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Abstract

A major challenge to the successful full-scale development of modem aerospace

systems is to address competing objectives such as improved performance, reduced costs,

and enhanced safety. Accurate, high-fidelity models are typically time consuming and

computationally expensive. Furthermore, informed decisions should be made with an

understanding of the impact (global sensitivity) of the design variables on the different

objectives. In this context, the so-called surrogate-based approach for analysis and

optimization can play a very valuable role. The surrogates are constructed using data drawn

from high-fidelity models, and provide fast approximations of the objectives and

constraints at new design points, thereby making sensitivity and optimization studies

feasible. This paper provides a comprehensive discussion of the fundamental issues that

arise in surrogate-based analysis and optimization (SBAO), highlighting concepts, methods,

techniques, as well as practical implications. The issues addressed include the selection of

the loss function and regularization criteria for constructing the surrogates, design of

experiments, surrogate selection and construction, sensitivity analysis, convergence, and

optimization. The multi-objective optimal design of a liquid rocket injector is presented to

highlight the state of the art and to help guide future efforts.
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Nomenclature

Corrected approximation

Center of the radial basis function

Total variance

Partial variance of ith variable xi

m th derivative of the function j2

Expected value of the quantity

Expected value of the quantity considering all datasets

Expected value of the square of the bias error at design point x

Expected value of the variance at design point x

True function to be modeled

True response at design point x

Vector of responses at sampled design points

(Model) Response at ith design point

Model estimation

Vector of radially symmetric functions

i th radially symmetric function

Matrix of radial basis functions for sampled design points

Identity matrix

Hadamard matrix

Symmetric kernel function matrix

Loss function

Number of design variables

Number of iterations in iterative fractional factorial design

Number of terms in polynomial regression

Number of radial basis functions

Number of sampled design points

Projection matrix

Number of levels for each variable

Correlation vector between the sampled design points and prediction design

point

Correlation matrix among the sampled design points

Adjusted coefficient of multiple determination in polynomial regression

Main factor global sensitivity index of i th variable xi
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Sign of A th variable in m th iteration

Strength of orthogonal array

Variance of the quantity

Vector of coefficients of linear combinations of radially symmetric functions

Estimate of coefficients vector w

Vector of design variables

/dh design variable

ith design point

N s x NpR a Gramian matrix of basis functions

Vector of basis functions in polynomial regression

jth basis function in polynomial regression (e.g. xx, xl 2, x2 ...)

jth basis function for i thsample design point

Weight vector

ith component of the weight vector

Vector of coefficients in polynomial regression

Coefficients of the basis functions in polynomial regression

Estimate of coefficient vector p in polynomial regression

Index of the orthogonal array

Radius of the radial basis function

Model appraisal

Probability density function

Regularization parameter

Mean of the responses at sampled design points

Variance of the response at sample design points

Adjusted root mean square error in polynomial regression

Degree of correlation among data points along/d h direction

1. Introduction

Major risks in the successful full-scale development of aerospace systems are related to

effectively addressing the competing needs of improving performance, reducing costs, and

enhancing safety. Typically, the analysis of the components of such systems, such as air-

breathing or rocket propulsion devices is expensive, hindering the search for optimal designs.
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Surrogate-basedanalysis and optimization (SBAO) has been shown to be an effective

approach for the design of computationallyexpensivemodels such as those found in

aerospace systems, involving aerodynamics,structures, and propulsion, among other

disciplines.Successfulapplicationsincludethe multidisciplinaryoptimal designof aerospike

rocket nozzles,injectors andturbinesfor liquid rocketpropulsion,and supersonicbusiness

aircrafts.

For example,SBAOhasbeenappliedto high speedcivil transport(Knill et al. [1]), airfoil

shapeoptimization(Rai andMadavan[2]-[3], Madavanet al. [4]), diffusershapeoptimization

(Madsenet al. [5]), supersonicturbine (Papilaet al. [6], Shyy et al. [7]-[8]), and injectors

(Shyyet al. [7]-[8], Vaidyanathanet al. [9]-[10], Goelet al. [11]).

This review providesa comprehensivediscussionof the fundamentalissuesthat arisein

surrogate-basedanalysisand optimization (SBAO), emphasizingthe conceptsbehind the

methodsandtechniques,and practical implicationsof an integratedapproachto SBAO for

aerospacecomponentsandsystems.

The first part of the review is structuredfollowing the key stepsin surrogatemodeling

(Figure 1):

1. Design of Experiments (DOE). Thedesignof experimentis the samplingplan in design

variable space.The key questionin this step is how we assessthe goodnessof such

designs,consideringthe number of samplesis severely limited by the computational

expenseof eachsample.A discussionof themostprominentapproachesrelatedto DOE in

SBAOis presentedin SectionIII.



2. Numerical Simulations at Selected Locations. Here, the computationally expensive

model is executed for all the values of the input variables in the DOE specified in the

previous step.

3. Construction of Surrogate Model. Two questions are of interest in this step: a) what

surrogate model(s) should we use (model selection) and, b) how do we find the

corresponding parameters (model identification)? A formal description of the problem of

interest is discussed in Section II. A framework for the discussion and mathematical

formulation of alternative surrogate-based modeling approaches is the subject of Section

IV.

4. Model Validation. This step has the purpose of establishing the predictive capabilities of

the surrogate model away from the available data (generalization error). Section V

discusses schemes for estimating the generalization error for model validation purposes.

Then, surrogate-based analysis and optimization are discussed in Section VI and VII,

respectively. A case study associated with the multi-objective optimal design of a liquid-

rocket injector is used to illustrate the different issues that arise when conducting SBAO and

particular methods and techniques selected.

2. Overview of Surrogate Modeling

With reference to Figure 2, surrogate modeling can be seen as a non-linear inverse problem

for which one aims to determine a continuous function (f) of a set of design variables from a

limited amount of available data (f). The available data f while deterministic in nature can

represent exact evaluations of the function f or noisy observations and in general cannot carry

sufficient information to uniquely identify f (multiple surrogates may be consistent with the

available data as illustrated in Figure 3). Thus, surrogate modeling deals with the twin
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problemsof: a) constructinga model .f from the availabledataf (modelestimation),andb)

assessingthe errorss attachedto it (modelappraisal).A generaldescriptionof the anatomy

of inverseproblemscanbefoundin Snieder[ 12].

Hence, using the surrogatemodeling approachthe prediction of the simulation-based

^

model output is formulated as fp(x)= f(x)+ 6(x). The prediction expected value and its

variance V(fp) are illustrated in Figure 4, with 0 being a probability density function. Note

that in Figure 3 it is assumed that the expected value of e(x) is zero.

Different model estimation and model appraisal components of the prediction have been

shown to be effective in the context of SBAO (see for example, Simpson et al. [13],

McDonald et al. [14], Chung and Alonso [15], Jin et al. [16]), namely polynomial regression

(PRG), Gaussian radial basis functions (GRF), and (ordinary) Kriging (KRG) as described by

Sacks et al. [17]. Model estimation and appraisal components of these methods are presented

in Section IV.

A good paradigm to illustrate how particular solutions (.f) to the model estimation

problem can be obtained is provided by regularization theory (see for example, Tikhonov and

Arsenin [18], and Morozov [19]), which imposes additional constraints on the estimation.

More precisely, .f can be selected as the solution to the following Tikhonov regularization

problem:

1 N,

minD?_H('f)=_-_L(f_-_(x(;'))+2_ _lD'_cllMdx (1)

where H is the family of surrogate models under consideration, L(x) is a loss or cost

function used to quantify the so called empirical error (e.g., L(x)= x 2 ), 2 is a regularization
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parameter,and D"_" represents the value of the m-derivative of the proposed model at

location x. Note that D"_" represents a penalty term; for example, if m is selected equal to 2,

it penalizes high local curvature. Hence, the first term enforces closeness to the data (goodness

of fit), while the second term addresses the smoothness of the solution with/1, (a real positive

number) establishing the tradeoff between the two. Increasing values of 2 provide smoother

solutions. The purpose of the regularization parameter 2 is hence to help implement Occam's

razor principle [20] which favors parsimony or simplicity in model construction. A good

discussion on statistical regularization of inverse problems can be found in Tenorio [21 ].

The quadratic loss function (i.e., L: norm) is the most commonly used in part because it

typically allows easy estimation of the parameters associated with the surrogate model;

however, it is very sensitive to outliers. The linear (also called Laplace) loss function takes the

absolute value of its argument (i.e., LI norm); on the other hand, the Huber loss function is

defined as quadratic for small values of its argument and linear otherwise. The so called 6

loss function has received considerable attention in the context of the

regression surrogate (Vapnik [22], Girosi [23]) and assigns an error

(interpolation) if the true and estimated values are within an g distance. Figure 5 illustrates

the cited loss functions.

Methods for identifying the regularization parameter 2 are typically based on

generalization error estimates (e.g., cross validation); as a result, they will be discussed in the

context of Validation (Section V).

support vector

equal to zero

o Design of Experiments (DOE)

As stated in the Introduction, the design of experiment is the sampling plan in design



variablespaceandthekey questionin this stepis how weassessthegoodnessof suchdesigns.

In this context, of particular interestare sampling plans that provide a unique value (in

contrastto randomvalues) for the input variablesat eachpoint in the input space,andare

model-independent;thatis, theycanbeefficientlyusedfor fitting avarietyof models.

With referenceto a) in most applications,where the assumedmodel is in doubt (see

SectionsII and IV), and the data is collectedfrom deterministiccomputersimulations,the

primary interestis minimizing thebias error because the numerical noise is small, and a DOE

is selected accordingly. Brief descriptions for bias and variance components of the empirical

error, and the corresponding expressions for the particular case of average error formulation

and quadratic loss function are provided next. In the following discussion it is assumed that

the function values (data set) have some noise or random component in them (e.g., due to

numerical noise).

^

Bias: quantifies the extent to which the surrogate model outputs (i.e., f(x)) differ from the

true values (i.e., f(x) ) calculated as an average over all possible data sets D.

Variance: measures the extent to which the surrogate model j'(x) is sensitive to particular

data set D. Each data set D corresponds to a random sample of the function of interest.

For an average error formulation with a quadratic loss function the expressions for bias and

variance are shown in Equations (2) and (3), respectively. In both expressions EAo s denotes

the expected value considering all possible data sets.

Eb,a_ (X) = {EaDs[)(X)]-f(x)} 2 (2)

There is a natural trade-off between bias and variance. A surrogate model that closely fits a
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particular dataset (lower bias)will tend to provide a largervariance.We candecreasethe

varianceby smoothingthe surrogatemodelbut if the ideais takentoo far then thebias error

becomessignificantly higher. In principle, we can reduceboth the bias (can choosemore

complex models) and the variance(eachmodel more heavily constrainedby the data)by

increasingthe numberof points providedthe latter increasesmore rapidly than the model

complexity.

In practice, the number of points in the data set is severely limited (e.g., due to

computationalexpense)and often during the constructionof the surrogatemodel a balance

betweenbias and varianceerrorsis sought.This balancecanbe achieved,for example,by

reducing the bias error while imposingpenaltieson the model complexity (e.g.,Tikhonov

regularization).

Whenpolynomialregressionis used,andthetruemodel is assumedto beapolynomialof a

given order, there is good theory for obtaining minimum bias designs(e.g., Myers and

Montgomery[24], Section9.2) as well assomeimplementationsin low dimensionalspaces

(e.g.,Qu et al. [25]). For themoregeneralcase,thebiaserror canbe reducedthrougha DOE

that distributesthe samplepoints uniformly in the designspace(Box and Draper [26] and

Sacksand Ylvisaker [27] asreferencedin Tang [28]) but computationalexpensedoesnot

allow to conductdensefull factorial designsso, instead,someforms of fractional factorial

designs(adequatelychosenfraction of thefull factorial design)areused.The uniformity

property in designsis soughtby (issueb), for example,maximizing theminimum distances

amongdesignpoints (Johnsonet al. [29]), or by minimizing correlationmeasuresamongthe

sampledata(ImanandConover[30], Owen[31]). Practicalimplementationof thesestrategies

includes orthogonalarrays (OA, e.g., Hedayatet al. [32]) and Latin Hypercubesampling
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(LHS, e.g., McKay et al. [33]); the former producesuniform designsbut can generate

particular forms of point replicationswhile the latterdoesnot producereplicatesbut canlack

uniformity. As a result,OA-basedLHS (Tang[28], Ye [34]) andotheroptimal LHS schemes

(PalmerandTsui [35], Leary etal. [36]) havebeenproposed.Thesepracticalimplementations

arediscussednext.

3.1. Latin Hypercube Sampling (LHS)

Stratified sampling ensures that all portions of a given partition are sampled. LHS (McKay

et al. [33]) is a stratified sampling approach with the restriction that each of the input variables

(xk) has all portions of its distribution represented by input values. Following McKay et al.'s

notation, a sample of size N s can be constructed by dividing the range of each input variable

into N s strata of equal marginal probability 1INs and sampling once from each stratum. Let

us denote this sample by x_ j) , j=l .... N,; k=l .... K. The sample is made of components of

each of the xk's matched at random. Figure 6 illustrates a LHS design.

While LHS represents an improvement over unrestricted stratified sampling (Stein [37]) it

can provide sampling plans with very different performance in terms of uniformity (issue b)

measured by, for example, maximum minimum-distance among design points, or by

correlation among the sample data. Figure 7 illustrates this shortcoming; the LHS plan in

Figure 7(c) is significantly better than that in Figure 7(a).

3.2. Orthogonal Arrays (OA)

These arrays were introduced by C.R. Rao in the late 40's and can be defined as follows.

An OA of strength t is a matrix of N, rows and Ndv columns with elements taken from a set

of q symbols, such that in any Nsx t submatrix each of the qt possible rows occurs the same
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number_,(index)of times. The number of rows ( N s ) and columns (Nay) in the OA definition

represent the number of samples and variables or factors under consideration respectively. The

q symbols are related to the levels defined for the variables of interest, and the strength t is an

indication of how many effects can be accounted for (to be discussed later in this section)

with values typically between 2 and 4 for real-life applications. Such an array is denoted by

OA(Ns,Nav,q,t ). Note that by definition a LHS is an OA of strength one, OA (Ns,Na_,N_,I).

There are two limitations on the use of OA for DOE:

• Lack of flexibility: Given desired values for the number of rows, columns, levels, and

strength, the OA may not exist. For a list of available orthogonal arrays, theory and

applications, see, for example, Owen [38], Hedayat et al. [32] and references therein.

• Point replicates: OA designs projected onto the subspace spanned by the effective factors

(most influential design variables) can result in replication of points. This is undesirable for

deterministic computer experiments where the bias of the proposed model is the main concern.

3.3. Optimal LHS, OA-based LHS, Optimal OA-based LHS

Different approaches have been proposed to overcome the potential lack of uniformity of

LHS. Among those, most of them adjust the original LHS by optimizing a spreading measure

(e.g., minimum distance or correlation) of the sample points. The resulting designs have been

shown to be relatively insensitive to the optimal design criteria (Ye et al. [39]). Examples of

this strategy can be found in the works of Johnson et al. [29], Iman and Conover [30] and

Owen E31]. Tang [28] presents the construction of strength t OA-based LHS which stratify

each t-dimensional margin and shows that they offer a substantial improvement over standard

LHS. Other strategies optimize a spreading measure of the sample points, but restrict the

search of LHS designs which are orthogonal arrays, resulting in so called optimal OA-based

12



LHS (Leary et al. [36]). AdaptiveDOE in which modelappraisalinformation is usedto place

additional sampleshavealsobeenproposed(Joneset al. [40], Sasenaet al. [41], Williams et

al. [42]).

If feasible, two sets of DOE are generated,one (so called training data set) for the

constructionof the surrogate(SectionIV) and one for assessingits quality (Validation as

discussedin SectionV).

Given thechoiceof surrogate,theDOEcanbeoptimizedto suit aparticularsurrogate.This

hasbeendoneextensivelyfor minimizingvariancein polynomial regression(e.g.,Myersand

Montgomery[24], Chapter8) and to someextent for minimizing bias (e.g.,Qu et al. [25]).

However, for non-polynomialmodels,the cost of the optimization of a surrogate-specific

DOE is usuallyprohibitive,andsois rarelyattempted.

4. Construction of the Surrogate Model

There are both parametric (e.g., polynomial regression, Kriging) and non-parametric (e.g.,

projection-pursuit regression, radial basis functions) alternatives for constructing surrogate

models. The parametric approaches presume the global functional form of the relationship

between the response variable and the design variables is known, while the non-parametric

ones use different types of simple, local models in different regions of the data to build up an

overall model. This section discusses the estimation and appraisal components of the

prediction of a sample of both parametric and non-parametric approaches, and the rationale of

addressing the issue of model uncertainty (not knowing which surrogate may perform the

best) using multiple surrogates (Zerpa et al. [43]).

Specifically, the model estimation and appraisal components corresponding to Polynomial

Regression (PRG), Kriging (KRG), and Radial Basis Functions (RBF) surrogate models are
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discussednext, followed by a discussionof a moregeneralnon-parametricapproachcalled

Kernel-basedregression.Throughoutthis section a squareloss function is assumedunless

otherwisespecified,and given the stochasticnatureof the surrogates,the availabledata is

considereda sampleof apopulation.

4.1. Polynomial Regression model (PRG)

The regression analysis is a methodology that studies the quantitative association between a

function of interest f, and NpR o basis functions zj, where there are N s sample values of the

function of interest f,., for a set of basis functions z_;) (Draper and Smith [44]). For each

observation i a linear equation is formulated:

NpR6

f_(z)= _",B/z_:)+6, E(6,)=0 V(e,)=cr 2 (4)
j=l

where the errors o_ are considered independents with expected value equal to zero and

variance o_. For example, a second-order polynomial (Ndv = 2; NpR o = 6 ) can be expressed as:

Nd_, Ndv Ndv

?(x)--po+y.p,x,+y.Ep,,x,xj (5)
i=1 i=1 j<i

The estimated parameters I_ (by least squares) are unbiased and have minimum variance.

The set of equations specified in Equation (4) can be expressed in matrix form as:

f=Xp+z E(e)=0 V(z)=cr2I (6)

where X is a N s x NpRa matrix of basis functions with the design variable values for

sampled points. The vector of the estimated parameters then can then be found as:

_ : (xTx)-I xTf (7)

14



Consideringa new set of basisfunctionvector z for designpoint P, the varianceof the

estimationis:

z)

4.2. Kriging Modeling (KRG)

It is named after the pioneering work of D.G. Krige (a South African mining engineer), and

was formally developed by Matheron [45]. More recently, Sacks et al. [46]-[47], and Jones et

al. [40] made it well-known in the context of the modeling, and optimization of deterministic

functions, respectively. The Kriging method in its basic formulation estimates the value of a

function (response) at some unsampled location as the sum of two components: the linear

model (e.g., polynomial trend) and a systematic departure representing low (large scale) and

high frequency (small scale) variation components, respectively.

The systematic departure component represents the fluctuations around the trend, with the

basic assumption being that these are correlated and the correlation depends only on the

distance between the locations under consideration. More precisely, it is represented by a zero

mean, second-order, stationary process (mean and variance constant with a correlation

depending on a distance) as described by a correlation model.

Hence, these models (Ordinary Kriging) suggest estimating deterministic functions as:

fp(X) =/.t + s(x) E(s)= 0 cov(6(x_/)), s(x_/))) _ 0 Vi, j (9)

where/a is the mean of the response at sampled design points, and 6 is the error with zero

expected value, and with a correlation structure that is a function of a generalized distance

between the sample data points. A possible correlation structure (Sacks et al. [46]) is given by:

/ (IO)cov(6(x<°),e(x<J))) = o "_ exp z.., k _ k
k=l
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where N, denotes the number of dimensions in the set of design variables x; _, identifies

the standard deviation of the response at sampled design points, and, q_k is a parameter which

is a measure of the degree of correlation among the data along the k th direction. Specifically,

given a set of N s input/output pairs (x, 39, the parameters, p; or, and # are estimated such that

a likelihood function is maximized (Sacks et al. [46]). Given a probability distribution and the

corresponding parameters, the likelihood function is a measure of the probability of the

sample data being drawn from it. The model estimates at unsampled points is:

E(fp (x)) =/_ + rrR -_ (f - lfl) (11)

where the bar above the letters denotes estimates, r identifies the correlation vector

between the set of prediction points and the points used to construct the model, R is the

correlation matrix among the N, sample points, and 1 denotes an .IV, -vector of ones.

On the other hand, the estimation variance at unsampled design points is given by:

0-1'R+)]V(fp(x))=ty 2 1-rrR-'r+ ITR_,I j (12)

Gaussian Processes (Williams and Rasmussen [48], Gibbs [49]), another well-known

approach to surrogate modeling, can be shown to provide identical expressions for the

prediction and prediction variance to those provided by Kriging, under the stronger

assumption that the available data (model responses) is a sample of a multivariate normal

distribution (Rao [50]).

4.3. Radial Basis Functions (RBF)

Radial basis functions have been developed for the interpolation of scattered multivariate

data. The method uses linear combinations of Ne_ F radially symmetric functions, hi(x), based
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onEuclideandistanceor othersuchmetric,to approximateresponsefunctionsas,

Ne.BF

fp(x) = _ w,h,(x)+e, (13)
i=1

where w represents the coefficients of the linear combinations, hi(x) the radial basis

functions and _ independent errors with variance 0;.

The flexibility of the model, that is its ability to fit many different functions, derives from

the freedom to choose different values for the weights. Radial basis functions are a special

class of functions with their main feature being that their response decreases (or increases)

monotonically with distance from a central point. The center, the distance scale, and the

precise shape of the radial function are parameters of the model.

A typical radial function is the Gaussian which, in the case of a scalar input, is expressed

as:

(x-c): (14)hi (x) = exp 62

The parameters are its center e and its radius 8. Note that the response of the Gaussian

RBF decreases monotonically with the distance from the center, giving a significant response

only in the center neighborhood.

Given a set of N, input/output pairs (sample data) a radial basis functions model can be

expressed in matrix form as,

f=nw (15)

where H is a matrix given by,
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H

: : ". :

Similarly to the polynomial regression method, by

weights (in the least squares sense) can be found to be,

V_= A'IHrf

where A "1 is a matrix given by,

A -_ = (HTH) "_

(16)

solving equation (15) the optimal

The error variance estimate can be shown to be given by,

t_'2 = frp2f

tr(P)

where P is a projection matrix,

P = I - HA "IHr

The RBF model estimate for a new set input values is given by,

f(x)=hr*

where, h is a column vector with the radial basis functions evaluations,

(17)

(18)

(19)

(20)

(21)

f l
h=] h2}x) t

(x)J

(22)

On the other hand, the prediction variance is the variance of the estimated model .f(x)

plus the error variance and is given by:
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V(fp(x))=V(hrCv)+V(e):(hr(HrH)_lh+ll fr_pf (23)
JNs- NRB, 

The basic idea of RBF can be generalized to consider alternative loss functions and basis

functions, in a scheme known as kernel-based regression. With reference to equation (1), it

can be shown that independent of the form of the loss function L, the solution of the

variational problem has the form (the Representer Theorem; see Girosi [23], Poggio and

Smale [51]):

.f(x) = _] a;K(x, x °)) (24)
i=1

where K is a (symmetric) kernel function that determines the smoothness properties of the

estimation scheme. Table 1 shows the kemel functions of selected estimation schemes with

the kernel parameters being estimated by model selection approaches (see next section for

details). If the loss function L is quadratic, the unknown coefficients in Equation (24) can be

found by solving the linear system:

(N,,_I+K)a = f (25)

where I is the identity matrix, and K a square positive definite matrix with elements

K;j =K(x¢°,x(J)). Note that the linear system is well posed since (Ns_I+K) is strictly

positive and well conditioned for large values of N,_. If loss function L is non-quadratic, the

solution of the variational problem still has the form of Equation (24) but the coefficients _;

are found by solving a quadratic programming problem in what is known as support vector

regression (Vapnik [22]). Comparative studies have shown that depending on the problem

under consideration, a particular modeling scheme (e.g., polynomial regression, Kriging,

radial basis functions) may outperform the others and in general, it is not known a priori
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which one shouldbe selected.Seefor example,the works of Friedmanand Stuetzle [52],

Yakowitz & Szidarovsky[53], Laslett[54], Giuntaet al. [55], Simpsonet al. [13], Jinetet al.

[ 16]. Consideringplausiblealternativesurrogatemodelscanreasonablyfit the availabledata,

andthe costof constructingsurrogatesis smallcomparedto the costof thesimulations,using

multiple surrogatesmay offer advantagescomparedto theuseof a singlesurrogate.Recently,

multiple surrogate-basedanalysisandoptimizationapproacheshavebeensuggestedby Zerpa

et al. [43], basedon the modelaveragingideasof PerroneandCooper[56], andBishop[57].

The multiple surrogate-basedanalysisapproachis basedon the use of weighted average

modelswhich can be shown to reducethe prediction variancewith respectto that of the

individual surrogates.The ideaof multiplesurrogate-basedoptimizationis discussedin a later

sectionof thepaper.

5. Model Selection and Validation

Generalization error estimates assess the quality of the surrogates for prediction and can be

used for model selection among alternative models and establish whether they are ready to use

in analysis and optimization studies (validation). This section discusses the most prominent

approaches in the context of SBAO.

5.1. Split Sample (SS)

In this scheme the sample data is divided into training and test sets. The former is used for

constructing the surrogate while the latter, if properly selected, allows computing an unbiased

estimate of the generalization error. Its main disadvantages are that the generalization error

estimate can exhibit a high variance (it may depend heavily on which points end up in the

training and test sets) and that it limits the amount of data available for constructing the

surrogates.
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5.2. Cross Validation (CIO

It is an improvement on the split sample scheme that allows the use of most if not all of the

available data for constructing the surrogates. In general, the data is divided into k subsets (k-

fold cross-validation) of approximately equal size. A surrogate model is constructed k times,

each time leaving out one of the subsets from training, and using the omitted subset to

compute the error measure of interest. The generalization error estimate is computed using

the k error measures obtained (e.g., average). If k equals the sample size, this approach is

called leave-one-out cross-validation (known also as PRESS in the polynomial regression

terminology). Equation (26) represents a leave-one-out calculation when the generalization

error is described by the mean square error (GMSE).

1 k

GMSE=ki_._l (fi- fii(-i))2.=
(26)

where _(-i) represents the prediction atx (i) using the surrogate constructed using all sample

points except (x ") , f ). Analytical expressions are available for that ease for the GMSE

without actually performing the repeated construction of the surrogates for both polynomial

regression (Myers and Montgomery [24], Section 2.7) and Kriging (Martin and Simpson [58]).

The advantage of cross-validation is that it provides nearly unbiased estimation of the

generalization error and the corresponding variance is reduced (when compared to split-

sample) considering that every point gets to be in a test set once, and in a training set k-1 times

(regardless of how the data is divided); the variance of the estimation though may still be

unacceptably high in particular for small data sets. The disadvantage is that it requires the

construction of k surrogate models; this is alleviated by the increasing availability of surrogate

modeling tools. A modified version of the CV approach called GCV-generalized cross
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validation,which is invariantunderorthogonaltransformationsof thedata(unlike CV) is also

available(Golubetal. [59]).

If the Tikhonov regularization approachfor regressionis adopted, the regularization

parameter2, canbeidentified usingoneor moreof thefollowing altemativeapproaches:CV-

crossvalidation (leave-one-outestimates),GCV (smoothedversionof CV), or the L-curve

(explainedbelow). While CV and GCV can be computedvery efficiently (Wahba [60],

Hutchinson and de Hoog [61]), they may lead to very small valuesof _ even for large

samples(e.g., very flat GCV function). The L-curve (Hansen[62])is claimed to be more

robustandhavethe samegoodpropertiesof GCV. TheL-curveis aplot of theresidualnorm

thenorm _[D'_[[ of thesolution for different valuesof the regularization(first term) versus
-11111 H

parameter and displays the compromise in the minimization of these two quantities. The best

regularization parameter is associated with a characteristic L-shaped "comer" of the graph.

5. 3. Bootstrapping

This approach has been shown to work better than cross-validation in many cases (Efron

[63]). In its simplest form, instead of splitting the data into subsets, subsamples of the data are

considered. Each subsample is a random sample with replacement from the full sample, that is,

it treats the data set as a population from which samples can be drawn. There are different

variants of this approach (Hall [64], Efron and Tibshirani [65]) that can be used not only for

model identification, but also for identifying confidence intervals for surrogate model outputs.

