 1
2

2˙ .  ε is the efficiency of

the propulsion system. Thus, we know

ε ε ε
p Tv T

p
v

T
p

I ge
e sp o

= ⇒ = ⇒ =1
2

2 2
(14)

Using equation (14), acceleration due to VASIMR can be derived:

a = =T
m

p
mg

I
Io sp

2ε
(15)
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where m is spacecraft mass at any time. Finally, the mass flow rate is calculated as

ṁ
T
v

p

g Ie o sp

= − = − 2 1
2 2

ε
(16)

Equations of Motion

The spacecraft is considered to fly in three-dimensional interplanetary space.  The three-degree-of-
freedom equations of motion are the following:

ṙ u= (17a)

˙ sin cosu
v
r

w
r r

= + + −
2 2

2
1

a α β (17b)

˙ sin
cos

cos cosv
uv
r

vw
r

= − + +φ
φ

α βa (17c)

˙ sin
cos

sinw
uw
r

v
r

= − − +
2 φ

φ
βa (17d)

˙
cos

θ
φ

= v
r

(17e)

φ̇ = w
r

(17f)

ṁ
p

g Io sp

= − 2
2 2
ε

(17g)

where r is the radial distance from the Sun to spacecraft, u is the radial velocity, v is the tangential
velocity, w is the normal velocity, θ is the angle measured from the x-axis (defined as vernal equinox) in
the x-y plane, φ is the angle measured from x-y plane, m is the mass of spacecraft, a is acceleration of
spacecraft, p is the power of spacecraft, g is the gravitational parameter at Earth’s sea level, and Isp is the
specific impulse of spacecraft engine. The control variables are thrust direction angle in plane (α), thrust
direction angle of out-of plane (β), and the specific impulse (Isp).

The Hamiltonian function is

H w u
v
r

w
r

a
r

uv
r

vw
r

a

uw
r

v
r

a
v

r
w
r

p

g I

t r u v

w m
o sp

= + + + + −
⎛

⎝
⎜

⎞
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⎛
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λ λ α β λ φ
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λ φ
φ
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φ

λ λ ε
θ φ

2 2
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2
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sin

cos
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sin
cos

sin
cos

(18)
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The costate equations are

˙ sin

cos

sin

cos cos
λ λ λ φ

φ
λ φ

φ
λ

φ
λθ φr u v w

v w

r r

vw

r

uv
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r
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⎛
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2
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2
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λ̇ λ λ λu r v w
v
r

w
r

= − + + (19b)

˙ sin
cos

sin
cos cos

λ λ λ φ
φ

λ φ
φ

λ
φθv u v w

v
r

u
r

w
r

v
r r

= − + −
⎛
⎝⎜

⎞
⎠⎟

+ −2 2 1
(19c)

˙ sin
cos

λ λ λ φ
φ

λ λφw u v w
w
r

v
r

u
r r

= − − + −2 1
(19d)

λ̇θ = 0 (19e)

˙
cos cos

sin

cos
λ λ

φ
λ

φ
λ φ

φ
φ θ= − + −v w

vw

r

v

r

v

r2

2

2 2 (19f)

˙ sin cos cos cos sinλ λ ε α β λ ε α β λ ε βm u
sp

v
sp

w
sp

p

m gI

p

m gI

p

m gI
= + +2 2 2

2 2 2
(19g)

Performance Index

Optimal control theory is concerned with finding the control history to optimize a measure of the per-
formance index of the following general form:

J u m w dtf tt

t f
( ) = − + ∫

0

(20)

where mf represents the final mass of spacecraft, and wt is weight for flight time (wt is set as 10 in this
analysis).  For the problem at hand, it is required to find the optimal trajectory that maximizes the final
mass of spacecraft and minimizes the flight time.

Initial Conditions and Terminal Conditions

The spacecraft departs from the Earth with the following initial conditions at t = 0 s:

r(t0) = 1 au, u(t0) = 0, v(t0) = Earth’s velocity, w(t0) = 0,

θ(t0) = obtained from spacecraft departure time before collision,

θ(t0) = 0°, m(t0) = free (unknown), tf = free (unknown)

The initial mass of spacecraft is a free parameter to include propellant mass.  Thus, initially the costate of
mass is set as λm(t0) = −1.  The other costate values [λr(t0), λu(t0), λv(t0), λw(t0), λθ(t0), λφ(t0)] at t0 are
unknown.
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Final boundary conditions are specified to satisfy the position and velocity of asteroids/comets.  The
spacecraft must intercept or rendezvous with the targeted asteroid/comet with specified orbit.  To achieve
the desired trajectory, final conditions should be satisfied.  These are the positions of spacecraft for inter-
cept trajectory and the positions and velocities of spacecraft for rendezvous trajectory.  Hence, for inter-
cept trajectory, the terminal state conditions are

