

Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

Timothy P. Gabb, John Gayda, and Jack Telesman Glenn Research Center, Cleveland, Ohio

Peter T. Kantzos Ohio Aerospace Institute, Brook Park, Ohio Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076

Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

Timothy P. Gabb, John Gayda, and Jack Telesman Glenn Research Center, Cleveland, Ohio

Peter T. Kantzos Ohio Aerospace Institute, Brook Park, Ohio

National Aeronautics and Space Administration

Glenn Research Center

Acknowledgments

The authors wish to acknowledge the support of NASA GRC programs Aviation Safety and HOTPC. Disk forging was performed at Wyman-Gordon Forgings under the direction of Ian Dempster. Disk heat treatments were performed at Ladish Forgings, Inc., under the direction of Joe Lemskey.

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov

Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

Timothy P. Gabb, John Gayda, and Jack Telesman National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

> Peter T. Kantzos Ohio Aerospace Institute Brook Park, Ohio 44142

Abstract

A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 °F.

Introduction

A series of experimental powder metallurgy disk alloys were recently evaluated for their processing characteristics and high temperature mechanical properties (ref. 1). Disks were subsolvus and supersolvus heat treated, then quenched using procedures designed to reproduce the cooling paths expected in large-scale disks. Mechanical tests were then performed at 1000, 1300, and 1500 °F. Several alloys had superior tensile and creep properties at 1300 °F and higher temperatures, but were difficult to process and prone to quench cracking, chiefly due to their high gamma prime solvus temperature. Several other alloys had more favorable processing characteristics due to their lower gamma prime solvus temperature and balanced time-dependent properties at 1300 °F. Results indicated an experimental low solvus, high refractory (LSHR) alloy could build upon the best attributes of all these alloys, giving exceptional tensile and creep properties at high temperatures with versatile processing characteristics due to a low gamma prime solvus.

The objective of this study was to verify the mechanical properties of this LSHR alloy using scaledup material processing and disks. This would enable assessments of the processing-property and maximum temperature capabilities of this disk alloy for different potential applications in the engine community. Scaled-up disks were processed, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center (GRC) and test vendors. Results were compared to data previously generated on specimens from subscale disks.

Materials and Procedure

Powder of LSHR superalloy having the composition in weight percent listed in table 1 was atomized by Special Metals Corp. in argon and passed through screens of –270 mesh to give powder particle diameters of no more than about 55 µm. The powder was then sealed in a stainless steel container, hot compacted, and extruded at a reduction ratio of 6:1. Segments of the extrusion billet were machined to mults 6 in. diameter and 8 in. long, then isothermally forged into flat disks about 12 in. diameter and 2 in. thick by Wyman-Gordon Forgings. Two contoured disks were then prepared with an outer diameter of near 12 in., maximum bore thickness of near 2 in., and rim thickness of near 1.5 in. (ref. 18). These disks were then solution heat treated at Ladish, Co. either above or below the gamma prime solvus temperature, estimated at about 2120 °F. A "supersolvus" disk was solution heat treated at about 2140 °F for 2.5 h, then rapidly transferred, in under 30 seconds, to a station for fan cooling. The "subsolvus" disk was solution heat treated at about 2070 °F for 2.5 h, then rapidly transferred, in under 30 seconds, for a quench immersion in agitated oil. These quenching procedures were selected to typify those employed in quenching supersolvus and subsolvus disks of current alloys. The disks were then given a simple aging heat treatment of about 1500 °F for 8 h.

A spare disk of the same dimensions was prepared with numerous thermocouples embedded at different depths in the bore, web, and rim, then given the same supersolvus and subsolvus solution heat treatments. As expected, the oil-quenched subsolvus heat treatment produced much faster average cooling rates of 275 to 730 °F/min. than the fan air quenched supersolvus heat treatment of 65 to 165 °F/min. The temperature-time data recorded from the thermocouples during fan air and oil quenching cycles were analyzed using a commercial heat transfer computer code in order to assign approximate cooling rates, averaged over the temperature range of solution temperature to 1600 °F, for each specimen.

Thermophysical properties were measured on duplicate samples from supersolvus and subsolvus disks by Thermophysical Properties Research Laboratory, Inc. (TPRL) and GRC. Thermal diffusivity (α) was measured at TPRL using the laser flash technique according to ASTM E1461. Specific heat (C_p) was measured at TPRL using a differential scanning calorimeter according to ASTM E1269. Density (d) was measured at GRC using the immersion technique with a methyl ethyl ketone solution, in general accordance with ASTM B311. Thermal conductivity (λ) values were calculated using the equation:

$$\lambda = \alpha C_p d$$

Thermal expansion was measured at TPRL using a push-rod dilatometer according to ASTM E228. The mean coefficient of thermal expansion was calculated using the change in length from that at a reference temperature (T_0) of 70 °F using the equation:

Mean CTE =
$$((L_T - L_0)/L_0)/(T - T_0)$$
.

Elastic modulus was measured at GRC using the impulse excitation technique according to ASTM E1875. Young's modulus was measured from 70 to 2000 °F. Shear modulus was measured at 70 °F. Poisson's ratio (μ) was then calculated for 70 °F using the equation:

$$\mu = (E/2G) - 1$$
.

An extensive mechanical testing matrix was employed for the scaled-up disks included tensile, notched tensile, creep, low cycle fatigue, and fatigue crack growth tests. Tests were performed on specimens from both supersolvus and subsolvus heat treated disks. Tensile tests were performed at temperatures of 75 to 1500 °F. Creep tests were performed from 1200 to 1500 °F. Low cycle fatigue tests were performed at 800 and 1300 °F. Cyclic crack growth tests were performed from 75 to 1300 °F, while dwell crack growth tests were performed at 1200 and 1300 °F.

Tensile Tests

Tensile tests were performed at Westmoreland Mechanical Testing & Research, Inc. (WMTR) and GRC on specimens machined by WMTR having a gage diameter of 0.16 in. and gage length of 1 in. in uniaxial test machines employing a resistance heating furnace and axial extensometer. The tests were performed according to ASTM E21, using an initial test segment with strain increased at a uniform rate of 0.2 percent/min., followed by a segment with displacement increased at a uniform rate of 0.2 in./min. Notched tensile specimen machining and testing were performed using specimens having a minimum gage diameter of 0.16 in. and stress concentration factor $K_t = 3.5$ in a uniaxial test machine. Notch tensile tests were performed according to ASTM E602.

Creep Tests

Machining and testing of scaled-up disk creep specimens were performed by WMTR. Specimens having a gage diameter of 0.25 in. and gage length of 1.5 in. were machined and tested in uniaxial lever arm constant load creep frames using resistance heating furnaces and shoulder-mounted extensometers. The creep tests were performed according to ASTM E139.

Fatigue Tests

Machining and testing of low cycle fatigue specimens having a uniform gage diameter of 0.25 in. across a gage length of 0.75 in. were performed by WMTR. The low cycle fatigue (LCF) specimens were tested using uniaxial closed-loop servo-hydraulic testing machines with resistance heating furnaces and axial extensometers. Tests were performed according to ASTM E606. A frequency of 0.33 hertz was employed in strain-controlled fatigue testing for the first 6 hours of cycling. A strain ratio ($R_{\epsilon}=\epsilon_{min}/\epsilon_{max}$) of 0 was used. After 6 hours of testing in this manner, surviving specimens were then cycled to the same stabilized stresses using a load-controlled cycle at a faster frequency of 10 hertz until failure.

Machining of a smaller number of cylindrical notched fatigue specimens having a notch diameter of 0.188 in. and geometric stress concentration factor K_t of 2.0 was performed by WMTR. These specimens were tested using a uniaxial closed-loop servo-hydraulic testing machine with a resistance heating furnace at NASA GRC, to screen notch effects on fatigue life. Tests were performed according to ASTM E466. A frequency of 10 hertz was employed in load-controlled cycles with a stress ratio ($R_{\sigma}=\sigma_{min}/\sigma_{max}$) of 0.05 in most tests. Several additional tests were performed at GRC with a superimposed dwell of 90 s at maximum stress in each cycle.

Fatigue Crack Growth Tests

Machining of fatigue crack growth specimens from scaled-up disks was performed by WMTR. All specimens had a rectangular gage section 0.4 in. wide and 0.18 in. thick, with a surface flaw (ref. 2) on one side of the gage section about 0.014 in. wide and 0.007 in. deep, produced by electro-discharge machining. The fatigue crack growth specimens were then tested at GRC in general accordance with ASTM E647. Tests were performed in a closed-loop servohydraulic test machine using resistance heating and potential drop measurement of crack growth. Precracking was performed at room temperature. Tests were then performed at elevated temperatures using a maximum stress of 90 ksi. Cyclic tests were performed at a frequency of 0.33 hertz. Dwell tests were performed with a 90 s dwell at maximum stress in each cycle. A stress ratio ($R_{\sigma} = \sigma_{min}/\sigma_{max}$) of 0.05 was used in all crack growth tests.

Fracture surfaces of selected specimens were evaluated by scanning electron microscopy. Cracking modes and grain sizes were also examined on metallographically prepared sections. Grain sizes were determined from grip sections of tensile specimens according to ASTM E112 linear intercept procedures using circular grid overlays, and As-Large-As (ALA) grain sizes were determined using E930. Precipitate and carbide microstructures and phase chemistries were also inspected from these specimens using field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS). Phase extractions were employed on tensile specimen grip sections to enable determination of γ' and γ phase chemistries using inductively coupled plasma mass spectrometry. X-ray diffraction was used on filtered extraction residues to verify γ' and carbide phase identities and lattice parameters. The electrolyte for γ/γ' phase extraction was 10 g per liter of citric acid and 10 g per liter of ammonium sulfate in deionized water. The electrolyte for carbide phase extraction was 90 percent methanol and 10 percent HCl by volume with 10 grams per liter of tartaric acid. Transmission electron microscopy on thinned foils was employed where necessary to confirm minor phase chemistry and crystal structure, using EDS and selected area diffraction patterns.

Results and Discussion

Material and Microstructures

The actual chemistry in weight percent of the LSHR alloy is listed in table 1. Typical grain microstructures in optical images of etched metallographic sections of tensile specimen grip sections are shown in figure 1. These tensile specimens were from the disks' bore regions cooled more slowly during quenching, and rim regions cooled more quickly. Supersolvus specimens had ASTM mean grain sizes (G) of 7.1 (31 μ m) for the bore and 6.8 (34 μ m) for the rim. The bore and rim specimens had ALA grain sizes of 3.5 (105 μ m) and 2.5 (150 μ m), respectively. Subsolvus specimens had a mean grain size of 11.3 (7.3 μ m) for the bore and 11.0 (8 μ m) for the rim, with ALA grain sizes of 7.5 (27 μ m) and 8.5 (19 μ m). Subsolvus specimens had coarse, undissolved "primary" γ ' particles spaced along grain boundaries and sometimes widely scattered within grains.

The typical minor phases observed are shown in the FESEM images of figure 2. Relatively large, angular precipitates between 0.3 and 1.5 μ m in diameter were observed within grains and sometimes at grain boundaries. They were determined by energy dispersive x-ray spectroscopy (EDS) analyses to contain tungsten, molybdenum, chromium, and boron. FESEM EDS and TEM selected area diffraction patterns indicated they were (W,Mo,Cr)₃B₂ particles, as shown in figure 3. Smaller MC carbides between 0.2 and 0.5 μ m in diameter were also scattered within the grains. They were determined by EDS analyses to also contain tantalum, niobium, and titanium. FESEM EDS and TEM microdiffraction patterns indicated they were (Ta,Nb,Ti)C particles, as shown in figure 3. Very fine M₂₃C₆ carbides between 0.05 and 0.2 μ m in thickness were observed along many grain boundaries. EDS was more difficult for these very fine carbides due to background γ - γ' peak interferences, but these carbides appeared to contain Cr, W, and Mo.

Typical γ' precipitate microstructures from tensile specimen grip sections are also shown in field emission microscopy images of figure 4. Within the grains of the supersolvus specimen from the disk bore, three populations of γ' precipitates were evident. Scattered large precipitates (0.3 to 0.5 µm wide) appeared to have preferentially grown at the cube corners, giving consistently oriented star shapes. Such large precipitates have been observed in previous work (ref. 3), including for bore sections of disk superalloys (ref. 4). Intermediate size precipitates (0.15 to 0.3 µm wide) had a rounded cube shape. They sometimes appeared to be sectioned lobes of the large precipitates, but in other instances appeared to be isolated precipitates. Small quantities of fine, spherical precipitates (0.02 to 0.05 µm wide) were also observed scattered throughout the microstructure. The supersolvus rim specimen only had simpler, rounded cuboid precipitates 0.1 to 0.25 μ m wide, and fine spherical precipitates 0.02 to 0.05 μ m wide.

Subsolvus specimens had less distinct differences in γ' precipitates between the bore and rim locations. Bore specimens had rounded cuboid precipitates 0.1 to 0.25 µm wide, with minor preferential growth of some corners for scattered large particles. Rim specimens had round cuboid precipitates 0.08 to 0.15 µm wide. Both bore and rim specimens had fine spherical precipitates 0.01 to 0.03 µm wide scattered between larger precipitates, and surrounding primary γ' particles. Coarse, undissolved "primary" γ' particles (0.6 to 3 µm wide) were spaced along grain boundaries and sometimes widely scattered within grains.