This may come, though at the expense of considering several dozens or even hundreds of

subsamples.

For example, in the case of polynomial regression (given a model) regression parameters

can be estimated for each of the subsamples and a probability distribution (and then
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confidenceintervals) for the parameterscanbe identified. Oncethe parameterdistributions

are estimatedconfidenceintervals on model outputsof interest (e.g., mean) can also be

obtained.

Bootstrapinghasbeenshownto be effectivein the contextof neuralnetwork modeling;

recently, its performance in the context of model identification in regression analysis is also

being explored (Ohtani [66], Kleijnen and Deflandre [67]).

6. Sensitivity Analysis

Sensitivity, in this context, is a measure of the contribution of an independent variable to

the total variance of the dependent data. Sensitivity analysis allows addressing settings such

as:

• Can we safely fix one or more of the input variables without significantly affecting the

output variability (Screening)?

• How can we rank a set of input variables according to their contribution to the output

variability (Variables Prioritization)?

• If we could eliminate the uncertainty of one or more of the input variables which ones

should be chosen (Variable Selection for Maximum Uncertainty Reduction)?

• If and which (group of) parameters interact with each other (Parameter Interactions)?

• What are the main regions of interest in the parameter space if additional samples become

available?

• Does the model reproduce well known behavior of the process of interest (Model

Validation)?

There are alternative approaches for sensitivity analysis, differing, for example, in scope

(local vs. global), nature (qualitative vs. quantitative), and in whether they assume a particular
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model. Table 2 shows a sampleof suchmethods.In this section,we discussthe Morris

method(Morris [71]), IteratedFractionalFactorialDesign(AndresandHajas[72], Saltelli et

al. [73]) frequentlyused for screening purposes and the Sobol's method (Sobol [74]) a

variance-based non-parametric approach for analysis applications. Note that a screening effort

is expected to be economical (require a relatively small number of computationally expensive

simulations) and potentially reduce the number of variables considered in the construction of

the surrogate model.

6.1. Morris Method (Morris [71])

This approach is model independent and is particularly useful when the number of

available simulations for screening purposes is of the order of the number of design variables.

Its main purpose is to determine, within reasonable uncertainty, whether the effect of

particular design variables are negligible, linear and additive, or non-linear (interaction with

other design variables are present).

In its simplest form, the empirical distribution of the sensitivities associated with each of

the design variables (xi) is estimated by computing a number (2Ndv p ) of first order

sensitivities of the model response with respect to each of the Ndv design variables at a set of

p random locations. Each xi is then characterized by measures of central tendency (e.g., mean)

and spread (e.g., standard deviation). A large (absolute) value of central tendency for xi

indicates a design variable with an important (global) influence on the model response. On the

other hand, a large measure of spread is indicative of a design variable whose influence is

highly dependent on the value of the other design variables (interactions/non-linear effects).

While this formulation of the Morris method requires N s = 2Nd_p simulations, there are

variations that result in more economical designs with some of the simulations used in
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computingmorethanonesensitivity.A furtherreductionof thenumberof simulationscanbe

obtainedusing cluster sampling (a conceptto be discussednext). Details canbe found in

Morris [71].

6.2. Iterated Fractional Factorial Design (IFFD) Method (Andres and Hajas [72],

Saltelli et al. [73])

The IFFD method was designed for screening purposes (identifying influential variables)

for situations requiring fewer runs than there are design variables with the model response

dominated by a few influential variables. Assuming a particular model, IFFD establishes as

influential design variables with significant linear, quadratic, or non- linear/interaction effects.

IFFD belongs to the so called cluster sampling designs with the design variables randomly

aggregated into a small number of clusters. These clusters are then investigated using

orthogonal fi:actional factorial designs in multiple iterations (composite design), with different

groupings of design variables. A fractional factorial design is defined as a factorial experiment

in which only an adequately chosen fraction of the combinations required for the complete

factorial experiment is selected to be run while the orthogonal property makes reference to

balanced designs in which the number of different combination of values for two or three

design variables appear with equal frequency. Considering an influential group must contain

an influential design variable, the influential variables are expected to lie in the intersection of

influential groups in the iterations.

The steps involved in the IFFD method can be summarized as follows:

1. The design variables are sampled at three different levels, L (low), M (medium) and H

(high) ensuring that the sampling is balanced. The number of clusters or groups of
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variablesk is set. The value of k is assumed a power of two without a loss of generality;

commonly used values ofk are 8 and 16.

2. A basic two-level (L&H) resolution IV design matrix is constructed. The resolution of a

design makes reference to its ability to discriminate between main factors (the individual

effect of design variables), two-factor interactions, three factor interactions, etc. In a

resolution IV design, main factors are confounded at worst with three-factor interactions;

two factor interactions are confounded with certain other two-factor interactions though. A

Hadamard matrix can describe these designs with the value of-1 or +1 at each entry

representing the L and H values, respectively. Each column in the matrix represents the

values of the variables assigned to it, while each row denotes a computational experiment

to be conducted. This Hadamard matrix will be denoted by Jk[i, j] and has a size of 2k

rows and k columns.

3. Randomly assign (with equal probability) a design variable to a column in the two-level

resolution IV design matrix; the corresponding variable value will be given by the design

matrix multiplied by a sign (i.e., +1 or -1 with equal probability). The sign is denoted by

m

s A ; the sign of variable A in iteration m.

4. Repeat step 3N_tr times assuming the number of available simulations for screening

purposes is approximately 2kNi, r. During a fraction of the iterations (usually ¼) each of

the design variables values are set to zero, hence creating a three-level design, even though

each of the iterations has either a single middle level M or two extreme levels (L, H) per

individual variable.
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° The model responses corresponding to the rows in the design matrix in each of the

iterations are calculated. The model response in iteration m for a particular row is denoted

The global effect of a variable x/that takes its value from columnj in the design matrix in a

given iteration can be calculated as:

1 2k

ME m(xj,fm) = k" _= Jk[i ' j]f,,
(27)

The global effect of a variable denoted with letter A throughout the entire design is given

by:

ME(A,f) = avg, (sTME(X cT,f') l s _ ¢ O)

M

sTME(X cr ,fm)
mffil

m
M

ZIs:l
m=l

(28)

where C_" is the column that has assigned variable A in iteration m. Quadratic effects are

estimated by:

QE(A,f) = avg(f ls A = O)-avg(f ls ¢ O)

N_t, 2 k Ntt_ 2 k

)-" (1- s]'[))--" f,. m _-" s]' _-' f,."

N,,, N,,,

2kZ(1-t ;[) 2kZ
m=l m=l

(29)

Provided the model response is dominated by a few influential variables, and their

contribution mostly limited to linear and quadratic effects, the IFFD method has been found to

be effective in the screening of hundred and even thousands of variables with an order of

magnitude less simulations.

6.3. Sobol's Method (Sobol [74])

To understand the concept, assume a surrogate model of a square integrable objective, fix),
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asa function of avector of designvariables,x, whosevalueshavebeenscaledbetweenzero

andone(thisassumesthat thedesigndomainis box-like).This surrogatemodelrepresentedin

Equation(30)canbedecomposedasthesumof functionsof increasingdimensionalityas:

f(x) = fo +_-'f(X,)+_._fj(x,,xj)+...+fi2...K(X,,Xz,...,XK) (30)
i i<j

If the following condition

1

If4..4 dxk = 0 (31)
0

is imposed for k = il, ..., is, where 1 < i_ < ... < is <_Ndv, the decomposition described in

Equation (30) is unique and each term in the sum can be obtained by computing the following

integrals:

If(x) I-[ dxk = fo (32)

If(x)l--[dx, = fo + f (x,) (33)

from whichfi(xi) can be found, and

IS(x) 1-I dxk = fo + f. (x,)+ fs (xs)+ f.s (x,, xs ) (34)
k*i,j

from which f</(xi, xy) can be obtained. The higher dimensional summands are similarly

found except for the last one that is calculated using Equation (30).

Furthermore, the summands are orthogonal (ensured by the condition expressed in

Equation (31)), and, square integrable following the same condition for fix). Therefore the

partial variances, that is, the contribution of each of the summands to the total variance

observed in the response, can be shown to be:

= J",.--f£z"idx'"'dxi, (35)o,,,.
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with thetotal variancebeingequalto:

n =Ii ( )dx-I:

which can also be expressed as,

(36)

D= y' y' Di,...i" (37)
s=t 6<...<i,

Each partial variance gives a measure of the contribution of each independent variable or

set of variables to the total variance, and provides an indication of their relative importance.

Note that all the required integrations are conducted on the surrogate (fast) model and can in

principle be calculated accurately provided an integration numerical procedure is available

(e.g., Gaussian quadrature).

The relative importance of a design variable is quantified by a set of indices, namely, main

factors, and total sensitivity indices. The former refer to the fraction of the total variance

contributed by a particular variable in isolation, while the latter represents the contribution

(expressed as a fraction) of all the partial variances in which the variable of interest is

involved. The influence of a design variable, say xi, to an objective variability without

accounting for any of its interactions with other variables is denoted as a main factor index

and given as:

S, =D,/D (38)

To calculate the total sensitivity of any design variable, say xi, the design variable vector x

is divided into two complementary subsets, xi and Z where Z is a vector containing Xl, xe, x3,

..., xn (n _ i). The purpose of using these subsets is to isolate the influence ofxi on the J(x)

variability from the influence of the remaining design variables included in Z. The total

sensitivity index for xi is then defined as
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S_°'a' = D_°`a'/D (39)

where

D:°''= D, + D,.z (40)

/9,.is the partialvariance associatedwith xi,and D;,z isthe sum of allpartialvariances

associated with any combination of the remaining variables representing the interactions

between xi and Z. Similarly the sum of all the partial variances associated with the variables

denoted by Z can be defined as Dz, hence the total variance can be written as,

D=D, +D z +D_,z (41)

Formulations of the Sobol's method that account for non-rectangular domains and

correlated inputs are available; see, for example, Jacques et al. [75], and Mack et al. [76] for a

recent application. A detailed discussion of global sensitivity methods and applications can be

found in Sobol [74], Homma and Saltelli [77], Saltelli et a1.[78] and the references therein.

7. Surrogate-based Optimization

Surrogate model based optimization refers to the idea of speeding optimization processes

by using surrogates for the objectives and constraints functions. The surrogates also allow for

the optimization of problems with non-smooth or noisy responses, and can provide insight

into the nature of the design space (Vaidyanathan et al. [10], Goel et al. [11], Mack et al. [76],

Goel et al. [79]). SBAO has shown to be effective in both multidisciplinary and multi-

objective optimization. This section discusses the basic unconstrained SBAO algorithm, a

newly proposed multiple surrogate-based optimization approach, the use of surrogate

management frameworks to obtain provably convergent methods, and ways of addressing

general non-linear constraints.
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7.1. Basic Unconstrained SBAO

It can be summarized as follows:

1. Construct a surrogate model from a set of known data points

2. Estimate the function minimizer using the surrogate function

3. Evaluate the true function value at the estimated minimum (checking phase)

4. Check for convergence; if achieved, stop.

5. Update surrogate using new data points

6. Iterate until convergence

where possible convergence criteria include the achievement of a target for the objective

function, or finding that the best point found so far remains unchanged (within a given

tolerance) from one iteration to the next. There are trust-region approaches, to be discussed

below where the region where the surrogate is constructed and the optimization is conducted,

is shrunk or expanded depending on the results of the checking phase in order to guarantee

convergence to a local optimum (e.g., Alexandrov [80]). In the so called one-shot solution

approach though, a single iteration is used.

In general, the algorithm above should be focused on identifying trends in the objective

with the accuracy of the surrogates being important only when in the vicinity of a minimizer.

Estimating the function minimizer is conducted using standard optimization methods and

updating the surrogate using new data points can be accomplish by, for example, using model

appraisal information and merit functions (e.g., Jones et al. [40], Torczon and Trosset [81],

Sasena et al. [41], Queipo et al. [82]-[84]). Jones et al. [40], for example, use a generalized

expected improvement function whereby points with low objective function value or high

uncertainty are given precedence. A discussion of other sampling criteria in the context of
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SBAOis presentedby Sasenaetal. [41] asproposedby WatsonandBames[85].

7.2. Multiple Surrogates SBAO

For most challenging problems, given the sparseness of the data used to construct the

surrogates, alternative surrogates can provide reasonable approximations while giving

different uncertainty estimates throughout the design space. On the other hand, the surrogate

construction requires small computational resources compared to the cost of simulations and,

as previously discussed, a variety of parametric and non-parametric alternative loss functions

(e.g., quadratic, and 6 -sensitive) can be implemented.

The use of multiple surrogates will bring in several advantages at the optimization and

decision-making levels of the proposed approach, namely:

• The predictions made by each surrogate are checked in the checking phase and when

simulations are performed in additional cycles (iterations). Thus, we should be able to rank

surrogates based on a small number of cycles and select those that appear to fit best the

problem at hand.

• The additional surrogate optima analyzed in the checking phase may increase the global

search capability of the optimization in that they may correspond to different local optima.

• A weighted averaged model may be constructed that is expected to provide a prediction

with lower variance than any of the individual surrogates.

• Large variability in the estimated values and variances among surrogates at a point in

design space may indicate that the uncertainty at that point is higher than predicted.

Some preliminary results obtained on the use of multiple surrogates for optimization has

been reported by Zerpa et al. [43].

With reference to the basic SBAO algorithm, when multiple surrogates are available
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changesneedto bemadein theproposedapproach.At theoptimization level, in general there

will be multiple suggested optima, and the checking phase will include not one but as many

simulations as surrogates. This new data set is available to all surrogates and their expressions

for the predictions and variances can be updated. At the decision making level, the designer

can make a qualitative assessment of the uncertainty in the results, and has more information

to decide whether or not to undertake another cycle and on how to proceed (the number and

location of additional sample points). Note that significant differences in the predictions and

variances at particular locations can be used to identify regions where the uncertainty may be

higher than expected. Hence, it may be required to sample those regions and subsequently

update the predictions and variances.

7.3. Convergence and SBAO

There are two approaches that are provably globally convergent to local optima or

solutions of the original (computationally expensive) optimization problem of interest that

involve sun'ogates. These are called the Approximation Model Management Framework

(AMMF) (Alexandrov [80], Lewis [86], Rodriguez et al. [87]) and Surrogate Management

Framework (SMF) (Booker et al. [88]), and inherit/exploit the convergence properties of trust

region and pattern search methods, respectively. They both use variable-fidelity models

(surrogate and computationally expensive) and differ in whether they can use derivative

information of the high fidelity function (if available). A description of each of these

frameworks is next.

7.4. Approximation Model Management Framework (AMMF)

The approach is typically associated with gradient-based optimization algorithms and relies

under the general assumption that the surrogate model is accurate enough for the purpose of
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finding a gooddirectionof improvementfor the higher fidelity (computationallyexpensive)

model. The AMMF replacesthe local, Taylor seriesapproximation,typical of conventional

optimization, by an arbitrary model required to satisfy consistency conditions. The

consistencyconditionscanbeof differentorders(zero,first, or second);for afirst ordermodel

theconsistencyconditionsare:

ac(Xc)= f(Xc)

Vac(Xc)=Vf(xc)
(42)

where a andfdenote the corrected approximation (its expression is shown below) and high

fidelity models, respectively. The consistency conditions can be imposed using a correction

technique:

fl(x) = fhi (x) / fro (X) (43)

where fh,.(x) and f_o(X) corresponds to computationally expensive and surrogate

evaluations, respectively. Furthermore, a first order model tic of fl about a current design

variable vector xe can be written as:

tic (x) = fl(xc) + Vfl(xct)(x - Xc) (44)

The local model offl is then used to correct f_o (x) to obtain a better approximation a(x) of

A,(x):

A,(x) = P(x)f,o(X)
a(x) = tic (x)flo (x) (45)

It can be shown that the approximation model a(x)satisfies the first order consistency

conditions. The basic AMMF algorithm can then be summarized as follows:

Until convergence do:
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• Choosethecorrectedapproximationak so that it satisfies the consistency conditions

• Find an approximate solution s k to the subproblem:

min a k(x k + s)
(46)

subject ls < Ak

• Compare the actual and predicted decrease in fh;

• Update x k and A k accordingly

As in the classical trust region methods (Dennis and Schnabel [89]) the length of the steps

is regulated based on how well the corrected model predicts the decrease in fhi. A significant

mismatch in the actual and predicted decrease in fh; may lead to a reduction in the trust radius

and/or to update the surrogate model approximation. The AMMF approach inherits

convergence properties of the classical trust regions algorithms for non-linear optimization.

More precisely, first order AMMF methods can be shown to converge to local optima of the

high fidelity problem under appropriate standard conditions of continuity and boundedness of

the functions and derivatives, given that the consistency conditions are imposed at each major

iteration. The AMMF can be adapted to handle nonlinear constraints and successful

applications related to variable fidelity models have been reported (Alexandrov et al. [90],

[91]). While the guaranteed convergence of the algorithm is valuable, it comes at the cost of

requiring derivative calculation for the expensive simulation at one point in the design space

(normally the optimum of the previous cycle).

7.5. Surrogate Management Framework (SMF)

It is a framework based on pattern search methods (see, for example, Torczon [92]) which

incorporates surrogates to make the optimization cost effective. Being based on pattern search
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methods,the SMFframework:i) canbe usedfor scenarioswheretheobjective functionsare

non-differentiable,or for which sensitivitiesare difficult or expensiveto attain, ii) canbe

easilyadaptedto eitheraparallelor distributedcomputingenvironment,iii) is lesslikely to be

trappedby non-globalminimizersthan aretraditional nonlinearoptimizationalgorithms,iv)

canbe extendedto handlegeneralnonlinearconstraints,and v) convergencetheory for the

SMF can be found in the convergenceof pattern searchmethods. The following SMF

descriptionfollows thatprovidedby Bookeret al. [88] andMarsdenetal. [93].

The SMF algorithm (illustrated in Figure 8) is mesh-based(all points evaluatedare

restrictedto lie on amesh)andconsistsof two steps,SEARCH andPOLL. The exploratory

SEARCH stepusesthe surrogateto aid in the selectionof points likely to minimize the

objective function.The SEARCH stepprovidesmeansfor local and/orglobal explorationof

the parameterspace,but it is not strictly requiredfor convergence.Hence,this stepcanbe

adaptedto theparticularengineeringproblemunderconsideration.

The convergenceof the SMF is guaranteedby the POLL step,in whichpointsneighboring

the current best points on the mesh are evaluated in a positive spanning set of directions

(positive basis) to check whether the current best point is a mesh local optimizer. A positive

basis in R N* is a set of vectors whose nonnegative linear combinations span R N_ , but for

which no proper subset has that property. The relevance of a positive basis in the context of

the SMF is that it ensures that if the gradient of the high fidelity function fat the best current

solution x is not zero, then at least one vector in the positive basis defines a descent direction

from fat x. This can be guaranteed without any knowledge of the gradient. Any positive basis

has at least Nav+l (minimal) and at most 2Nay (maximal) vectors; for example, in three

dimensions, such a basis can be given by: (1,0,0), (0,1,0), (0,0,1), and (-1,-1,-1). For
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unconstrainedproblems,a minimal positivebasisis sufficientto guaranteeconvergence.The

POLL set is made by the set of mesh points adjacent to the current best point in the above-

referenced directions.

In the SE.M_CH step, the high fidelity model is evaluated at one or more minimizers as

predicted by the surrogate. If a lower objective function value is found among the recent

evaluations, the search is considered successful, the surrogate is updated, and another search

step is performed. If the SEARCH step fails to find an improved point, then it is considered

unsuccessful and a POLL step is performed. In this step, the set of POLL points are evaluated.

As soon as an improved point is found, a SEARCH step can be conducted on the current mesh.

If no improved points are found, then the current best point is considered a so called mesh

local optimizer. The local term acknowledges the fact that the search was limited to the POLL

set. For greater accuracy the mesh can be refined, at which point the algorithm continues

with a SEARCH. Convergence is reached when a local minimizer on the mesh is found, and

the mesh has been refined to the desired accuracy. Each time new data points are found in a

SEARCH or POLL step, the surrogate model is updated.

Convergence of the SMF _amework for constrained problems can be guaranteed (provided

the function is continuously differentiable in the feasible region) if a generalized pattern

search (GPS) strategy is adopted. The GPS strategy step halves the mesh if the POLL step is

unsuccessful. Convergence properties of the SMF based on the generalized pattern search

strategy can be found in Booker et al. [88]. Note, however, that the number of high-fidelity

simulations performed (the POLL stage) is relatively small compared to those used for

constructing surrogates, so that more iterations are required, and parallel processing

opportunities are more limited.

37



7.6. Constrained SBAO

Once the constraints are modelled using surrogates, constrained SBAO is typically solved

using well-known non-linear programming algorithms (Luenberger [94]) for constrained

optimization based on the concept of penalty function -penalty method, classical and modified

barrier methods, augmented Lagrangian methods- which approximate the constrained problem

to an unconstrained one. The penalty function is a linear combination of the objective and

some measure of the constraint violation. The approximation is accomplished in the case of

penalty methods by adding to the objective function a term that prescribe a high cost for

constraint violations and in the case of barrier methods by adding a term that favors points

interior to the feasible region over those near the boundary. A related idea is that

corresponding to an augmented Lagrangian function in which a penalty term is added to a

Lagrangian function. While successful applications of these methods in the context of SBAO

have been reported, in general, there are some difficulties associated with the use of penalty

functions and the selection of the penalty parameter. Namely, there is usually a threshold

value for the penalty parameter below which the unconstrained problem associated with the

penalty function does not have a local minimum at the solution of the constrained problem,

and the threshold value is not known a priori. If the penalty parameter is too low the solution

can be unfeasible, and if it is too high it can damped out the effect of the objective which can

result in very slow convergence.

Methods to avoid the above-referenced difficulties have been proposed. In particular,

Fletcher and Leyffer [95] recently presented a so called filter approach that does not require

estimating a potentially troublesome penalty or barrier parameter. In this method, instead of

combining the objectives and a measure of constraint satisfaction into a single minimization
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problem (as with penalty functions), theseare treatedas two separateobjectives (multi-

objective optimization).The set of pointsthat arenon-dominated(noneis better than any

other in both objective function value and constraint violation) is called a filter, and an

iteration of an algorithm, selects a filter point, generates a new one (e.g., using gradient

information) and accept the point (added to the filter) if the new point is non-dominated with

respect to those in the filter, or reject it otherwise. Note the contrast with the penalty function

methods where a point in an iteration is accepted only if there is a decrease in the penalty

function. While the filter approach was developed in the context of gradient-based

optimization (e.g., SLP, SQP) the method has been extended to derivative-free methods

(Audet and Dennis [96]) and holds promise to be useful in industrial applications (see, for

example, Audet et al. [97]; Marsden et al. [98]).

8. Case Study: Multi-objective Liquid-Rocket Injector Design

In this section, we will use an injector design case study, motivated by rocket propulsion, to

illustrate the issues and usefulness of SBAO for multi-objective optimization. The materials

are extracted largely from the recent conference papers by Vaidyanathan et al. [9]-[10] and

Goel et al. [ 11 ].

Two types of injectors are commonly used in space propulsion. These are (i) coaxial

injectors and (ii) impinging type injectors. In coaxial injectors, the propellant streams flow in

parallel. There are different types of coaxial injectors namely, shear coaxial, and swirl coaxial

injectors. In the shear coaxial injector element mixing is accomplished through a shear-mixing

process [99]. In impinging type injectors, the mixing occurs by direct impingement of the

propellant streams at an acute angle. Calhoon et al. [99] conducted a large number of cold-

flow and hot-fire tests over a range of propellant mixture ratios, propellant velocity ratios and
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chamberpressurefor shearcoaxial, swirl coaxial, impinging, and premixedelements.The

datawere correlateddirectly with injector/chamberdesignparameters,which wererecognized

from both theoretical and empirical standpointsas the controlling variables.A schematic

diagramof a singleelementinjectorproposedby Boeingis shownin Figure9.

8.1. Problem Description

The injector design has two primary objectives: improvement of performance and life. As

discussed by Vaidyanathan et al. [9] the performance of the injector is indicated by the axial

length of the thrust chamber, while the life of the injector is associated with the thermal field

inside the thrust chamber. A visual representation of the objectives is shown in Figure 10.

In summary, the objectives are listed as the following:

Combustion Length (Xcc): This is defined as the distance from the inlet where 99% of the

combustion is complete. It is desirable to keep the combustion length as small as possible as

this directly affects the size of the combustor and hence the weight of the spacecraft.

Wall Temperature (TW4): This is defined as the wall temperature at 3" from the injector

face. Higher values of the wall temperature have negative impact on the life of the injector, so

this objective has to be minimized.

Face temperature (TF,,,¢_): This is defined as the maximum temperature of the injector

face. It is desirable to reduce temperature to increase the life of the injector.

Tip temperature (TT,,,¢_): This is defined as the maximum temperature on the post tip of

the injector. It is desirable to keep this temperature as low as possible.

The independent variable ranges considered in this study are shown in Table 3.

It can be seen that the dual goal of maximizing the performance and the life is now cast as

a four-objective design problem. Improved performance of the injector causes development of
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higher temperaturesin thethrust chamber,so asdiscussedby Goel et al. [11], someof these

objectivesareconflicting in nature,hencetherecannotbe a singleoptimal solution for this

problem.

There are four primary designvariablesfor the injector designproblemshownin Figure

10.Thesevariablesaregivenasfollows:

Flow Angle (a): This variablerepresentsthe hydrogenflow angle.The maximum angle

variesbetween0° to ap.

Hydrogen area (AHA): This variable represents the increment with respect to the baseline

cross-section area of the tube carrying hydrogen. The increment varies from 0-25% of the

baseline hydrogen area.

Oxygen area (AOA): This variable represents the decrement with respect to the baseline

cross-section area of the tube carrying oxygen. The area varies between 0 - (-40) % of the

baseline area.

Oxidizer post tip thickness (OPTT): Oxidizer post tip thickness varies between X" to

2X", where X is a dimension, which cannot be disclosed because of confidentiality

restrictions.

All the variables are linearly normalized between 0 and 1. More information about the

design variables can be found in Vaidyanathan et al. [9]

The objective functions values corresponding to a particular design can be obtained

through computationally expensive CFD simulations. Each CFD simulation can be obtained

from a pressure-based Navier-Stokes solver, FDNS500-CVS [100]-[102]. In addition to the

Favre-averaged Navier-Stokes equations, the two-equation turbulence model, and kinetic

equations are solved. Steady state solutions are reached by an implicit Euler time marching
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scheme.The chemical species transport equations represented the H2 - 02 chemistry with the

aid of a 7-species and 9-reaction set [100]-[102]. The simulation domain and the boundary

conditions used in all the CFD cases are shown in Figure 11. Because of the very large aspect

ratio, both the injector and chamber have been shortened (at the cross hatched areas) for

clarity. This is a computationally expensive simulation-based problem so for optimization

purposes it is advisable to develop the surrogate models for the objective functions. It was

shown by Vaidyanathan et al. [9], [103], Shyy et al. [8], and Papila et al. [6], [104] that

accurate response surfaces for complex problems, like single element injectors, can be

developed.

Comparing two of the evaluated designs (using CFD), Vaidyanathan et al. [9] have shown

the motivation for using surrogate models and an efficient optimization technique in the

design process. The independent design variables, normalized between 0 and 1, are shown for

the two cases in Table 4. In terms of the design space evaluated, these two designs (X and Y)

are seen to be quite different.

The chamber wall and injector face temperatures (TW4 and TF, n_, respectively) for Case Y

are low or moderately low, while for Case X, they are high. It was seen that a large

recirculation zone located between the injector and the chamber wall strips hot gases from the

flame and causes them to flow back along the chamber wall and injector face [9]. This

phenomenon regulates the chamber wall temperature TW4 and the injector face temperature

TFr,,_. The other life-indicating variable, the maximum oxidizer post tip temperature, TTma_

has essentially the opposite trend as compared to the other two temperatures. The performance

indicator, combustion length Xcc is seen (Table 5) to be at a minimum level for Case X

(shorter combustion lengths indicate better mixing elements) and at a moderate level for Case
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Y. It is clearthat theperformanceand environmentindicatorsexhibit competingtrendssuch

thatno designis the"best" for all the indicatorsof performanceandenvironment.