Φ x t t

r t r t

t t

t t

m t m

f f

f t et f

f t et f

f t et f

f dry

( ),

( ) ( )

( ) ( )

( ) ( )

( )

arg

arg

arg
[ ] ≡

−

−

−

−

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=
θ θ

φ φ
0 (21)

Rendezvous trajectory has the following terminal state conditions:

Φ x t t

r t r t

u t u t

v t v t

w t w t

t t

t t

m t m

f f

f t et f
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f t et f

f t et f

f t et f
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( ),

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
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[ ] ≡

−

−

−

−

−

−

−

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

θ θ

φ φ

⎫⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

= 0 (22)

where subscript “target” denotes the state of targeted celestial object, and mdry is the spacecraft dry mass.
From transversality conditions, we obtain the following costate terminal conditions for intercept
trajectory:

λ νr ft( ) = 1 (23a)

λ λ λu f v f w ft t t( ) ( ) ( )= = = 0 (23b)

λ νθ ( )tf = 2 (23c)

λ νφ ( )tf = 3 (23d)

λ νm ft( ) = 4 (23e)

where νi is the Lagrange multiplier.  From transversality conditions, we obtain the following costate
terminal conditions for rendezvous trajectory:

λ νr ft( ) = 1 (24a)

λ νu ft( ) = 2 (24b)

λ νv ft( ) = 3 (24c)



155

λ νw ft( ) = 4 (24d)

λ νθ ( )tf = 5 (24e)

λ νφ ( )tf = 6 (24f)

λ νm ft( ) = 7 (24g)

Furthermore, from equation (7d) the following condition is also satisfied at tf:

H tf( ) = 0 (25)

Equation (25) becomes another boundary equation at the final time.  For the intercept problem, there
are 14 differential equations describing the states and costates, with 15 unknowns [m(t0), λr(t0), λu(t0),
λv(t0), λw(t0), λθ(t0), λφ(t0), tf, ν1, ν2, ν3, ν4, u(tf), v(tf), and w(tf)] and 15 boundary conditions [r(t0),
u(t0), v(t0), w(t0), θ(t0), φ(t0), λm(t0), eqs. (21), λu(tf), λv(tf), λw(tf), and eq. (25)].  For the rendezvous
problem, there are 14 differential equations describing the states and costates, with 15 unknowns [m(t0),
λr(t0), λu(t0), λv(t0), λw(t0), λθ(t0), λφ(t0), tf, ν1, ν2, ν3, ν4, ν5, ν6, and ν7] and 15 boundary conditions
[r(t0), u(t0), v(t0), w(t0), θ(t0), φ(t0), λm(t0), eqs. (22), and eq. (25)].  Thus, the two-point boundary prob-
lem can be completely solved with these boundary conditions.

Controls

The control variables are thrust direction angle in-plane (α), thrust direction angle of out-of-plane (β),
and specific impulse (Isp).  A second-order necessary condition, the Legendre condition, states that the
second derivative of the Hamiltonian, with respect to the controls, must be greater than or equal to zero
for the performance index to be at a minimum.  Thus, Hαα, Hββ must be greater than or equal to zero for
the performance index to be at a minimum.  The first derivative of H with respect to α and convexity
condition yields a control variable of α as follows:

sin α λ

λ λ
= −

+
u

u v
2 2

(26a)

cos α λ

λ λ
= −

+
v

u v
2 2

(26b)

The first derivative of H with respect to β and convexity condition yields a control variable of β as
follows:

sin β λ

λ λ λ
= −

+ +
w

u v w
2 2 2

(27a)

cos β
λ λ

λ λ λ
=

+

+ +
u v

u v w

2 2

2 2 2
(27b)
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The first derivative of H with respect to Isp and convexity condition yields a control variable of Isp as
follows:

I
m

g
sp

m

o u v w

= −

+ +

2
2 2 2

λ

λ λ λ
(28)

I I Isp sp spmin max≤ ≤ (29)

If the Isp constraint is not active and λm < 0, the solution would be optimal.  If the unconstraint control
Isp < Isp min, then Isp = Isp min, whereas Isp = Isp max if the unconstraint control Isp > Isp max.  For λm > 0,
the optimal solution is going to be Isp = Isp min.

Interplanetary optimal trajectories have been computed to maximize the final mass of the vehicle and
to minimize the flight time. The optimal problem is a free final time problem to find the three controls
satisfying the state and costate equations.