Both γ' and carbide phase extractions were performed. Averaging over four γ' extractions, 50.8 ± 0.4 weight percent of γ' phase was extracted. However, the 0.1 µm filter employed would be expected to allow the fine precipitates at smaller diameter to pass through. Therefore, the total weight percent of γ' phase was estimated to be between 52 and 54 percent. Chemistries of the extracted γ and γ' phases are listed in table 1, along with the associated γ partitioning ratios defined as:

 γ partitioning ratio of element E = (at. % E in γ)/(at. % E in γ ').

Cr, Fe, Mo, and Co strongly partitioned to γ , while Ta, Ti, Nb, and Al strongly partitioned to γ' , as observed in previous studies of superalloys (ref. 5, 6). W partitioned somewhat more to γ than γ' , but was present in both phases.

The unconstrained γ' lattice parameter was measured by X-ray diffraction to be 3.596 ± 0.001 Angstroms. X-ray diffraction of carbide extractions indicated the presence of MC carbides and M_3B_2 borides, along with residual γ' . However, $M_{23}C_6$ carbides were not detected in the carbide extractions. It was again expected that these very fine $M_{23}C_6$ carbides passed through the 0.1 µm filter, and were therefore not successfully isolated. These results were typical of other disk superalloys (ref. 6).

Physical and Thermal Properties

Thermal diffusivity is shown as a function of temperature in figure 5. Thermal diffusivity increased linearly from 0.102 ft²/h at 70 °F to 0.18 ft²/h at 1500 °F, then was relatively stable to 2100 °F. Specific heat results are shown as a function of temperature in figure 6. Specific heat increased from about 0.10 BTU/(lb F) at 70 °F to 0.28 BTU/(lb-F) at 2030 °F for subsolvus specimens, then dropped off. Specific heat increased to about 0.30 BTU/(lb-F) at 2080 °F for supersolvus specimens, then dropped off. The density of subsolvus and supersolvus disk specimens was measured to be 0.302 ± 0.0005 lb/in³, as given in table 2. Calculated thermal conductivity values are shown as a function of temperature in figure 7. Thermal conductivity increased approximately linearly from 5.4 BTU/(h-ft-F) at 70 °F to 16.3 BTU/(h-ft-F) at 2200 °F, with slight positive divergence near 1500 °F. Thermal expansion. instantaneous CTE, and mean CTE are shown as functions of temperature in figure 8. Mean CTE increased from 6.8 µin/(in.-F) at 70 °F to a plateau at 10.6 µin/(in.-F) near 2100 °F. Young's modulus is shown as a function of temperature in figure 9. Young's modulus (E) decreased from about 32.8 Msi at 70 °F to about 17.5 Msi at 2000 °F. Shear modulus (G) and Young's modulus at 70 °F were measured to be 12.73 and 32.74 Msi, and Poisson's ratio (u) was then calculated to be 0.286 at this temperature, table 3. These results were in general agreement with those obtained from other similar nickel-base superalloys (ref. 7). The test results are tabulated in appendixes 1 through 8.

Tensile Stress-Strain Response

Yield strengths at 0.2 percent offset, ultimate strengths, notched strength, percent elongation after failure, and percent reduction in area after failure are compared as functions of temperature in figures 10 and 11. Polynomial regression was performed on these responses using temperature (T), T^2 , and T^3 as the independent variables. The resulting equations and correlation coefficients are listed in the figures, for use in estimating mean strengths and ductilities. Supersolvus yield strength was sustained up to a temperature of 1400 °F, then dropped off with increasing temperature. Subsolvus yield strength was 20 to 30 ksi higher than supersolvus levels, but began dropping at 1300 °F. A similar strength differential between supersolvus and subsolvus specimens applied to ultimate strength. Ultimate strength began dropping off above 1200 °F for supersolvus material, and above 1100 °F for subsolvus material. Notched tensile strengths ran 30 to 50 ksi higher than ultimate strength, with ratios of notched over ultimate strength always exceeding 1.1. Elongation and reduction in area had more variability than strengths, but averaged relatively constant as functions of temperature up to 1300 °F for supersolvus specimens, and up to near 1100 °F for subsolvus specimens. Both then decreased with increasing temperature. Test results of specimens from scaled-up disks are also compared to previously published (ref. 1) subscale LSHR disk results in figures 10 and 11. The scaled-up disks had comparable tensile strength and ductility compared to the subscale disks. These results were also typical of similar disk alloys tested in that study. Tensile strengths often exceeded those reported from powder metallurgy disks of Udimet 720 (refs. 8 to 10) and ME3 (ref. 11). The test results are tabulated in appendixes 8 and 9.

The variabilities of elongation and reduction in area observed in the tensile tests were largely due to cooling rate variations among the test specimens. Strengths and ductilities of full-scale disk specimens are shown versus approximate cooling rate in figures 12 and 13. For the cooling rates encompassed by the disks and associated test specimens, increasing cooling rate sometimes slightly increased yield strength, while ultimate strength was not consistently affected. However, increasing cooling rate significantly decreased elongation and reduction in area at test temperatures of 1300 °F and higher. This was more consistently observed in the elongation measurements, where regression lines are included in the figure. It should be noted that elongation measurements on failed specimens were inherently less difficult to perform and more reproducible than reduction in area measurements, which required final diameter measurements across fracture surfaces of varying irregularity.

Typical tensile fracture surfaces at various temperatures are compared for supersolvus specimens in figure 14 and for subsolvus specimens in figure 15. Supersolvus and subsolvus tensile specimens had predominantly transgranular failure modes by microvoid coalescence in tests from room temperature to 1200 °F. At these temperatures, scattered slip "facet" grain failures were also observed. At higher temperatures of 1300 to 1500 °F, oxidized intergranular surface cracks appeared to first occur, followed by transgranular microvoid coalescence failure in the center of the specimens. Evidently, environmental attack weakened grain boundaries in comparison to grain interiors with increasing temperature. No large differences were observed in general failure modes between low cooling rate specimens exhibiting high ductility and high cooling rate specimens exhibiting low ductility in tests at 1300 to 1500 °F. However, the supersolvus grain surfaces exposed in intergranular surface cracks for low cooling rate specimens did show larger perturbations than for high cooling rate specimens. These perturbations are attributable to the selectively coarsened large γ ' precipitates spaced along many grain boundaries in slow cooling rate specimens in slow cooling rate specimens, producing serrated grain boundaries for the bore specimen as shown in figure 1.

Creep Properties

Time to 0.2 percent creep (t) and rupture of creep tests at temperatures (T) of 1200, 1300, 1400, and 1500 °F were analyzed using the Larson-Miller approach commonly employed for disk alloys. Creep

results were used to generate conventional Larson-Miller curves of stress versus Larson-Miller parameter (LMP) using the equation:

$$LMP = (T + 460 \circ R)(\log t + C)/1000$$

The resulting plots are shown in figures 16 and 17. It can be seen that the LMP constant C = 20 did not fully account for test temperature in modeling the time to produce low creep strains of 0.2 percent, but worked reasonably well for rupture life. Regressions indicated a constant of 28 gave the highest correlations for 0.2 percent creep lives in both supersolvus and subsolvus material. Polynomial regression equations using the variables LMP and LMP² are included with correlation coefficients in the figures, for use in estimating mean life responses as functions of temperature and stress using this Larson-Miller approach. Test results previously generated from specimens of subscale LSHR disks are also compared to the scaled-up results in figures 16 and 17. The scaled-up material had equal or higher creep lives compared to the sub-scale disks. Supersolvus creep results slightly exceeded that observed for ME3 (ref. 11), while subsolvus creep results significantly exceeded that reported for Udimet 720 (ref. 9).

Times to 0.2 percent creep of the scaled-up disk specimens are shown versus approximate cooling rate in figure 18. Increased cooling rate improved creep life at low temperatures of 1200 to 1300 °F, but reduced creep life at higher temperatures of 1500 °F for supersolvus material and 1400 °F for subsolvus material. The cooling rate effects on creep life were less than 2X for supersolvus material, but could exceed 3X for subsolvus material over the range of cooling rates evaluated. The test results are tabulated in appendix 10.

Supersolvus and subsolvus creep specimens tended to fail from intergranular, surface-initiated cracks at the creep test temperatures of 1200 to 1500 °F, as shown in figures 19 and 20. This was apparently due to environmental attack at grain boundaries. At higher temperatures of 1400 to 1500 °F, exposed grain surfaces on the surface cracks had a more rough, dimpled morphology and more secondary cracking, with evident grain boundary cavitation. The final overload failure occurred by transgranular microvoid coalescence with scattered "facet" crystallographic grain failures at 1200 °F. At increasing temperatures of 1300 to1500 °F, the final overload regions had increasing area fractions of intergranular failure by cavitation at grain boundaries, increasing from 25 percent at 1300 °F to 80 percent at 1500 °F.

Several failed creep specimens with rupture lives of over 3000 hours at 1300 °F were sectioned and metallographically prepared. FESEM evaluations could find no deleterious topologically close packed phases had yet formed. Additional creep tests with test conditions designed for longer rupture lives are currently in test and will be evaluated in a like manner after failure.

Fatigue Properties

Uniform gage tests.—Total strain range versus fatigue life is compared at the test temperatures of 800 and 1300 °F for supersolvus and subsolvus materials with uniform gage specimens in figure 21. Subsolvus material had 2 to 5x higher lives than supersolvus material at 800 °F, with larger differences apparent at low strain ranges. At 1300 °F, subsolvus and supersolvus lives were nearly comparable at high strain ranges, but subsolvus exceeded supersolvus lives by nearly 3x at low strains. This could be due to the higher yield strength of subsolvus over supersolvus materials, allowing less plastic strain and associated damage in each fatigue cycle of a given strain range.

At high strain ranges, fatigue life was higher in tests at 800 °F than at 1300 °F, for both subsolvus and supersolvus materials. This could be due to the higher yield strengths of both materials at 800 °F than 1300 °F, which allowed less plastic strain and associated damage in each fatigue cycle of a given strain range than at 1300 °F. The higher ductilities observed at 800 °F than 1300 °F could also allow more accumulated strain damage before failure initiation. However, at low strain ranges near 0.6 percent, fatigue life was higher in tests at 1300 °F than at 800 °F, for both subsolvus and supersolvus material.

This could be mainly due to the lower yield strength at 1300 °F, which can allow more reductions in positive stresses by way of yielding in tension, both for initial stresses and after repeated cycling or "cyclic shakedown." This could also be related to a higher tolerance of fatigue defects such as large grains and inclusions at the higher temperature, where plastic deformation within grains appeared to be more uniform with no observable slip offsets. The supersolvus material fatigue results were generally comparable to those obtained for ME3 (ref. 11), while the subsolvus fatigue results were generally comparable to that obtained for Udimet 720 (refs. 8 to 10).

A substantial variation in lives is sometimes evident for multiple tests performed at the same strain range. While some scatter is to be expected in fatigue lives, this scatter was also often found to be related to the effects of increasing yield strength with increasing cooling rate, and resulting differences in maximum and minimum stresses generated in strain-controlled tests at the same strain and stress range of different specimens. Maximum stress and stress range as functions of cycles are compared for subsolvus rim and bore specimens both tested at a total strain range of 0.8 percent and 1300 °F in figure 22. These comparative specimens run at the same conditions were purposefully chosen from different locations in the disks, to encompass a wide range of cooling rates. The specimen from the faster cooling rim had more positive maximum stresses than the specimen from the slower cooling bore in tests producing comparable stress ranges, and lower fatigue life. This was the case both for initial stresses generated as the strain range was gradually increased to 0.8 percent, and after cyclic shakedown. Such differences in maximum stresses (σ_{max}) and minimum stresses (σ_{min}), in tests at about the same stress range ($\Delta\sigma$) and strain range ($\Delta\epsilon$) could be accounted for using an approach of Smith-Watson-Topper (ref. 12):

$$\sigma_{\rm SWT} = (\sigma_{\rm max} \Delta \sigma/2)^{0.5}$$

This relationship accounts for differences in maximum stress as well as stress range. Resulting plots of σ_{swt} versus fatigue life are compared at the test temperatures of 800 and 1300 °F for supersolvus and subsolvus materials with uniform gage specimens in figure 23. Usage of this σ_{swt} parameter or similar approaches to account for differences in maximum and minimum stresses is seen to reduce scatter, and allowed improved correlations in polynomial regressions. The test results are tabulated in appendix 11.

Supersolvus low cycle fatigue specimens predominantly failed from cracks initiated by planar failure of relatively large grains on the specimen surface at 800 °F, as shown in figure 24. These "faceted" grain failures (refs. 11 and 13) appeared to be due to concentrated slip on crystallographic planes, which sometimes produced noticeable slip offsets on the surfaces of large grains, as shown in figure 25. The grain facets were mostly flat with least texture in tests at 800 °F. At 1300 °F, a majority of specimens tested at low strain ranges of 0.6 to 0.8 percent again failed from grain facets. At the lowest strain range of 0.6 percent, the failure initiation sites shifted to internal grains rather than surface grains. The grain facets had more texture in tests at 1300 °F. At higher strain ranges of 0.8 to 1.2 percent, more specimens failed from oxidized surface cracks. These surface cracks were often, but not always intergranular. At both temperatures, more cracks were initiated in tests at higher strain ranges. A much smaller minority of supersolvus specimens failed at 1300 °F from ceramic inclusions. The inclusions initiating failures were evenly segregated between angular, silicon or calcium-rich oxide inclusions broken up into several pieces, often referred to as Type 1 inclusions, and granulated, reactive aluminum-rich oxide Type 2 inclusions (refs. 14 and 15).