Thesecomparisonsconfirm theearlierstatementthat changesin the injectordesigndetails

havemajor effectson injectorperformanceandinjector-generatedenvironments.These,and

other relevantgeometricdetails,canbe effectivelyaddressedby modem computation-based

designtool.

8.2. Design of Experiments (DOE)

The selected DOE scheme was orthogonal arrays (Section III). Specifically, an OA (54, 4,

3, 2) was used to generate fifty four (54) designs, considering four (4) factors, three (3) levels,

with strength 2. For model selection and validation the split-sample approach (Section V) was

selected so from the fifty four (54) designs, fourteen (14) were set aside for testing purposes.

The fifty four (54) designs specified by the orthogonal array were computed on an

axisymmetfic geometry with 336x81 nodes. Only 33 out of the 40 training cases gave valid

results. Results of the remaining seven cases contained unsteady features, which did not

represent solutions of the steady-state model employed. Based on the quality of the

approximation obtained using the selected surrogate model (polynomial regression) for TT,,_

and Xc¢, it was noticed that the grid distribution in the combustion zone was insufficient. The

grid was then refined to a 430x81 grid (Figure 12). The refined grid was found to be

appropriate and was selected for the purposes of the optimization study. Only 2 out of the

forty (40) designs to be used for fitting the surrogate model gave unacceptable results (i.e.,

unsteady features were present). Note that in addition to facilitating design optimization,

surrogate models can also help check the adequacy of CFD simulations via identification of

outliers.

43



Hence,the final data set included thirty eight (38) designs for fitting the surrogate model

and fourteen (14) to test their predictive capabilities. The fitting and testing design points can

be found in Vaidyanathan et al. [9].

&3. Construction of the Surrogate Model

The parametric polynomial regression approach (Section IV) was selected as surrogate

model. Before constructing the surrogates, all the design variables were scaled between zero

and one based on their upper and lower bounds. For example, when the AOA is 1 or 0, the 02

flow area is reduced by 0% or 40%, respectively, as compared to the baseline area. Similarly,

the objective values were scaled between zero and one based on the upper and lower bounds

observed in the sample data. Once the polynomial approximations were available, the scaled

objective values were normalized using the surrogate-based minimum and maximum values

for the objectives.

The polynomial-based approximations were created using standard least-squares regression

[24], and terms with insignificant influence (based on t-statistics) on the prediction of the

response/objective were discarded, thereby improving the parsimony of the surrogate model.

The statistical analysis software JMP [106] was used for the generation of the polynomials.

The quality of alternative polynomial approximations was evaluated by comparing their

adjusted root mean square (rms)-error o'a, and adjusted coefficient of multiple determinations,

Ra e [24] corresponding to the training set, and those with the best performance were selected

(model selection). The model evaluation process was conducted using the rms-error cr for the

test set. Details of the model selection and validation (Section V) process can be found in

Vaidyanathan et al. [9].

The polynomial approximations corresponding to each of the objectives are presented
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below. Note that the best approximations for objectives TF,,,ax, TW4 and Xcc are quadratic

polynomials, while for objective TTmax a reduced cubic polynomial represented the best choice.

TFm,= = 0.692 + 0.477(a) - 0.687(AHA) - O.080(AOA) - O.0650(OPTT) - 0.167(a) 2 _

O.0129(AHA)(a) + O.0796(AHA) z- O.0634(AOA)(a)- O.0257(AOA)(AHA) + O.0877(AOA) 2 _

O.0521(OPTT)(a) + O.O0156(OPTT)(AHA) + O.O0198(OPTT)(AOA) + O.0184(OPTT) 2 (47)

TW4 = 0.758 + 0.358(c0 - 0.807(AHA) + O.0925(AOA) - O.0468(OPTT) - 0.172(ct) z +

O.OI 06(AHA)(_t) + O.0697(AHA) 2- O.146(AOA)(a) - O.0416(AOA)(AHA) + O.102(AOA) 2 -

O.0694(OPTT)(a) - O.OO503(OPTT)(AHA) + O.O151(OPTT)(AOA) + O.O173(OPTT) 2 (48)

TTm= = 0.370 - 0.205(ct) + O.0307(AHA) + O.108(AOA) + 1.O19(OPTT) - 0.135(a) 2 +

O.O141(AHA)(a) + O.0998(AHA) 2 + 0.208(AOA)(cO - O.0301(AOA)(AHA) - 0.226(40A) 2 +

0.353(OPTT)(c 0 - O.0497(OPTT)(AOA) - 0.423(OPTT) 2 + 0.202(AHA)(a) 2 -

0.281(AOA)(a) 2 - 0.342(AHA)2(a) - 0.245(AHA)2(AOA) + 0.281(AOA)2(dHA) _

O.184(OPTT)2 (a) + 0.281(AHA)( ct)(AOA) (49)

Xcc = 0.153 - 0.322(a) + 0.396(AHA) + 0.424(AOA) + O.0226(OPTT) + 0.175(ot) 2 +

O.O185(AHA)(ot) - O.0701(AHA) 2- 0.251(AOA)(_z) + O.179(AOA)(AHA) + 0.0150(40A) 2 +

O.O134(OPTT)(a) + O.0296(OPTT)(AHA) + O.0752(OPTT)(AOA) + O.O192(OPTT) 2 (50)

& 4. Global Sensitivity Analysis

While it is well established that variations in injector geometry can have a significant

impact on performance and environmental objectives such as combustion chamber wall and

injector face temperatures and heat fluxes [107], these sensitivities are seldom quantified. As

shown in Vaidyanathan et al. [10], once surrogates become available, these sensitivities can be
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computedusingSobol'smethod(SectionVI).

In thecontextof thecasestudy,a designvariableis consideredessentialif it is responsible

for at least5%of theobjectivevariability.Figure 13showsthepercentageof main factor(Si)

contribution of different designvariablesto individual objectives.The variability of TF,,,_ is

largely influenced by AHA and moderately by a (Figure 13a). The effect of the other design

variables is marginal, suggesting that they are non-essential and in principle could be fixed.

The variability of TW4 is considerably influenced only by AHA (Figure 13b). TTm_x is

influenced considerably by OPTT and marginally by ct (Figure 13c). For Xcc, AHA, AOA and

a have considerable influence (Figure 13d). From the comparison of total sensitivity indices

(Si t°tal) with the main factors (Si) it is concluded that the contributions of the cross-interactions

among the design variables to the objectives variability are negligible.

The sensitivity information cited above can be used for screening purposes and therefore,

ease the search for optimum designs. In fact, surrogate models that included only essential

variables (with the non essential fixed at their mean values) were constructed and differences

in the predictions were found insignificant when compared with those provided by the original

(all design variables included) polynomial approximations. However, since the number of

design variables in the case study is small, the original polynomial approximations were

adopted. Note that the sensitivity analysis provides an insight into the physics of a design

problem by highlighting the design features that govern the individual objectives.

8. 5. Surrogate-based Optimization

Considering the problem of interest is one of multi-objective optimization, the optimal

solutions are known as Pareto-optimal and their objective function space representation is

called the Pareto-optimal front (POF). A solution is called Pareto-optimal (or efficient)
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solution, if thereis no othersolution for which at leastoneobjectivehasa bettervaluewhile

valuesof the remainingobjectivesare thesameor better. Sincesurrogatesfor eachof the

objectivesareavailable,anystandardmulti-objectiveoptimizationmethodscouldbe adopted.

In the contextof the casestudy,though,the resultsobtainedby Goel et a!. [11] usingan

evolutionarymulti-objectiveoptimizationprocedure(multi-objectivegeneticalgorithmwith

e-constraintstrategy)arepresented.

Extremevaluesof the Pareto-optimalfront, that is, the resultsof optimizing (here,

minimizing) eachobjectiveseparatelyareshownin Table 5. A numberone in parentheses

indicatestheobjectiveselectedfor optimization.As expectedbasedonphysical grounds,the

resultsshowthereis astrongcorrelationbetweenTFmax and TW4; a correlation analysis shows

a statistically significant correlation coefficient close to 1. As a result, the multi-objective

problem can be addressed using only three of the original objectives (TF, n_, TT,,,,=, Xcc). In

addition, note that the geometrical characteristics of the optimal designs are aligned with the

objectives, and as a result, the design that minimizes TF,,,_ corresponds to a shear-coaxial

injector, that is, a = 0, and hydrogen flow area, AHA, and oxidizer post tip thickness, OPTT,

at their maximum values; other objectives exhibit relative high values as expected for this type

of injector. The results also show a correlation between TT,,,,= and Xcc, although not as strong

as the one for TFm,= and TW4. When TT, n,= is minimized, X_ exhibits a low value, and vice

versa. The optimal designs associated with the minimization of TT,,,,= and X_ correspond to

impinging-like injectors with the hydrogen flow angle, q, at or near its maximum value and

AlIA and OPTT at their minimum values, yielding significantly shorter combustion lengths

than those corresponding to shear coaxial designs. Both minimizations (TTm,= and Xcc) result

in very high values for TF_a_. Considering that the optimization of each objective in isolation
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resultedin alternative designs, and that objectives are in clear conflict (TF,,,ax, TT,,,a_; TF,,,,=,

Xcc) a full examination of the Pareto-optimal set is required. Figure 14 displays the two

hundred and forty nine (249) Pareto-optimal solutions found. In order to analyze the POF a

representative set of solutions (9) was identified using a hierarchical clustering algorithm.

Values of the design variables and objectives for these designs are shown in Table 6.

Graphically, these representative solutions are highlighted on the POF in Figure 14; note that

the solutions are uniformly distributed along the POF. Box plots for the design variables and

objectives in selected clusters (1, 3, 6, 9) are shown in Figure 15 and Figure 16, respectively.

These plots highlight the variability of the design variables and objectives in each cluster.

For cluster 1 it is seen that the value of a is fixed at 0 (shear coaxial injector) (Figure 15a)

and AH,4 is fixed at 1 (Figure 15b). This suggests that in this cluster, the designs are sensitive

to a and AHA, both of which reach their extreme values. The remaining two design variables

AOA (Figure 15c) and OPTT (Figure 15d), vary over a range. It is observed that TF,,,,= is

minimized (Figure 16a) where as Xcc and TT, n,= lie near their maximum and have little

variability. Hence the designs in cluster 1 tend to minimize TFmax and represent shear coaxial

injector designs. The design variables AOA and OPTT do not influence TF,,,ax but affect the

remaining objectives, Xcc and TT,,,,=. Partial correlation coefficients are estimated to obtain the

relationship between these design variables and objectives (Table 7). It is noticed that as AOA

increases, Xcc increases (P_o_ = 1.00) and TT,,_x decreases (P,corr = -0.638). As OPTT decreases

both Xc_ and TT,,,ax decrease (Rcor_ = 1.00 for both).

Similar observations can be made for clusters 3, 6 and 9. Figure 16a-c show that in

different clusters, A'_ and TTm_ decrease with increments in TFma_ (based on the median of the

box plots). This highlights the trade-off between the objectives. Cluster 9 provides
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information aboutthe opposingtrendasto what wasobservedin cluster1.As objectivesXcc

and TTr,,,_ are minimized (Figure 16b, c) an impinging injector design is obtained (a- 1,

Figure 15a) with TF,,,_ exhibiting high values (Figure 16a). The AHA is near minimum

(Figure 15b) contrary to the design in cluster 1 where high A/-/A minimized TF,,,,=. The AOA

has considerable variation which suggests that the variability of objectives, Xcc and TT,,,ax are

not largely affected by this design variable. Figure 15d shows that X¢c and 77",nax are

minimized for the minimum value of OPTT. Table 7 gives the partial correlation coefficients

for the set of design variables and the objectives in each cluster which shows considerable

variation. The partial correlation coefficients for the combinations left out are effectively zero.

Finally, the Pareto fronts of the objectives known to be in conflict (TFmax, Xc_) and

(TFmax, TTmax) are shown. Figure 17a shows the relation between TFmax and Xcc. The 02 post

tip temperature, TTmax is ignored. It can be seen that the POF in this case is linear over a large

region. A small increase in the value of TF,,,,= ( _, 10%) reduces the combustion length, X_, by

nearly 50%. Figure 17b shows the relation between TFmax and TT,,,ax. The combustion length,

X_ is ignored. It is obvious that the POF is non-convex. It is also seen that a small drop in the

value of the face temperature ( _ 10%) can reduce the tip temperature TTma_ by nearly 60%.

Hence at a small cost of TF,,,a_ both X_¢ and TTma_ can improve considerably.

9. Summary and Conclusions

The fundamental issues that arise in the surrogate-based analysis and optimization (SBAO)

of computationally expensive models such as those found in aerospace systems were

discussed. The issues included the selection of the loss function and reguladzation criterion to

identify the surrogates, design of experiments, surrogate selection and identification,
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sensitivityanalysis,andhowto incorporatesurrogatesin optimizationeffortswhenconstraints

arepresent. Someof theseissuesweredemonstratedthroughthe multi-objective optimal

designof a liquid rocketinjector.

In the context of the casestudy, the SBAO approachdemonstratedits effectivenessby

solvingamodel for a critical problemin spacepropulsion:themulti-objectiveoptimizationof

liquid injector rocketinjectordesigns.

New, potentially more effective methodsand techniquesare increasinglyavailable to

addresssomeof theabove-referencedissues,including: improvementson the commonlyused

orthogonal arrays and Latin hypercubesfor design of experiments,merit functions for

samplingthataccountfor modelappraisalinformation,alternativelossfunctionsfor modeling

(e.g., e-sensitive)which hasled to the developmentof more robustapproximationschemes

(e.g., supportvector regression),theuseof multiple surrogatesto addressthe issueof model

uncertainty,moreefficient strategiesfor modelselectionandevaluation(e.g.,bootstrapping),

efficient global sensitivity methodsfor screeningand generalsensitivity evaluations,and

multiple-surrogatebasedoptimizationstrategies.

SBAO is an activeareaof research,andhasmadesubstantialprogressin addressingthe

analysisandoptimization of a varietyof aerospacesystems.It hasthepotential of playing a

vital role in the successfulfull-scale developmentof modem aerospacesystemswhile

effectively consideringthe competingneedsof improving performance,reducingcosts,and

enhancingsafety.
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KERNEL FUNCTION ESTIMATION SCHEME

K(x; x, ) - (1 + x.x i)d Polynomial of degree d (PRD)

K (x; x;) = IIx-x, II Linear splines (LSP)

K(x;x) = exp(- ]]x- x, !!2/yi) Gaussian RBF (GRF)

Table 1 Examples of kernel functions and related estimation schemes.

METHOD SCOPE NATURE MODEL

INDEPENDENT"

Local Sensitivity LOCAL QUANTITATIVE YES

Analysis

Morris Method GLOBAL QUALITATIVE YES

Scatter Plots GLOBAL QUALITATIVE NO

Correlation

Coefficients

Variance-based

Parametric (e.g.,

IFFD)

Variance-based

Non-Parametric

GLOBAL

GLOBAL

GLOBAL

QUANTITATIVE

QUANTITATIVE

QUANTITATIVE

NO *

NO

YES

Table 2 A detailed review of different techniques in sensitivity analysis, and application

examples, can be found in the works of Iman and Helton [68], Kleijnen [69], and Frey

and Patil [70], and references therein.

*Independent from assumptions about the model being linear, etc.

tThere are exceptions e.g., the Spearman rank-order correlation coefficient.

Minimum Maximum
Variable

A ctual Scaled A ctual Scaled

a 0 ° 0 a ° 1

AHA Baseline 0 Baseline+25% 1

AOA Baseline-40% 0 Baseline 1

OPTT X in 0 2x in 1

Table 3 Range of design variables (a is an acute angle in degrees and X is the thickness of

OPTT in inches).
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Case at AHA AOA OPTT TF,,ax TW4 TT,,,,= Xcc

X 1.0 0.0 0.0 0.0 0.998 0.927 0.128 -0.004

Y 0.0 0.5 0.5 1.0 0.285 0.395 0.923 0.567

Table 4 Independent and dependent variable (Objectives) for Cases X and Y from CFD

computations (Normalized values shown).

Opt-Case a AlIA AOA

1 0 1 0.592

OPTT TF,,,_ TW4 TT,,,ax Xcc

CFD

error (%)

2 0 1 0 1

CFD

error (%)

3 1 0 1 0

CFD

error (%)

4 0.917 0 0 0

CFD

Error (%)

0.000 (1)

-0.00207

0.0725 (0)

0.0656

0.914(0)

0.936

0.769 (0)

0.758

0.110 0.080 0.700 0.250

0.0309 (0)

0.0910

o.ooo(1)
0.0461

0.570

0.976 (0)

0.969

0.900

1.0 (0)

0.911

2.84

0.0 (1)

0.103

0.944 (0)

0.943

0.440 (0)

0.568

2.93

0.153(0)
0.158

0.0100 0.0800 4.46 0.120

0.182(0)

0.119

2.69

0.987 (0)

0.981

0.0800

0.926 (0)

0.919

0.0800

0.000 (1)

-0.004

0.120

Table 5 Minimizing individual objectives. Value in parenthesis (1) indicates which objective

function is minimized (Normalized values shown).

Cluster

2

a

7

0.000

0.000

0.000

AHA

1.000

1.000

0.295

1.000

AOA

0.842

0.356

0.442

OPTT

0.108

0.712

0.587

0.0144

TF.,ax

0.0231

0.0276

0.000

0.0541

X¢C

1.090

0.749

0.750

TTmax

0.354

0.880

0.890

0.4523

4 0.0939 1.000 0.000 0.0146 0.126 0.453 0.466

5 0.668 1.000 0.732 0.000 0.259 0.681 0.229

6 0.600 0.670 0.000 0.000 0.489 0.264 0.226

0.719 0.129

0.000

0.680

0.776

0.935

0.0656

0.0140

8

9

0.0969

0.138

0.0554

0.000

0.314

1.000

0.641

0.357

-0.0432

Table 6 Objective function and design variables of nine (9) representative designs from the

Pareto optimal solution.
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Cluster

1

3

6

9

Design Variable TFmax Xcc TT,,,_

AOA - 1.000 -0.638

OPTT - 1.000 0.991

AOA - 1.000 -

a 0.982 -0.735 -0.983

AHA -0.999 0.994 -0.729

a 0.877 -0.203 -0.769

AHA -0.992 0.983 0.816

-0.977 0.997 -0.940AOA

Table 7 Partial correlation coefficients (P_o_r) of design variables vs. objectives for different

clusters along the POF.
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If necessary T
,_ Design of Experiments ]

Numerical Simulations at

Selected Locations

Construction of Surrogate

Models (Model Selection

and Identification)

Model Validation

Figure 1 Key stages of the surrogate-based modeling approach.

A

Appraisal --/" (, toata Ji )
problem /

N,,,,_ _ Estimation problem

Figure 2 Anatomy of surrogate modeling: model estimation + model appraisal. The former

provides an estimate of function f while the latter forecasts the associated error.
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T

X

Figure 3 Multiple surrogates may be consistent with the data. For a given problem we may

have preference for one or the other (e.g., additional information about the

function f is available), but often which is the best surrogate is not clear a priori.

O(E(f,),V(f,))

fp .................. E(fp)

..........

X

Figure 4 A surrogate modeling scheme provides the expected value of the prediction

E(fp) (solid line) and the uncertainty associated with that prediction illustrated

here using a probability density function O.
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(a) Quadratic (b) Laplace

(c) Huber (d) E-insensitive

Figure 5 Alternative loss functions for the construction of surrogate models.

i

I ¸ _p

0

i
I

t

| i _ ,_1

, i

O

I
Co I _Xl

Figure 6 A Latin Hypercube Design with N=6, K=2 for Xuniformly distributed on the unit

square.
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[36]).

4

Search

designs with significant differences

Search or Poll _)_

_oll

Global optimization of

surrogate model -->

Surrogate based minima

Search points

Search J

in terms of uniformity (Leary et al.

I Poll points

1 Evaluation of new points
and updating of surrogate

model

I
+

Yes ( Improved points? )

New points &

true response

No

)

No

Converged?

Yes +

Stop

Poll or search

with refined

Figure 8 The basic SMF algorithm.
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Figure 9 Schematic of Hybrid Boeing Element (U. S. Patent 6253539). / H, Flow Angle (Oo-ao) 

0, Post Tip Thickness 
'(x-2x in) 

0, Flow Area 
(baseline40%) 

- 

n m a x  

Inject 
detail 

(b) 

Figure 10 Design variables and objectives of the single element rocket injector. (a) Design 
variables (b) Objective functions. 
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adiabatic W Q l b  
injector face ~ injector face 

Figure 11 Simulation domain and boundary conditions of the injector flow model. 

Figure 12 Comparing the unrefined (336x81) {thicker lines} and refined (430x81) {thinner 
lines} grids. 
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0.012 AOA , 

0.005\ I 

T\Iw 

OPTT, 0 . 0 0 8 ~  

0.849- 

lTmax 

r' 0.081 

AOA 

I 
M A ,  0.355 

xcc 

OPTT, 0.022 

7 
, 0.408 

(4 (4 
Figure 13 Main factor (Si,) influence on objective variability, (a) TFma, (b) TW4, (c) TTma 

and (d) Xcc. 
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Pareto Ol:,timalsolutions
. 9 solutions

TF=,_

Figure 14 Pareto optimal solution set and nine (9) representative solutions from the same

set. The circles identify the representative of a specific cluster.
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Figure 15 Box plots for the design variables in cluster 1, 3, 6 and 9. (a) a, (b) ,_r-/.4, (c)

AO.4 and (d) OPTT.
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Figure 16 Box plots for the objectives in cluster 1, 3, 6 and 9. (a) TFmax, (b) Xcc and (c)

TTmox.
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Figure 17 Pareto optimal front: (a) TFm_vs. Xcc(b) TFm,_vs. TTm_.
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With rapid progress made in employing computational techniques for various

complex Navier-Stokes fluid flow problems, design optimization problems traditionally

based on empirical formulations and experiments are now being addressed with the aid of

computational fluid dynamics (CFD). To be able to carry out an effective CFD-based

optimization study, it is essential that the uncertainty and appropriate confidence limits of

the CFD solutions be quantified over the chosen design space. The present dissertation

investigates the issues related to code verification, surrogate model-based optimization

and sensitivity evaluation.

For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE)

method is assessed. This method projects numerically computed NS solutions from

multiple, coarser base grids onto a freer grid and improves solution accuracy by

minimizing the residual of the discretized NS equations over the projected grid. In this

dissertation, the finite volume (FV) formulation is focused on. The interplay between the

xi



conceptsandtheoutcomeof LSE, and the effects of solution gradients and singularities,

nonlinear physics, and coupling of flow variables on the effectiveness of LSE are

investigated.

A CFD-based design optimization of a single element liquid rocket injector is

conducted with surrogate models developed using response surface methodology (RSM)

based on CFD solutions. The computational model consists of the NS equations, finite

rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models,

sensitivity and trade-off analyses are carried out for the injector design whose geometry

(hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is

optimized to attain desirable goals in performance (combustion length) and

life/survivability (the maximum temperatures on the oxidizer post tip and injector face

and a combustion chamber wall temperature). A preliminary multi-objective optimization

study is carried out using a geometric mean approach. Following this, sensitivity analyses

with the aid of variance-based non-parametric approach and partial correlation

coefficients are conducted using data available from surrogate models of the objectives

and the multi-objective optima to identify the contribution of the design variables to the

objective variability and to analyze the variability of the design variables and the

objectives.

In summary the present dissertation offers insight into an improved coarse to fine

grid extrapolation technique for Navier-Stokes computations and also suggests tools for a

designer to conduct design optimization study and related sensitivity analyses for a given

design problem.
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CHAPTER 1

INTRODUCTION AND SCOPE

Introduction

With the advancements in computational technologies, different complex design

problems can now be analyzed with reduced economical and computational cost as

compared to an experiment. Additionally, computational models can be used as a

substitute to study environments that are too hazardous to conduct physical experiments.

These aspects have motivated the development of different tools in the areas of

computational fluid dynamics (CFD) and multi-disciplinary optimization (MDO) which

in turn promotes CFD-based design optimization studies.

Computational fluid dynamics-based design studies can be broadly divided into

two parts. The first part is the accurate modeling of the fluid flow problem and the second

is the sensitivity estimation of the CFD solutions to the design variables and exploration

of optimum designs. Solving fluid flow problems based on Navier-Stokes (NS) equations

and other related models introduces challenges that include physical modeling

uncertainty, geometric complexities, non-uniform and non-orthogonal meshing, disparate

length scales and characteristics of the flow variables (such as velocity and pressure), and

acceptable run time for engineering analysis and design. To obtain an accurate numerical

solution after addressing all these issues is an elaborate topic of research. As pointed out

in the review by Oberkampf and Trucano (2002), there are 5 sources of error in a CFD

analysis, namely, insufficient spatial discretization convergence, insufficient temporal



discretizationconvergence,insufficientconvergenceof aniterativeprocedure,computer

round-off andcomputerprogrammingerror.Muchworkhasbeendoneto estimatethe

first threeerrors.Theremainingtwo arerelatedto thefield of computerprogramming

andusuallyinvolve theverificationof thecodeor thesoftware.

In orderto ascertaintheoverallaccuracyandidentify uncertaintiesassociatedwith

physicalmodelingthereis astrongneedto developtechniquesfor accuracyassessment

of a givennumericalapproachandmeshresolution.A priori and a posteriori error

estimates are widely used to estimate errors and verify CFD solutions. A priori error

estimation uses the information available before a solution is obtained based on the

partial differential equation (PDE) that has to be solved and the initial and boundary

conditions. In CFD analysis these estimates aid in the estimation of the stability and

existence of a solution. On the other hand, an a posteriori error estimate uses the

information of the computed solution. This allows the performance of a given numerical

approach to be judged by estimating the errors arising out of the discretization of the

PDEs.

The issue of mesh resolution is of importance because a coarse grid is

computationally economical but maybe inadequate in capturing the detail flow features

whereas a fine grid, although it provides a well-resolved solution, increases the

computational cost. Hence it is of interest to use a coarse grid and obtain an accurate

solution. A well known method in this category is the Richardson extrapolation (RE).

Details of this method can be found in Roache (1997) and Shyy et al. (2002). The

Richardson extrapolation is based on eliminating the leading order error term based on

the local truncation error analysis, implemented via solutions obtained on two or more



basegrid levels.An attractivefeatureof this methodis that it canbeappliedto anypartial

differential equation(PDE)without directinformationaboutthesolutionprocedureor the

equationitself. Ontheotherhand,thedisadvantageof thismethodis that it assumesthe

orderof thesolutiona priori, whereas generally the order of convergence of a CFD

solution is space and solution profile dependent, and may not be consistent with that

indicated by the local error analysis. As pointed out by Shyy et al. (2002), the flow field

with high gradient in flow properties can deteriorate the performance of this method.

Typically, RE is usually conducted on two base grids with one having twice the number

of nodes as the other in each direction. For practical problems with complex geometries,

it is often difficult to satisfy such a requirement. A very coarse grid may not efficiently

capture the flow features for extrapolation and a very fine grid might increase the

computational cost, thereby spoiling the whole purpose of extrapolation.

Recently, Garbey and Shyy (2003) have proposed a least square extrapolation

(LSE) technique. This method addresses some of the disadvantages noticed in RE. Unlike

RE, LSE directly uses the discretized PDE model under consideration to estimate the

degree of convergence. In this method residual is estimated on the fine grid onto which

the base grid solutions are extrapolated based on the discretized equation and the specific

computational scheme. Additionally the space dependency of the solution's convergence

order can be accounted for by assuming spatially dependent weight functions. Garbey

and Shyy (2003) have shown that LSE is effective even when the base grids are not based

on grid doubling or halving. Details of the LSE method will be discussed in chapter 2.

In the area of MDO tools like design of experiment (DOE) (Myers and

Montgomery, 1995) and response surface methodology (RSM) (Myers and Montgomery,
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1995)havebeenshownto work well for awiderangeof designproblems.Henceit is of

interestto usethesetools to designdevicesthathavecomplexgeometriesandflow

features.Sensitivityanalysisandoptimizationstudiesrelatedto thesedevicesrequire

numerousfunction evaluationsandthecomputationalcostof CFD simulationsrestricts

its usein suchscenario.For suchsituation,RSMhasbeenfoundto beveryuseful.A set

of designscanbeidentifiedusingDOEtechniquesandthe solutionfor thedesigns

obtainedusingCFDanalyses.Thesesolutionsarethenrepresentedwith responsesurface

approximations(RSAs)(polynomialsor anyotheranalyticalfunction),whichcanthenbe

usedasthefunctionevaluator.