End-to-End Simulation

Here we consider a fictitious impacting LPC whose orbital parameters are given by aphelial distance
ra = 100 au and perihelion distance rp = 0.7 au with inclination i = 50°.  These orbital parameters yield
semimajor axis a = 50.35 au, eccentricity e = 0.98609732, and orbital period of 357.27 years.  It is
assumed that the LPC has its density as ρ = 1000 kg/m3.  The minimum required impulses for deflecting
an impactor by 3 Earth radii are solved in this analysis, and the calculation is always performed to move
the LPC’s trajectory from crossing the Earth’s orbit at the Earth’s center.  The solutions represent impulse
vectors that can be described by the magnitude of the minimum impulse and the optimal impulse angle.
The gravitation effects of Earth are considered by using a three-dimensional optimization problem to
calculate the impulse vectors.  Figure 1 includes the minimum ∆V with respect to the impulse time that is
defined as time before collision when ∆V is applied.  Figure 2 includes the optimal impulse angle with
respect to the impulse time.  The impulse angle is described as being in an asteroid’s/comet’s orbital plane
and is defined as the angle from the asteroid’s/comet’s original velocity vector to the impulse vector
toward the Sun-asteroid/comet line.  The dotted line in these figures explains the preperihelial collision
case (a collision occurs before an asteroid/comet passes its perihelion), whereas the solid line in these
figures explains the postperihelial collision case (a collision occurs after an asteroid/comet passes its
perihelion).  Figure 3 shows an estimate of the typical energy required for laser ablation to deflect the
1-km comet by 3 Earth radii, when preperihelial collision with Earth is considered.  The required laser
energy is also a function of the object’s density and the required ∆V, which varies depending on the
object’s orbit and when the deflection occurs.  It is easy to estimate the required laser energy for any size
comet (or asteroid) because the minimum ∆V is linearly proportional to the cube of its diameter.  Figure 4
explains a detail of figure 3 for an LPC, using fixed impulse times, and describes the required energy for
laser ablation to deflect the given size of a comet by 3 Earth radii.  The estimated energy is calculated
assuming that the cumulative energy generated by the laser is applied as an equivalent impulsive ∆V at
some time before collision.  Because the laser ablation occurs over a significant period of time, the laser
interaction must be complete prior to the time specified for each curve in order to assure that the deflec-
tion could be accomplished.  Figure 5 shows a preliminary estimate of the achieved energy for a given
laser power and operation period.  Figures 4 and 5 can be used to estimate the nominal laser power
required for a deflection mission.  To illustrate a preperihelial case, figure 4 shows that approximately
5 ×  104 GJ of energy is required to deflect a 0.2-km comet by 3 Earth radii if applied 1 year before
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Figure 1. Minimum ∆V to deflect 1-km LPC by 3 Earth radii.
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Figure 3. Required laser energy to deflect 1-km LPC by 3 Earth radii.
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Figure 4. Estimated energy required for laser ablation versus diameter for LPCs (ρ = 1000 kg/m3).
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Figure 5. Estimate of achieved energy for given laser power and operation period.

collision.  Figure 5 shows that a 100-MW laser (10000-kJ pulse and 10-Hz laser repetition frequency)
would be required to operate continuously for approximately 5 days in order to achieve this cumulative
energy. Figure 6 illustrates the trajectories and thrust vector for a 100-metric ton (t) spacecraft (including
10-t payload) to intercept or rendezvous with this particular LPC for a departure time of 7 months before
a preperihelial collision with Earth.

The propulsion system is assumed to operate at 90-percent power efficiency.  Figures 7 and 8 show
flight time and required propellant for intercept and rendezvous trajectories for various departure times
when a 100-t spacecraft with 1 GW of power is assumed.  For this specific LPC, there is a peak at
11 months departure time because the spacecraft must fly in the reverse direction with respect to Earth’s
orbital velocity.  Because there are local minima and maxima in the propellant required and flight time, as
shown in the figures, it can be concluded that the values are dependent upon the orbital geometry relation-
ship as well as distance between the Earth and the comet.  For a given departure time, the rendezvous
trajectory requires more propellant and longer flight time than the intercept trajectory.  This is because the
terminal velocity of rendezvous spacecraft must be matched with the target’s velocity, which is not
required for the intercept trajectory.  Asteroids and comets with different orbital elements will have
different flight times and propellant requirements.  Even for the same celestial object, a postperihelial
impact would have different results from those of a preperihelial impact.