Subsolvus low cycle fatigue specimens failed either from grain facets, pores, or inclusions at 800 °F, as shown in figure 26. The grain facets were much smaller than for supersolvus specimens, due to the finer grain size. At 1300 °F, a majority of specimens tested at all strain ranges again failed from inclusions. Several specimens had grain facet initiated failures. At both temperatures, more cracks were again initiated in tests at higher strain ranges. Failures initiated exclusively at the specimen surfaces for strain ranges of 0.8 to 1.2 percent, but often shifted to internal locations at 0.6 percent.

Notched fatigue tests.—Maximum stress across the notched diameter is compared versus fatigue life at the test temperatures of 800 and 1300 °F for supersolvus and subsolvus notched fatigue specimens in

figure 27. Subsolvus material had longer cyclic lives than supersolvus material at low applied stresses at 800 °F, and for all applied stresses at 1300 °F.

At highest stresses, cyclic fatigue life was again higher in tests at 800 °F than at 1300 °F, for both subsolvus and supersolvus material. Here also, this could be due to the higher strengths and ductilities of both materials at 800 °F, which allowed less plastic strain and associated damage in each fatigue cycle at a given stress and more damage accommodation than at 1300 °F. However, at lower stresses, fatigue life was again higher in tests at 1300 °F than at 800 °F, for both subsolvus and supersolvus material. As for unnotched specimens, the lower yield strength at 1300 °F could allow more reductions in positive stresses by way of yielding in tension than at 800 °F, both for initial stresses and after cyclic shakedown. It would be expected that these reductions would be localized near the notch tip where concentrated stresses can exceed the yield strength. This local region of yielding, or plastic zone, near the notch tip would be constrained by surrounding material which is only elastically loaded. Therefore, accounting for these differences in stresses is more difficult than for uniform gage specimens and beyond the scope of this study, requiring elastic-plastic finite element modeling of the notched specimen during fatigue cycling. Yet, it could be possible to employ the stress-strain data generated in the uniform gage tests within such a model, to estimate notched specimen stresses for comparison of the notched and smooth gage fatigue lives.

The results of several additional tests performed at 1300 °F with a superimposed dwell of 90 s at maximum stress in each cycle are also shown in figure 27. Supersolvus life was reduced by about 10X in the two dwell tests performed. Subsolvus life was reduced even more, ranging from 10X to 1000X in the two dwell tests performed on this material. Additional tests are necessary to fully quantify the effects of dwells on notched fatigue life as functions of maximum stress in the two materials, but it is clear that dwells at maximum stress can substantially degrade fatigue life at 1300 °F. Understanding the notch-stress response in these tests would require elastic-viscoplastic finite element modeling of both plastic flow and time-dependent relaxation of stresses near the notch during the dwell fatigue cycling. The test results are tabulated in appendix 12.

Supersolvus and subsolvus notched fatigue specimens invariably had failure initiations at the notch tip. Supersolvus and subsolvus specimens tested in cyclic fatigue at 800 °F had multiple transgranular crack initiations at the notch root, and subsequent transgranular crack growth, as shown in figures 28 and 29. At 1300 °F, supersolvus specimens tested in cyclic fatigue again had multiple transgranular crack initiations at the notch root, and subsequent transgranular crack growth. Subsolvus specimens tested in cyclic fatigue at 1300 °F had transgranular crack initiations at the notch root, and subsequent transgranular crack growth. Subsolvus specimens tested in cyclic fatigue at 1300 °F had transgranular crack initiations at the notch root, then mixed intergranular and transgranular crack growth. Both supersolvus and subsolvus specimens tested at 1300 °F with the superimposed 90 s dwells at maximum stress had intergranular crack initiations along the notch tip and subsequent intergranular crack growth, figures 28 and 29. It appears the intergranular crack initiation mode accounted in part for the lower lives of specimens tested at 1300 °F with the superimposed 90 s dwells.

Fatigue Crack Growth Properties

Cyclic crack growth rate versus stress intensity factor range is compared for all test temperatures in figure 30. Crack growth rates at 25 ksi*in^{0.5} are shown versus temperature in figure 31. Crack growth rates increased with temperature, and were consistently lower for supersolvus specimens than for subsolvus specimens. The increase in crack growth rates with temperature was quite modest, increasing roughly 10X in going from 75 to 1300 °F. Supersolvus crack growth rates were 50 to 70 percent of subsolvus crack growth rates at constant temperature. Linear regression equations modeling cyclic crack growth rates versus temperature are included in these figures, for use in estimating mean crack growth responses as a function of temperature.

Dwell crack growth rate versus stress intensity factor range is compared for test temperatures of 1200 and 1300 °F in figure 32. Crack growth rates at 25 ksi*in^{0.5} are shown versus temperature in figure 33. Supersolvus crack growth rates were more substantially lower than subsolvus rates in the dwell tests compared to 0.33 hertz cyclic tests, with supersolvus rates at about 20 percent of subsolvus rates for a given temperature. Linear regression equations modeling dwell crack growth rates at maximum stress intensities of 25 ksi*in^{0.5} versus temperature are included in these figures, for use in estimating mean crack growth responses as a function of temperature. Dwell crack growth rates increased about 10x when increasing temperature from 1200 to 1300 °F. The test results are tabulated in appendix 13.

The cracking modes observed in cyclic fatigue crack growth tests of supersolvus specimens are compared for various temperatures in figure 34. Supersolvus cyclic crack growth specimens had predominantly transgranular cracking at all test temperatures. While the proportion of transgranular cracking was essentially 100 percent at 75 °F, a small percentage of intergranular cracking became apparent at temperatures of 1200 °F (about 5 percent) and 1300 °F (about 10 percent). Specimens tested from 75 to 1200 °F displayed planar cracking of some individual grains by facet failure, possibly related to concentrated slip on crystallographic planes as for the low cycle fatigue specimens. At higher temperatures a more textured fracture morphology was observed which was more nearly Mode 2.

Supersolvus specimens tested in dwell crack growth had predominantly intergranular cracking at the temperatures tested, figure 35. The intergranular cracking mode was mixed with minor transgranular cracking in tests at 1200 °F. The exposed crack growth surfaces were relatively flat, with little secondary cracking. However, the intergranular failure became highly prevalent in tests at 1300 °F, with considerable secondary grain boundary cracks obvious. A metallographic section of the crack growth region was prepared parallel to the loading axis to determine the extent of secondary cracking. As shown in figure 36, the secondary cracks extended down at least one layer of grains.

The cracking modes observed in cyclic fatigue crack growth tests of subsolvus specimens are compared for various temperatures in figure 37. Subsolvus cyclic crack growth specimens had predominantly transgranular cracking in tests at 75 to 800 °F. A much larger percentage of intergranular cracking became apparent than for supersolvus material at temperatures of 1200 °F (about 25 percent) and 1300 °F (about 60 percent). A significant number of secondary intergranular cracks were also observed at these higher test temperatures.

Subsolvus specimens tested in dwell crack growth had predominantly intergranular cracking at 1200 and 1300 °F, figure 38. The intergranular failure was highly prevalent in tests at both 1200 and 1300 °F, with considerable secondary grain boundary cracks obvious. A metallographic section of the crack growth region was prepared parallel to the loading axis to determine the extent of secondary cracking. As shown in figure 39, the secondary cracks extended down several layers of grains.

The crack growth results are in general agreement with previous findings on powder metallurgy disk superalloys. The effects of dwells in accelerating fatigue crack growth have been observed in Rene 95 (ref. 16), Udimet 720 (refs. 8 and 17), and ME3 (ref. 11). Coarser grain microstructures also have been shown superior for dwell fatigue crack growth (refs. 8, 16, and 17).

Additional Evaluations of LSHR

Several additional investigations of this alloy are currently underway, based on the results of these evaluations of scaled-up disks. The effects of cooling rate and aging heat treatments on tensile, creep, stress relaxation, dwell fatigue crack growth, and dwell notched fatigue properties at 1300 °F are being evaluated. Results have indicated that these properties are strongly influenced by varying solution heat treatment cooling rate as well as aging heat treatments. Different balances among these properties are thereby possible with this alloy, including much higher tensile ductility at high temperatures. Advanced dual microstructure heat treatments (DMHT) have also been applied to LSHR. The low solvus temperature of this alloy combined with its high refractory element levels allow very attractive

combinations of properties to be easily attained, giving high strength and fatigue resistance in the fine grain bore, and high creep and dwell crack growth resistance in the coarse grain rim (ref. 18). This advanced solution heat treatment is now being used with subsequent "supercooling" i.e., computer-controlled air quenching technology which carefully controls cooling rate as a function of location on a disk. This control of grain size and cooling rate can be combined with optimal aging heat treatments to produce highly favorable balances of mechanical properties at key disk locations (ref. 19).

Summary and Conclusions

Scaled-up LSHR disks were processed, sectioned, machined into specimens, and mechanically tested. The measured mechanical properties closely matched those previously determined from subscale disks. The mechanical properties of LSHR can be summarized as follows:

- Tensile: Scaled-up LSHR had stable tensile strength and ductility to at least 1200 °F with a coarse grain, supersolvus heat treatment, and 1100 °F with fine grain, subsolvus heat treatment. Strength and ductility then gradually decreased with increasing temperature at higher temperatures. Ductility at high temperatures decreased with increasing cooling rate. Strength values usually exceeded those reported for ME3 and Udimet 720. Microvoid coalescence within grains produced failure at 75 to 1300 °F, but surface cracking interceded at 1300 to 1500 °F.
- 2) Creep: Supersolvus and subsolvus LSHR had comparable creep resistances at 1200 to 1300 °F, sustaining stresses of up to 100ksi with 0.2 percent creep lives of at least 100 h. At 1400 °F and 1500 °F, this applied stress dropped drastically to about 75 ksi and 50 ksi, respectively. This creep response exceeded those reported for ME3 and Udimet 720. Creep response could be modeled versus temperature and stress using a Larson-Miller Parameter approach, where a Larson Miller constant of 28 worked reasonably well for 0.2 percent creep and constant of 20 for creep rupture. Surface cracking limited rupture life at all test temperatures.
- 3) Low cycle fatigue: At strain ranges of 0.7 percent or less typically encountered in applications, LSHR had good LCF resistance at both 800 and 1300 °F. However, at higher strain ranges, life decreased at 1300 °F compared to 800 °F due to lower strength. Fatigue life response of LSHR was comparable to that reported for ME3 and Udimet 720 at equivalent grain sizes. Crystallographic slip failures of large grains usually initiated failure in supersolvus material in tests at both 800 and 1300 °F. However, at 1300 °F and high strain ranges failures were often produced by crack initiation modes at surface oxidation. Failures of subsolvus material were often initiated by inclusions at both temperatures, though several failures were also initiated by grain facets or pores at 800 °F. Limited tests of notched specimens indicated dwells at maximum stresses significantly degrade fatigue resistance at 1300 °F.
- 4) Crack growth: Cyclic crack growth rates only increased by 10X between 75 and 1300 °F. However, dwell crack growth rates were significantly higher than cyclic rates and increased much more strongly with temperature from 1200 to 1300 °F, by about 10X. Supersolvus material consistently had lower cyclic and dwell crack growth rates than subsolvus material. Crack growth response of LSHR was typical of that reported for ME3 and Udimet 720 at equivalent grain sizes. Dwells at maximum stress promoted intergranular crack growth for both materials.

It can be concluded from this evaluation that LSHR should have at least 1300 °F general capabilities. Subsolvus, fine grain material could be preferred for superior strength, fatigue, and creep resistance at temperatures up to 1200 °F. Supersolvus, coarse grain material should be selected for superior creep and dwell crack growth resistance at higher temperatures. In both cases, LSHR appears to have improved strength and creep resistance over many existing powder metallurgy disk superalloys. More detailed

assessments of mechanical properties versus component design needs would be necessary to determine specific temperature limits for specific potential applications.