Sensitivityanalysishelpsthedesignerby providingtheknowledgeof the influence

of designvariableson theessentialflow features.Globalsensitivityanalysis(Sobol,

1993)is amethodwhich hasthepotentialfor providingsuchinformation.Theglobal

sensitivityindicescanbeusedto rankthedesignvariablesin orderof their importance

andalsoto identify the interactionbetweenthem.Basedon theseobservations,

nonessentialvariablescanbefixed andthedimensionalityof thedesignproblemreduced.

Most of the designstudiesrequirethatmorethanoneaspectof thesolution

(objective)be improveduponatthesametime.Therearedifferentmethodsavailablefor

solvingsuchmulti-objectiveproblems.Multi-objectiveoptimizationproblemsusually

havenumerousoptimalsolutions,knownasParetooptimalsolutions(Miettinen, 1999).

Thesesolutionsaresuchthatno improvementispossiblein anyobjectivewithout

sacrificingat leastoneof theremainingobjectives.Hencethesesolutionsarenon-

dominated.On theotherhandif for agivensolutionthereareothersolutionswhere

improvementin anyobjectiveis possiblewithoutsacrificingtheremainingobjectives,



that solutionis saidto bedominated.The function space of all the non-dominated

solutions in the Pareto-optimal set is termed the Pareto-optimal front (POF). This set

provides the designer with a clear idea of the trade-offs involved in a design study.

Evolutionary algorithms (EAs) are popular global optimizers that have been used to fred

multiple Pareto optimal solutions in a single simulation run. Different multi-objective

evolutionary algorithms (MOEA) have been proposed in literature (Deb, 2001). Insight

into the trade-offs between different objectives can be obtained from the POF.

In this dissertation different aspects of NS code verification and CFD-based design

process are addressed and methods explored with the help of individual case studies. The

LSE used for NS code verification is implemented on a lid-driven cavity flow with

different boundary conditions and Reynolds numbers. The goal is to assess the

effectiveness of the LSE technique for finite volume (FV) NS computations.

The CFD-MDO coupled design study is addressed with the aid of a single element

liquid rocket injector. The study is conducted using response surface methodology along

with global sensitivity analyses and genetic algorithms. The overall goal is to estimate the

global sensitivity and trade-offs involved in the design of a rocket injector.

Scope

The scope of the dissertation can be broadly divided into two, namely,

• Investigation ofNS CFD code verification.

• CFD-based design optimization.

The NS CFD code verification deals with the demonstration of LSE for numerical

accuracy improvement and computational cost reduction with the aid of few widely used

benchmark problems. The implementation of the method for complex flows involved in

injector design is an issue of future study. The goal of the LSE related study is to
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• Assesstheeffectivenessof theLSEtechniquefor FV computations.

• Evaluate the implication of solution gradients and singularities on the performance

of LSE.

• Address the issue of coupling between the pressure and velocity in the NS

equations.

The CFD-based design optimization study is addressed by modeling a single

element liquid rocket injector. The goal is to integrate CFD with the optimization tools

and obtain better design methodologies than those used in the past. While the ultimate

goal is to analyze multi-element injectors, much of the detailed work in injector design

can be done, or at least initiated, at the single element level.

Design variables governing the life/survivability and performance of the injectors

are identified, namely, H2 flow angle, H2 and 02 flow areas with fixed mass flow rates of

fuel and oxidizer and 02 post tip thickness. The design objectives that are

life/survivability indicators are the maximum temperature on the oxidizer post tip, the

maximum temperature on the injector face and the combustion chamber wall temperature

taken three inches from the injector face. The performance indicator is the length of the

combustion zone.

To facilitate the development of the present methodology, a baseline element

design is needed. This baseline concept is generated by an empirical design methodology

based on a specific set of propellant flow rates, mixture ratio and chamber pressure. The

selected design variables are then varied based on this baseline design and the design

space populated with the aid of a DOE technique. The prescribed CFD cases are executed

and post processed to extract the required dependent variable data. This data are then

used to generate a RSA for each objective in terms of the independent design variables.
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Sensitivityandtrade-offanalysesfor thedesignarethencarriedoutusingthedata

obtainedfrom surrogatemodelsof thedesignobjectives,andthePOF(multi-objective

optima)generatedby Goeletal. (2004)with theaid of amulti-objectivegenetic

algorithm(MOGA) andalocal searchmethod(z-constraintstrategy).Theregionsof the

POFthatrepresentdifferenttrade-offsamongtheobjectivesareobtainedthrougha

hierarchicalclusteringalgorithmwhichwill bediscussedin chapter3.This study is

broadlydivided into thefollowing twoparts.

1. A sensitivitystudyis carriedoverthewholedesignspace.Thecontribution
of thedesignvariablesto theobjectivesvariability is calculatedusinga
variance-basednon-parametricapproachandcorrelationsbetweenobjectives
areinvestigated.

2. SensitivityanalysesareconductedonclustersalongthePOF.Box plotsare
usedto highlight thevariability of thedesignvariablesandtheobjectives
within acluster.Additionally, the linearrelationshipsbetweenthedesign
variablesandtheobjectivesareexploredwith the aidof partialcorrelation
coefficients.

Theremainingchaptersof this dissertationaddresseachof the issuesmentioned

abovein detail.In chapter2 thedifferentaspectsofNS CFD codeverificationaregiven.

In this chaptera literaturesurveyis presentedinitially followedby thedetailsof

Richardsonextrapolation(RE) andleastsquareextrapolation(LSE)techniques.These

techniquesareimplementedonatwo-dimensionalturningpoint problemanda laminar

lid-driven cavity flow. Theperformancesof theRE andLSE areevaluatedandissues

relatedto their implementationareidentified.

In chapter3 differenttoolsusedfor thedesignoptimizationstudyarepresentedin

detail.Responsesurfacemethodology,DOEtechniques,MOGA, optimizationalgorithm

andsensitivityanalysestoolsarepresented.Additionally aclusteringmethodanda



visualizationtoolarepresentedwhichalongwith othertoolsmentionedaboveareusedin

chapter4 to studythe designproblemin detail.

In chapter4 thepastandpresentstudiesrelatedto thedesignof asingleelement

rocket injectorarepresented.Thedesignvariablesandobjectivesof thecurrentinjector

designareidentifiedandoptimizationstudiescarriedout for differentdesigngoalsusing

surrogatemodelsdevelopedbasedonCFD solutions.Sensitivityanalysesaredonewith

theaid of surrogatemodelsandsensitivityindices.Thedesigntrendsareobservedwith

theaid of resultsobtainedfrom thesestudiesandvisualizationtechniques.

In chapter5 thedissertationis summarizedandconclusionsdrawn.Theunresolved

issuesareidentified andscopesfor futurestudiesidentified.



CHAPTER2
NAVIER-STOKESCODEVERIFICATION

In this chapter,the literaturesurveyrelatedto thework doneoncomputationalfluid

dynamics(CFD)codeverification is presented.Following this,detailsof Richardson

extrapolation(RE)andleastsquareextrapolation(LSE) techniquesarepresentedalong

with casestudiesandresults.

Literature Review

In the areaof CFD codeverification,therehasbeenconsiderableresearchdoneto

addresstheissuesof grid sensitivityandquantificationof uncertaintiesin the

computations(Roache,1997;Pelletieret al., 2001;Gu etal., 2001;Turgeonet al.,2001).

Thegoverningpartial differentialequations(PDEs)of fluid mechanicsareeitherlinearor

nonlineardependingontheproblemsolved.Themostfrequentlyusedcomputational

methodsfor solvingthesePDEsarefiniteelement(FE), finite difference(FD) andfinite

volume(FV) methods.To obtainanaccuratesolutionusinganyof thesediscretization

schemes,adequategrid resolutionis essentialsincefor a consistentschemethecomputed

solutionapproachestheexactcontinuoussolutionasthegrid spacingtendsto zero(Shyy,

1994).Theerrorarisingout of inadequategrid distributionfallsunderthecategoryof

domaindiscretizationerror.At thesametimethediscretizationoperatorsusedfor the

derivativesin thePDEsshouldbeaccordingto theorderof variationof the solutionover

thedomain.If animpropervariationis assumed,thenit givesrise to the equation

discretization error. Hence the goal is to achieve a fine grid distribution over the domain

9
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andavalid discretizationof thederivativesin thePDEswithout violating issuesrelatedto

the stabilityof thecomputationalmodel.Additionally, to obtainasolutionfor thesePDEs

valid boundaryandinitial conditionsneedto bespecifiedwhich will definetheflow

field.

Theerrorestimationcanbedonebeforeor aftertheCFD analysisis carriedout.

Theformer iscalleda priori error estimate and the later is referred to as a posteriori error

estimate. In this dissertation the aim is to implement the a posteriori error estimates to a

Navier-Stokes (NS) CFD code. Hence a literature survey of the available a posteriori

error estimates is presented. As pointed out by Oden (2001), there are two broad classes

of error estimation methods, namely, residual methods and recovery methods. In the

residual method, the residual estimates the degree with which the approximate solution

fails to satisfy the equations of the original problem (Babuska and Rheinbolt, 1978;

Demkowicz et al., 1984). The residual estimates are used to define error norms which are

largely used for controlling adaptive meshing procedures. The other type, referred to as

the recovery method, attempts to enhance the computed solution during the post-

processing step, like Richardson extrapolation (Roache, 1997; Shyy et al., 2002) and least

square extrapolation (Garbey and Shyy, 2003).

There is a vast amount of literature available with respect to a posteriori error

estimators for finite element approximation. A recent book by Ainsworth and Oden

(2000) provides a survey of the available literature on such error estimators. Babuska and

Rheinbolt (1978), Dernkowicz et al. (1984), Zienkiewicz and Zhu (1987) are some of the

earliest works in this area. These works concentrate on error estimation in finite element

problems. Zienkiewicz and Zhu (1992a, 1992b) in a two-part paper introduced a recovery
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techniquewhich wasanimprovementon their previouseffort. Theyachievedhigher

orderaccuracyby usingthis approachandalsofoundit to becosteffective.Their

approachusesasingleandcontinuouspolynomialexpansionfor thenodalvaluesof the

solutions(displacements,stresses)overapatchof elementssurroundingthenodeof

interest.A leastsquaremethodor anLe projection is used to obtain this polynomial. The

error in the computed solution is then measured by comparing it with the recovered

solution using different forms of error norms. Ainsworth and Oden (1992, 1993a, 1993b)

have presented an element residual method for finite element computations. This method

has later been implemented by Jasak and Gosman (2001) for finite volume approach.

Oden et al. (1994) extended the application of element residual methods to NS equations

using a finite element approach. They designed error norms to measure the error in

velocity and pressure for incompressible flow problems.

Use of a posteriori estimator in finite volume approach has been of interest only

over the past few years. Ilinca et al. (2000) have compared three different error estimators

for finite volume solutions. They have compared a technique using Richardson

extrapolation, a technique based on the difference of the computed solution, and a higher-

order reconstruction obtained using a least square method and a technique which solves

an error equation. Richardson extrapolation (Roache, 1994) uses the solutions on

different grids with different levels of refinement, one finer than the other. Using the

Taylor series representation of the discrete solution and combining the available multiple

solutions, a higher order approximation of the desired variable is obtained. The drawback

is to generate an adequately resolved solution on multiple grids for complex problems

and the a priori assumption of the solution accuracy order. Solution reconstruction
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(Barth, 1993;Ollivier-gooch,1996)basedonanapproximationof thederivativesin the

Taylor seriesexpansionusingaweightedleastsquaremethodimprovessolution

accuracy.This is thenusedto comparewith the initial solutionto obtainanerror

measure.Thethird methodproposedbyZhangetal. (1997)estimateserrorusinganerror

equation.In thismethodtheerrorequationisderiveddirectly from the governing

equationandhasasourceterm,whichneedsto becomputed.Thissourceterm is

evaluatedusingtheflux differencesatthe cell interface.Thesemethodsweretestedon

subsonic,transonicandsupersonicflows.Richardsonextrapolationandtheerrorequation

methodareshownto performreasonablywell ascomparedto thesolutionreconstruction

method.

Richardsonextrapolationisbasedoneliminatingtheleadingordererrortermin the

assumedTaylor seriesexpansionof thesolution.This is doneby combiningsolutions

obtainedon two differentgridswith (uniform)discretespacings.The attractivefeature

aboutthis methodis thatit canbe implementedon asolutionfor anyPDEwithout

botheringaboutthesolutionprocedureor theequationitself. Ontheotherhand,the

disadvantageof this methodis basedonthefact thatit assumesa fixedorderof accuracy

(whenusingtwo grids)of thesolutionall overthecomputationaldomain.In practical

fluid problems,dueto numericalschemesandfluid physicsinvolved,theorderof

accuracyis notuniform overthecomputationaldomain.Hence,the local tnmcationerror

basedon Taylor series expansion may not represent the global accuracy of the solution.

To address this, three grids of different resolution are required to estimate the order of

accuracy of the solution. Additionally, problems involving turbulent flow features will

result in sharp gradients in flow parameters in different regions of the domain. It has been
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noticedby Shyyet al. (2002)thatflow field with high gradientin flow propertiescan

deterioratetheperformanceof this method.Althoughthemostcommonuseof RE iswith

two grids,onetwiceasfine astheother,this isnot alwaysessential.But for coarsegrids,

the assumptionof monotonictruncationerror convergencemaynotbevalid thereby

requiringfinebasegrids.Forpracticalproblemswith complexgeometries,it is toughto

obtaintwo gridsthat satisfysuchrequirements.A very coarsegrid maynotefficiently

capturetheflow featuresfor extrapolation,andavery fine grid might increasethe

computationalcost,therebyspoilingthewholepurposeof extrapolating.Another

importantdisadvantageof REis thattheextrapolationdoesnot preservethe

conservativenessof the flow properties.

Thebook by Roache(1998)hasmoreinformationondifferentapproachesto

addresssomeof theseissues.But in its simplestform,REis basedonana priori

assumed order of convergence of the continuous solution. In the work of Garbey and
_v

Shyy (2003), basic properties of RE and its computational implications are presented in

detail. They have presented complementary views that are asymptotic expansion for

continuous function in a normed vector space and numerical approximation for discrete

functions defined in a mesh. Comparing these views they have pointed out that it is

difficult to achieve asymptotic order of convergence unless the numerical perturbations

(arising out of imperfect convergence of the fluid solver) in the computations are small.

Unless a grid is very fine, it is hard to reduce the perturbation error. Based on their study

on the convergence order approximation and RE in relation to CFD problems, they have

found that convergence order is space and grid dependent. Hence, they have concluded

that there is no way to justify the efficiency of RE which uses a constant weight
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formulation.Additionally, RE is easyto implementonly whenthegrid spacingis

uniform andthesubsequentgridsusedin theextrapolationareobtainedby grid doubling

or halving.

Scope

Theaimof thiswork is to investigatetheperformanceof LSEmethodin NS

computations (Vaidyanathan et al., 2004a). In particular, FV formulation is considered,

which is different from the FD approach adopted by Garbey and Shyy (2003). The lid-

driven cavity flow with different boundary conditions and Reynolds numbers (Re) is

adopted as the main test problem. The goal of this study is to address the following

issues:

• To assess the effectiveness of the LSE technique for FV computations.

• To evaluate the implication of solution gradients and singularities on the

performance of LSE.

• To address the issue of coupling between the pressure and velocity in the NS

equations.

It is noted that the geometric complexity plays a major role in practical flow

computations. This aspect can have substantial impact on the performance of any

extrapolation techniques. This issue will be addressed in future studies.

In the following sections, the salient features of both RE and LSE techniques will

be first presented. Following this, a brief discussion of the flow solver and the algorithms

for the implementation of the LSE in relation to the NS computations will be discussed.

Finally, their implementation on test cases and a discussion based on the results obtained

will be provided.
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Approach

In thefollowing, RE is reviewedfirst to helpmotivatethemaintopic of interest,

namely the least square extrapolation.

Richardson Extrapolation (RE)

In essence, RE is based on an a priori assumed order of accuracy of the continuous

solution. Considering a flow-field output, say a velocity component or pressure, of a CFD

simulation on a grid size, h, and assuming second-order convergence a priori, the Taylor

series expansion can be written as

U(x) = u(x; h) + a2h2 + a3h 3 + ... (2.1)

where U(x) is the exact solution and u(x;h) is the numerical solution based on h. Similarly

the solution on a grid size, h/2 can be written as

U(x) = u x; + a 2 + a 3_ +... (2.2)
8

Solving for U(x), using Eqs. (2.1) and (2.2) and eliminating O(h z) term and

neglecting the higher-order terms leads to

U(x)=l[4u(x;hl-u(x;h)]+O(h3 ) (2.3)

This is a second-order RE which results in a gain of order one. Similarly if the

solution is assumed to have first-order convergence a priori and O(h) term is eliminated,

it results in a first-order RE with a gain of order one.

U(x)=2u(x;h)-u(x;h)+O(h 2) (2.4,

When in a practical fluids problem, the degree of convergence is not uniform over

the computational domain, the order of extrapolation used can either improve the order of
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accuracyor notaffect it at all. IfEq. (2.4)wasbasedon assumptionsmadein Eqs.(2.1)

and(2.2),therewouldbenogain in thedegreeof convergence.Equations(2.3)and(2.4)

canbegeneralizedfor two gridswith spacingh_ and h2, resulting in the following

respective extrapolation scheme.

v(x)= (x, )- (2.5)

U(x) = h_ff(x'h2 )- h2ff(X'hl ) (2.6)

where _t(x, hJ represents the interpolated values fi'om two coarse grid solutions, which are

not necessarily based on grid doubling or halving. In implementing the extrapolation

techniques, it is required that the coarse grid solutions be interpolated to the locations of

the fine grid on which the extrapolated solution is obtained. The order of interpolation

has to be such that it does not deteriorate the order of the computed solution.

Least Square Extrapolation (LSE)

In this dissertation the least square extrapolation method is used which, most

importantly, estimates the order of convergence as the solution to a least square problem

instead of assuming it a priori. Additionally, it accounts for the dependence of the order

of accuracy on spatial coordinates by using spatially dependent extrapolating weights.

The details of this method are presented below. In this approach, two coarse grid

solutions, u_ and u2, not necessarily based on grid doubling or halving, are combined

linearly using a weighting function, a, which can be spatially dependent. The

extrapolated solution is given as

U =a_, + (1-a)t_2 (2.7)
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where_t and_2representthecoarsegrid solutionsinterpolatedonto a fine grid, Mo.

Following Garbey and Shyy (2003), a modified Fourier expansion has been used

for the weighting function, c_. The weighting function, a is given by

M

a(x)=ao+alcos(xrc)+_-'a:sin((j-1)xx ) (2.8)
j=l

with aj, j = 0,...,Mreals. The weighting function, a is dependent on the spatial co-

ordinate, x for a one-dimensional problem. For two dimensional problem it is a function

of spatial co-ordinates, x and y such that

a(x,y)=a(x)a(y) (2.9)

This modified Fourier expansion is ideal for rectangular domains. Different function may

have to be used for more complex domains. The coefficients, a:, are estimated by solving

a least squares problem. For a given linear PDE, say

L[u]= f (2.10)

with u _ (Ea,ll I[a) and f _ (E b, H lib)' its numerical approximation can be written as

Lh [uh]= fh (2.11)

with u h _ (E_h,ll Ila) and f_ _ (E_,[[ lib)" Based on this, the least square problem can be

formulated as

Pa: Find a _ A(0,1) c L_ such that

LhEot_ t .(I-or)if2]- fh (2.12)

is minimum in L2(Mo), where Mo represents the fine grid to which the coarse grid

solutions are interpolated. For a one-dimensional problem using two Fourier modes, Eq.

(2.12) that has to be minimized can be rewritten as
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Lh[ao_ , +(1-ao)_z]+Lh[alcos(xrc)_ , +(1-al COS(X_))/,_21-- fh (2.13)

This approach can be generalized for nonlinear PDE problems via a Newton-like loop.

For a given nonlinear problem, say,

N[u]= f (2.14)

linearization results in

J(u)[v]=g (2.15)

The least square problem then becomes

Jh (a'_7, +(1-a k )u2 )Ea'_*'a, +( 1- a'_*' )u2 ]-gh (2.16)

which is minimum in Le(Mo). The iteration is started from the initial condition of aP = 0,

until a TM -a k ] is less than some tolerance value. This method requires that the initial

guess should not be too far from the final solution for convergence; i.e., the solution _e

should be close to the grid solution on Mo. In situations where J(u) is not available, a

nonlinear set in a is obtained, which can be solved using nonlinear solvers. This is an

issue of further study. In this initial implementation, a linearization is adapted to simplify

the problem in hand.

A point to be noted is that LSE uses interpolated functions on a fine grid, and the

differential order, say n, of the PDE that is being solved impacts the choice of the

interpolating scheme. The scheme used should give a result that should be smooth

enough to be n-times differentiable. In the present study, cubic spline is used for

interpolation of the solutions.

The LSE technique is based on the minimization of the residual. However, the real

goal of LSE is to maximize the solution accuracy, or equivalently, minimize the solution
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erroron the extrapolatedgrid.However,minimizationof theresidualis notnecessarily

the sameastheminimizationof thesolutionerror.This aspectis explainedin the

following subsection.

Error versusResidual

To seetheabovementionedpoint,letusconsideronly thelinearproblem,

assumingthefollowing form:

AU = b (2.17)

where A is a symmetric coefficient matrix of size n × n and U is the n × 1 exact solution

vector of the linear system. Assuming u to be a non-exact solution of size n × 1, we have

the following relationship:

Au = b + r (2.18)

where r represents the n x 1 residual vector of the system of equations. Defining c as the

difference between u and U and subtracting Eq. (2.18) fi'om Eq. (2.17) gives:

Ag = -r (2.19)

Denoting the eigenvectors of matrix A by ai, i = 1, ..., n such that Ilail[ = 1.0 and the

eigenvalues as 2i, i = 1, ..., n the following relationships can be obtained:

n

r = _ otia i (2.20)
i=l

where a;, i = 1, ..., n are linear weights associated with each eigenvector and

= -A-lr (2.21)

which can be rewritten as

n

e. = _ (ct,/A i )ai (2.22)
i=i

The residual, F, is then defined as



2O

n

F-- Z (2.23)
i=1

The least square approach aims at minimizing the Le norm of the residual, F; i.e.,

min (F) = rain ri = nun a/ (2.24)

Now the adequacy of the non-exact solution, u, can be measure by the L2 norm

error measured between the u and U, which can be written as:

(2.25)

Minimizing the error, gives

min(error) = min a,/2 i (2.26)

From Eqs. (2.24) and (2.26) it is clear that minimization ofF is equivalent to

minimization of L2 error norm (error) only when 2i's are equal. Therefore it is clear that

properties of the matrix A define the properties of 2i's and the relationship between F and

L2 error norm (error). The implication of the residual minimization in accuracy control

will be examined along with the test problems.

In the context of the current study, the solution error measure is defined as follows

1 _ 2 (2.27)= u0- u..
k'" )=l i=1

where n indicates the source of the non-exact solution, m indicates the source of the

solution with respect to which the error is measured; i.e., the reference grid, (t7u).

represents the extrapolated or interpolated solution (non-exact solution) onto the fine
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grid, Mo, at the (i,j) th node, (fr0.), represents the reference grid solution, at the (i,j) 'h node

and N is the number of nodes of the fine grid (Mo). The reference grid can be either the

fine grid (Mo) solution or a fixed grid solution (Mn) fine enough to be considered as the

benchmark solution.

Flow Solver

The goveming equations are solved using the in-house code STREAM which is

based on the pressure-based algorithm and finite volume approach (Thakur et al., 2002).

The equations are solved on a multiblock structured curvilinear grid. The convective

terms in the momentum equations are discretized using the second-order upwind scheme

(Shyy, 1994) and the diffusion terms are discretized using a central difference scheme.

The continuity and momentum equations in Cartesian coordinates are presented below.

Steady state computations are carried out.

Continuity:

 xl Ut  xl V =O
Momentum:

0 0
O(puqk)+_(pvqk)=-_x(l.t-_xJ+--_(_u---_J-Sp (2.29,

where p is the density, u and v are the velocity components in Cartesian coordinates, p is

the laminar viscosity and St, represents the pressure gradient term. In Eq. (2.29), _b

represents u or v component of the velocity.

Figure 2.1 shows the collocated grid system. All the flow characteristics, namely

pressure, velocity, density and viscosity are stored at the cell center (P). Carrying out the



volumeintegralonEq.(2.29)andusingthenotationsshownin Figure2.1for thenodal

references,thefollowing discretizedequationisobtainedfor themomentumequations.

aM_1, = aEq_e + a_,q_ + aMeN + asq_s - S e + S c (2.30)

where the a's represent the convective and diffusive fluxes at the respective grid

locations, Sp is the source term arising out of the pressure gradient term and Sc is the

source term arising out of higher order derivatives in the convective fluxes. More details

of this equation can be found in Shyy (1994) and Shyy et al. (1997). The residual in the

context of LSE is defined by subtracting the LHS from the RHS of Eq. (2.30). The flow

solver is based on the SIMPLEC (Van Doormal and Raithby, 1984) algorithm where the

pressure is updated by solving a pressure correction equation formulated out of

combining momentum and continuity equations. For the current study, uniformly spaced

Cartesian mesh is used since the case studies involve a square domain.
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Figure 2.1: Collocated grid and notation for 2D grid.

In the implementation of LSE, a distinct equation is needed for each of the flow

parameters that have to be extrapolated. Hence for pressure, the pressure equation is used

which is obtained by substituting the velocity components, obtained from the momentum
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equations,into thediscretized(in theFV sense)continuityequation.Theobtained

pressureequationis givenas

AePe = Aep E + Awp w + ANP u + Asp s + S (2.31)

where the S is a function of the velocity components and the A's are obtained by

modifying the momentum and continuity equations (note that A's are different than the

a's in the momentum equation). The details of the pressure equation can be found in

Patankar (1980). In summary, there are three equations to estimate the residuals required

for LSE, namely Eq. (2.30) for u and v-component of the velocity and Eq. (2.31) for the

pressure. The residuals in the context of LSE are defined by subtracting the LHS from the

RHS of Eqs. (2.30) and (2.31).

Algorithm for LSE

As already mentioned there are issues that need to be addressed while

implementing the LSE technique, namely, the non-linearity in the momentum equations

(a's have velocity components in them which make the equation non-linear) and the

coupling of pressure-velocity so as to preserve the conservativeness of the flow properties

in each cell. The pressure equation is linear in nature and therefore is simpler to work on

provided that the source term is adequately represented. To proceed systematically, the

Navier-Stokes problem is tackled in two steps. In the first step, only the pressure is

extrapolated and in the second step the pressure-velocity coupled extrapolation is carried

out. The algorithms are presented in the following sections.

LSE for pressure equation only

This step is to test the efficiency of the approach in extrapolating a given solution

accurately; therefore the velocities obtained from the CFD solution on the finer of the two
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coarsegridsusedfor extrapolationareusedfor thesourceterm in Eq. (2.31).The

extrapolatedpressure,pLse, is defined as

PLse =aPl + (1-a)/32 (2.32)

where/3_ and /_2 are the interpolated pressure from the coarse grids to the fine grid using

spline. The residual for the LSE method is then obtained by using the pressure equation,

(Eq. (2.31)). For the preliminary analysis of the Navier-Stokes problem, only one mode

(Eq. (2.8)) is used to obtain the pressure field.

The algorithm for the LSE of pressure can be stated as

• DefinepLse =ct_ 1 + (l-a)/_2"

• Inputpzse,/_2, V2 into Eq. (2.31).

• Find a that minimizes the residual of Eq. (2.31).

• Calculate pLSE.

LSE for coupled pressure-velocity

The momentum equation (Eq. (2.30)) is nonlinear in nature as the coefficients

contain the velocity components as well. Hence, to linearize the system, a Picard-like

iterative scheme (Ferziger and Perle, 1999) is adapted. The equation used for the velocity

extrapolations comes from Eq. (2.30).

..,,+1 . _,,+l + a" q_.÷l + a" q_,,+l ..,,+i + S.+la q_ = a_ ,i w,_, , ,,Ls_+ as_s,_ - Sp c (2.33)

where Sc _+1 is defined based on the new velocity components.