Once the spacecraft has rendezvoused with the LPC, a laser ablation system makes use of the same
electrical power system that the propulsion system uses for the orbital transfer.  For example, if the laser
ablation operation can be completed 12 months before collision, approximately 3 × 106 GJ of energy
would be required for a 0.8-km LPC to be deflected by 3 Earth radii.  If we choose a 500-MW laser
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Figure 6. Example long-period comet intercept and rendezvous trajectories.
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Figure 8. Propellant used for each departure time.

system (assuming 1 GW of supplied power and 50-percent laser system efficiency), it would take about
90 days of continuous operation to provide this amount of energy.  From figure 7, the rendezvous space-
craft with a laser ablation system should depart from Earth approximately 19 months before the collision,
with a trip time of about 4 months.  For the mission, approximately 340 t of propellant would be required,
assuming 100-t total dry mass of the spacecraft and payload.  Depending on the payload mass capability
of the propulsion system, multiple deflection devices could be delivered to the impactor, including a
fallback option to the laser ablation system.  In case the rendezvous deflection mission was unsuccessful,
a similar spacecraft with a different payload (e.g., nuclear explosive device) could be sent to deflect the
target using an intercept trajectory.  If we assume that the intercept spacecraft departs from Earth
9 months before the collision with a 10-t payload, the spacecraft can arrive at the target approximately
7 months before impact and may require less than 230 t of propellant (as shown in figs. 7 and 8).

A multimegawatt nuclear electric propulsion (NEP) system using a VASIMR engine is currently esti-
mated to have a maximum overall specific mass of 1.0 kg/kW (ref. 7).  For a 1-GW system, this would
result in a total spacecraft dry mass of 1000 mt (neglecting payload mass).  This is ten times the total
spacecraft mass assumed for this analysis, and the mass of a future laser ablation payload is presently not
well understood.  The assumed power efficiency of 90 percent is also optimistic.  More capable power
generators (gigawatt class) with lower specific masses could provide the power needed to reduce trip
times and provide more powerful lasers.  Deflecting an impactor by only 3 Earth radii would be sufficient
for a deflection effort.  More powerful lasers would be capable of providing a greater miss distance, and
thus more margin for uncertainty in the object’s orbit.  NEOs with greater densities would also require a
more capable laser ablation system.  Longer warning times would reduce the requirements on the orbit
modification system but would make the CAPS detection system more challenging to implement.  For
the 0.8-km LPC assumed in this analysis, the detection system would need to determine the comet’s
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trajectory at least 19 months prior to its preperihelial collision with the Earth.  For impactors with
extremely short warning times, an intercept trajectory may be the only feasible scenario for diverting the
object.

Technological advances that can significantly reduce the specific mass of the rendezvous spacecraft
and laser payload may permit this type of deflection approach to become a reality.  A tiered planetary
defense approach using rapid rendezvous and intercept spacecraft could provide a feasible scenario to
protect the Earth from an impacting LPC, as well as other classes of impacting NEOs.  A rendezvous
spacecraft with a laser ablation payload could also provide a capable and robust orbit modification
approach for altering an NEO’s orbit for resource utilization.

Concluding Remarks

This report presents intercept/rendezvous trajectories for an advanced spacecraft that is designed to
deliver laser ablation energy to an Earth-crossing long-period comet.  The trajectory optimization problem
is solved using the shooting method, which yields highly accurate solutions.  The open-loop optimal
solutions can be used as reference spacecraft trajectory for the deflection problem.  The end-to-end simu-
lation in this report demonstrates a conceptual approach to altering the orbit of an Earth impacting long-
period comet, particularly one which represents an immediate threat.

References

1. Phipps, C. R.: Lasers Can Play an Important Role in the Planetary Defense. Proceedings of the Planetary
Defense Workshop, Lawrence Livermore National Laboratory, Livermore, CA, May 1995.

2. Bryson, A. E.: Dynamic Optimization, Addison-Wesley, Menlo Park, CA, 1999.

3. Maurer, H.; and Pesch, H. J.: Solution Differentiability for Parametric Nonlinear Control Problems With
Control-State Constraints. J. Optim. Theory & Appli., vol. 86, no. 2, 1995, pp. 285–309.

4. Kreim, H.; Kugelmann, B.; Pesch, H. J.; and Breitner, M. H.: Minimizing the Maximum Heating of a
Re-Entering Space Shuttle: An Optimal Control Problem With Multiple Control Constraints. Opt. Control Appli.
& Methods, vol. 17, 1996, pp.45–69.

5. Chang-Diaz, F. R., et al.: The Physics and Engineering of the VASIMR Engine. 36th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, 17–19 July 2000, Huntsville, AL, AIAA 2000-3756.

6. Chang-Diaz, F. R.: The VASIMR Rocket. Sci. American, Nov. 2000, pp. 90–97.

7. Smith, B.; Knight, T.; and Anghaie, S.: Multimegawatt NEP With Vapor Core Reactor MHD. Space Technology
and Applications International Forum (STAIF 2002), Albuquerque, NM, Feb. 3–6, 2002.