References

- T.P. Gabb, J. Gayda, J. Telesman, P.T. Kantzos, W.A. Konkel, "Realistic Subscale Evaluations of the Mechanical Properties of Advanced Disk Superalloys," NASA/TM—2003-212086, NASA, Washington, D.C., Jan. 2003.
- R.H. Vanstone, T.L. Richardson, "Potential-Drop Monitoring of Cracks in Surface-Flawed Specimens," <u>ASTM STP 877</u>, American Society for Testing and Materials, West Conshohocken, PA, 1985, pp. 148–166.
- R.A. Ricks, A.J. Porter, R.C. Ecob, "The Growth of γ' Precipitates in Nickel-base Superalloys," <u>Acta</u> <u>Met.</u>, vol. 31, 1983, pp. 80–81.
- 4. T.P. Gabb, A. Garg, D.L., Ellis, K.M. O'Connor, "Detailed Microstructural Characterization of the Disk Alloy ME3," NASA/TM—2004-213066, NASA, Washington, D.C., May 2004.
- O.H. Kriege, J.M. Baris, "The Chemical Partitioning of Elements in Gamma Prime Separated From Precipitation-Hardened, High-Temperature Nickel-Base Alloys," <u>Trans. ASM</u>, vol. 62, 1969, pp. 195–200.
- 6. T.P. Gabb, A. Garg, D.L. Ellis, "Microstructural Evaluations of Baseline HSR/EPM Disk Alloys", NASA/TM—2004-213123, Washington, D.C., August 2004.
- C.T. Sims, N.S. Stoloff, W.C. Hagel, <u>Superalloys II</u>, John Wiley & Sons, New York, NY, 1987, pp. 583–585.
- K.A. Green, J.A. Lemsky, R.M. Gasior, "Development of Isothermally Forged P/M Udimet 720 for Turbine Disk Applications," <u>Superalloys 1996</u>, ed. R.D. Kissinger, K.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford, The Minerals, Metals, & Materials Society, Warrendale, PA, 1996, pp. 697–704.
- H. Hattori, M. Takekawa, D. Furrer, R.J. Noel, "Evaluation of P/M U720 for Gas Turbine Engine Disk Application", <u>Superalloys 1996</u>, ed. R.D. Kissinger, K.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford, The Minerals, Metals, & Materials Society, Warrendale, PA, 1996, pp. 705–711.
- Banik, K.A. Green, "The Mechanical Property Response of Turbine Disks Produced Using Advanced PM Processing Techniques," <u>Superalloys 2000</u>, Ed. T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, J.J. Schirra, The Minerals, Metals & Materials Society, Warrendale, PA, 2000, pp. 69–74.
- T.P. Gabb, J. Telesman, P.T. Kantzos, K. O'Connor, "Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3," NASA/TM—2002-211796, NASA, Washington, D.C., August 2002.
- 12. K.N. Smith, P. Watson, T.H. Topper, "A Stress-Strain Function for the Fatigue of Metals," Journal of Metals, vol. 5, no. 4, 1970, pp. 767–778.
- 13. T.P. Gabb, J. Gayda, J. Sweeney, "The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4," NASA/TM—2000-210458, NASA, Washington, D.C., 2000.
- D.R. Chang, D.D. Krueger, R. A. Sprague, "Superalloy Powder Processing, Properties, and Turbine Disk Applications", <u>Superalloys 1984</u>, ed. M. Gell, C.S. Kortovich, R.H. Bricknell, W.B. Kent, J.F. Radavich, The Minerals, Metals & Materials Society, Warrendale, PA, 1984, pp. 245–252.
- E.S. Huron, P.G. Roth, "The Influence of Inclusions on Low Cycle Fatigue Life in a P/M Nickel-Base Disk Superalloy", <u>Superalloys 1996</u>, ed. R.D. Kissinger, K.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford, The Minerals, Metals, & Materials Society, Warrendale, PA, 1996, pp. 359–367.

- J. Gayda, T P. Gabb, R.V. Miner, "Fatigue Crack Propagation of Nickel-Base Superalloys at 650 °C," <u>Low Cycle Fatigue, ASTM STP 942</u>, ed. H.D. Solomon, G.R. Halford, L.R. Kais, and B.N. Leis, American Society for Testing and Materials, Philadelphia, PA, 1988, pp. 293–309.
- K.R. Bain, M.L. Gambone, J.M. Hyzak, M.C. Thomas, "Development of Damage Tolerant Microstructures in Udimet 720," <u>Superalloys 1988</u>, ed. S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, The Minerals, Metals & Materials Society, Warrendale, PA, 1988, pp. 13–22.
- J. Gayda, T.P. Gabb, P.T. Kantzos, "The Effect of Dual Microstructure Heat Treatment on an Advanced Nickel Base Disk Alloy," <u>Superalloys 2004</u>, ed. K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston, The Minerals, Metals & Materials Society, Warrendale, PA, 2004, pp. 323–329.
- 19. J. Gayda, D.U. Furrer, "Dual Microstructure Heat Treatment," <u>Advanced Materials & Processes</u>, July, 2003, pp. 36–39.

				r					1 10				
Wt%	AI	В	С	Co	Cr	Fe	Mo	Nb	Та	Ti	W	Zr	Ni
LSHR Composition	3.46	0.028	0.029	20.7	12.52	0.07	2.73	1.45	1.6	3.5	4.33	0.049	49.534
γ'phase	5.48			12.27	1.99	0.02	1.1	2.49	3.02	6.36	3.59	0.094	63.586
γ phase	1.16	0.019		30.34	23.34	0.095	4.24	0.38	0.19	0.56	4.99	0.002	34.684
γ Partitioning Ratio	0.22			2.55	12.10	4.90	3.98	0.16	0.06	0.09	1.43	0.02	0.56
=(at. % γ)/(at. % γ ')													

Table 1.—Measured composition in weight percent of LSHR alloy disks, and measured compositions of extracted γ ' and γ phases.

Table 2. –	-Measured densities of supersolvus
	and subsolvus samples.

Sample	Dry weight	Wet weight	Buoyancy	Density	Density
	g	g		g/cc	lb/in ³
Subsolvus 1	8.2292	7.4363	0.7929	8.3589	0.3020
Subsolvus 2	8.1743	7.3862	0.7881	8.3537	0.3018
Subsolvus 3	8.5936	7.7653	0.8283	8.356	0.3019
Subsolvus 4	8.5236	7.7026	0.821	8.3616	0.3021
Subsolvus 5	7.9164	7.1536	0.7628	8.3585	0.3020
Supersolvus	4.0359	3.6481	0.3878	8.3819	0.3028
Supersolvus	4.0295	3.6399	0.3896	8.3300	0.3009
Supersolvus	4.0459	3.6563	0.3896	8.3639	0.3022
Supersolvus	4.0241	3.6364	0.3877	8.3596	0.3020
			MEAN	8.358	0.3020
			STDEV	0.013	0.0005

Table 3.—Shear and Young's modulus measurements a	t
room temperature, with calculated Poisson's ratio.	

	G-Shear	Modulus		E-Young's Moduli		
Spec.	GPa	Msi	Spec.	GPa	Msi	
A1-BL3	87.97	12.76	T7-2-M1	224.95	32.62	
A1-WL1	87.55	12.70	T7-2-M1	228.25	33.10	
B1-BL3	88.30	12.81	T7-2-M2	224.85	32.61	
B1-RL2	87.21	12.65	T7-2-M2	226.96	32.92	
Mean	87.76	12.73	T7-2-M3	222.56	32.28	
StDev	0.48	0.07	T7-2-M3	226.22	32.81	
			T7-2-M4	224.75	32.60	
Poisson's Ratio			T7-2-M4	227.17	32.95	
=E/(2G)-1			Mean	225.71	32.74	
0.286			StDev	1.80	0.26	

Figure 1.—Optical micrographs of supersolvus and subsolvus disk grain microstructures: a. supersolvus bore, b. supersolvus rim, c. subsolvus bore, d. subsolvus rim.

Figure 2.—FESEM micrographs of supersolvus and subsolvus disk microstructures, showing large (W,Mo,Cr)₃B₂, medium (Ta,Ti,Nb)C, and fine (W,Cr)₂₃C₆ carbides: a. supersolvus bore, b. supersolvus rim, c. subsolvus bore, d. subsolvus rim.

Figure 3.—Energy dispersive x-ray spectra showing carbides: a. $(W,Mo,Cr)_3B_2$ b. (Ta,Nb,Ti)C, c. $(W,Cr)_{23}C_6$.

Figure 4.—FESEM micrographs of supersolvus and subsolvus disk γ ' microstructures: a. supersolvus bore, b. supersolvus rim, c. subsolvus bore, d. subsolvus rim.

Figure 5.—Thermal diffusivity vs. temperature in supersolvus and subsolvus material.

Figure 6.—Specific heat vs. temperature of supersolvus and subsolvus material during a. heating and b. cooling.

Figure 7.—Thermal conductivity vs. temperature of supersolvus and subsolvus material.

Figure 8.—Thermal expansion vs. temperature of supersolvus and subsolvus material during a. heating and b. cooling.

Youngs Modulus vs. Temperature

Figure 9.—Young's modulus vs. temperature for supersolvus material.

Figure 12.—Yield and ultimate strengths vs. average cooling rate of tensile tests for a. supersolvus and b. subsolvus scaled-up material.

Figure 13.—Elongation and reduction in area vs. average cooling rate of tensile tests for a. supersolvus and b. subsolvus scaled-up material.

Figure 14.—Fracture surfaces observed for supersolvus tensile specimens tested at a. 75 °F, b. 800 °F, c. and d. 1300 °F, e. and f. 1500 °F.

Figure 15.—Fracture surfaces observed for subsolvus tensile specimens tested at a. 75 °F, b. 800 F, c. and d. 1300 ° F, e. and f. 1500 °F.

Figure 16.—0.2% creep lives expressed using Larson-Miller parameters for a. supersolvus and b. subsolvus material.

Figure 17.—Rupture lives expressed using Larson-Miller parameters for a. supersolvus and b. subsolvus material.

Figure 18.—0.2% creep lives vs. average cooling rate for a. supersolvus and b. subsolvus material.

Figure 19.—Fracture surfaces observed for supersolvus creep specimens tested at a. and b. 1200 °F/125 ksi, c. and d. 1300 °F/100 ksi, e. and f. 1400 °F/65 ksi, g. and h. 1500 °F/50 ksi.

Figure 20.—Fracture surfaces observed for subroolvus creep specimens tested at a. and b. 1200 °F/125 ksi, c. and d. 1300 °F/100 ksi, e. and f. 1400 °F/65 ksi.

Figure 22.—Maximum stress and stress range as functions of cycles for subsolvus rim and bore specimens both tested at a total strain range of 0.8% and 1300 °F.

Figure 23.—Fatigue lives vs. Smith-Watson-Topper stress for a. supersolvus and b. subsolvus material. Open symbols=surface-initiated failures, filled symbols=internal-initiated failures.

Figure 24.—Failure initiation sites observed for supersolvus LCF specimens tested at a. and b. 800 °F/0.6%, c. and d. 800 °F/1.2%, e. and f. 1300 °F/0.6%, g. and h. 1300 °F/1.2%.

Figure 25.—Slip offset at arrow adjacent to grain facet initiated failure observed for supersolvus LCF specimen tested at 800 °F/0.8%.

Figure 28.—Failure initiation sites observed for supersolvus notched LCF specimens tested at: a. and b. 800 °F/115 ksi maximum stress, c. and d. 1300 °F/127 ksi, e. and f. 1300 °F/127 ksi with superimposed 90 sec dwell.

Figure 29.—Failure initiation sites observed for subsolvus notched LCF specimens tested at: a. and b. 800 °F/115 ksi maximum stress, c. and d. 1300 °F/115 ksi, e. and f. 1300 °F/127 ksi with superimposed 90 sec dwell.

Figure 31.—Comparison of fatigue crack growth rates in cyclic tests at 25 ksi*in^{0.5} vs. temperature.

Figure 32.—Comparison of dwell fatigue crack growth rates in tests with 90 s hold at maximum stress: a. supersolvus, b. subsolvus.

Figure 33.—Comparison of 90 s dwell fatigue crack growth rates at 25 ksi*in^{0.5} vs. temperature.

Figure 34.—Fatigue cracking of supersolvus cyclic fatigue crack growth specimens tested at:
a. 75 °F, low K_{max}, b. 75 °F, high K_{max}, c. 800 °F, low K_{max}, d. 800 °F, high K_{max}, e. 1200 °F, low K_{max}, f. 1200 °F, high K_{max}, g. 1300 °F, low K_{max}, h. 1300 °F, high K_{max}

Figure 35.—Fatigue cracking of supersolvus 90 s dwell fatigue crack growth specimens tested at: a. 1200 °F, low K_{max}, b. 1200 °F, high K_{max}, c. 1300 °F, low K_{max}, d. 1300 °F, high K_{max}.

Figure 36.—Metallographic section showing intergranular fatigue cracking of supersolvus specimen tested at 1200 °F in 90 s dwell fatigue crack growth.

Figure 37.—Fatigue cracking of subsolvus cyclic fatigue crack growth specimens tested at: a. 75 °F, low K_{max}, b. 75 °F, high K_{max}, c. 800 °F, low K_{max}, d. 800 °F, high K_{max}, e. 1200 °F, low K_{max}, f. 1200 °F, high K_{max}, g. 1300 °F, low K_{max}, h. 1300 °F, high K_{max}

NASA/TM-2005-213645

Figure 38.—Fatigue cracking of subsolvus 90 s dwell fatigue crack growth specimens tested at: a. 1200 °F, low K_{max}, b. 1200 °F, high K_{max}, c. 1300 °F, low K_{max}, d. 1300 °F, high K_{max}.

Figure 39.—Metallographic section showing intergranular fatigue cracking of subsolvus specimen tested at 1200 °F in 90 s dwell fatigue crack growth .