Now the velocity components and pressure are extrapolated sequentially. Again,

only one mode (Eq. (2.8)) is used for the extrapolation of all the three parameters. The

algorithm of the approach is given below

• START
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• DefinepLse =a/31 + (l-a) P2.

• Inputpl.se, 32, _2into Eq. (2.31)(uLseandv_.seareusedfromthe2ndloop).

• Find a that minimizes the residual of Eq. (2.31).

• Calculate pt.se.

• Define uLse =731 + (1-7) 32.

• Input pLs_, uLs_, v2 into Eq. (2.33) with _ replaced by u (VLSEis used from the 2 n_

loop).

• Find ythat minimizes the residual.

• Calculate uLse.

• Define vz.sE =fl f_l + (l-r)fP2.

• Input pzse, uLse, vLse into Eq. (2.33) with _ replaced by v.

• Find fl that minimizes the residual of the equation.

• Calculate vLse.

• Go back to START for the next iteration. Continue the loop until a, 7 and fl

converge within the specified tolerances.

These algorithms are so designed that a direct access to the coding of the CFD

software is necessary. The governing equations have to be modified to accommodate the

estimation of the weights.

Results and Discussion

The least square extrapolation method is tested by implementing it on the following

cases:

• Linear, two-dimensional turning point problem (Figure 2.2) and

• Laminar, lid-driven cavity flow (Figure 2.5).

1. variable lid-velocity

2. constant lid-velocity
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Two-Dimensional Turning Point Problem

The linear equation that is solved is given below.

eAu + a (x, y ) ox_---_ O' X E (0, _') 2

where _ = 0.1 and

u=O

(2.34)

(2.35)

u=y(_r-y)

Y

X

u=-y(rc-y)

u=O

Figure 2.2: 2D turning point problem (dimensions are n" x n').

The boundary conditions of the problem are defined such that x,y _ [0,n]; u = y(n-

y) atx = 0 and u = -y(n-y) atx = n; u = 0 aty = 0 and n (Figure 2.2). There is no velocity

component along the y direction. This case has been tested by Garbey and Shyy (2003)

where they have used a finite difference approach. In this work a finite volume approach

is used. The problem is defined so that the transition layer of thickness e (where the

velocity changes direction) centered on the curve a(x,y) = 0 is not parallel to x or y axis

thereby making the problem two-dimensional. A sample solution is shown in Figure 2.3.

In the finite volume implementation, central difference is used for the diffusion term and
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first-orderupwindis usedfor theconvectionterm.Two modestbasegridsMI and M2 of

sizes 23 x 23 and 29 x 29, respectively are chosen such that there is at least one or two

grid points in the transition layer for the solution on grid M2. Both first-order and second-

order RE are evaluated and compared with the performance of LSE. For this case study

LSE is implemented with 4 Fourier modes for ot in each spatial variable (instead of one

mode as in the case of Navier-Stokes problem). The extrapolation is done onto fine grids,

Mo, ranging from size 41 x 41 to 101 x 101 in steps of 10. In Figure 2.4, subscripts, RE1

and RE2 refers to RE of first- and second-order, respectively. The errors are represented

as Eab which denotes the error in solution obtained using a certain method (RE or LSE) or

CFD simulation on a given grid (represented as a) as compared to the solution obtained

through CFD simulation on grid denoted by b (e.g. EuUo is the RMS error in u estimated

using all the points in the computational domain, of Mo, as compared to the interpolated

solution from a finer grid (M,,) of spacing h/2).

3 /

1 2 3
x

Figure 2.3: Solution (u) contours for the 2D turning point problem, grid = 81 x 81.
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Figure 2.4: Application: turning point problem with 6 = 0.1, x-axis is the number of grid
points in each direction for the fine grid on which extrapolation is done.

From Figure 2.4 it is seen that RE2 gives better results than RE1 for grid with poor

resolution. This is because the transition layer is under-resolved and the dominant error

comes from the second order diffusion term. As the grid gets finer, performance of R_E1

is better than RE2 as the first order convective error dominates. For some intermediate

grid (51 x 51), there maybe a cancellation between the convection and diffusion errors,

which might result in large improvements for RE as seen in Figure 2.4. Richardson

extrapolation fails as the grid Mo gets finer than N = 61. In all the cases, LSE predicts the

fine grid solution with an error less than that of the fine grid, Mo, which is an

approximation of the exact solution for N as large as 101. With the modest grid sizes of

23 × 23 and 29 x 29, there are only one or two grid points in the transition layer which

has a thickness of 8 = 0.1. Still, the LSE gives a solution, which is more accurate than the

fine grid solution on which the extrapolation is done resulting in a gain of more than one

order of accuracy.
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Thisproblemis relativelyeasyto solveandis usedto confirm thepotentialof LSE

for FV implementation.Useof 4 modesshowedbetterperformanceof LSEthanusing

onemode.Increasingthenumberof modesbeyondfourprovidedmarginalimprovement

in the extrapolatedsolution.Leastsquareextrapolationis foundeffectivefor FV

computations.Additionally it showsthatLSEworkswell with flowshavingtransition

layers.For thiscasetheresolutionof thecoarsegridsis adequate.Therearestill issues

like nonlinearequations,couplingof flow parameters,sharpgradientsandsingularitiesin

theflow thatneedsto beaddressed.Todoso,lid-drivencavity flow is usedandthe

detailsaregivenin thefollowing section.

Laminar Lid-Driven Cavity Flow

Garbey and Shyy (2003) have addressed the lid-driven cavity flow problem in a

vorticity-streamfunction formulation with a finite difference implementation. In the

current study the complete NS equations are solved in 2D for the lid-driven cavity flow

and the pressure along with u and v-components of the velocity field are extrapolated. A

laminar incompressible flow computation is carried out in a square cavity of dimensions

1 × 1 for Reynolds numbers 5.33 and 1000. This problem addresses the motion of the

fluid in a square container induced due to the lid-velocity ulia in the positive x-direction

(Figure 2.5). The remaining walls of the container have the no slip condition.

Two different scenarios are considered. In the first case, the singularity at the end

points of the sliding lid of the unit square cavity is avoided by choosing a variable speed

as follows:

u,id = -16x 2 (1- x): (2.36)
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whereUtid is the u-component of the velocity at the lid. The v-component at the lid is zero

and x varies from 0 to 1. In the second case, the lid velocity is kept constant, Ut_d= 1.0.

This results in singularities in u-velocity at the lid comers where there is an abrupt

change of ulid from one to zero.

U=Ulid

v=O

u=O u--O
v=O v=O

Y l u=O

X V= 0

Figure 2.5: Two dimensional lid-driven cavity flow (dimensions 1 x 1).

The Reynolds number for the flow is defined based on the mean lid-velocity. The

u-velocity contours are shown in Figures 2.6 and 2.7 for Reynolds numbers 5.33 and

1000, respectively. Some difference is noticed in the u-velocity contours at the upper

comer regions of the cavity for both the Reynolds numbers. The negative variable Utid

results in a u-velocity profile which looks like the mirror image of the positive constant

Ut_dfor Reynolds number 1000. The constant distribution of velocity results in the

presence of singularity at the comers of the lid for the pressure as noticed from Figures

2.8B and 2.9B. The magnitude of pressure near the comers for the case with variable Utid

is about 10 times more than that for the case with constant Utid (Figures 2.8 and 2.9). The

presence of singularity will be an issue while implementing the LSE technique. In the

later sections, the effect will be highlighted by means of the obtained results.
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A B

Figure2.6:u-velocity contour for grid 121 x 121 and Re = 5.33. A) Uli d = -16x2(1-x) 2. B)

ulia = 1.0.

1

0.9

0.8

0.7

0.6

>-0.5

0.4

0.3

0.2

0.1

o;

i

0.5
X

1

0.9

0.8

0.7

0.6

>- 0.5

0.4

0.3

0.2

0.1

0
0.5 1

X

A B

Figure 2.7: u-velocity contour for grid 171 x 171 and Re = 1000. A) Utid= -16X2(1-X) 2. B)

Utid= 1.0.

The positive and negative values of pressure identifies whether the pressure is

acting on the lid or away from it, respectively.



32

0,5
alar_Ihe|id,ulid= -!@_(I.x)_

oU \

-0.5

i i f , I i , i i
0 0.25 0.5 0.75 1

x

60

40

2O

0.

-20

-4O

m

Pr,o_,t=_ _l'_=5d,=5d= 1.0

, , , I _ , , , | , , , , | , , , , I
0.25 0.5 075 1

x

A B

Figure 2.8: Pressure along the lid for grid 121 x 121 and Re = 5.33. A) Ulid = -16x2(1-x) 2.

B) UZid= 1.0.
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Figure 2.9: Pressure along the lid for grid 171 x 171 and Re = 1000. A) l,lli d = -]6X2(]-X) 2.

B) Utid = 1.0.

The results for the following different scenarios are presented below:

LSE for Pressure only (Re = 5.33 and 1000)

1. utia is variable.

2. Ulid is constant.

LSE for Pressure-Velocity (Re = 5.33 and 1000)
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1. Utid is variable.

LSE for pressure only

The results are presented in two parts. In part (a) the case with variable lid-velocity

is presented and in part (b) the case with constant lid-velocity is presented. In both the

parts the results for Re = 5.33 are presented first followed by the results for Re = 1000.

For Re = 5.33, the two selected base grids which captures the flow features adequately

are 61 × 61 and 71 x 71. The extrapolated pressure fields are compared to the solution

obtained using a fixed fine grid (Mn) of size 121 x 121. The extrapolated fine grids (Mo)

vary between sizes 81 x 81 and 121 x 121. For Re = 1000, the two coarse grids are 111 x

111 and 121 x 121 and the fixed fine grid (Mn) for comparison is 171 x 171. The

extrapolated grids (Mo) are between 131 x 131 and 171 x 171. Only one Fourier mode

(Eq. (2.8)) is used for the extrapolation of pressure. The results are compared with results

obtained from Richardson extrapolation.

Variable lid-velocity (Re = 5.33). In Figure 2.10A the comparison of extrapolated

solutions on grid Mo (81 × 81,...) with the CFD solutions on the same grid (Mo) show

that LSE approach performs better as expected. The error increases as the grid gets finer

since resolution of the base grid solutions is not adequate for extrapolating onto very fine

grids. From Figure 2.10B, the true error can be estimated where the extrapolated

solutions on any grid Mo is compared with the fixed fine grid (M,) solution which

represents the "correct" solution, obtained on a substantially finer grid, for the given

Reynolds number. As expected it is seen that as the grid gets finer, LSE outperforms

other methods and attains an asymptotic convergence limit. The improved performance

of LSE for finer grid is expected as the minimization of the residual should satisfy the

governing equations more accurately.
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Ernn vs N
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Figure 2.10: Comparison of interpolated and extrapolated pressure with CFD solutions

for Re = 5.33 with variable lid-velocity. A) Extrapolated pressure compared

with CFD solution on the extrapolated grid (Mo). B) Extrapolated pressure

compared with CFD solution on fixed fine grid (M,), 121 x 121. (E: : n refers

to the source of the solution which is compared with the reference solution

identified by m).

To follow up on the previous discussion, the variation of the L2 norm of the

residual, F, and the L2 norm error of the extrapolated solution on grid Mo as compared to

the fixed grid 121 x 121, with respect to a is examined. Figure 2.11 shows that the trend

of both the accuracy measures are similar but based on minimization ofF (Figure 2.11A)

LSE picks a value of- 1.48 for a but based on L2 norm error (Figure 2.11 B) a value of-

1.6 for a is a better choice. Although it does not identify similar ds that minimize both

measures, they are close to each other. More assessment will be presented for the flow

with a constant lid velocity.

Variable lid-velocity (Re = 1000). The performance of LSE is compared with

other methods for Re = 1000 and the obtained results are shown in Figure 2.12. The base

grids used for the extrapolation are 111 x 111 and 121 x 121. It clearly shows in Figure
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2.12A thatfor agivenfine grid (Mo)LSEperformsbetter.Similar to the low Reynolds

numbercase,theLSEsolutionimprovesasthegrid getsfiner in termsof thetrue error

measure(Figure2.12B).
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Figure 2.11: Least square L2 norm error and error in extrapolated pressure on grid 101 ×

101 for different ct for Re = 5.33 and variable lid-velocity. A) Least square L2

norm error (F). B) L2 norm error ( E, = ) (comparing extrapolated pressure with

CFD solution on grid 121 x 121 (M,)).

This exercise with variable lid-velocity and two different Reynolds numbers gives

us incite into few important aspect of LSE.

The resolution of the coarse grid has to be adequate for efficient extrapolation.

Hence for higher Reynolds number, resolution of the base grids is higher.

LSE performs better for a considerable range of Reynolds numbers (5.33 and

1000), thereby showing its efficiency for a wide range of laminar and

incompressible flow regime.

LSE performs better as the grid gets finer since it satisfies the governing equation

more accurately over the computational domain.

The minimization of the residual does not guarantee the minimization of the

solution error.
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Figure 2.12: Comparison of interpolated and extrapolated pressure with CFD solutions

for Re = 1000 and variable lid-velocity. A) Extrapolated pressure compare d

with CFD solution on the extrapolated grid (Mo). B) Extrapolated presstare

compared with CFD solution on grid 171 x 171. ( En= : n refers to the SOUrce of

the solution which is compared with the reference solution identified by m)

Constant lid-velocity (Re = 5.33). At this point it would be interesting to take a

look at a case where the lid-velocity is uniform to evaluate the efficiency of LSE When

singularities are present in the solution domain.

Initially the LSE is implemented on the complete solution domain. In Figure 2.13,

the sensitivity of L: norm of the residual, F and the L2 norm of the solution error, E_,

with respect to a is shown. LSE identifies a = -0.48 as the optimum value, based on the

minimization of F (Figure 2.13A). But as seen from Figure 2.13B this value of a is far

from the value required to obtain an accurate solution which is about -4.0.

To investigate the impact of the singularities, the LSE is carried out over a reduced

solution domain. Figure 2.14 shows the reduced domain over which the LSE is

implemented. The extrapolation is carried over a domain with x = 0--) 1 and y = 0-_q).95.
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Figure 2.13: Least square L2 norm error and error in extrapolated pressure on grid 101 x

101 for different o_for Re = 5.33 and constant lid-velocity (full domain). A)

Least square L2 norm error (F). B) L2 norm error (E.") (comparing

extrapolated pressure with CFD solution on grid 121 x 121 (M.)).

0.5 1
X

Figure 2.14: The shaded domain is used for LSE. A region betweeny = 0 --) 0.95 for all x

is used for extrapolation.

As shown before in Figure 2.13 for the whole domain, the sensitivity of least

square error norm, F and the L2 norm error ( E," ) in comparison to the CFD solution with

respect to a for the reduced domain, of grid 101 x 101, is shown in Figure 2.15. It is seen
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that LSEidentifiesa = -0.48 as the optimum value for a, based on the minimization ofF

(Figure 2.15A). But as seen from Figure 2.15B this value of a is not as far from the

optimum value of a based on the minimization of E_'. The suggested value of a is

approximately -1.3 as compared to the previous approximate value of-4.0. This suggests

that a sub-domain which is adequately far from the region of singularity improves the

performance of LSE. A point to be noted is that during interpolation of data from one

grid to the other grid, the comer singularity tends to get smeared onto the final grid. Some

method of treating or accounting for this might have to be looked into.

-5.80

_t vs F (Mo = 101)

OtRE2= -2.77, Ioglo(F) = -6.559

CtLSE= -0.48, Ioglo(F) = -6.911

-6.00

-6.20

-6.60

-6.80 i

-7.00 !

-6.5 -6.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5

o -6.40

a VSEra, (Mo = 101)

OtRE2= -2.77, Ioglo(EM"RE_)= -2.267

OtLSE= -0.48, Iogl0(EMnLSE)= -2.374

-1.90 "

-2.30 •

-2.50

-6.5 -5.5 "4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5

E'_ -2.10 "
LU

A B

Figure 2.15: Least square L2 norm error and error in extrapolated pressure on grid 101 x

101 for different tx for Re = 5.33 and constant lid-velocity (reduced domain).

A) Least square L2 norm error (F). B) L2 norm error ( E_ ) (comparing

extrapolated pressure with CFD solution on grid 121 x 121).

Figure 2.16 shows the comparisons of different extrapolation techniques. The

errors shown are based on the reduced domain. There are oscillations noticed in the

convergence rates as the grid gets finer. This is due to the fact that the region for different

grids need not always lie between y = 0 --) 0.95, since the nearest grid point may be



39

belowor above.This resultsin differentlevelsof improvement.Thepresentdomain

reductionstrategysuggeststhatwhenadomainfartherawayfrom thesingularitiesis

considered,theperformanceof LSE seemsbetter.Of course,this is a verysimplistic

solutionandmaynot necessarilybeableto handleotherflow problemswith more

complexities.In Figure2.16A, theextrapolatedsolutionsarecomparedto thefine grid

(Mo)solutions,which showthatLSEoutperformstheothers.In Figure2.16B,the

comparisonof theextrapolatedsolutionis madewith a fixed finegrid solutionof size

121x 121.Thesolutionon this grid isconsideredasthebenchmarksolution.Clearly

LSE performswell ascomparedto RE.
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Figure 2.16: Comparison of interpolated and extrapolated pressure with CFD solutions

for Re = 5.33 with constant lid-velocity. A) Extrapolated pressure compared

with CFD solution on the extrapolated grid (Mo). B) Extrapolated pressure

compared with CFD solution on grid 121 x 121 (M,). (E_ : n refers to the

source of the solution which is compared with the reference solution identified

by m)

Constant lid-velocity (Re = 1000). LSE is implemented in the same reduced

domain as shown in Figure 2.14. The coarse grids used are 111 x 111 and 121 x 121 and
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the fixed fine grid (M,), which is the representative of the correct solution, is 171 x 171.

Figure 2.17, shows the comparison of different extrapolation schemes. Similar trends are

noticed for the reduced domain as before.
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Figure 2.17: Comparison of interpolated and extrapolated pressure with CFD solutions

for Re = 1000 with constant lid-velocity. A) Extrapolated pressure compared

with CFD solution on the extrapolated grid (Mo). B) Extrapolated pressure

compared with CFD solution on grid 171 x 171. (E_ : n refers to the source of

the solution which is compared with the reference solution identified by m)

This exercise helps gain an idea of shortcomings related to LSE technique. It shows

that when singularities are present, the minimization of the L2 norm of the discretized

governing equation residual, F, need not minimize the solution accuracy measure, E_. It

depends largely on the matrix of equations used for the least square implementation.

When the singularity is removed and the LSE is carried out on the reduced domain, the

minimization of F tends towards the minimization of E_ and the performance of LSE is

improved.
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LSE for coupled pressure-velocity computations

The coupled algorithm is implement on a lid-driven cavity flow with Re = 5.33 and

1000 and the variable lid-velocity as given in Eq. (2.36) is used. The geometry is same as

before (Figure 2.5). The coarse grids (Mr, M2), free grids (Mo) and the fixed grids (Mn)

are all the same as those used for pressure extrapolation. It is noticed that about 3-4

iterations of this algorithm results in converged values of c_ y and p with about 3-4 inner

iterations for the velocity components. Only the error compared to the finest grid (Mn) is

shown since the goal is to obtain a solution as accurate as the exact solution. For clarity,

only the RE2 and LSE solutions are shown in Figures 2.18 and 2.19 since they performed

better compared to the rest.

Re = 5.33. The E," measure for pressure, u-velocity and v-velocity are shown in

Figures 2.18A, 2.18B and 2.18C, respectively. Single mode (constant, ao) is used for the

extrapolation of all the flow parameters. The LSE performs well in extrapolating all the 3

flow parameters onto the finest grid.

Re = 1000. In Figure 2.19, the LSE solution is compared with the solution of

second order RE. There is considerable difference in the trends as compared to the low

Reynolds number case. But as the grid gets finer, the performance of LSE is better than

RE, suggesting that LSE gives a solution closer to the exact solution than RE.

This exercise gives the following information:

• The coupled algorithm is effective in treating all flow variables: pressure, u- and v-

velocity, adequately, and works well for a wide range of Reynolds number.

• It is surprising to notice that for the coupled algorithm, the improvement noticed in

LSE as compared to RE2 seems to be more for the higher Reynolds number case

than the lower. Additionally the trend of u-velocity is reversed for Re = 1000 and

as the grid gets freer, the performance of LSE is poorer in terms of accuracy. This

requires further study.
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Figure 2.18: Extrapolated pressure and velocity compared with CFD solution on grid 121

x 121 (M,), Re = 5.33 and variable lid-velocity. A) Pressure. B) u-velocity. C)

v-velocity.
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x 171 (M,), Re = 1000 and variable lid-velocity. A) Pressure. B) u-velocity.
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CHAPTER 3

GLOBAL SENSITIVITY AND OPTIMIZATION TECHNIQUES

In this chapter detail of the surrogate modeling method namely response surface

methodology (RSM), global sensitivity approach and multi-disciplinary optimization

(MDO) tools like design of experiments (DOE) and genetic algorithm are presented.

These tools are applied in the design of a single element injector of a liquid rocket engine

and the obtained results are presented in chapter 4.

Response Surface Methodology (RSM)

The approach of RSM is to perform a series of experiments, based on numerical

analyses or physical experiments, for a prescribed set of design points (using DOE), and

to construct a global approximation of the measured quantity (objective) over the design

space. Figure 3.1 shows the three steps involved for a single-objective optimization study

which is dependent on two design variables. This is a general case and can be extended

for multi-objective optimization study as explained later in this chapter. Step I (Figure

3.1) identifies the designs and the corresponding values of the objective for each design

over the selected design space. In step II (Figure 3.1) a response surface approximation

(RSA) of the objective is generated, which is a function of the two design variables.

Finally step III (Figure 3.1) involves the search for the optimum design using the

generated RSA for function evaluations. In this dissertation regression analysis is used to

construct polynomial-based RSAs of assumed order and unknown coefficients. The

number of coefficients to be evaluated depends on the order of the polynomial and the

44
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numberof designparametersinvolved.For instance,asecond-orderpolynomialof N

design variables has (N+1)(N+2)/(2!) coefficients. A cubic model has

(N+I)(N+2)(N+3)/(3.t) coefficients. In this dissertation, RSAs are constructed using JMP

(2002), a statistical analysis software that provides a variety of statistical features in an

interactive format.

In the practical application of RSM, it is necessary to develop an approximate

model (RSA) for the true response or the objective. The second order (quadratic) RSA is

used most frequently as it is the most economical one. Such an approximation for a

response variable (objective) y with k regressors can be written as

k k k-l k

Y = flo + E_ixi dr E_iix2i -t- 2_Pijxixj -st- _ (3.1)
i=l i=1 i=l j=2

The above equation can be written in matrix notation as follows

y = Xfl + 6 (3.2)

where y is the (nx 1) vector of observations, X: (nxnp) matrix of the levels of the

independent variables, r: (npx 1) vector of the regression coefficients, e: (nx 1) vector of

random error, n: the number of observations, and np: the number of terms in the RSA.

The purpose is to find the vector of least square estimators b that minimizes

n

Error = _._ 6 z, = e r s = (y - X fl) r (y - X fl)
i=1

which yields the least squares estimator offl

b = (xrx) -1xry

(3.3)

(3.4)
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step II: Generate RSA.

F

stepIiiSe ch ortheoptimum
Figure 3.1: Schematic of the procedure for global design optimization (Papila, 2001).

The quality of different RSAs can be evaluated by comparing the adjusted rms-

error o',, (Myers and Montgomogery, 1995) value that is defined as:

S a = ei (3.5)

np

where ei is the error at ith point of the data used for fitting.

The accuracy of the RSA in representing the design space is measured by

comparing their predictions to the actual values of the objective at test design points,
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different from thoseusedto generatethefit. Thepredictionrms-errorcr for the test set is

given by:

(3.6)

In this equation z,. is the error at the ith test point and m is the number of test points.

The test points can be selected using the cross-validation technique (Papila, 2001), which

is an established method for estimating the prediction accuracy. It is usually performed

using either a number of random test/train partitions of the data, or a k-fold cross-

validation (Mullin and Sukthankar, 2000). In k-fold cross-validation, the data points are

divided in k equally sized subsets. One of the subset is kept for testing and the remaining

k-1 are used to fit the RSA. This is done for all the k subsets and the average error of all

the k RSAs is computed. The fitting k-1 sets which has the minimum prediction rms-

error, or, is selected and the remaining subset used as the testing set.

In certain cases, especially when higher order polynomials are used, the data

available for RSA may not be enough to spare some for testing the fitted model. Hence,

an alternate method to estimate the performance of the RSA is to compute the PRESS

rms-error. This method was proposed by Allen (1971, 1974) and it computes a sum of

squares of the residuals. The residual is obtained by fitting a RSA over the design space

after dropping one design point from the fitting set and then comparing the predicted

value of the RSA for that point with the expected value. This is done for every point in

the design space. The PRESS rms-error is given by

PRESS_ = i=1 ..

n
(3.7)
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where yi is the expected value, )3i is the value predicted by the RSA for the ith point,

which is excluded while generating the RSA and n is the number of design points. If this

value is close to the adjusted rms-eror, O'a, then the model performs well.

A measure of the variability in an objective accounted by its RSA is given by the

coefficient of multiple determination (Myers and Montgomogery, 1995), R 2, given as

R 2 = 1 SSE (3.8)

II

where SSE is the sum of squares of the residuals (= _ (y_ -_i) 2 ) where _ is the predicted
i=1

value by the RSA. SSyy is the total sum of squares about the mean given by

n

SS, = SS e + SS n = _-](y,- fi): (3.9)
i=1

where y is an overall average ofyi. SSR is the sum of squares due to regression

?1

(= _ (_; _ y)2 ) where y is the overall average ofyi. Since R 2 increases as more terms are
i=l

added in the RSA, the adjusted coefficient of multiple determination R_, a normalized

measure is usually preferred. It accounts for the degrees of freedom in the model and is

n-1

R,, 2 = 1 SSyy/(n - 1)

For a good fit, the value of R_ should be closer to one.

The polynomial-based RSA is effective in representing the global characteristics of

the design space. It can filter the noise associated with design data. The linearity of the

polynomial-based RSA allows us to use statistical techniques known as design of

given by
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experiments(DOE)to find efficient fitting sets.On theother hand, depending on the

order of polynomial employed and the shape of the actual response surface, the RSA can

introduce a substantial error in certain region of the design space.

Design of Experiments (DOE)

It is well established that the predictive capability of RSM is greatly influenced by

the distribution of sampling points in design space (Unal et al., 1997, 1998). Design of

experiment is required to select designs for RSA that minimizes the effect of noise. There

are different types of DOE techniques in the literature as reported by Haftka et al. (1998).

One of the most conservative DOE techniques available in literature is the full factorial

design (JMP, 2002). Unal et al. (1996, 1997) studied response surface modeling using

orthogonal arrays (OA) in computer experiments for reusable launch vehicles and

illustrated that using this technique can minimize design, development, test and

evaluation cost. Unal and Dean (1995) studied a robust design method based on the

Taguchi method (Unal and Dean, 1991; Dean, 1996) to determine the optimum

configuration of design parameters for performance, quality and cost. They demonstrated

that using such a robust design method for selection of design points is a systematic and

efficient approach for determining the optimum configuration. The full factorial design

and the OA are explained below.

In full factorial design the range of each design variable is divided into one or more

intervals, which mark the number of levels. These intervals are usually, evenly spaced.

All the possible combinations of the levels of all the design variables give the design

points in the design space. For example, for three variables with three levels each there

are totally 27 design points (Figure 3.2).
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Figure 3.2: Full factorial 3-1evel design (dark circles refer to points in the foreground and

light circles refer to points in the background).

An OA is a fractional factorial matrix that assures a balanced comparison of levels

of any factor or interaction of factors. Consider A, a matrix with elements of ai' wherej

denotes the row (j = 1,2... nr) and i denotes the column (i = 1,2...nc) that a i belongs to,

supposing that each a I _ Q = {0,1...q-1 }. If the columns representing each design

variable are mutually orthogonal, matrix A is called an orthogonal array. It is of strength t

-<no if in each nr-row-by-t-column sub-matrix, the qt possible distinct rows occur 2, (index

of the array) times. Such an array is denoted by OA(n,_nc, q,O by Owen (1992). Since the

points are not necessarily at the vertices, the OA can be more robust than the full factorial

design in interior design space and is less likely to fail the analysis tool. Based on the

DOE theory, OA can significantly reduce the number of experimental configurations

(Papila, 2001). In this dissertation OA is used to obtain the design for the optimization

study.
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Sensitivity Analysis

Unlike local sensitivity where the partial derivatives are used to locally estimate the

sensitivity of an objective to a specific design variable, global sensitivity allows the study

of overall model behavior. To understand the concept, assume a surrogate model (in this

dissertation a RSA) of an objective, f/X) as a function of the design variables, X, where X

is the vector of the design variables Xl, x2, ..., x,,, scaled between zero and one. This

surrogate model (in this dissertation, polynomials ofn th order) represented in Eq. (3.11)

has to be square integrable.

:(x)--:o+
i i<j

An analysis of variance (ANOVA) (Archer et al., 1997) representation of Eq. (3.11)

can be obtained by imposing the following condition

1

f/....;, dx k = 0 (3.12)
0

for k = is, ..., is. This condition is essential for the uniqueness of Eq. (3.11). This results

in a set of summands of different dimensions. Each of the components f4...i, is responsible

for the interactive contribution of design variables x 4 ,..., x_, to the variability of the

objective/(X) over the n-dimensional unit hypercube design space.

Integrating Eq. (3.11) over all the design variables gives

_f (x)1-Idx k =.;co (3.13)

Integrating Eq. (3.11) over all the design variables except xi gives

_f(x)[-[ clack = fo + S_(x,) (3.14)
k.i

fxom whichf(xi) is obtained.
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IntegratingEq. (3.11)overall thedesignvariablesexceptxi and xj gives

If(x)I--[dx, =f0 + f_(xi)+ fj(xj)+ f_,j(xi,xj) (3.15)
k_i,j

from whichfij(xi, xj) is obtained. This can similarly be extended to obtain the remaining

summands ofJ(X). The imposed condition ensures that the summands are orthogonal in

nature and sinceJ(X) is square integrable the summands are too. Therefore the partial

variances can be calculated as

nil...i" = Ifi2..idxil...dxi,

and the total variances is

D:

Therefore it can be shown (Sobol, 1993) that

(3.16)

(3.17)

s=l il<...<i ,

Partial variance gives a measure of the spread of the function due to one of the

independent variables. Total variance gives a measure of the spread of the dependent data

due to all the independent variables. Sensitivity is a measure of the contribution of an

independent variable to the total variance of the dependent data. Sobol (1993) had

proposed a variance-based non-parametric approach to estimate the global sensitivity

using Monte Carlo methods. To calculate the total sensitivity of any design variable, say

xs, the design variable vector X is divided into two complementary subsets, xl and Z

where Z is a vector containing xe, x3, ..., x,,. The purpose of using these subsets is to

isolate the influence of x] onflX) variability from the influence of the remaining design

variables included in Z. The total sensitivity index for xs is then defined as

D= y_ D;,...i" (3.18)
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S x,t°t"t= D x,l°'l/D

where

(3.19)

,otat (3.20)D x, = D x, + D xi,z

Dx, is the partial variance associated with Xl and Dx,.z is the sum of all partial variances

associated with any combination of the remaining variables representing the interactions

between xl and Z. Similarly the partial variance associated with Z can be defined as Dz.

Therefore the total objective variability can be written as

D =D,, +D z +Dx,,z (3.21)

In cases where theJ(X) is an analytical function, the multidimensional integrals for

computing the partial variances can be evaluated analytically. However, the Monte Carlo

approach is applicable under general conditions (e.g., any model, design under

uncertainty) and has been adopted in this dissertation. The designs for the Monte Carlo

approach are selected without any preference of one design over the other from the

uniformly distributed design space of unit sides. Hence the design variables are

uncorrelated which is essential for the effective implementation of the method proposed

by Sobol (1993). The variance estimates can be obtained using the following expressions:

_ f0 (3.22)

where f0 is the mean of the objective.

1 N

--,D.,+

_ D+ f_

(3.23)

(3.24)
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1 N

--_ __,f(x,,Z)f(xi,Z_ j. --+ D z + fo 2 (3.25)

where the terms (xl, Z) and (X1 ", Z') represent random sample designs. Equations. (3.23),

(3.24) and (3.25) give the estimates for Dx,, D and Dz, respectively and Dx,.z can be

calculated using Eq. (3.21). Once these estimates are known the total sensitivity index of

the objective variability with respect to a given design variable can be obtained using Eq.

(3.19). The influence of a design variable to an objective variability without accounting

for any of its interactions with other variables is denoted as a main factor index and given

as

Sx, = Dx, / D (3.26)

Each pair of random samples requires three different objective function evaluations

(e.g.,J(xl, Z),f(xl, Z') andf(xl ', 25)). The mean and the total variance of an objective

need to be estimated only once, and only two Monte Carlo integrals per design variable

are necessary to compute the main factor and total sensitivity indices. Hence the increase

in computational cost is linear with the increase in the number of design variables.

These indices can be used to understand the influence of design variables on the

variability of any given objective over the chosen design space. This method proposed by

Sobol (1993) is effective when the design variables are uncorrelated. In a multi-objective

optimization study multiple optima are obtained which collectively give the Pareto

optimal front (POF). The design variables at different regions along the POF share some

similar features. Therefore, the design variables are correlated and this correlation has to

be accounted for before estimating the influence of a design variable on an objective. The

total sensitivity and main factor indices, which require uncorrelated data, cannot be used
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for suchasituation.Hence,for thispurpose,apartialcorrelationcoefficient(JMP,2002)

wascalculated.

Estimationof partialcorrelationcoefficient(JMP,2002)is a variance-based

parame_capproachthat_ves ameasureof the linearrelationshipbetweenthevariances

of a designvariable,sayxl and an objectivef(X), after the influence of other variables

have been filtered out. It gives a measure of expected change infiX) per unit change in Xl

which in other words gives the sensitivity of the function to the design variable. Linear

approximations are obtained for xl andJ(X) as a function of the components of Z and the

residuals (say, rl and r2, respectively) measured as the difference between the data used

for the approximations and the predicted value of the approximations are estimated. A

partial correlation coefficient is the correlation between these two residuals and is given

by

R_o. = E[-(r, -F,)(r 2 -_)] (3.27)
o-r,o-r2

Optimization Algorithm

The optimization process can be divided into two parts:

1. RSA phase,

2. Optimizer phase.

In the first phase, RSA are generated with the available data set. In the second

phase the optimizer uses the RSA during the gradient-based search for the optimum (the

maximum or minimum of the objective). The initial design for the search is randomly

selected from within the design space. The flowchart of the process is shown in Figure

3.3. The optimization problem at hand can be formulated as min {fiX)} subject to lb < X <

ub, where lb is the lower boundary vector and ub is the upper boundary vector of the
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designvariablesvectorX. If the goal is to maximize the objective function thenfcK) can

be written as -g(X), where g(X) is the objective function. Additional linear or norllinear

constraints can be incorporated if required. Solver (2002), an optimization tool available

as part of Microsoft Excel package is an ideal tool for such studies. This tool uses the

Generalized Reduced Gradient (GRG2) nonlinear optimization code developed by

Lasdon et al. (1978).

Second Phase

Perturb

Design

variables

Evaluate

gradient

Initial Design Variables

' RS generated t I 1 GeneratingRS

First Phase

I Data set [

Figure 3.3: Two phases of the optimization process, where Phase 1 deals with RSA and

Phase 2 deals with optimization.

In most optimization studies it is desirable to simultaneously optimize more than

one response/objective. One method is to build, from the individual objectives, a

composite objective known as the desirability function. The method allows for the

designers' priorities to be addressed during the optimization procedure. The first Step is to

define the desirability function, d for each objective. Desirability function is a

normalizing of the objective such that its' maximum and minimum over the design space
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lie between zero and one. In the case where an objective should be maximized, say Rr,

the desirability takes the form:

where B is the target value and A is the lowest acceptable value such that dr = 1 for any

RI > B and dr = 0 for Rr < A. The weighting factor t is set according to the designer's

goal and the compromise he wants to achieve between different objectives.

In the case where a response is to be minimized, say Re, the desirability takes on

the form:

d2 =(R_-E.Y (3.29)
t.C-EJ

where C is the target value and E is the highest acceptable value such that de = 1 for any

Re < C and d2 = 0 for R2 > E. Choices for A, B, C, and E are made according to the

designer's priorities or simply as the maximum and minimum values of the objective

over the design space. Values ofs and t are set based on the priority of the objective. The

sensitivity of the parameter, s, illustrated in Figure 3.4 can be instructive (Myers and

Montgomery, 1995). Desirability functions with s << 1 imply that a product need not be

close to the response target value, C, to be quite acceptable. However, s = 8, implies that

the product is nearly unacceptable unless the response is close to C. A single composite

desirability D is defined based on the geometric mean of the desirabilities of the

individual objectives.

D = (d, . d2 "d3....d,,,) j/_ (3.30)

This is then submitted to an optimization toolbox to be maximized.
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Figure 3.4: Desirability function (d) for various weight factors, s. (Note: B < A) (Myers

and Montgomery, 1995).

Multi-Objective Genetic Algorithm

One of the other optimization approaches is to use Multi-objective genetic

algorithm (MOGA). It works on the principle of survival of the fittest. Genetic operators

like reproduction, crossover and mutation are employed to find the optimal solution. In a

multi-objective optimization scenario, when the objectives are conflicting in nature, many

representative optimal solutions can be obtained. All these solutions comprise a set called

the Pareto optimal set (Miettinen, 1999). The solutions in this set are considered non-

dominated as they are not inferior to any other solution in the entire design space without

having a bias towards some of the objectives. The function space of all the solutions in

the Pareto optimal set is termed the Pareto optimal front (POF) (Miettinen, 1999). When
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therearetwo objectives,thePOFis acurve.Whentherearethreeobjectives,the POF is

representedby a surface.If therearemorethanthreeobjectives,it is representedby

hyper-surfaces.

Oneof theMOGA thathasbeenshownto beeffectivein finding thePareto-

optimal solutionsis theelitist non-dominatedsortinggeneticalgorithm(NSGA-II) (Deb

et al., 2000).Thealgorithmcanbedescribedas:

1. Randomlyinitialize population(designsin thedesignspace)of sizeN.

2. Computeobjectivesfor eachdesign.

3. Rankthepopulationusingnon-dominationcriteria.

4. Computecrowdingdistance(thisdistancefinds therelativeclosenessof the
solutionwith othersolutionsin theobjectivespace.)

5. Employgeneticoperators- selection,crossover& mutation- createnew
population.

6. Evaluateobjectivesfor thenewpopulation.

7. Combinethetwo populations,rank themandcomputethecrowdingdistance.

8. SelectN bestindividuals.

9. Goto step3 andrepeattill terminationcriteriaisreached,which in the
currentstudyis chosentobe thenumberof generations.

It is shownin anumberof studiesthatusingacombinationof MOGA andlocal

search(alsoknown ashybrid GA), helpsachievefasterconvergenceto theglobalPareto

optimal solutionset(DebandGoel,2000,2001;Goel,2001;GoelandDeb,2002;

IshibuchiandYoshida,2002).Theaposteriori hybrid method (Deb and Goel, 2001)

assumes the set of solutions generated by MOGA simulations as a starting point for the

local search. Most of the local search methods are very efficient only for single objective

optimization problems. Hence, a z-constraint strategy (Deb and Goel, 2001) helps reduce

the dimensionality of the problem. Sequential quadratic programming, available in
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Matlab (2002)canbeusedasthelocalsearchoptimizer.This givesasetof solutions

from whichthedominatedandduplicatesolutionsareremovedto obtaintheglobal

ParetooptimalsolutionsetandthePOF.

I-IierarehiealClustering Method

The POF can be divided into a number of clusters using a hierarchical clustering

algorithm (Jain and Dubes, 1988) to assist the designer in selecting the optimal solution

of choice. The clustering algorithm can be summarized as:

1. Start by assuming all the solutions as individual clusters.

2. Find the mean of each cluster.

3. Find the distance between clusters.

4. Merge closest clusters.

5. Go to step 2 till the number of clusters is equal to some prefixed value.

6. Find the member of each cluster closest to the mean of the cluster. This is the

representative element.

Visualization Using Box Plot

Box plot (JMP, 2002) is a visualization tool, which can help understand the

variability in the design variables and objectives within the clusters of the POF. It can

also assist in identifying the design variable that should be fixed when analyzing a given

cluster. A schematic of a box plot with the y-axis representing the range of the scaled

design variable is shown in Figure 3.5.

Figure 3.5 shows that 25%, 50% and 75% of the data lie below the lower hinge,

median and upper hinge, respectively. The difference between the upper and lower hinges

is known as the "H-spread". The inner fence is located 1 step beyond the hinges, which is

equal to 1.5 times the H-spread. The upper adjacent value is identified as the largest value

below the upper inner fence. The lower inner fence and lower adjacent value can be
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similarly determined.These box plots will be used to visualize the variability along the

POF. The spread between the upper and lower adjacent values gives the range of

variation of a variable in a given set. Any variable lying beyond this spread is a potential

outlier of the set. Small range gives a tight bound on that particular variable. Sometimes

the box plot is known to collapse to a single point, which suggests that the variable

should be fixed at that value.

Outside value

4

9

9

9

Inner fence

Upper Adjacent Value

Upper hinge

Median

Lower hinge

Lower Adjacent Value

Figure 3.5: Schematic of a box plot



CHAPTER4
DESIGNOPTIMIZATION - SINGLEELEMENT ROCKET INJECTOR

In this chapterthesensitivityandoptimizationstudiesof asingleelementliquid

rocketinjectordesignarepresented.Initially a literaturesurveyof thepastinjectordesign

studiesis presented.Followingthis theinjectormodelis described.Thentheresults

relatedto thesensitivityanalysesandoptimizationstudiesarepresented.

Literature Review

A critical goal for space propulsion design is to make the device safer, more

affordable and more reliable. The design of combustion devices, namely, injectors,

chambers and nozzles, will help in meeting these goals. The characteristics of the injector

design are a key factor for both performance and thrust chamber environments. The thrust

chamber performance is estimated by the rate and the extent to which mixing and

resultant combustion occurs. The location of the mixing and resultant combustion

determines the injector and thrust chamber thermal environments. These environments

include temperatures on the combustor wall, the injector face and, for coaxial injectors,

the oxidizer post tip. The difficulty encountered in designing injectors that perform well

and have manageable environments is that the factors that promote performance often

lead to increased heating of the solid surfaces of the injector and combustor thereby

reducing the life expectancy or survivability of these components.

Current injector design tools have been in use for 30 years or more and are largely

empirical-based (Rupe, 1965; Dickerson et al., 1968; Pavli, 1979; Nurick, 1990; Pieper,

62
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1991).Extensivesub-andfull-scalehot-fire testprogramsoftenguidedtheseinjector

designmethodologies.Theexperimentaldatabases,andthusthetoolsdevelopedfrom

them,arelimited,in termsof designspace,to specificelementconfigurationsthathave

beentested(Ca!hoonet al., 1973).In termsof scope,thedesigntoolstypically focuson

performance,with the environmentbeinga secondaryconsideration.Thelimited amount

of environmentalinformationavailablefrom thesetools is usuallyone-dimensionaland

not functionallyrelatedto detailsof theinjectordesign.It is verydoubtful that

applicationof thesetraditionaldesigntoolswill resultin robustfuturepropulsiondevices.

Overtime spacepropulsionprogramswith compressedschedules,lowerbudgetsand

morestringentrequirementshaveresultedin thedevelopmentof broaderandmore

efficient injectordesignmethodologies.

Theinitial work by Tuckeret al. (1998)andVaidyanathanet al. (2000)focusedon

theoptimizationof a shearcoaxialinjectorelementwith gaseousoxygen(GO2)and

gaseoushydrogen(GH2)propellants.In this study,thedesigndatawasgeneratedusing

anempiricaldesignmethodologydevelopedby Calhoonet al. (1973).Calhoonet al.

(1973)conducteda largenumberof cold-flowandhot-fire testsovera rangeof

propellantmixtureratios,propellantvelocityratiosandchamberpressurefor shear

coaxial,swirl coaxial,impinging,andpremixedelements.Thedatawerecorrelated

directly with injector/chamberdesignparameters,whichwererecognizedfrom both

theoreticalandempiricalstandpointsasthecontrollingvariables.Fortheshearcoaxial

element,performance,asmeasuredby energyreleaseefficiency,ERE, was obtained

using correlations taking into account combustor length, Lcor, b (length from injector to

throat) and the propellant velocity ratio, V/Vo. The nominal chamber wall heat flux at a
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pointjust downstreamof the injector,Q,,o,,,, was calculated using a modified Bartz

equation and was correlated with propellant mixture ratio, O/F, and propellant velocity

ratio, V/Vo to yield the actual chamber wall heat flux, Q. The objective was to maximize

injector performance while minimizing chamber wall heat flux (lower heat fluxes reduce

cooling requirements and increase chamber life/survivability) and chamber length

(shorter chambers lower engine weight).

In Tucker et al. (2000) the designs of an impinging injector element and a swirl co-

axial injector element have been carried out. For the impinging injector element, the

empirical design methodology of Calhoon et al. (1973) used the oxidizer pressure drop,

dPo, fuel pressure drop, Z_Df, combustor length, Lcomb, and the impingement half-angle, a

as design variables. Objectives included ERE (a measure of element performance), wall

heat flux, Qw, injector heat flux, Qi,,j, relative combustor weight, W,.et, and relative injector

cost, Crel. The gaseous propellants were injected at a temperature of 540R. The empirical

design methodology used to characterize the ERE and Qw used a quantity called the

normalized injection momentum ratio to correlate the mixing at the different design

points for the triplet element.

The swirl coaxial element has been used sparingly in USA, but has been widely

used in Russia because of its reported ability to perform well over a large throttle range

(Gill and Nurick, 1976). This has sparked the interest in exploring its possibilities. The

empirical design methodology of Calhoon et al. (1973) used the oxidizer pressure drop,

APo, fuel pressure drop, APf, combustor length, Lcomb, and the full cone swirl angle, 69, as

design variables. The objectives modeled were ERE (a measure of element performance),
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wall heatflux, Qw, injector heat flux, Qinj, relative combustor weight, Wret, and relative

injector cost, Crel.

The advent and advancement of CFD in the last 20 years have produced a

capability that has shown potential as an improved design tool in many areas of rocket

propulsion. The application of CFD to injector design has lagged behind other areas such

as turbomachinery because the physical models are more complicated for multiphase,

turbulent reacting flows. New models that efficiently account for some of the complex

processes (Cheng and Farmer, 2002) and thus increase the solution fidelity have recently

become available. However, the three-dimensional geometry of multi-element injectors

and the complex physical processes inherent in the flows that issue from them create

major obstacles in validating the solution and generating significant amount of parametric

solutions. The harsh high pressure and temperature environments typical of injector flows

create significant difficulty in obtaining experimental data of satisfactory quality to

validate and guide further development of computational models. Finally, solving the

equations, for multiphase reacting flows, with high resolution typically requires lengthy

computational times. However, continuing increases in computer speed and progress in

parallel processing have begun to mitigate this turnaround problem.

It has long been known that small changes in injector geometry can have significant

impact on performance, as well as on environmental variables such as combustion

chamber wall and injector face temperatures and heat fluxes (Gill and Nurick, 1976).

Several geometric design variables can be accounted over appropriate ranges by

calculating the performance and environmental variables of the injector using CFD.

Global approximation method like RSM can provide a continuous representation of the
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objectives over the design space thereby reducing the number of numerical computations

required for sensitivity analyses. This global approximation can also guide the

optimization study. Additionally, a global approximation method can also at times

address issues related to CFD analysis, for e.g. grid resolution, thereby increasing the

fidelity of the computations. The present work is first of its kind where a CFD-based

design optimization methodology is proposed for the design of an injector (Vaidyanathan

et al., 2003a; Vaidyanathan et al., 2004b).

Scope

The focus is on sensitivity and trade-off analyses for the design of a gaseous

injector for liquid rocket propulsion. The data for the analyses is obtained from surrogate

models (RSAs) of the objectives, and the multi-objective optima (Pareto optimal front,

POF) generated by Goel et al. (2004) with the aid of multi-objective genetic algorithm

(MOGA) and a local search method. The regions of the POF that represent different

trade-offs among the objectives are obtained through a hierarchical clustering algorithm.

The initial study concentrates on the generation of response surface approximations

(RSAs) and preliminary optimization studies. Then it is followed by an elaborate

sensitivity and trade-off analyses. The later part of the study is broadly divided into two

parts. Firstly a sensitivity study is carried over the whole design space. The contribution

of the design variables to the objective variability is calculated using a variance-based

non-parametric approach (Sobol, 1993) and correlations between objectives are

investigated. Secondly, sensitivity analyses are conducted on clusters along the POF. Box

plots are used to highlight the variability of the design variables and the objectives within

a given cluster. Additionally, the linear relationships between the variance of the design

variables and the objectives are explored with the aid of partial correlation coefficients.
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Injector model

Liquid rocketpropulsioninjectorelementscanbecategorizedinto two basictypes

basedonpropellantmixing. The first type is an impinging element (Figure 4.1A) where

mixing occurs by direct impingement of the propellant streams at an acute angle. The

impingement enhances mixing by head-on interaction between the oxidizer and fuel (Gill

and Nurick, 1976). The second type of injector consists of non-impinging elements where

the propellant streams flow in parallel, typically in coaxial fashion (Figure 4.1B). Here,

mixing is accomplished through a shear-mixing process (Calhoon et al., 1973). From a

design standpoint, both element types have appealing characteristics. However both also

have undesirable characteristics. For instance, if the impinging element has an F-O-F

arrangement (Figure 4.1A), the mixing occurs rapidly, which can yield high performance.

However, since the combustion zone is close to the injector face, the potential for high

levels of injector face heating must be considered. If the non-impinging element is

assumed to be a shear coaxial element, mixing across the shear layer is relatively slow,

requiting longer chambers to allow complete combustion. However, since the combustion

zone is spread over a longer axial distance, the injector face is generally exposed to less

severe thermal environments.

Important design parameters for the impinging element (assuming fixed mass flow

rates and constant propellant inlet conditions) include relative orifice size (or, relative

stream momentum ratio), impingement angle and orifice spacing. Important parameters

for the shear coaxial element (assuming fixed mass flow rates and constant propellant

inlet conditions) include the area ratio of the two concentric tubes (or velocity ratio) and

the shear area between the two propellant streams (i.e., the oxidizer post tip thickness)

(Calhoon et al., 1973).
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Figure 4.1 : Schematic of the G02/GH2 impinging and coaxial injector elements. A) F-O- 
F impinging element. B) Coaxial element. 

One can combine the above-mentioned characteristics of injector types to develop 

hybrid concepts. For example, it has been noted (Gill and Nurick, 1976) that performance 

improvement in the shear coaxial element can be realized by directing the fuel toward the 

oxidizer stream rather than parallel to it and thinning the oxidizer post wall. The first 

modification causes the shear coaxial element to take on some of the aspects of the F-0-F 

impinging element. These notions lead to the hybrid element shown in Figure 4.2 that has 

been developed by The Boeing Company (U. S .  Patent 6253539). 

Figure 4.2: Schematic of Hybrid Boeing Element (U. S. Patent 6253539) 

The four independent design variables chosen for the element used in this study are 

shown in Figure 4.3A. They are the angle at which the H2 is directed toward the oxidizer, 

a, the change in H2 flow area fiom a baseline area, AHA, the change in 0 2  flow area fiom 

a baseline area, AOA, and the oxidizer post tip thickness, OPTT. The fuel and oxidizer 



69 

flow rates are held constant. The independent variable ranges considered in this exercise 

are shown in Table 4.1. 

/ I  I 

02 Post Tip Thickness 
(OF"IT=x-2x in) 

(A OA=O--40%) 
H2 

A 

Xu: 

B 

Figure 4.3: Design variables and objectives of the single element rocket injector. A) 
Design variables and their range. B) Objective functions. 
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Table4.1: Rangeof designvariables(cxis anacuteanglein degreesandx is thethickness
of OPTTin inches)

Variable Minimum Maximum
Actual Scaled Actual Scaled

a 0 ° 0 cz° 1

AlIA Baseline 0 Baseline+25% 1

AOA Baseline-40% 0 Baseline 1

OPTT x in 0 2x in 1

The dependent variables chosen for design evaluation are shown in Figure 4.3B.

They are the maximum injector face temperature, TFmax, the wall temperature at a

distance three inches from the injector face, TW4, the maximum oxidizer post tip

temperature, TTmax and centerline axial location where the combustion is 99% complete,

(hereafter referred to as the combustion length) X_c (Figure 4.3B). The three temperatures

(calculated as adiabatic wall temperatures in this study) were chosen as indicators of local

environments. Lower temperatures would indicate a design that had longer

life/survivability due to decreased thermal strain on the part. The combustion length, Xcc,

was chosen as a measure of performance. Shorter combustion lengths indicate better

performance.

Numerical Procedure

A pressure-based, finite difference, Navier-Stokes solver, FDNS500-CVS (Chen,

1989; Wang and Chen, 1990; Chen and Farmer, 1991) is used in this study. The Navier-

Stokes equations, the two-equation turbulence model, and kinetic equations are solved.

Convection terms are discretized using either a second order upwind, third order upwind

or a central difference scheme, with adaptively added second order and fourth order

dissipation terms. For the viscous and source terms, second order central difference

scheme is used. First order upwind scheme is used for scalar quantities, like turbulence

kinetic energy and species mass fi'actions, to ensure positive values. Steady state is
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assumed and an implicit Euler time marching scheme is used for computational 

efficiency. The chemical species continuity equations represent the H2 - 0 2  chemistry. It 

is represented with the aid of a 7-species and 9-reaction set (Chen, 1989; Wang and 

Chen, 1990; Chen and Farmer, 1991). The simulation domain and the boundary 

conditions used in all the CFD cases are shown in Figure 4.4. Because of the very large 

aspect ratio, both the injector and chamber have been shortened (at the cross hatched 

areas) for clarity. Both fuel and oxidizer flow in through the west boundary where the 

mass flow rate is fixed for both streams. The nozzle exit, at the east boundary, is modeled 

by an outlet boundary condition. The south boundary is modeled with the symmetry 

condition. All walls (both sides of the oxygen post, the outside of the fuel annulus, the 

outside chamber wall, and the faceplate) are modeled with the no slip adiabatic wall 

boundary condition. Each CFD analysis was done on a 200 CPU PC cluster with an 

AMD Athlon MP 1800 (1.8 GHz) chip and 1 GB RAM. All the cases were run 

concurrently and took about 5 days. 

P B  i~&t ic  wal& 

Figure 4.4: Simulation domain and boundary conditions 

Design Space 

In this study OA (with n, = 4, q = 3, t = 3 and A = 2) is used to generate 54 designs 

for RSA and testing of the approximation. To test the RSA, 14 of the 54 designs are 
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selectedusingcross-validationtechniques(Papila,2001).During theCFD simulations,

two of the40 designs(fitting set)werefoundto beunacceptablebecausetheyexhibited

unsteadybehaviorswhile thenumericalalgorithmusedwasasteadystatemodel.Hence,

thefinal informationincluded38designsfor fitting theRSA and14to testtheir

predictivecapabilities.All thedesignvariablesarescaledbetweenzeroandonebasedon

their upperandlower bounds.All theobjectivesobtainedfrom theCFD solutionsof the

52valid designsarescaledbetweenzeroandonebasedonthemaximumandminimum

valuesandpolynomial-basedRSAsgenerated.OncetheRSAsaregenerated,thescaled

objectivesarenormalizedbetweenzeroandonebasedon themaximumandminimumof

thegeneratedRSAs,which will be referredto asthenormalizedobjectivesin thetext.

Thescaledvaluesarethenon-normalizedvaluesof theobjectives.Thefitting andtesting

designsareshownin Tables4.2and4.3,respectively.It shouldbenotedthatwhenthe

AOA is 1or 0,the 02 flow areaisreducedby 0% or 40%,respectively,ascomparedto

thebaselinearea.