Appendix 1—Tabulated Thermal Diffusivity Results

	Temperature-		Thermal Diffusivity-ft ² /hr		
	F				
	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
	73	0.10230	0.10269	0.10540	0.10540
	122	0.10463	0.10618	0.10811	0.10656
ĺ	212	0.11005	0.11083	0.11393	0.11276
ĺ	392	0.12206	0.12129	0.12361	0.12245
	572	0.13175	0.13020	0.13330	0.13175
	752	0.14183	0.14105	0.14105	0.14028
	932	0.15229	0.15190	0.15074	0.14996
	1112	0.16236	0.16159	0.16081	0.16236
	1292	0.16973	0.17128	0.17050	0.16895
	1472	0.18290	0.18329	0.17748	0.17980
Ī	1652	0.17980	0.18058	0.17825	0.17631
	1832	0.1802	0.18019	0.17670	0.18019
	2012	0.1794	0.17980	0.17903	0.17903
	2192	0.1848	0.18678	0.18484	0.18368

Temperature-					Temperature-			
F	Specific	Heat (Heating	Data)-BTU	ЧЬF	F	Specific	: Heat (Cooling Data)-BTU	ИIBE
SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	SpecID	2-L2-1	2-L2-2 T7-1-1	T7-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	Disk	Supersolvus	Supersolvus Subsolvus	Subsolvus
73	0.103	0.103	0.102	0.102	392	0.110	0.107 0.111	0.114
122	0.104	0.104	0.104	0.104	401	0.110	0.107 0.111	0.114
167	0.106	0.106	0.106	0.106	410	0.110	0.107 0.111	0.114
212	0.107	0.108	0.107	0.107	419	0.110	0.108 0.111	0.114
257	0.108	0.110	0.108	0.108	428	0.111	0.108 0.111	0.114
302	0.110	0.111	0.109	0.110	437	0.111	0.108 0.112	0.114
347	0.111	0.112	0.111	0.110	446	0.111	0.108 0.112	0.114
392	0.112	0.113	0.112	0.111	455	0.111	0.109 0.112	0.115
437	0.113	0.114	0.113	0.112	464	0.112	0.103 0.112	0.115
482	0.114	0.114	0.114	0.113	473	0.112	0.103 0.113	0.115
527	0.114	0.115	0.115	0.113	482	0.112	0.109 0.113	0.115
572	0.115	0.116	0.116	0.114	491	0.112	0.110 0.113	0.115
617	0.116	0.116	0.116	0.115	500	0.112	0.110 0.113	0.115
662	0.116	0.117	0.117	0.115	503	0.113	0.110 0.114	0.115
707	0.117	0.118	0.118	0.116	518	0.113	0.110 0.114	0.115
752	0.118	0.118	0.118	0.116	527	0.113	0.110 0.114	0.115
797	0.118	0.119	0.119	0.117	536	0.113	0.111 0.114	0.116
842	0.119	0.120	0.119	0.118	545	0.113	0.111 0.115	0.116
887	0.120	0.121	0.120	0.119	554	0.114	0.111 0.115	0.116
932	0.120	0.121	0.122	0.119	563	0.114	0.111 0.115	0.116
941	0.120	0.121	0.122	0.120	572	0.114	0.112 0.116	0.116
950	0.120	0.121	0.122	0.119	581	0.114	0.112 0.116	0.116
959	0.120	0.121	0.122	0.119	590	0.115	0.112 0.116	0.117
968	0.120	0.121	0.121	0.119	599	0.115	0.112 0.116	0.117
977	0.120	0.121	0.121	0.119	608	0.115	0.113 0.117	0.117
986	0.121	0.121	0.122	0.120	617	0.115	0.113 0.117	0.117
995	0.120	0.122	0.121	0.120	626	0.115	0.113 0.117	0.117
1004	0.120	0.122	0.122	0.120	635	0.115	0.113 0.117	0.117
1013	0.121	0.122	0.122	0.121	644	0.115	0.113 0.117	0.117
1022	0.120	0.122	0.122	0.120	653	0.115	0.114 0.117	0.117
1031	0.120	0.121	0.122	0.120	662	0.115	0.114 0.117	0.117
1040	0.120	0.121	0.123	0.121	671	0.116	0.114 0.117	0.118
1043	0.120	0.121	0.123	0.121	680	0.116	0.114 0.117	0.118
1058	0.120	0.121	0.123	0.122	683	0.116	0.114 0.117	0.118
1067	0.118	0.120	0.122	0.121	638	0.116	0.115 0.118	0.118
1076	0.119	0.120	0.123	0.121	101	0.116	0.114 0.118	0.119
1085	0.118	0.120	0.123	0.122	116	0.116	0.114 0.118	0.118
1034	0.110	0.120	0.124	0.123	120	0.110	0.114 0.110	0.110
1103	0.110	0.120	0.123	0.122	740	0.110	0.114 0.110	0.110
112	0.110	0.120	0.120	0.125	750	0.110	0.115 0.110	0.110
1121	0.120	0.122	0.120	0.120	761	0.117	0.115 0.115	0.113
1130	0.121	0.122	0.121	0.120	770	0.117	0.115 0.118	0.113
114.8	0.121	0.122	0.120	0.120	779	0.117	0.115 0.119	0.119
1157	0.123	0.124	0.130	0.127	788	0.117	0.115 0.119	0.113
1166	0.125	0.124	0.131	0.129	797	0.118	0.115 0.120	0.119
1175	0.127	0.128	0.133	0.131	806	0.118	0,116 0.120	0.120
1184	0.129	0.130	0.135	0.132	815	0.118	0,116 0.120	0.120
1193	0.132	0.133	0.137	0.133	824	0.118	0.115 0.119	0.119
1202	0.132	0.133	0.137	0.133	833	0.117	0.115 0.119	0.120
1211	0.133	0.135	0.138	0.134	842	0.118	0.115 0.120	0.120
1220	0.135	0.136	0.138	0.134	851	0.118	0.116 0.120	0.120
1229	0.135	0.136	0.138	0.135	860	0.119	0.116 0.120	0.120
1238	0.135	0.136	0.138	0.136	869	0.118	0.117 0.120	0.121
1247	0.136	0.137	0.140	0.137	878	0.118	0.117 0.120	0.120
1256	0.137	0.138	0.140	0.137	887	0.119	0.117 0.121	0.121

Appendix 2—Tabulated Specific Heat Results

Temperatur	e-				Temperature-				
F	Specifi	c Heat (Heating	Data)-BTU/	IbF	F	Specifi	: Heat (Cooling	Data)-BTU	ЧЬF
SpecID	2-L2-1	2-L2-2	<u>T7-1-1</u>	T7-1-2	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
1265	0.135	0.136	0.137	0.135	896	0.119	0.117	0.121	0.121
1274	0.136	0.138	0.139	0.136	905	0.119	0.117	0.121	0.121
1283	0.136	0.137	0.139	0.136	314	0.119	0.117	0.121	0.121
1232	0.135	0.137	0.138	0.131	923	0.119	0.117	0.121	0.122
1301	0.136	0.140	0.140	0.133	332	0.120	0.110	0.122	0.122
1310	0.130	0.133	0.133	0.133	950	0.13	0.11	0.121	0.121
1313	0.130	0.140	0.140	0.133	959	0.120	0.110	0.122	0.121
1320	0.130	0.140	0.140	0.133	968	0.120	0.110	0.122	0.122
1346	0.139	0.142	0.142	0.136	977	0.120	0.118	0.122	0.122
1355	0.160	0.142	0.144	0.138	386	0.120	0.118	0.122	0.123
1364	0.140	0.142	0.142	0.139	335	0.121	0.119	0.122	0.124
1373	0.139	0.140	0.138	0.137	1004	0.121	0.119	0.122	0.123
1382	0.139	0,140	0.140	0.138	1013	0.122	0.120	0.124	0.123
1391	0.141	0.142	0.141	0.139	1022	0.123	0.121	0.125	0.124
1400	0.137	0.141	0.141	0.138	1031	0.123	0.122	0.126	0.124
1409	0.139	0.141	0.142	0.139	1040	0.124	0.123	0.126	0.125
1418	0.143	0.145	0.147	0.142	1049	0.125	0.123	0.126	0.126
1427	0.142	0.144	0.149	0.141	1058	0.125	0.123	0.126	0.126
1436	0.142	0.145	0.148	0.143	1067	0.125	0.122	0.127	0.126
1445	0.140	0.144	0.146	0.142	1076	0.124	0.123	0.127	0.127
1454	0.144	0.146	0.148	0.143	1085	0.125	0.123	0.127	0.128
1463	0.144	0.149	0.151	0.146	1094	0.125	0.123	0.126	0.127
1472	0.147	0.149	0.154	0.149	1103	0.126	0.124	0.128	0.128
1481	0.144	0.147	0.152	0.147	1112	0.128	0.125	0.129	0.130
1490	0.145	0.148	0.152	0.149	1121	0.129	0.126	0.131	0.131
1499	0.147	0.149	0.154	0.152	1130	0.129	0.128	0.132	0.131
1508	0.148	0.153	0.157	0.156	1139	0.130	0.130	0.134	0.134
1517	0.154	0.157	0.165	0.159	1148	0.131	0.130	0.134	0.135
1526	0.153	0.158	0.165	0.160	1157	0.133	0.131	0.135	0.135
1535	0.160	0.165	0.172	0.168	1166	0.133	0.130	0.135	0.134
1544	0.157	0.162	0.10	0.161	11/5	0.134	0.133	0.136	0.136
1000	0.163	0.100	0.114	0.10	1104	0.136	0.134	0.131	0.130
1502	0.103	0.103	0.111	0.113	1000	0.134	0.133	0.136	0.136
1580	0.100	0.179	0.111	0.115	1202	0.135	0.132	0.138	0.130
1589	0.176	0.113	0.102	0.177	1200	0.130	0.134	0.130	0.130
1598	0.177	0.100	0.185	0.183	1229	0.137	0.134	0.139	0.100
1607	0.182	0.185	0.192	0.189	1238	0.138	0.137	0.139	0.139
1616	0.185	0.191	0.190	0.188	1247	0.140	0.136	0.140	0.140
1625	0.185	0.187	0.191	0.190	1256	0.140	0.138	0.142	0.142
1634	0.192	0.194	0.192	0.188	1265	0.139	0.137	0.142	0.140
1643	0.192	0.190	0.194	0.192	1274	0.141	0.138	0.144	0.143
1652	0,196	0.198	0.194	0.193	1283	0.141	0.139	0.145	0.144
1661	0.192	0.194	0.191	0.189	1292	0.143	0.142	0.144	0.145
1670	0.201	0.199	0.199	0.196	1301	0.142	0.139	0.143	0.144
1679	0.197	0.198	0.197	0.194	1310	0.142	0.139	0.142	0.145
1688	0.197	0.203	0.200	0.196	1319	0.143	0.141	0.145	0.145
1697	0.196	0.202	0.198	0.196	1328	0.145	0.143	0.148	0.148
1706	0.203	0.204	0.206	0.203	1337	0.146	0.143	0.149	0.148
1715	0.201	0.206	0.210	0.205	1346	0.148	0.146	0.150	0.153
1724	0.204	0.203	0.201	0.200	1355	0.145	0.144	0.149	0.148
1733	0.209	0.209	0.208	0.202	1364	0.150	0.149	0.151	0.153
1742	0.204	0.199	0.203	0.193	1373	0.148	0.146	0.148	0.152
1751	0.212	0.206	0.207	0.203	1382	0.151	0.149	0.153	0.154
1760	0.210	0.207	0.210	0.207	1391	0.149	0.149	0.150	0.154

Appendix 2—Tabulated Specific Heat Results (cont.)