Resultsand Discussion

CFD Analysis

Comparison of two of the evaluated designs serves to illustrate the motivation for

combining CFD analyses and an efficient global approximation model during the design

process. The scaled independent design variables are shown for the two cases in Table

4.4. In terms of the design space evaluated, these two designs are seen to be quite

different. The normalized dependent variables are also shown in Table 4.4 with the

temperatures shown in contour plots (Figures 4.5 and 4.6).
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Table 4.2: Fitting designs (unacceptable designs are marked in bold).
Case # a AHA AOA OPTT

Case 1: 0 0 1 0

Case 2: 0 0 1 0.5

Case 3: 0 0 1 1

Case 4: 0.5 0.5 0 1

Case 5: 1 1 0.5 0

Case 6: 1 1 0.5 0.5

Case 7: 1 1 0.5 1

Case 8: 0 0.5 0.5 0

Case 9: 0.5 1 1 0

Case 10: 0.5 1 1 0.5

Case 11: 0.5 1 1 1

Case 12: 1 0 0 0

Case 13: 1 0 0 0.5

Case 14: 1 0 0 1

Case 15: 0 1 0 0

Case 16: 0 1 0 0.5

Case 17: 0 1 1 1

Case 18: 0.5 0 0.5 0

Case 19: 0.5 0 0.5 1

Case 20: 1 0.5 1 0

Case 21: 1 0.5 1 0.5

Case 22: 1 0.5 1 1

Case 23: 0 1 0.5 0

Case 24: 0 1 0.5 1

Case 25: 0.5 0 1 0

Case 26: 0.5 0 1 1

Case 27: 1 0.5 0 0

Case 28: 1 0.5 0 1

Case 29: 0 0 0 0

Case 30: 0 0 0 0.5

Case 31: 0 0 1 1

Case 32: 0.5 0.5 0.5 0.5

Case 33: 1 1 1 0

Case 34: 1 1 1 1

Case 35: 0 0.5 1 0

Case 36: 0 0.5 1 1

Case 37: 0.5 1 0 0

Case 38: 0.5 1 0 1

Case 39: 1 0 0.5 0

Case 40: 1 0 0.5 1
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Table 4.3: Testing designs.. 
Case # 
Case 4 1 : 0.5 0.5 0 0 
Case 42: 0.5 0.5 0 0.5 
Case 43: 0 0.5 0.5 0.5 
Case 44: 0 0.5 0.5 1 
Case 45: 0.5 0 0.5 0.5 
Case 46: 0 1 0.5 0.5 
Case 47: 0.5 0 1 0.5 
Case 48: 1 0.5 0 0.5 
Case 49: 0.5 0.5 0.5 0 
Case 50: 0.5 0.5 0.5 1 
Case 5 1 : 1 1 1 0.5 
Case 52: 0 0.5 1 0.5 
Case 53: 0.5 1 0 0.5 
Case 54: 1 0 0.5 0.5 

a A H A  AOA OPTT 

Table 4.4: Independent and dependent variable (objectives) for Cases X and Y from CFD 
computations (non-normalized values shown). 

Case a AJ3A AOA OPTT TF,, TW4 TTm, x c c  

X 1 0 0 0 0.998 0.927 0.128 -0.004 
Y 0 0.5 0.5 1 0.285 0.395 0.923 0.567 

Figure 4.5: Temperature field for Cases X and Y. 

The chamber wall and injector face temperatures for Case Y (as seen in Figure 4.5) 

are low or moderately low, while for Case X, they are high. Figure 4.7 shows a large 

recirculation zone located between the injector and the chamber wall. This recirculating 

flow strips hot gases from the flame and causes them to flow back along the chamber 

wall and injector face. This phenomenon regulates the chamber wall temperature, T W 4  

and the injector face temperature, TF,,. Figure 4.6 shows that the other life/survivability 



indicating variable, the maximum oxidizer post tip temperature, TT,,,,, has essentially the 

opposite trend as-compared to the other two temperatures. 

Figure 4.6: Near-injector temperature field for Cases X and Y. 

Injector face -T5Tl recirculation zone 

Figure 4.7: Large recirculation zone in the combustion chamber. 



76

Theperformanceindicator,combustionlength,Xccis seen(Table4.4) to beatthe

minimumfor CaseX (shortercombustionlengthsindicatebettermixing elements)andat

amoderatelevel for CaseY. Giventheseobservations,it is clearthatthedependent

variablesexhibitcompetingtrendssuchthatnodesignwill producethe"best"valuesfor

all thedependentvariablesasdesiredin this study.

Thesecomparisonsconfirm thepastobservationthat changesin theinjectordesign

detailshavemajor effectson injectorperformanceandinjector-generatedenvironments.

Injectordesignswhich addressspacepropulsiongoalsmustbeproducedby atool that

accountsfor performanceandmultiple,spatiallyresolvedenvironmentalvariables.

Efficient, validatedCFDcodesthatmodelsufficientinjectorphysicsarenecessaryto

meettheserequirements.

Generationof largeamountsof complexinformationby thesecodesproducesthe

needfor ameansto managethedata.Theinjectordesignermustbeableto confidently

andefficiently sortthroughthis databaseto locateanacceptablecompromisedesign.

Globalsensitivityandapproximationtoolscanguidethedesignereffectively.

Grid Sensitivity Investigation

Initially the 54 cases identified by DOE were computed on an axi-symmetric

geometry with 336x81 nodes. Only 33 out of the 40 fitting cases gave valid results.

Results of the remaining seven cases contained unsteady features, which do not represent

solutions of the steady state model employed. The RSAs generated with these data for

Trrnax and Xc¢ had R_ 2 values of 0.961 and 0.976, respectively, suggesting a less than

desirable fit. On checking the grid distribution in the combustion zone for the 33 cases

used, it was determined that the grid resolution was insufficient. After a series of tests
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involving additionof gridpointsin theaxial directionin thecombustionzone,a 430x81

grid wasfoundto beappropriateandusedfor thesecondrunof theoptimizationstudy.

To highlight thegrid refinement,a comparisonof thegrid distributionsis shownin

Figure4.8.Thefinal grid wastheproductof tripling theaxialnodedensityin the

combustionzone.Thethick linesshowtheinitial grid density,while thethin linesshow

final grid density.Note that,for clarity,only everysixthj-line is shown.New RSAswere

generatedfrom newsolutionsobtainedon thefinegrid. Thenew fits for TTmaxandXcc

hadRa2valuesof 0.989and0.995,respectively,representingaconsiderableimprovement

over theRSAperformancebasedon thefirst, coarsergrid.This time, only two out of the

40 designsfailedto producevalid results.It is to benotedthattheRa2valuesfor TFm_x

and TW4 are 0.999 for both the initial and final grid. This experience indicates that in

addition to facilitating design optimization, the RSM can also help address the adequacy

of the CFD solution accuracy. It offers insight into potential problems, based on the

statistical regressions, from which the computations can be refined, thus improving the

fidelity of the individual and collective databases. While this approach does not guarantee

universally satisfactory outcomes, it does suggest clear directions to assess the critical

area of data quality.

millltitiiltBiiiiILIJliiiii;

mJllll_llllillt_mlllllltll li J l l il i t ..... :: :

Figure 4.8: Comparing the unrefined (336x81) {thick lines} and refined (430x81) {thin

lines} grids.
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Response Surface Generation

In the following, data for each design variable from the 38 acceptable fitting _zases

were used to generate the RSAs. Both full and reduced quadratic polynomials are

generated. Table 4.5 identifies era and o-for the four objective functions and different

polynomials generated. The full quadratic model is consistent in performance in terms of

both o-aand or. The reduced quadratic models either have a poorer value of o-or offer only

marginal improvement over the full response surface model. Since there is no apPreciable

improvement by reducing the fits, there may be noise in the data or the quadratic models

(both full and reduced) do not sufficiently represent the data.

Table 4.5: Performance of full and reduced quadratic RSAs for

functions (non-normalized values used).

Full quadratic

TFmax Number of 38

observations

era 0.00566

tr (14 points) 0.00460
Mean 0.495

TW4 Number of 38

observations

ca 0.00803

c (14 points) 0.00669
Mean 0.514

TTmax Number of 38

observations

oa 0.0413

o (14 points) 0.0396
Mean 0.560

X¢¢ Number of 3 8
observations

ca 0.0205

a (14 points) 0.0178
Mean 0.497

the four objective

Reduced quadratic "-----
38

0.00546

0.00463

0.495

38

0.00795

0.00799

0.514

38

0.0401

0.0382

0.560

38

0.0197

0.0186

0.497

Comparing the full quadratic model predictions for the fitting cases to the CFD

results of the various objectives, the variations for TFm_x, TW4 and X¢¢ were found to be
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negligible(Figures4.9A, 4.9Band4.9D),suggestingnoneedfor furtherimprovement.

However,a largenumberof pointslie awayfrom thebestfit in theplot of TTmax(Figure

4.9C).
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Figure 4.9: Comparison between the best fit possible and as predicted by quadratic

response surface. Optimum refers to the case when RSA and CFD values are

identical. RS-CFD represents the value as for the current case (normalized

values shown). A) TFmax. B) TW4. C) TTmax. D) Xcc.

Based on this observation, a cubic model is generated for TTmax. A full cubic fit in

a 4-design variable model requires a minimum of 35 designs points. To obtain a good fit,
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the number of design points should be considerably larger than the required number.

Since there are only 38 design points available from the fitting set, the testing set is also

included in the fitting set. The PRESSrms is used to estimate the performance of the

generated RSA along with the O'a.Using the 52 design points, a full cubic was generated.

The values of o'a and PRESSnm were 0.0348 and 0.0598, respectively. The difference

between the two measures of error is noticeable. Hence, a reduced cubic model is

generated with the available design points. This improves the fit with values for o-a and

PRESSrm_ being 0.0303 and 0.0388, respectively. Table 4.6 compares the performance of

the full quadratic and the reduced cubic models for TTmax. The reduced cubic model is

seen to perform better statistically than the quadratic model. Hence, this cubic model is

used for TTmax in the optimization studies that follow. The RSAs for all four objectives

are shown as Eqs. (4.1)-(4.4). These RSAs can then be used for sensitivity and

optimization study. The RSAs are based on the scaled values of the design variables and

objectives.

Table 4.6: Performance of RSAs for the TTm_x. Reduced cubic RSA has 21 coefficients

(non-normalized values used).

Full quadratic Reduced cubic

TTmax Number of observations 38 52

_a 0.0413 0.0303

PRESS_ms 0.0521 0.0388

Mean 0.560 0.591

TFmax = 0.692 + 0.477(a) - 0.687(AHA) - 0.080(AOA) - 0.0650(OPTT) - 0.167(a) 2 -

0.0129(AHA)(o 0 + 0.0796(AHA) 2- 0.0634(AOA)(a)- 0.0257(AOA)(AHA) +

0.0877(AOA) 2 - 0.0521 (OPTT)(a) + 0.00156(OPTT)(AHA) + 0.00198(OPTT)(AOA) +

0.0184(OPTT) 2. (4.1)
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TW4 = 0.758 + 0.358(a) - 0.807(AHA) + 0.0925(AOA) - 0.0468(OPTT) - 0.172(a) 2 +

0.0106(AHA)(a)+ 0.0697(M-IA) 2 - 0.146(AOA)(a) - 0.0416(AOA)(AHA) +

0.102(AOA) 2 - 0.0694(OPTT)(a) - 0.00503(OPTT)(AHA) + 0.0151 (OPTT)(AOA) +

0.0173(OPTT) 2. (4.2)

TTmax = 0.370 - 0.205(a) + 0.0307(AHA) + 0.108(AOA) + 1.019(OPTT) - 0.135(a) 2 +

0.0141 (AHA)(a) + 0.0998(,M-IA) 2 + 0.208(AOA)(a) - 0.0301 (AOA)(AHA) -

0.226(AOA) 2 + 0.353(OPTT)(a) - 0.0497(OPTT)(AOA) - 0.423(OPTT) 2 +

0.202(AHA)(a) 2 - 0.281 (AOA)(ct) 2 - 0.342(AHA)Z(a) - 0.245(z_-IA)2(AOA) +

0.281 (AOA)2(AHA) - 0.184(OPTT)2(a) - 0.281 (AHA)(a)(AOA) (4.3)

Xec = 0.153 - 0.322(a) + 0.396(AHA) + 0.424(AOA) + 0.0226(OPTT) + 0.175(a) 2 +

0.0185(AI-IA)(a) - 0.0701 (AHA) 2 - 0.251 (hOA)(a) + 0.179(AOA)(AHA) +

0.0150(AOA) 2 + 0.0134(OPTT)(a) + 0.0296(OPTT)(AHA) + 0.0752(OPTT)(AOA) +

0.0192(OPTT) 2 (4.4)

Optimization Process

The generated RSA are used to conduct an optimization exercise and to study the

relationship between the design variables and the objectives that are indicators of

life/survivability and performance. Also, the ability to accommodate design features that

promote extended life/survivability in a design while maintaining reasonable

performance is explored. Three separate optimization studies, using the approach of

desirability functions as explained in chapter 3, are presented below. First, single-

objective minimizations are shown. Secondly, multi-objective optimizations are

performed with equal weights. Finally, the multi-objective optimizations are conducted

with variable weights. The obtained optimum solutions are compared with CFD
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computations.Sincetheobjectivesarescaledto O(1),theerrormeasureshaveto be

scaledaccordinglyto estimatetheaccuracyof theobtainedsolutions.In termsof the

actualvaluestheerrorfor anobjectiveis definedas

error = lYc D- Yes[ (4.5)

YCFD

where YCFD is the solution obtained from the CFD analyses andyRs is the prediction of the

RSA. Using simple mathematics, not shown here, the error in the scaled variables can be

written as

error - Y_crD -Yes (4.6)

Ycrn + K

where the bar represents the scaled values, and K is defined as

K = Ym_, (4.7)
Y,,,,x - Ymi,

Here Y,,,i, and yma_ are the actual minimum and maximum values, respectively,

based on the available set of fitting and testing data for that objective from the CFD

analyses. In the dissertation, no bar is used for the notations used to represent the scaled

design variables and objectives to avoid any confusion. Non-normalized values of the

objectives refer to the scaled values and the normalized values refer to the re-sealed

values of the objectives based on the maximum and minimum of the RSAs. This is to

make some of the plots in the result section more meaningful.

Single-objective optimization

The purpose of this effort is twofold. First, the goal is to verify the performance of

the optimization methodology in locating the minimum values for single objectives in the

chosen design space. This verification is straightforward and necessary, but not sufficient
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to concludethatthetechniqueis usefulfor injectordesign.Table4.7showstheresultsof

optimizing (here, minimizing) each objective separately. The numbers in parentheses in

Table 4.7 indicate the weights applied during the optimization process. Here, a weight of

one means that objective was included while a weight of zero means that objective was

excluded. Based on the normalized values of the objectives the minimum value for each

is necessarily 0. The optimizer found the correct value for each of the four cases.

Table 4.7: Minimizing individual objectives. Value in parenthesis (1) indicates which

objective function is minimized (normalized values shown _.

Opt-
Case

CFD

Error

(%)

AHA AOA

0.592

OPTT TFmax

0.0

(1)

-0.00207

0.11

TW4

0.0725

(0)
0.0656

0.08

TTmax

0.914

(0)
0.936

0.70

XCC

0.769

(0)
0.758

0.25

2 0 1 0 1 0.0309 0.0 1.0 0.440

(0) (1) (0) (0)

CFD 0.091 0.0461 0.911 0.568

Error 0.90 0.57 2.84 2.93

(%)
3 1 0 1 0 0.976

(0)
0.969

0.944

(0)
0.943

0.0

(1)
0.103

0.153

(0)
0.158CFD

Error 0.01 0.08 4.46 0.12

(%)
4 0.917 0 0 0 0.987 0.926 0.182 0.0

(0) (0) (0) (1)

CFD 0.981 0.919 0.119 -0.004

0.08 0.08 2.69 0.12Error

(%)

Secondly, this process is helpful in understanding the injector operational

influences via trend identification and variable groupings. The results from Table 4.7 are

shown graphically in Figure 4.10 to facilitate the discussion. It was shown earlier that the

flow entrained in the large recirculation zone (Figure 4.7) regulated both the maximum

temperature on the injector face, TFmax and the chamber wall temperature, TW4. The
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resultsfrom Opt-Cases1 and2 supportthis conclusion.Minimization of TFmaxvery

nearlyminimizesTW4andviceversa.Not surprisingly,thedesignsfor thetwo easesare

alsoquitesimilar.Both designsareshearcoaxial(a = 0) with thehydrogenflow area,

AHA, and the oxidizer post tip thickness, OPTT, at their maximum values. Table 4.7

shows that AOA is the only inconsistent variable in the two designs. In terms of the other

objectives, when either TFmax or TW4 is minimized, the maximum oxidizer post tip

temperature, TTm_x, is high. The resulting moderate-to-long combustion lengths, X_c, are

consistent with the relatively slow mixing expected from a shear coaxial element.

Optimization Study

0.8

_0.6 "t
._>

o 0.4

0.2

od oA
1 2

&o

0 TFmax

IIa TW4

H * TTmax

T
Q •

3 4

Opt-Case

0.8

Opthnization Study
1 • .......................................E .......................................o ......................................

0.6

>
e-,

"_ 0.4

0.2

2

Opt-Case

A B

3 4

oct

a AHA

A AOA

x OPTT[

Figure 4.10: Minimization of different objectives. (Case 1" TFmax, Case 2: TW4, Case 3:

TTmax, Case 4: X¢¢. Normalized values shown). A) Objectives. B) Design
variables.

Reference to Opt-Cases 3 and 4 in Table 4.7 and Figure 4.10 also suggests a

correlation between TTmax and Xcc, although not as tight as the one for TFmx and TW4.

When TTm_x is minimized, Xec is low and vice versa. Further investigation needs to be

done to completely understand the physics that underlies this correlation. Here, both
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designsareimpinging-likewith thehydrogenflow angle,or,ator nearits maximum

valueandAHA and OPTT at their minimum values in the chosen design space. Again,

Table 4.7 shows that AOA is the only inconsistent variable between the two cases. Both

minimizations result in very high values for TFmax and TW4. Not surprisingly, the

impinging elements represented by the two designs yield significantly shorter combustion

lengths than the shear coaxial designs.

The trends for ct, AHA and OPTT are consistent between the two pairs of

dependent variables but AOA varies among the four cases. With the other design

variables set at the optimum design levels, Figure 4.11A shows the variation of TFmax and

TW4 with AOA. A similar plot for TTmax and Xcc is shown in Figure 4.11B. The

maximum injector face temperature, TFmax, is least sensitive to AOA. It is also the only

objective to exhibit a minimum value in the interior of the design space. This finding

suggests that expanding the design space could result in more robust designs for the

multi-objective optimization. The trends for TW4 and Xcc are similar to each other, with

AOA zero for both cases. The trend for TTm_x relative to AOA is opposite.

Table 4.7 and Figure 4.10 show the resulting design is different for each of the four

single-objective optimizations. These results indicate that designing robust injectors

demands consideration of all the independent variables together. Figure 4.10 clearly

shows the competing design trends. Thus, meeting a set of design requirements will

require a compromise design.
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Figure 4.11: Variation of objectives with respect to AOA for fixed c_, AHA and OPTT"

(normalized values shown and D is the desirability function. All objectives are

equally weighed in the composite function). A) TFmax and TW4 for o_=0,

AHA=I and OPTT=I. B) TTmax and X_c for oc=l, AHA=0 and OPTT=0.

Multi-objective optimization

To concurrently evaluate component life/survivability and performance

considerations, a multi-objective optimization study is carried out. Starting with

performance, Xc_, as most of the injector design tools do, the objectives influencing

thermal environments are added one at a time to study the effect on the resulting

optimum designs. These optimum designs are presented in Table 4.8 and Figure 4.12

where Opt-Case 4, with X¢¢ minimized is repeated as the starting point. The design for

this case is an impinging element (co = 0.917) with minimum flow areas and the thinnest

oxidizer post tip. The consequences of this design are a minimum X_¢, a low TTmax and

very high values of TFmax and TW4.

When TTmax is minimized along with X¢c in Opt-Case 5, the optimum design does

not change significantly from that in Opt-Case 4. The hydrogen flow angle increases
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form 0.917to 1.0.ThevaluesofAHA, AOA and OPTT remain unchanged from Opt-

Case 4. The combustion length, X¢c, is unchanged as compared to Opt-Case 4, whereas

TTmax is marginally improved from 0.181 to 0.152. The other thermal objectives remain

at very high levels. Recall from Table 4.7 that AOA was 1.0 for the single-objective

optimization of TTmax.

Table 4.8: Study of effect of life/survivability on performance. Value in parenthesis

Opt-
Case

4

CFD

Error

(%)

CFD

Error

(%)
6

indicates the wei ghting on the objective functions (normalized values shown).

AOA OPTT TFmax TW4 TTmax Xee

0

0

a AHA

0.917 0

1 0

1 1

1 1

0

0

00

0.987

(0)
0.981

0.08

1.0

(o)
0.998

0.03

0.376

(1)

0.926

(0)
0.919

0.08

0.928

(o)
0.927

0.01

0.224

(0)
0.214

0.182

(0)
0.119

2.69

0.151

(1)
0.128

1.00

0.155

(1)
0.252

0.0

(1)
-0.004

0.12

0.00097

(1)
-0.004

0.14

CFD 0.369

Error 0.10 0.12 3.93 0.38

(%)
7 0 0

CFD

0.376

(1)
0.369

0.10

0.155

fl)
0.252

3.93

0.224

(1)
0.214

Error

(%)
0.12

0.279

(1)
0.264

0.279

(1)
0.264

0.38

More insight regarding the optimum design can be gained by visualizing Figure

4.11B. Although the individual TTmax and Xee drive the design towards the opposite ends

of the range of AOA, the composite desirability function, D, has marginal variation with

respect to AOA. The optimizer picks the value of AOA that gives the maximum value of

the desirability function, D. The optimum design at this point is affected mostly by the
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other design variables. This shows the benefits of using a global optimization procedure,

which helps identify the trend of the composite function over the design space even when

the individual objectives have opposing trends.

Optimization Study
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Figure 4.12: Composite minimization of objectives with different weightings.(Case 4:

(0,0,0,1), Case 5: (0,0,1,1), Case 6: (1,0,1,1), Case 7: (1,1,1,1). The values in

parenthesis indicate weights for (TFmax, TW4, TTmax, Xcc). Normalized values

shown). A) Objectives. B) Design variables.

Opt-Case 6 minimizes TFmax simultaneously with TTmax and Xcc. In terms of the

design variables, AHA has now shifted from 0 to 1, while the other three remain at the

same values as in Opt-Case 5. This shift in AHA is consistent with the single-objective

minimization of TFmax shown as Opt-Case 1 in Table 4.7. This single change in the

design produces dramatic changes in the objectives. As desired, the value of TFmax has

decreased significantly from 1.0 to 0.376. The concurrent large drop in the value of TW4

is consistent with the earlier conclusion linking TFmax and TW4. The oxygen post tip

temperature, TTmax, remains essentially unchanged. The increase in Xcc from 0 to 0.279 is

a negative impact of the design change. Figure 4.13 sheds more light on the situation.
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Figure4.13Aplots the individualobjectives as a function of AHA. Figure 4.13B is

similar, with the individual objectives plotted as a function of AOA. These figures clearly

illustrate that both TFmax and TW4 are considerably more sensitive to AHA than AOA.

Accordingly, the optimizer uses the hydrogen flow area to most efficiently regulate

TFm_. Figure 4.13A also shows the positive slope of Xcc relative to AHA, which is

responsible for the fairly large performance drop seen in this design.

Response Functions

l -----

0.8 _ TFmax

0.6 i T_

0.4

0.2

0 0.2 0.4 0.6 0.8
A_

Response Functions

| ...................................................................................................................................

0.8 "

D

0.6

TFmax

0.2_

TTmax

0 i i i i

0 0.2 0.4 0.6 0.g 1
AOA

(a) (b)

Figure 4.13: Variation of objectives with respect to AHA or AOA with other design

variables fixed. (normalized values shown and D is the desirability function.

All objectives are equally weighed in the composite function). A) TFmax, TW4,

TTmax and X¢¢, with respect to AHA for a= 1, AOA=0 and OPTT=0. B) TFmax,

TW4, TTmax and X_, with respect to AOA for _=1, AHA--1 and OPTT=0

Opt-Case 7 adds the final objective, TW4. Table 4.8 shows that addition of TW4 has

no effect on the design and consequently no effect on any of the objectives. The chamber

wall temperature, TW4, has previously been shown to be linked with TFmax, so this result

is not surprising.

The injector design resulting from inclusion of all the objectives in the optimization

process (Opt-Case 7) is different from Opt-Case 4 where only the performance indicator,
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Xccwasoptimized.In thedesignspaceevaluatedfor this effort, AHA hasavery strong

effecton thesystem,especiallyfor TFmaxandTW4.Referenceto Figure4.13showsthat

at thezerovaluefor bothAlIA andAOA,Xceis still decreasing.Performancecould

probablybe further improved(i.e.,Xccshortened)by enlargingthedesignspaceto

includesmallervaluesof AHA andAOA.In theprocessof designingareal injector,the

largedropin performanceaffectedby theconsiderationof TFmax and TW4 would

probably require a compromise design with certain variables weighted more heavily than

others.

To further probe the interplay between injector performance and component

life/survivability, a composite optimization study is conducted with varying weights on

the individual objective functions embodied by the composite desirability function. This

is a functionality that the new design optimization methodology must possess. The

designer must be able to weight, or favor, one or more dependent variables to have

maximum flexibility in addressing design requirements. The use of geometric mean and

desirability functions is an approach which addresses such a requirement. Additionally

MOGA have also been shown to work well for such problems. The results of the MOGA

will be presented in the later sections of this chapter. The results of the current study are

shown in Table 4.9 and Figure 4.14. Reference to Table 4.9 (the numbers in parenthesis

indicate the weight in the composite desirability function for that variable) shows that the

designs suggested by Opt-Case 8 and Opt-Case 10 are similar. In Opt-Case 8 the

life/survivability influencing objectives TFmax, TW4, and TTmax are weighted by a 2:1

ratio over the performance indicator (X¢¢). Opt-Case 10 is the opposite, with performance

having a 2:1 weighting over the life/survivability objectives. Reference to Tables 4.8 and
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4.9 showsthatthedesignvariablesandobjectivesfor these two cases are almost identical

to those in Opt-Case 7, where all four objectives are weighted equally• Figure 4.13B

shows the composite desirability function D, for Opt-Case 7, to be reasonably flat as a

function of AOA. Thus, small weightings have little or no effect on the injector design.

Table 4.9: Study of influence of life/survivability and performance objectives on each

Opt-
Case

8

other. Value in parenthesis indicates

(normalized values shown

Ot AHA AOA

0.192

OPTT

the weighting on the objective functions

TFm_

0.346

(1)
0.343

TW4

CFD

Error 0.04 0.12

(%)
9 0 1 0.497 0

CFD

0

0.0451

(5)
0.0401

0.210

(1)
0.200

0•0823

(5)
0•0767

Error

(%)
I0

TTm_

0.163

(1)
0.185

XCC

0.334

(0.5)
0.326

0.91 0.22

0.471

(5)
0.404

0.627

(0.1)
0.613

0.08 0.07 2.53 0.32

0.376

(0.5)

0.224

(0.5)
0.214

0.155

(0.5)
0.252CFD 0.369

Error 0.10 0•12 3.93 0.38

(%)
11 0.612 0 0 0 0•898

(0.1)
0.890

0.919

(0.1)

0.911

0.282

(0.1)

0.279

(1)
0.264

0•0132

(5)
CFD 0.361 0.0070

Error 0.10 0.09 3.10 0.16

(%)

The other two cases shown in Table 4.9, Opt-Case 9 and Opt-Case 11, have relative

weightings of 50:1 and 1:50, respectively for life/survivability (TFmax, TW4, and TTmax)

and performance indicators (Xc¢). For Opt-Case 9, the design tends toward the cases

where TFmax and TW4 were individually minimized. The exception is that OPTT is equal

to zero, which is required to minimize TTmax. For Opt-Case 11, the resulting design tends

toward Opt-Case 4 where X_¢ is minimized. Even with this strong weighting, the effect of
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including TFmax and TW4 is felt with the value ofo_ equal to 0.612. When Xc¢ is

minimized by itself, cx is equal to 0.917.
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Figure 4.14: Composite minimization of objectives with different weightings. (Case 8:

(1,1,1,0.5), Case 9: (5,5,5,0.1), Case 10: (0.5,0.5,0.5,1), Case 11:

(0.1,0.1,0.1,5). The values in parenthesis indicate weights for (TFmax, TW4,

TTmax, Xcc. normalized values shown). A) Objectives. B) Design variables.

Figure 4.15 shows the joint desirability function, D, for Opt-Case 9 (with a

weighting of 50:1 in favor of life/survivability over performance), to be fairly flat.

Accordingly, small weightings have little effect on the design. Significant weightings

must be applied to push the design very far toward either life/survivability or

performance. Opt-Case 11 has good performance and a low injector tip temperature.

However, the chamber wall and injector face temperatures are very high. In an actual

design, if this level of performance was required, active cooling could be required for the

chamber wall and injector face.

Additional CFD solutions were executed to confirm the optimum designs obtained

from RSA for all 11 Opt-Cases. These results are shown in Tables 4.7, 4.8 and 4.9. The
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objectiveerror,asdefinedby Eq. (4.5),is alsoshownfor eachcase.Theerroris on the

orderof four percentor lessin thecaseof TTmax.Theerror for theotherthreeobjectives

is lessthanonepercent.Thelargerdiscrepancyin TTmuis likely dueto thesteadystate

assumptionmadein theCFDanalysesfor thiseffort. Theinjectorproblemis actually

unsteady.

ResponseFunctions
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Figure 4.15: Variation of TFm_,, TW4, TTmax and Xcc, with respect to AOA for _x=0,

AHA=I and OPTT=0 (normalized values shown and D is the desirability

function. Case 9: Temperatures weighted over performance in the ratio of

50:1).

Preliminary Observations

Based on the preliminary optimization studies specific observations can be made.

Single-objective optimization. The optimizer reliably locates single objective

minimum values. Minimization of the individual objectives yields a different injector

design. This establishes the fact that designing an efficient long life/survivability injector

requires concurrent evaluation of all the relevant design variables.

For the current study,
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o The four objectives, based on the design obtained during their individual

minimization, largely fall into two groups: (TFmax, TW4) and (TTmax, Xcc).

However, there are differences between them. In each group, the responses of

the two design objectives to AOA are different. The observation also

indicates that the three life/survivability-related objectives require

compromises between design variables.

, Minimizing TFmax and TW4 leads to a design with ct equal to zero (shear

coaxial element), maximum fuel flow area and thickest post tip. This design

also yields moderate to poor performance due to the slow mixing across the

shear layer.

. Minimizing TTmax and Xce results in an impinging-like design with ct equal to

one. It also has the minimum fuel flow area and the thinnest post tip

thickness. This design performs well, but has very high wall and injector face

temperatures.

Multi-objective optimization. The injector design, when multiple objectives are

included, is different from any of the single objective minimizations. For example,

although the individual objectives, TTmax and Xcc drive the design towards the opposite

ends of the range of AOA, the composite desirability function accounting for all their

effects exhibits only marginal variation with respect to it. The optimum design is

affected mostly by other design variables.

One can clearly see the benefit of using a global optimization procedure, which

helps identify and interpret the trend of the composite function over the design space,

especially when the individual objectives have opposing patterns.

For the current study the following specific observations can be made.

• Equal weights

. The design with all 4 objectives included (Opt-Case 7) is still an impinging

element with low to moderate temperatures, but marginal performance.

. Figure 4.13 indicates that lowering either propellant flow area beyond the

current limit would probably decrease Xcc and thus increase performance.

Lowering the oxidizer area would probably have less adverse effect on TFmax

and TW4.
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• Unequalweights

1. With modestweightsoneithertheperformance(Xcc)or life/survivability
(TFmax,TW4andTTmax)thedesigndoesnot changeappreciably.

2. Opt-Case11(with a largeemphasisonperformance)givesvery good
performance,modestTTmax,but veryhighvaluesof TTmaxandTW 4. If

enlarging the design space does not help, active cooling may be required.

Sensitivity and Trade-Off Analysis

The analysis is divided into two parts. Firstly, the global analysis is carried out

where the entire design space is explored to estimate the sensitivity of the objectives to

the design variables. Following this the POF is explored to understand the trade-offs

between the objectives and also the different design trends.

Global analysis

The global analyses addresses, both the sensitivity of objective variability to design

variables and the interaction between objectives over the complete design space. The

global sensitivity indices are computed using the variance-based non-parametric

approach proposed by Sobol (1993) and described in chapter 3. The code written using

Matlab (2002) was validated using a well-known benchmark problem (Mckay, 1997).

Table 4.10 summarizes the results of this study and lists the essential and non-essential

design variables with respect to individual objective variability. A design variable is

considered essential if it is responsible for at least 5% of the objective variability.

Figure 4.16 shows the percentage of main factor (Si) contribution of different

design variables to individual objective variabilities. The variability of TFmax is largely

influenced by AHA and moderately by ot (Figure 4.16A). The effect of the other design

variables is marginal suggesting that they are non-essential and in principle could be

fixed. The variability of TW4 is considerably influenced only by AHA (Figure 4.16B).
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TT,,, is influenced considerably by OPTT and marginally by a (Figure 4.16C). For zc, 
AHA, AOA and Q have considerable influence (Figure 4.16D). The total sensitivity 

indices (Sp' )  were computed and compared with the main factors (Si) and it was found 

that the contributions of the cross-interactions among the design variables to the 

objectives variability were negligible. 

Table 4.10: List of essential (4  and non-essential (x) variables for each objective and the 
mean errors between the modified RSA and original RSA. An essential 
variable accounts for at least 5% of the objective's variability. 

Objective Design Variables Mean 
Error (%) 

a AHA AOA OPTT 
Life/Survivability TFm, .r/ .r/ X X 5.2 
indicators TW4 X .r/ X X 11.5 

TTm, 1/ X X .r/ 6.7 
Performance &C 1/ .r/ 1/ X 6.1 

T F m r  

OPTT, 
OPTT, 0.0087 

0 -849 - 1 
AHA, 0.955 

A B 

Figure 4.16: Main factor (Si,) influence on objective variability. A) TF,,. B) TW4. C) 
TTmiw- D) X c c .  
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Figure 4.16: Continued. 

This global sensitivity analysis shows that different design variables can have 

varied effect on individual objectives. Such a study can help the designer fix some of the 

design variables while analyzing the design. For example, in the current injector design 

study, for objective TF,,, the design variables AOA and OPTT can be fixed at their 

mean value (0.5) as this do not result in significant differences in the prediction. The 

mean error (difference between predictions) throughout the design space between 

modified RSAs (obtained by fixing the non-essential design variables at their mean 

values), and the RSAs listed in Eqs.(4.1)-(4.4), (referred to as original RSA in the rest of 

the text) are given in Table 4.10. The error for T W 4  is about 12% suggesting that the cut- 

off for the non-essential variables may have to be lowered to capture additional features 

of the original model. The mean error in the modified RSA of the remaining objectives is 

about 6%, suggesting that they capture the original RSA reasonably well. This 

information can be used for dimensionality reduction and therefore, to ease the search for 
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optimumdesigns.Similarconcepthasbeenaddressedin thepastusingadifferent

approach.For example,Knill et al. (1999)haveusedlinearaerodynamicto identify the

importanttermsin thepolynomial-basedRSAwhich werethenusedfor creatingthe

surrogatemodelfrom Euleranalyses.Thisreducedconsiderablythenumberof points

neededfor theEulerdesignof experiments.Forthecurrentwork sincethenumberof

designvariablesis smalltheremainingstudiesarecarriedout without fixing thenon-

essentialvariables.Fromanengineer'sviewpoint andinterest,this studyprovidesan

insight into thephysicsof adesignproblemby highlightingthedesignfeaturesthat

governtheindividual objectives.

Linearsurrogatemodelsfor thefour objectivesareconstructedasa functionof the

four designvariables.Thecorrespondingcoefficientsareshownin Table4.11.The

magnitudeof thecoefficientsagreeswell with theessentialandnon-essentialnatureof

thedesignvariablesfor eachobjective.Additionally, theR 2 values for the linear RSA are

compared with those of the original RSAs (referred as R2nonlinear in Table 4.11).

Comparing R2linear with R2nonlinear shows that most of the variability is accounted for by

the linear model and the additional terms in the nonlinear model give marginal

improvement.

Table 4.11: Coefficient associated with the different terms in the linear RSA and

comparison of R 2 values of linear RSA with that of nonlinear RSA.

2
AHA AOA OPTT Intercept R21inear R nonlinear

TFmax 0.237 -0.634 -0.033 -0.066 0.733 0.990 0.999

TW4 0.0719 -0.775 0.114 -0.052 0.826 0.986 0.999

TTmax -0.222 0.108 -0.063 0.662 0.367 0.918 0.994

X_c -0.234 -0.402 0.433 0.108 0.138 0.958 0.997
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A correlationanalysiswasthencardedoutby Goeletal. (2004)to observethe

interactionsbetweenobjectives.A totalof 14641(114)designpointsweregeneratedover

thecompletedesignspaceby varyingonevariableatatime by aconstantvalue.The

objectiveswerecalculatedusingtheoriginalRSAs.ThecorrelationmatrixCa=and

correspondingp-valuesarecomputedusingMatlab.

Thecorrelationmatrix, Cdcsshowsthatthereis astrongcorrelationbetween

objectivesTFmaxandTW4,asthecorrespondingcoefficientis verycloseto 1.P-values

and95%confidenceintervalsfor thecorrelationcoefficientsalsoestablishthestatistical

significanceof theresults.Low P-values(<< 0.05)confirmsthesignificanceof the

correlationresults.This finding is in agreementwith theobservationsmadein the

preliminaryoptimizationstudy.Thecombustionchamberwall temperature,TW4, is

excluded and the optimization problem is formulated with the remaining three objectives.

TFmax Xcc TW, TTm=

TFm= 1.00 -0.773 0.947 -0.272

Cde_-- X_ -0.773 1.00 -0.583 0.263

TW 4 0.947-0.583 1.00 -0.193

TTm=-0.272 0.263-0.193 1.00

Pareto front analyses

The trade-offs between objectives and sensitivity analyses are carried out at the

POF. The Pareto fronts of (TFmax, Xcc) and (TFmax, TTmax) are of interest as these

objectives conflict one another. Goel et al. (2004) have generated the POFs with the aid

of NSGA-II. Figure 4.17A shows the relation between TFmax and X_c. It can be seen that

the POF in this case is linear over a large region. A small increase in the value of TFm_x

(_ 10%) reduces the combustion length, Xc¢, by nearly 50%. Figure 4.17B shows the
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relationbetweenTFmaxandTTmax.It isobviousthatthePOFis non-convex.It is also

seenthata smalldrop in thevalueof thefacetemperature(= 10%)canreducethe tip

temperatureTTmaxby nearly60%.Henceat asmallcostof TFmaxbothXceandTTmax

improves considerably.
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Figure 4.17: Two-objective Pareto optimal front. A) TFmaxVS Xec. B) TFm_x vs TTm_x.

Following the trade-off studies, the three-objective (TFmax, Xec and TTmax)

optimization problem is solved using the NSGA-II algorithm (Goel et al., 2004). The

solutions obtained are further refined using the z-constraint local search strategy coded

in Matlab. In this strategy, f'trst, one of the objectives TFmax, is treated as the objective

function and rest of the objectives Xcc and TTmax are treated as equality constraints. The

constraint value is set equal to the corresponding objective value as found by NSGA-II

simulation. The corresponding design variable vector is used as initial guess. This

procedure is repeated for all individuals in the population. This gives a set of Pareto

optimal solutions, referred to as Set A in this study. Next, X_c is chosen as the objective

and the other objective functions TTmax and TFmax are treated as constraints. For this
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problem,theobtainedParetooptimalsetis referredto asSetB. Similarly, thePareto

optimal set,SetC, is obtainedwith TTmaxasobjectiveandTFmaxandXccasconstraints.

Now all theParetooptimalsolutionsobtainedsofar; i.e.,SetsA, B, C andtheoriginal

NSGA-II setarecombined.To find thetrueParetooptimal front, a non-dominationcheck

is carriedouton this setof 400solutions.Thisyields254non-dominatedsolutions.After

removingtheduplicates,thereare249solutions,which areon thePOF.Thesesolutions

areshownin Figure4.18.Thissolutionsetis theglobalParetooptimalsolutionset.The

optimal solutionslistedin Tables4.7-4.9arealsoplottedin Figure4.18
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Figure 4.18: Pareto optimal solution set (+) and the multi-objective optima listed in

Tables 4.7-4.9 (o).

The optimal solutions shown in Tables 4.7-4.9 lie along the POF obtained using

MOGA and the local search algorithm. Although identical solutions are not identified by

the different multi-objective optimization approaches, the trend of the Pareto front is

adequately captured. This shows the effectiveness of the different approaches.
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Goelet al. (2004)hasthenusedthehierarchicalclusteringalgorithm(Jainand

Dubes,1988)to divide theobtainedPOFinto 9 clustersfor sensitivityandtrade-off

analyses.Valuesof thedesignvariablesandobjectivesfor thesedesignsareshownin

Table4.12.Graphically,thesolutionsareshownon thePOFin Figure4.19.It is clear

from Figure4.19that solutionsareselecteduniformly overthedesignspace.In Figure

4.20, thebox plotsof thedesignvariablesfor clusters1,3, 6 and9 areshown.Thebox

plots for theobjectivesareshownin Figure4.21.Theseplotshighlight thevariability of

the designvariablesandobjectivesin eachduster.

Table4.12:Objectivefunctionanddesignvariablesof nine(9) representativedesigns
from theParetooptimalsolutionset.

Cluster o_ AHA AOA OPTT TFm_x X¢¢ TTm_x

1 0.000 1.000 0.842 0.712 0.023 1.090 0.880

2 0.000 1.000 0.356 0.587 0.028 0.749 0.0890

3 0.000 1.000 0.442 0.014 0.054 0.750 0.452

4 0.094 1.000 0.000 0.015 0.126 0.453 0.466

5 0.668 1.000 0.732 0.000 0.259 0.681 0.229

6 0.600 0.670 0.000 0.000 0.489 0.264 0.226

7 0.295 0.108 0.000 0.354 0.719 0.129 0.641

8 0.314 0.066 0.000 0.055 0.776 0.097 0.357

9 1.000 0.014 0.680 0.000 0.935 0.138 -0.043

For cluster 1 it is seen that the value of a is fixed at 0 (shear coaxial injector)

(Figure 4.20A) and AHA is fixed at 1 (Figure 4.20B). This suggests that in this cluster,

the designs are sensitive to a and AlIA both of which reach their extreme values. The

remaining two design variables AOA (Figure 4.20C) and OPTT (Figure 4.20D), vary

over a range. It is observed that TFmax is minimized (Figure 4.21 A) where as Xcc and

TTm_x lie near their maximum and have little variability. Hence the designs in cluster 1

tend to minimize TFmax and represent shear coaxial injector designs. The design variables

AOA and OPTT do not influence TFmax but affect the remaining objectives, Xcc and

TTmax. Partial correlation coefficients are estimated to obtain the relationship between the
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variancesof thesedesignvariablesandobjectives(Table4.13). It is noticedthatasAOA

increases,Xecincreases(R_orr= 1.00)andTTmaxdecreases(Rcorr= -0.638),thereby

requiringacompromisein thedesign.As OPTTdecreasesbothX¢candTTmaxdecrease

(R_or_= 1.00for both).

Parelooptimalsolulions,_
9 solutions+

_ _ 3
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Figure 4.19: Pareto optimal solution set and nine (9) representative solutions from the

same set. The circles identify the representative of a specific cluster.
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Similar observations can be made for clusters 3, 6 and 9. Figures 4.21A-4.21C

show that with increase in TFmax, from cluster 1 to cluster 9, Xee and TTmax decrease

(based on the median of the box plots). This highlights the trade-off between the

objectives. Cluster 9 provides information about the opposing trend as to what was

observed in cluster 1. As objectives X_c and TTm_x are minimized (Figures 4.21B and

4.21C) an impinging injector design is obtained (or - 1, Figure 4.20A) with TFmax

exhibiting high values (Figure 4.21A). The AHA is near minimum (Figure 4.20B)

contrary to the design in cluster 1 where high AHA minimized TFmax. The AOA has

considerable variation which suggests that the variability of objectives, Xcc and TTmax are

not largely affected by this design variable. Figure 4.20D shows that Xcc and TTmax are

minimized for the minimum value of OPTT.

Table 4.13 gives the partial correlation coefficients for the set of design variables

and the objectives in each cluster which shows considerable variation. The partial

correlation coefficients for the combinations left out are effectively zero. These measures
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can be used to tune the design variables in a chosen cluster so as to improve on the

objectives as per design requirements.
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Figure 4.21: Box plots for the objectives in clusters 1, 3, 6 and 9. A) TFmax. B) Xcc. C)

TTmax.

In this study an elaborate optimization study with different compromised design

goals has been presented along with both a global and POF sensitivity analyses. The

conclusion drawn from these studies will be presented in chapter 5.
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Table4.13:Partialcorrelationcoefficients(R_or_)of designvariablesvs.objectivesfor
different clustersalon_thePOF

Cluster Designvariable TFmax Xee TTmax
1 AOA 1.000 -0.638

1 OPTT 1.000 0.991

3 AOA 1.000

6 cx 0.982 -0.735 -0.983

6 AHA -0.999 0.994 -0.729

9 ot 0.877 -0.203 -0.769

9 AHA -0.992 0.983 0.816

9 AOA -0.977 0.997 -0.940



CHAPTER5
SUMMARY, CONCLUSIONAND FUTUREWORK

In thischapterthework doneis thisdissertationis summarizedandconclusions

drawn.Firstly, thesummaryandconclusionof thework relatedto Navier-Stokes(NS)

CFD codeverification ispresented.Followingthis thedesignoptimizationstudyis

summarizedandconclusionsdrawn.Finallypossiblefutureresearchtopicsarebriefly

mentioned.

Navier-StokesCode Verification

In this study, least square extrapolation (LSE) method has been mainly

implemented on Navier-Stokes computations solved in the finite volume (FV)

formulation. Two coarse grid solutions are extrapolated onto a fine grid using constant

weighting parameters estimated by minimizing the residuals of the NS equations on the

fine grid in the least square sense. The lid-driven cavity flow with two different boundary

conditions (constant and variable lid velocities) are used to study the robustness and

efficiency of LSE in situations of singularities, non-linearity and coupled equations. The

initial test for LSE is done using a 2-D turning point problem is tested. Following this,

only pressure is extrapolated for the lid-driven cavity flows. Finally LSE is implemented

on the complete NS equations to extrapolate the velocity components and pressure

simultaneously.

The key observations pertaining to the LSE approach can be summarized as

follows:
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It hasbeennoticedwith theaid of a2-D turningpoint problemandalaminar lid-
drivencavity flow thatthis methodcanyield solutionimprovementfor linear as
well asnonlinearPDEs.Additionally it hasbeenshownwith this methodthat the
extrapolatingweightsbasedonminimizationof theresidualof thegovemirlg
equationperformsbetterthantheweightsusedby REbasedonassumedOrder of
convergence.

It hasbeenshownwith theaid of two differentReynoldsnumber(Re= 5.33 and
1000)thatLSE workswell overawiderangeprovidedthebasegridscaptUresthe
flow featuresadequately.

Minimizing theresidualsdoesnotalwaysleadto minimizing theextrapolated
solutionerror. In particular,it hasbeenshownthatflow with singularitiesWould
introducelargevariationin theeigenvaluesof thesetof residualequationthat is
usedfor leastsquareapproach.This would influence the accuracy of the solution

even though least square might effectively reduce the L2 norm of the residual.

In practice, neglecting the regions of singularity can improve the performance. This

suggests the requirement of further study to address issues of singularities in
different flows.

The LSE is seen to work well for the pressure-velocity coupled system. The Picard-

like iteration adapted for the nonlinear momentum equation converges well for the
shown case.

It is also seen that the individual extrapolation of pressure or the coupled pressure-

velocity extrapolation does not affect the accuracy of the extrapolated pressure field

drastically.

Overall issues related to singularities in the lid-driven cavity flow were noticed.

This resulted in an elaborate study to understand the problems related to it and its

influence on LSE. In this study only a constant weighting parameter is used. The

preliminary implementation of spatially dependent weighting function exhibits

inconsistent performance, which requires further investigation.

Design Optimization Study

In this study, the integration of CFD and optimization tools to explore the design of

a single element rocket injector is presented. The design variables indicating the thermal

environment and performance of the element are identified and the design points selected
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usinga DOE technique.CFDsolutionsareobtainedfor eachdesignandappropriate

ordersof polynomial-basedRSAsaregeneratedfor the individualobjectives.Basedon

the performanceof theRSAsa grid refinementstudyis carriedoutandanew,more

efficient grid is generated.Utilizing theresultsobtainedfrom CFD computationson the

fine grid, apreliminarymulti-objectiveoptimizationstudyis carriedoutusinga

compositefunctionbasedongeometricmeanapproachanddifferentdesigntrends,

correlationsandtrade-offsobserved.

Followingthepreliminarystudy,RSA,globalsensitivityindicesandgenetic

algorithmshavebeenusedto conductanelaboratesensitivityandtrade-offanalysesof

the injectordesign.Globalanalyseshavebeenconductedto observetheinfluenceof

designvariableson theobjectivevariability andestimatethecorrelationbetween

objectives.A Paretooptimal front (POF),generatedby Goelet al. (2004)usingaRSA-

multi-objectivegeneticalgorithm(MOGA) coupledapproach,is usedto conducttrade-

off studiesbetweenobjectives.A three-objectivePOFhasbeendividedinto 9 clusters

andbox plotshavebeenusedto observethevariability of thedesignsin eachcluster.

Additionally, partial correlationcoefficientshavebeencalculatedto derivearelationship

betweentheobjectivesanddesignvariablesin eachcluster.Suchanalysesprovidethe

designerwith enoughinformationto filter out designsbasedonhis specificneeds.Some

observationsbasedon thetoolsused,their performance,andthedifferentdesignaspects

of the injector arehighlightedbelow.

• Thedegreeof spreadof adependentvariableover a parametric space is an

important criterion for validation experiment design. Evaluation of large parametric

spaces provides insight into potential validation measurements.

• Correlations of the variables highlight the trends and provide insight into physical

processes that regulate the objectives.
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Thestudyconfirmsthatthedetailsof the injectordesigngoverntheperformance.
Directingthefuel flow towardstheelementaxisandthinning theoxidizerpost lead
to betterperformance.Thesamedetailsareshownto havealargeimpacton the
injectorandcombustionchamberenvironmentalvariablesaswell.

UsingCFD to evaluateandincludemoredesignvariablesandobjectivesin the
conceptualdesignphasehaspotentialto createmorerobustdesigns.This increase
in thedimensionalityof thedesignproblemalsocreatestherequirementfor an
optimizationtool to guidethedesignerthroughoftenopposingtrendsto an
acceptabledesigncompromise.

Basedon thepreliminaryoptimizationstudyit wasfoundthattheproposedCFD-
RSMapproachworkedwell. It wasfairly efficient in termsof thenumberof CFD
solutionsrequiredandprovidedsensibleresultsin view of thephysicsof the
problem.

Forbothsingle-andmulti-objectiveoptimizationefforts,in manycases,the
resultantdesignsareatanextremeof thedesignspace.This indicatesthedesign
spacecouldbeenlargedsubjectto practicaldesignconsiderations.Again,a merit
of theRSMis thatthesolutionsobtainedcanbeusedrepeatedlywhenrevisingthe
designscope.Furthermore,differentscenarios,with eithersingle-or multi-
objectiveoptimization,canmakeuseof the informationsuppliedby theresponse
surfacerepeatedly.

Theglobalsensitivityindices(mainfactorandtotal sensitivityindices)help
identify which designvariableisessentialfor objectivevariability. Additionally,
point out the effectof crossinteractionsamongthedesignvariableson the
objectivesvariability.

Thevariability of TFmax depends on t_ and AHA, TW4 on AHA, TTmax on 0t and

OPTT and X_c on ct, AHA and AOA. The rest of the design variables for each

objective can, in principle, be fixed, as their contribution to the objective variability

is marginal. It is noticed that the mean errors between the modified RSAs and the

original RSAs are about 6-12%.

It is observed that TFmax and TW 4 are strongly correlated and hence TW4 is

excluded from the multi-objective optimization study.

The conflicting nature of the objectives (TFm_x, TTmax) and (TFm_, X_c) is observed

by examining the corresponding POFs. For a small cost in TFmax(-10%), both X¢_

and TTmax (-50%) can be decreased considerably.

The POF obtained for the 3-objective study (TFmax, TTmax and X_) gives an idea of

the various compromises among the different objectives. A hierarchical clustering

approach helps divide the POF into regions of similar objective goals.
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• Box plotsandpartial correlationcoefficientscanassistthedesignselectionalong
thePOF.Box plots identify thevariability of designvariablesandobjectivesin
eachcluster.Partialcorrelationcoefficientidentifieslineartrendsbetweenthe
designvariablesandobjectivesvariabilities.

• To minimize TFmaxit is essentialto haveashearcoaxialinjector (ct= 0) and
maximumchangein baselineH2flow area.To minimize XccandTTm,x,an
impinginginjector (a > 0) isrequiredwith minimumchangein baselineH2 flow
area.

Thisstudyhasofferedin depthinformationaboutthedifferentdesignaspects

pertainingto thedesignvariablesandobjectives.Theimportanceof differentdesign

variableson individual objectiveshasbeenidentifiedandtheinteractionbetweenthe

objectivesnoticed.ThePOFof the3-objectivestudygivesdifferent choicesfor the

designerto look into but thekeyobservationis thatfor amarginalcostin the injector

facetemperature,TFmax,theperformance,X¢cand02post tip temperature,TTmaxcanbe

considerablyreduced.

TheMDO tools,namelyDOE andRSM,havebeenshownto work well alongwith

CFD.Vaidyanathanet al. (2003b)haveshownthatthesetoolscanbeuseto address

model fidelity issuesin thecontextof aturbulentcavitatingflows. In thiswork theyhave

usedthesetools to identify theoptimumvaluesof theempiricalparameterspresentin the

turbulenceandthecavitationmodels.Thishighlightsthebroadscopeof thetools

presentedin this dissertation.

Future work

Future research directions are briefly presented in this section. First issues related

to LSE are addressed and possible strategies suggested. Next, ideas for effective use of

design tools used in this dissertation are presented.
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Navier-Stokes Code Verification

In this dissertation, the weight function in LSE has not been allowed to vary

spatially. For the problems tested and the techniques implemented, spatially dependent

weight function was found to deteriorate the extrapolation and hence only a constant

weight was used for all the study presented. One of the key issues during the

extrapolation is the interpolation of coarse grid solutions onto the fine grid. This

interpolation introduces high spurious wave number terms which combined with the

spatially dependent weight function deteriorates LSE. For flows like lid-driven cavity

flows, such high wave number components are amplified during residual estimation. The

LSE approach is implemented on these polluted residuals and hence does not guarantee

the minimization of the solution error. More details regarding this issue can be found in

the work of Garbey and Shyy (2004). They have proposed using a low mode

approximation of the residual for LSE implementation. This smoothing of the residual is

shown to be effective in improving the performance of LSE.

One of the other issues of LSE implementation is that the coarse grids should

capture the flow feature adequately for efficient extrapolation. At the same time these

coarse grids should not be so fine as to increase the computational cost. As the grid

resolution is increased the solution reaches an asymptotic trend; i.e., there is no

noticeable change in the flow feature with further refinement of the grid. Unless the

coarse grids are properly chosen, the performance of LSE will not be optimal. Judicious

selection of the base grids is an issue that deserves to be investigated.

Design Optimization

In this dissertation the RSAs were first generated and then used for the sensitivity

and trade-off analyses. Hence although the global sensitivity analyses provided incite into
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theinfluenceof designvariablesontheindividual objectivevariability, it wasnot used

for dimensionalityreduction.Additionally the injectordesignproblemhassmall number

of designvariablesandhencethereisnota seriousrequirementfor suchareduction.For

futuredesignstudiesthefollowing directionissuggestedto tacklethecurseof

dimensionality.Wheneverpossiblethepreliminarydesignstudycanbeconductedusing

areducedordermodel,includingsemi-empiricalandexperimentaldata.This reduced

modelcanbecoupledwith DOE,RSMandglobalsensitivitytools to identify the

influenceof designvariableson objectivevariability.This informationcanthenbeused

to reducethedimensionalityof thedesignspace.Higherfidelity modelscanthenbeused

to analyzethedesignsin this reduceddesignspace.Additionally, thereduceddesign

spacewill help in reducingthenumberof searchdirectionsduringtheoptimizationstudy.
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