	Temperature-					Temperature-				
_	F	Specific	: Heat (Heating	Data)-BTU	/IbF	F	Specific	<u>: Heat (Cooling</u>	<u>a Data)-BTU</u>	/IbF
_	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
_	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
_	1769	0.206	0.203	0.203	0.202	1400	0.149	0.148	0.153	0.153
_	1778	0.213	0.207	0.210	0.210	1409	0.151	0.151	0.154	0.156
_	1787	0.209	0.213	0.215	0.208	1418	0.150	0.149	0.156	0.152
_	1796	0.210	0.217	0.213	0.210	1427	0.159	0.154	0.162	0.160
_	1805	0.208	0.208	0.213	0.208	1436	0.143	0.151	0.155	0.154
_	1814	0.224	0.220	0.219	0.220	1445	0.157	0.155	0.155	0.161
_	1823	0.217	0.211	0.219	0.213	1454	0.156	0.153	0.157	0.160
_	1032	0.218	0.216	0.221	0.211	1463	0.151	0.156	0.160	0.156
-	1041	0.215	0.215	0.225	0.213	1412	0.150	0.151	0.103	0.100
-	1050	0.225	0.224	0.220	0.220	1490	0.150	0.155	0.160	0.160
-	1953	0.223	0.222	0.223	0.225	1430	0.161	0.155	0.102	0.102
-	1000	0.223	0.223	0.222	0.220	14-3-3	0.163	0.101	0.105	0.104
-	1996	0.230	0.224	0.220	0.221	1500	0.104	0.104	0.100	0.101
-	1895	0.223	0.220	0.230	0.231	1526	0.150	0.150	0.151	0.102
-	1904	0.200	0.201	0.200	0.202	1520	0.102	0.159	0.104	0.169
-	1913	0.200	0.204	0.200	0.220	154.4	0.100	0.150	0.167	0.169
-	1922	0.200	0.200	0.202	0.202	1553	0.100	0.102	0.101	0.100
-	1931	0.200	0.200	0.245	0.242	1562	0.163	0.167	0.172	0.172
-	1940	0.245	0.245	0.255	0.250	1571	0.166	0.164	0.166	0.170
-	194.9	0.250	0.250	0.253	0.257	1580	0.162	0.164	0.163	0.167
-	1958	0.245	0.250	0.243	0.252	1583	0.163	0.168	0.172	0.170
	1967	0.264	0.258	0.267	0.255	1538	0.167	0,163	0.168	0.171
	1976	0.259	0.265	0.259	0.253	1607	0.167	0.167	0.168	0.172
	1985	0.264	0.263	0.261	0.249	1616	0,163	0.171	0.177	0.177
	1994	0.268	0.270	0.275	0.257	1625	0,169	0,169	0.170	0.172
	2003	0.272	0.275	0.275	0.266	1634	0.170	0.168	0.172	0.174
	2012	0.265	0.279	0.273	0.275	1643	0.173	0.171	0.175	0.177
	2021	0.264	0.271	0.272	0.266	1652	0.171	0.169	0.172	0.172
	2030	0.279	0.276	0.283	0.275	1661	0.177	0.177	0.178	0.177
	2039	0.287	0.287	0.287	0.285	1670	0.171	0.175	0.174	0.177
	2048	0.289	0.290	0.289	0.284	1679	0.178	0.180	0.185	0.185
	2057	0.297	0.294	0.292	0.274	1688	0.176	0.178	0.183	0.182
	2066	0.232	0.285	0.270	0.252	1697	0.183	0.179	0.182	0.180
	2075	0.302	0.297	0.253	0.246	1706	0.184	0.184	0.188	0.187
_	2084	0.310	0.316	0.248	0.256	1715	0.184	0.186	0.189	0.186
_	2093	0.291	0.292	0.233	0.238	1724	0.180	0.181	0.184	0.183
	2102	0.293	0.292	0.262	0.250	1733	0.184	0.186	0.186	0.189
	2111	0.231	0.227	0.271	0.258	1742	0.194	0.191	0.201	0.197
_	2120	0.196	0.204	0.263	0.260	1751	0.192	0.187	0.192	0.188
_	2129	0.183	0.192	0.256	0.249	1760	0.198	0.197	0.199	0.201
_	2138	0.183	0.178	0.235	0.233	1769	0.192	0.195	0.199	0.199
_	2147	0.172	0.170	0.203	0.210	1778	0.198	0.196	0.199	0.202
_	2156	0.174	0.176	0.207	0.201	1787	0.201	0.199	0.198	0.202
_	2165	0.178	0.189	0.207	0.204	1796	0.201	0.198	0.205	0.208
_	2174	0.178	0.182	0.198	0.186	1805	0.205	0.206	0.202	0.209
_	2183	0.220	0.221	0.237	0.229	1814	0.204	0.204	0.207	0.207
_	2192	0.252	0.251	0.260	0.260	1823	0.205	0.203	0.212	0.216
_						1832	0.206	0.203	0.206	0.211
_						1841	0.218	0.216	0.220	0.222
_						1850	0.209	0.213	0.211	0.220
_						1653	0.213	0.213	0.213	0.216
_						1668	0.221	0.218	0.224	0.225
_						1101	0.219	0.220	0.223	0.226
_						1005	0.231	0.233	0.234	0.238
						1895	0.224	0.224	0.232	0.221

Appendix 2—Tabulated Specific Heat Results (cont.)

Appendix 2—Tabulated Specific Heat Results (cont.)

Temperature-				
F	Specifi	<u>e Heat (Cooline</u>	<mark>g Data)-BTU</mark>	/IbF
SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
1904	0.223	0.232	0.238	0.232
1913	0.227	0.225	0.224	0.233
1922	0.239	0.236	0.236	0.246
1931	0.251	0.250	0.257	0.260
1940	0.239	0.239	0.239	0.241
1949	0.253	0.251	0.247	0.252
1958	0.274	0.269	0.272	0.272
1967	0.261	0.262	0.268	0.262
1976	0.267	0.273	0.273	0.273
1985	0.283	0.292	0.297	0.300
1994	0.308	0.303	0.313	0.322
2003	0.322	0.327	0.333	0.333
2012	0.376	0.373	0.389	0.394
2021	0.388	0.392	0.397	0.399
2030	0.321	0.315	0.325	0.334
2039	0.176	0.174	0.187	0.188
2048	0.168	0.163	0.169	0.174
2057	0.169	0.164	0.168	0.176
2066	0.171	0.167	0.172	0.176
2075	0.175	0.177	0.167	0.178
2084	0.166	0.168	0.173	0.176
2093	0.173	0.171	0.169	0.179
2102	0.175	0.175	0.181	0.178
2111	0.179	0.170	0.181	0.179
2120	0.179	0.182	0.177	0.181
2129	0.175	0.174	0.174	0.175
2138	0.174	0,173	0.173	0.178
2147	0,189	0,176	0.186	0.198
2156	0,177	0.178	0.186	0.195
2165	0.189	0.184	0.185	0.188
2174	0.188	0.188	0.192	0.198
2183	0.195	0.196	0.203	0.200
2192	0.190	0.178	0.189	0.194

Appendix 3—Tabulated Thermal Conductivity Results

Temperature-				
F	Thermal	TU/(hr ft F)		
SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
73	5.455	5.425	5.558	5.578
122	5.683	5.713	5.825	5.755
212	6.132	6.146	6.321	6.259
392	7.138	7.039	7.179	7.070
572	7.896	7.764	7.983	7.812
752	8.692	8.614	8.644	8.463
932	9.508	9.473	9.488	9.257
1112	10.559	10.410	10.414	10.519
1292	11.550	11.546	11.562	11.471
1472	13.246	13.064	12.734	12.907
1652	13.676	13.587	13.482	13.342
1832	14.437	14.348	14.097	14.382
2012	15,187	14.965	14.987	15.032
2192	16.396	16.480	16.374	16.279

_											
	Temperature					Temperature					I
	F	Therma	Expansion (F	leating Data)-in/in	F	Thermal I	Expansion (Co	oling Data)-	in/in	l
	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	l
	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	 Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	l
_	68	0.00000	0.00000	0.00000	0.00000	 2192	0.02245	0.02210	0.02192	0.02209	l
_	86	0.00013	0.00012	0.00012	0.00012	 2174	0.02221	0.02180	0.02167	0.02182	ł
_	104	0.00025	0.00025	0.00025	0.00024	 2156	0.02195	0.02150	0.02140	0.02155	l
_	122	0.00037	0.00037	0.00037	0.00037	 2138	0.02170	0.02124	0.02115	0.02130	l
_	140	0.00050	0.00050	0.00049	0.00049	 2120	0.02146	0.02100	0.02092	0.02106	ł
_	158	0.00062	0.00062	0.00061	0.00061	 2102	0.02123	0.02076	0.02069	0.02083	ł
_	176	0.00074	0.00074	0.00073	0.00073	 2084	0.02098	0.02051	0.02045	0.02058	ł
_	194	0.00087	0.00086	0.00086	0.00086	 2066	0.02068	0.02021	0.02016	0.02028	ł
_	212	0.00099	0.00099	0.00099	0.00098	 2048	0.02032	0.01986	0.01981	0.01992	ł
_	230	0.00112	0.00112	0.00111	0.00111	 2030	0.01991	0.01947	0.01942	0.01953	ł
_	248	0.00124	0.00124	0.00124	0.00123	 2012	0.01945	0.01904	0.01897	0.01907	ł
_	266	0.00137	0.00137	0.00137	0.00136	 1994	0.01897	0.01856	0.01850	0.01858	ł
_	284	0.00150	0.00150	0.00149	0.00149	 1976	0.01857	0.01813	0.01808	0.01816	ł
_	302	0.00163	0.00163	0.00162	0.00162	 1958	0.01819	0.01775	0.01771	0.01778	ł
_	320	0.00176	0.00176	0.00175	0.00175	 1940	0.01783	0.01738	0.01735	0.01742	ł
_	338	0.00189	0.00189	0.00188	0.00187	 1922	0.01747	0.01703	0.01701	0.01707	ł
_	356	0.00202	0.00202	0.00201	0.00200	 1904	0.01713	0.01669	0.01667	0.01673	ł
_	374	0.00215	0.00215	0.00214	0.00214	 1886	0.01680	0.01636	0.01634	0.01640	ł
_	392	0.00228	0.00228	0.00228	0.00227	 1868	0.01648	0.01604	0.01602	0.01607	ł
_	410	0.00241	0.00241	0.00241	0.00240	 1850	0.01617	0.01573	0.01571	0.01576	ł
_	428	0.00254	0.00254	0.00254	0.00253	 1832	0.01586	0.01543	0.01541	0.01546	ł
_	446	0.00268	0.00268	0.00267	0.00266	 1814	0.01557	0.01514	0.01511	0.01516	ł
_	464	0.00281	0.00281	0.00281	0.00280	 1796	0.01528	0.01485	0.01483	0.01488	ł
_	482	0.00295	0.00295	0.00294	0.00293	 1778	0.01500	0.01457	0.01455	0.01460	ł
_	500	0.00308	0.00308	0.00308	0.00307	 1760	0.01473	0.01430	0.01427	0.01433	ł
_	518	0.00321	0.00322	0.00321	0.00320	 1742	0.01447	0.01403	0.01401	0.01406	ł
_	536	0.00335	0.00335	0.00335	0.00334	 1724	0.01421	0.01377	0.01375	0.01380	ł
_	554	0.00349	0.00349	0.00348	0.00348	 1706	0.01395	0.01352	0.01349	0.01355	ł
_	572	0.00362	0.00363	0.00362	0.00361	 1688	0.01370	0.01328	0.01325	0.01330	ł
_	590	0.00376	0.00377	0.00376	0.00375	 1670	0.01346	0.01304	0.01301	0.01306	ł
_	608	0.00389	0.00390	0.00390	0.00389	 1652	0.01323	0.01280	0.01277	0.01283	ł
_	626	0.00403	0.00404	0.00404	0.00403	 1634	0.01300	0.01257	0.01254	0.01260	ł
-	644	0.0041/	0.00418	0.00418	0.00417	 1616	0.01211	0.01235	0.01232	0.01238	ł
-	662	0.00431	0.00432	0.00432	0.00431	 1538	0.01255	0.01213	0.01210	0.01216	ł
-	600	0.00446	0.00446	0.00446	0.00445	 1000	0.01233	0.01131	0.01100	0.01134	ł
-	246	0.00460	0.00460	0.00460	0.00453	 1502	0.01211	0.01110	0.01101	0.01113	ł
-	704	0.00414	0.00414	0.00414	0.00413	 1044	0.01130	0.01143	0.01146	0.01152	ł
-	750	0.00400	0.00403	0.00400	0.00401	 1520	0.01163	0.01120	0.01125	0.01131	ł
	770	0.00502	0.00503	0.00503	0.00502	 1490	0.01140	0.0108	0.01085	0.01091	ł
	789	0.00511	0.00511	0.00531	0.00516	 1430	0.01120	0.01060	0.01065	0.01071	ł
-	806	0.00545	0.00532	0.00546	0.00545	 1454	0.01087	0.01088	0.01045	0.01052	ł
-	824	0.00560	0.00540	0.00560	0.00545	 1436	0.01067	0.01040	0.01045	0.01032	ł
-	840	0.00500	0.00575	0.00575	0.00553	 14:30	0.01001	0.01020	0.01020	0.01033	ł
-	860	0.00589	0.00590	0.00589	0.00514	 1410	0.01040	0.00990	0.00988	0.00996	ł
-	878	0.00503	0.00000	0.000004	0.00503	 1400	0.01020	0.000000	0.00369	0.00330	ł
	896	0.00618	P100004	0.00619	0.00617	 1364	0.00991	0.00352	0.00351	0.00359	t
	314	0.00633	0.00633	0.00633	0.00632	 1346	0.00373	0.00332	0.00933	0.00341	t
	932	0.00647	Ska00.0	0.00648	0.00646	 1398	0.00955	0.00345	0.00915	0.00394	t
	350	23300.0	222000	0.00662	0.00040	 1310	0.00337	0.00897	0.00897	0.00306	t
	368	0.00002	0.00002	0.00676	0.00675	 1292	0.00331	0.00031	0.00880	0.00000	ł
-	386	0.00690	0.00691	0.00691	0.00630	 1274	0.00013	0.00861	0.00862	0.00871	t
	1004	0.00705	0.00705	0.00705	0.00704	 1256	0.00883	0.00001	0.00844	0.00854	t
	1022	0.00719	0.00720	0.00720	0.00719	 1238	33800.0	0.00825	0.00827	0.00837	t
	1040	0.00734	0.00724	0.00735	0.00734	 1200	84800.0	0.00808	0.00810	0.000001	t
	1058	0.00750	0.00750	0.00751	0.00749	 1200	0.00040	0.00790	0.00792	0.00803	ł
	1000	0.00100	. 0.001001	0.00101			0.00001	0.001001	COULDE 1		4

Appendix 4—Tabulated Thermal Expansion Results

_						_						
	Temperature						Temperature					l
_	F	Therma	Expansion (F	leating Data)-in/in		F	Thermal	Expansion (Co	oling Data)	inin	ł
_	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2		SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	ł
_	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus		Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	Ļ
_	1076	0.00765	0.00765	0.00767	0.00765		1184	0.00813	0.00773	0.00775	0.00786	ł
_	1094	0.00782	0.00781	0.00783	0.00781		1166	0.00796	0.00755	0.00758	0.00769	ł
_	1112	0.00798	0.00798	0.00799	0.00797		1148	0.00779	0.00739	0.00741	0.00753	ł
_	1130	0.00815	0.00814	0.00816	0.00814		1130	0.00763	0.00722	0.00725	0.00736	ł
_	1148	0.00832	0.00831	0.00832	0.00830		1112	0.00746	0.00705	0.00708	0.00720	ł
_	1166	0.00848	0.00848	0.00849	0.00846		1094	0.00729	0.00688	0.00692	0.00703	ł
_	1184	0.00866	0.00865	0.00865	0.00863		1076	0.00713	0.00672	0.00675	0.00687	ł
_	1202	0.00883	0.00882	0.00882	0.00879		1058	0.00707	0.00656	0.00659	0.00671	ł
_	1220	0.00900	0.00899	0.00899	0.00896		1040	0.00691	0.00640	0.00643	0.00656	ł
_	1238	0.00917	0.00916	0.00915	0.00912		1022	0.00676	0.00626	0.00627	0.00642	ł
_	1256	0.00934	0.00933	0.00931	0.00929		1004	0.00661	0.00613	0.00612	0.00627	ł
_	1274	0.00951	0.00949	0.00948	0.00945		386	0.00646	0.00599	0.00596	0.00612	ł
_	1292	0.00968	0.00366	0.00964	0.00961		368	0.00632	0.00585	0.00583	0.00597	ł
_	1310	0.00985	0.00982	0.00980	81600.0		350	0.00617	0.00571	0.00568	0.00582	ł
_	1328	0.01002	0.00999	0.00996	0.00995		932	0.00603	0.00558	0.00555	0.00567	ł
_	1346	0.01019	0.01016	0.01013	0.01012		914	0.00589	0.00545	0.00541	0.00555	ł
-	1364	0.01037	0.01033	0.01031	0.01030		836	0.00575	0.00532		0.00540	ł
-	1382	0.01055	0.01051	0.01049	0.01049		818	0.00561	0.00519		0.00525	ł
-	1400	0.01013	0.01063	0.01068	0.01063		060	0.00541	0.00505		0.00511	ł
-	1410	0.01032	0.01087	0.01088	0.01030		042	0.00533	0.00432		0.00500	ł
-	1436	0.01111	0.01107	0.01103	0.01111		024	0.00513	0.00418		0.00481	ł
-	1404	0.01132	0.01121	0.01130	0.01134		000	0.00505	0.00464		0.00413	ł
-	1412	0.01153	0.01140	0.01152	0.01150		770	0.00432	0.00452		0.00461	ł
-	1430	0.01114	0.0110	0.01114	0.01102		750	0.00413	0.00438		0.00440	ł
-	1500	0.01131	0.01132	0.01131	0.01206		724	0.00466	0.00425		0.00436	ł
-	1520	0.01213	0.01214	0.01221	0.01231		716	0.00433	0.00412		0.00423	ł
-	1560	0.01242	0.01201	0.01245	0.01251		699	0.00433	0.00336		0.00411	ł
-	1580	0.01200	0.01201	0.01203	0.01202		680	0.00421	0.00303		0.00335	ł
-	1598	0.01200	0.01203	0.01204	0.01334		660	0.00414	0.00012		0.00373	ł
-	1616	0.01339	0.01334	0.01344	0.01360		644	0.00400	0.00346		0.00362	ł
-	1634	0.01364	0.01359	0.01369	0.01386		626	0.000000	0.00332		0.00350	ł
-	1652	0.01389	0.01384	0.01395	0.01412		608	0.00364	0.00002		0.00338	t
-	1670	0.01415	0.01403	0.01422	0.01439		590	0.00351	0.00305		0.00326	t
-	1688	0.01440	0.01435	0.01449	0.01466		572	0.00338	0.00232		0.00313	t
1	1706	0.01467	0.01462	0.01476	0.01493		554	0.00325	0.00273		0.00301	t
1	1724	0.01434	0.01483	0.01504	0.01521		536	0.00312	0.00266		0.00289	t
	1742	0.01521	0.01517	0.01533	0.01549		518	0.00300	0.00253		0.00278	t
	1760	0.01549	0.01544	0.01561	0.01577		500	0.00287	0.00240		0.00265	ſ
	1778	0.01578	0.01573	0.01590	0.01605		482	0.00275	0.00227		0.00253	ſ
	1796	0.01607	0.01602	0.01619	0.01634		464	0.00263	0.00215		0.00241	ſ
	1814	0.01637	0.01632	0.01648	0.01662		446	0.00250	0.00202		0.00229	ſ
	1832	0.01667	0.01662	0.01677	0.01691		428	0.00238	0.00189		0.00217	ſ
	1850	0.01698	0.01693	0.01707	0.01721		410	0.00226	0.00176		0.00207	ſ
	1868	0.01730	0.01725	0.01737	0.01751		392	0.00214	0.00163		0.00202	ſ
	1886	0.01762	0.01757	0.01768	0.01782		72	-0.00020	-0.00055	-0.00015	-0.00022	ſ
	1904	0.01795	0.01789	0.01800	0.01814							ĺ
	1922	0.01830	0.01823	0.01832	0.01846							
	1940	0.01864	0.01857	0.01864	0.01879							
	1958	0.01900	0.01892	0.01896	0.01912							
	1976	0.01937	0.01928	0.01929	0.01946							Ĺ
	1994	0.01975	0.01965	0.01962	0.01980							Ĺ
	2012	0.02013	0.02003	0.01993	0.02013							Ĺ
	2030	0.02053	0.02042	0.02023	0.02043							ĺ
	2048	0.02093	0.02081	0.02050	0.02068							ſ

Appendix 4—Tabulated Thermal Expansion Results (cont.)

Appendix 4—Tabulated Thermal Expansion Results (cont.)

Femperature				
F	Therma	l Expansion (H	leating Data)-in/in
SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
2066	0.02129	0.02115	0.02077	0.02094
2084	0.02161	0.02145	0.02102	0.02119
2102	0.02188	0.02172	0.02124	0.02140
2120	0.02211	0.02193	0.02143	0.02159
2138	0.02227	0.02208	0.02159	0.02177
2156	0.02241	0.02218	0.02176	0.02193
2174	0.02252	0.02225	0.02190	0.02206
2192	0.02260	0.02230	0.02202	0.02217

Appendix 5—Tabulated Instantaneous CTE Results

_					1
	Temperature F				
_	r	Instan	taneous CIE-		
_	SpecID	2-L2-1	2-L2-2	T7-1-1	17-1-2
-	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
-	212	6.98726	1.03401	6.95703	6.94125
-	230	6.96631	6.95631	6.9/119	7.01381
-	248	7.03745	7.00040	7.07160	6.98049
-	266	7.09225	7.11513	7.12332	7.07372
-	284	7.16533	7.17022	1.14482	7.15031
-	302	r.1r642	7.13646	7.19831	1.24454
-	320	01661.1	7.15863	1.15843	7.13385
-	338	r.15034	7.13390	7.14243	7.11194
-	356	7.29233	7.30506	7.28662	1.31916
-	314	1.29251	1.38488	1.36014	7.40441
-	392	7.30056	1.32376	7.33042	1.21366
-	410	1.42643	1.33566	1.33534	1.21168
-	428	r.31055	1.34466	1.34319	7.33410
-	446	1.39844	1.42218	1.44461	7.40823
-	464	1.43148	1.46263	7.43382	1.49311
_	462	1.44304	1.48688	1.46125	1.41411
-	500	1.48234	7.52230	7.48005	7.43062
-	518	1.43366	1.49433	7.51(15	7.51841
-	536	7.52453	7.60425	7.58845	7.59291
-	554	7.56871	7.69358	7.66128	7.64905
-	572	7.57020	7.66833	7.66255	7.65485
_	590	7.56085	7.66273	7.64120	7.61606
_	608	7.66544	7.67680	7.67255	7.64129
_	626	7.78610	7.74223	7.75006	7.76198
_	644	7.79704	7.75238	7.82334	7.80810
_	662	7.83128	7.76720	7.84406	7.80140
-	680	1.83495	e1011.1	7.84005	1.19205
-	638	7.80558	7.79140	1.83106	1.83448
-	116	1.85614	7.93054	7.32626	7.91/03
-	(34	7.92935	7.35633	7.32263	1.95381
-	752	1.31144	1.32133	7.92130	7.35413
-	011	1.36166	1.35324	1.33434	7.38510
-	881	1.34322	8.00462	8.00019	7.97000
-	000	0.04032	0.00026	0.04113	0.03215
-	024	0.00013	8.01300	0.00015	0.11600
-	042	0.00022	0.00464	0.00330	0.10000
-	000	0.00241	0.00322	0.00345	0.00011
-	010	0.00000	0.01003	0.05211	0.00020
-	914	0.10321	9.05770	8 10 277	0.04410 9.0204E
-	920	9.05990	7 99740	8.00211	7 996.25
-	950	0.05032	7.05044	7 99920	7.96.944
-	350	0.02002	7 00050	7.05002	7 96 900
-	300	7 9 9 9 9 1	7.94052	7.00074	0.00500
-	1004	9.04074	9.02490	9.14.460	8 10 4 0 3
-	1004	0.04214	9 14 15 1	8.09005	9.05096
-	1022	9.27905	0.14101	9.49794	0.25000 9.45646
-	1040	8 600100	8 6 3 6 9 4	8 70550	8.68721
-	1050	0.02030	0.02034	9.90004	9.00131
-	1010	9 40005	9,05494	9.04766	0.01100
-	1034	9.06900	946097	9 10 274	9.04772
-	1120	9.20323	9.00031	9 17042	9.05959
-	1130	9.20000	9.20001	9 17 4 01	9.05353
-	1140	9.4756.0	9,409290	9.08467	9 19/19
-	118.4	9 596.95	9,49854	9.31298	9 22201
	1104	0.00030	0.40034	0.01220	10.66601

Appendix 5—Tabulated Instantaneous CTE Results (cont.)

Temperature	la ata a	CTF	. is lis E	
	Instan	taneous CIE-		
SpecID	2-L2-1	2-L2-2	T7-1-1	17-1-2
Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus
1202	9.55570	9.45880	9.22277	9.17044
1220	9.57168	9.37706	9.16853	9.12909
1238	9.53957	9.32468	9.07874	9.11609
1256	9.44352	9.31443	9.03066	9.08024
1274	9.45663	9.20248	8.93042	9.07259
1292	9.43171	9,18381	8.84093	9.15518
1310	9.38744	9.21860	9.02055	9.25260
1328	9.45401	9.25158	9.28952	9.43758
1346	9.62612	9.47403	9.60874	9.80657
1364	9.85049	9.66987	10.03726	10.29517
1382	10.01446	9.88603	10.44094	10.70326
1400	10.26961	10.19375	10.83220	11.29215
1418	10.62239	10.55181	11.27237	11.87895
1436	11.06261	10.33743	11.68117	12.32215
1454	11.51301	11.44760	11.96238	12.88640
1472	11.82610	11.79993	12.29177	13.26183
1490	12,19246	12,16284	12.60267	13.50977
1508	12.38156	12,43819	12.89106	13.78050
1526	12.75945	12.72550	13,13192	14.01451
1544	13.11016	13.04251	13.40236	14.20645
1562	13.26350	13.18762	13.63933	14.24593
1580	13.44390	13.39252	13.75482	14.26831
1598	13.56107	13.52976	13.95597	14.38600
1616	13,75714	13,73964	14.12772	14.55959
1634	13.87710	13.94656	14.35144	14.56143
1652	14.03056	14.07432	14.55704	14.69275
1670	14.26619	14.25999	14.83210	14.93051
1688	14.46715	14,50611	15.09443	15.06271
1706	14.81191	14.86748	15.38813	15.28897
1724	15,19850	15,15608	15,76943	15,50484
174.2	15 39910	15 46360	15 88844	15 58414
1760	15.67551	15,77489	15.84535	15,69881
1778	16.00837	16.05228	15.98817	15 714.24
1736	16.32033	16.39528	16.09377	15 76221
1814	16.65580	16.67448	16 15512	16.03647
1832	17 12469	16,95861	16 A1685	16.00041
1850	17 50464	17 29777	16 68638	16 60441
1868	17.66952	17.60236	17.00183	16 97019
1886	18 21630	18 07047	17 38981	17.31644
1904	18 81092	18,36966	17 62387	17 75802
1900	19 19799	18 63620	17 76 38 9	18 11358
1940	19.64022	19,284.04	17 85471	18 36380
1940	20.22020	19 70597	19 10 991	18 5519.4
1976	20.23020	20.20276	18 45650	18 95597
1994	20.00400	20.20210	18 04515	18 89179
2012	21,10010	20.31525	16.94515	17 666 49
2012	21.04111	21.51203	15.51504	15.00040
2030	22.44443	22.02025	15.50050	14 12106
2040	21.00503	20.43013	14 70060	14.13100
2000	10.12114	11.61210	14.12202	14.21140
2004	10.15004	15.11210	13.00115	12.31224
2102	14.01451	13.52167	0.06475	0.05464
2120	10.78872	9.93061	3.36475	3.85164
2138	8.20523	6.86235	3.20720	3.62336
2156	6.84353	4.72670	0.64562	8.19074
2174	5.82714	3.31262	1.58576	1.04136
2192	6.63331	4.39647	8.53914	8.05148

Appendix 6—Tabulated Mean CTE Results

_						-
	Temperature-					
_	F	Mean CTE-µin/inF				L
_	SpecID	2-L2-1	2-L2-2	T7-1-1	T7-1-2	L
_	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	L
_	212	6.90090	6.89242	6.85555	6.81599	L
_	230	6.90712	6.90317	6.86834	6.84078	⊢
-	248	6.91704	6.90931	6.88162	6.85220	⊢
-	266	6.93033	6.92299	6.90373	6.87002	⊢
-	284	6.34676	6.94192	6.92111	6.8881U	┝
-	302	6.36432	6.36021	6.34100	6.31353	┝
-	320	6.99070	6.90705	6.33040	0.33453	┝
-	356	7.00339	7.00050	6.98487	6.96157	┢
-	374	7.02334	7.02260	7.00675	6.98657	ŀ
-	392	7.03575	7.04060	7.02472	7.00687	ŀ
-	410	7.05454	7.05560	7.04144	7.01964	F
-	428	7 07077	7 07007	7.05589	7.03491	F
-	446	7.08224	7.08425	7.07173	7.04991	F
-	464	7.10068	7.10155	7.09043	7.06899	F
	482	7.11621	7.11693	7.10754	7.08698	F
	500	7.13085	7.13381	7.12316	7.10330	F
	518	7.14523	7.14857	7.13786	7.11944	Γ
	536	7.15903	7.16335	7.15390	7.13589	
	554	7.17349	7.18204	7.17126	7.15428	
	572	7.18778	7.19985	7.18927	7.17194	
	590	7.20074	7.21581	7.20489	7.18828	
	608	7.21394	7.23093	7.21999	7.20228	
	626	7.23087	7.24611	7.23556	7.21853	
_	644	7.24854	7.26230	7.25307	7.23647	L
_	662	7.26542	7.27685	7.27065	7.25373	
_	680	7.28251	7.29188	7.28759	7.26968	L
_	698	7.29766	7.30526	7.30321	7.28499	⊢
-	716	7.31232	7.32072	7.31897	7.30143	⊢
-	r34 750	7.32805	7.33802	7.33603	7.31874	⊢
-	720	<u>1.34451</u> 7.96095	1.35313	7.35084	7.33545	⊢
-	700	7.07567	7.00000	7.00000	7.06754	⊢
-	206	7.39046	7 39979	7.39207	7.39341	┢
-	824	7.40697	7 / 1573	7.41397	7.39937	┢
-	842	7 4 2 2 3 0	7.43107	7.42979	7.41582	ŀ
-	860	7.42200	7.44603	7 44448	7.43141	ŀ
-	878	7.45133	7.46001	7.45878	7.44562	F
-	896	7.46475	7.47369	7.47137	7.45896	F
_	914	7.47913	7.48693	7.48498	7.47120	F
	932	7.49177	7.49795	7.49692	7.48284	Γ
	950	7.50305	7.50794	7.50731	7.49274	Γ
	968	7.51295	7.51634	7.51690	7.50247	Γ
	986	7.52165	7.52400	7.52558	7.51169	Γ
	1004	7.53143	7.53305	7.53614	7.52225	Γ
	1022	7.54174	7.54338	7.54895	7.53437	
	1040	7.55538	7.55607	7.56439	7.54959	
	1058	7.57237	7.57255	7.58333	7.56805	L
	1076	7.59380	7.59403	7.60562	7.58997	L
_	1094	7.61858	7.61799	7.62991	7.61332	
_	1112	7.64627	7.64400	7.65506	7.63710	L
_	1130	7.67376	7.67010	7.68038	7.66147	L
_	1148	7.70064	7.69702	7.70533	7.68452	L
_	1166	7.72834	7.72440	7.72993	7.70824	L
	1184	7.75765	7.75268	7.75574	17.73267	L

Appendix 6—Tabulated Mean	CTE Results	(cont.)
---------------------------	-------------	---------

_						
	Temperature-					
	F	Mean CTE-µ in/inF				
	SpecID	2-L2-1 2-L2-2 T7-1-1 T7-1-2				
	Disk	Supersolvus	Supersolvus	Subsolvus	Subsolvus	
	1202	7.78658	7.78013	7.77953	7.75587	
	1220	7.81410	7.80578	7.80176	7.77766	
	1238	7.84125	7.82942	7.82209	7.79827	
	1256	7.86607	7.85201	7.84067	7.81810	
	1274	7.88962	7.87324	7.85790	7.83669	
	1292	7.91265	7.89221	7.87279	7.85544	
	1310	7.93423	7.91148	7.88771	7.87498	
	1328	7.95533	7.93011	7.90601	7.89579	
	1346	7.97754	7.95012	7.92745	7.91987	
	1364	8.00198	7.97287	7.95380	7.94942	
	1382	8.02859	7.99735	7.98514	7.98457	
	1400	8.05680	8.02499	8.02098	8.02468	
	1418	8.08879	8.05615	8.06127	8.07276	
	1436	8.12472	8.09188	8.10640	8.12549	
	1454	8.16605	8.13256	8.15475	8.18364	
	1472	8.21100	8.17749	8.20549	8.24674	
	1490	8.25894	8.22546	8.25940	8.31167	
	1508	8.30978	8.27675	8.31532	8.37841	
	1526	8.36153	8.32953	8.37356	8.44655	
	1544	8.41818	8.38537	8.43293	8.51570	
	1562	8.47517	8.44241	8.49459	8.58472	
	1580	8.53364	8.49994	8.55642	8.65207	
	1598	8.59185	8.55861	8.61870	8.71883	
	1616	8.65086	8.61721	8.68187	8.78563	
	1634	8,71029	8.67769	8.74555	8.85243	
_	1652	8.77000	8.73804	8.81065	8.91741	
_	1670	8.83105	8.79918	8.87642	8.98407	
_	1688	8.89224	8.86097	8.94440	9.05065	
_	1706	8.95545	8.92503	9.01320	9.11801	
_	1724	3.02108	8.99129	9.08479	9.18623	
_	1742	9.08903	9.05909	9.15754	9.25486	
_	1760	9,15707	9,12901	9.22898	9.32249	
_	1778	9.22788	9.20037	9.29900	9.39016	
_	1796	9.29975	9.27348	9.36965	9.45578	
_	1814	9.37419	9.34850	9.43896	9.52232	
_	1832	9.45034	9.42454	9.50881	9.58998	
_	1850	9.53045	9.50242	9.57995	9.65910	-
_	1668	9.61073	3.58183	3.65252	3.13040	
-	1000	3.63230	3.00333	3.12116	3.00301	⊢
-	1904	3.11360	3.14118	3.00312	9.01340	
-	1922	3.66303	3.63233	3.00013	3.35131	
-	1340	10.05529	3.31333	3.33004	10.03141	⊢
-	1330	10.05533	10.01113	10.03203	10.11100	⊢
-	1010	10.15551	10.10520	10.11033	10.13001	
-	2012	10.25415	10.20230	10.10100	10.20150	
-	2012	10.05100	10.00000	10.23300	10.33013	
-	2000	10.40400	10.41020	10.3544.9	10.44653	⊢
-	2066	10.65862	10 58708	10.39795	10 48279	
-	2084	10 71844	10.64119	10.42906	10 51041	
-	2102	10.75733	10.67689	10.44463	10.52419	
-	2120	10,77377	10.68759	10.44240	10.52148	
-	2138	10,76002	10,66550	10.43070	10.51520	
	2156	10,73301	10.62430	10.41991	10.50251	
_	2174	10.69411	10.56603	10.39876	10.47627	
	2192	10.63977	10.49746	10.36599	10.43733	

Temperature- F			(ouna's Moo	lulus-Msi				
SpecID	T7-2-M1L	T7-2-M1S	T7-2-M2L	T7-2-M28	T7-2-M3L	T7-2-M3S	T7-2-M4L	T7-2-M4S
81	32.62	33.10	32.61	32.91	32.27	32.80	32.59	32.94
86	32.61	33.10	32.59	32.86	32.26	32.75	32.60	32.94
104	32.52	32.97	32.52	32.75	32.18	32.65	32.52	32.79
122	32.42	32.79	32.41	32.60	32.08	32.43	32.42	32.65
140	32.31	32.67	32.30	32.44	31.97	32.34	32.31	32.50
158	32.18	32.55	32.19	32.29	31.85	32.19	32.18	32.36
176	32.05	32.36	32.05	32.19	31.71	32.04	32.05	32.21
194	31.93	32.24	31.93	32.03	31.59	31.94	31.90	32.07
212	31.81	32.12	31.80	31.93	31.48	31.79	31.80	31.97
230	31.69	32.06	31.69	31.83	31.38	31.69	31.68	31.83
248	31.59	31.94	31.58	31.73	31.25	31.59	31.57	31.73
266	31.48	31.82	31.47	31.63	31.16	31.49	31.46	31.64
284	31.38	31.76	31.38	31.52	31.05	31.39	31.35	31.54
302	31.28	31.64	31.27	31.42	30.95	31.29	31.26	31.45
320	31.19	31.58	31.17	31.32	30.86	31.24	31.17	31.35
338	31.10	31.46	31.09	31.22	30.77	31.14	31.07	31.26
356	30.99	31.34	30.99	31.12	30.67	31.04	30.97	31.17
374	30.91	31.28	30.89	31.07	30.58	30.94	30.87	31.07
392	30.81	31.16	30.81	30.97	30.49	30.84	30.79	30.98
410	30.73	31.10	30.71	30.87	30.40	30.74	30.69	30.88
428	30.64	30.98	30.63	30.77	30.31	30.69	30.61	30.79
446	30.56	30.92	30.54	30.72	30.23	30.59	30.51	30.74
464	30.47	30.86	30.46	30.62	30.14	30.49	30.43	30.65
482	30.38	30.75	30.37	30.52	30.06	30.45	30.34	30.55
500	30.30	30.69	30.28	30.47	29.98	30.35	30.26	30.46
518	30.21	30.57	30.19	30.37	29.88	30.25	30.18	30.37
536	30.13	30.51	30.11	30.27	29.80	30.15	30.08	30.27
554	30.05	30.39	30.03	30.22	29.72	30.10	30.00	30.23
572	23.36	30.33	23.34	30.12	23.64	30.00	23.33	30.14
530	23.00	30.21	23.00	30.02	23.50	20.01	23.04	30.04
600	23.00	30.10	23.10	20.01	23.41	23.00	20.15	20.00
644	23.10	30.10	23.00	23.01	23.33	23.10	23.05	23.00
660	20.02	23.30	23.00	20.10	23.30	23.00	20.01	23.01
680	20.52	20.02	20.01	20.00	20.20	20.01	20.40	20.12
698	29.37	29.01	29.34	29.53	29.04	29.42	20.40	29.00
716	29.28	23.63	29.26	29.43	28.96	29.33	29.23	29.44
734	29.19	29.57	29.18	29.38	28.88	29.28	29.14	29.40
752	29.11	29.52	29.08	23.28	28.80	29.18	23.06	29.31
770	29.03	29.40	29.01	23,13	28.72	29.08	28.98	29,21
788	28.95	29.34	28.93	29,14	28.63	29.04	28.90	29,12
806	28.86	29.23	28.82	29.04	28.54	28.94	28.80	29.03
824	28.77	29,17	28.74	28.94	28.45	28.85	28.72	28.94
842	28.68	29.06	28.66	28.85	28.36	28.75	28.63	28.89
860	28.59	29.00	28.57	28.80	28.28	28.65	28.55	28.80
878	28.51	28.88	28.49	28.70	28.20	28.61	28.46	28.71
896	28.43	28.83	28.41	28.60	28.11	28.51	28.37	28.62
914	28.33	28.77	28.33	28.51	28.03	28,42	28.28	28.53
932	28.25	28.65	28.24	28.46	27.35	28.32	28.65	28.44
950	28.17	28.60	28.15	28.36	27.87	28.27	28.12	28.35
968	28.09	28.48	28.07	28.27	27.78	28.18	28.26	28.31
986	28.00	28.40	27.99	28.22	27.70	28.08	28.18	28.22
1004	27.92	28.31	27.91	28.12	27.62	27.99		28.13
1022	27.84	28.21	27.82	27.98	27.53	27.90		28.04
1040	27.75	28.11	27.73	27.93	27.44	27.80		27.90
1058	27.64	28.01	27.62	27.79	27.35	27.71	27.82	27.81
1076	27.54	27.91	27.53	27.63	27.24	27.61		27.72

Appendix 7—Tabulated Young's Modulus Results
	Temperature- F	Young's Modulus-Msi							
	SpecID	T7-2-M1L	T7-2-M1S	T7-2-M2L	T7-2-M2S	T7-2-M3L	T7-2-M3S	T7-2-M4L	T7-2-M4S
	1094	27.44	27.80	27.42	27.60	27.15	27.47	27.39	27.59
	1112	27.33	27.70	27.33	27.51	27.03	27.38		27.50
	1130	27.23	27.59	27.21	27.36	26.93	27.29	27.18	27.41
	1148	27.12	27.48	27.11	27.27	26.84	27.20	27.08	27.28
	1166	27.02	27.37	27.01	27.17	26.73	27.06		27.19
	1184	26.92	27.27	26.91	27.08	26.63	26.96	26.87	27.10
	1202	26.81	27.15	26.80	26.99	26.52	26.87	26.76	26.97
	1220	26.68	27.05	26.68	26.85	26.41	26.78	26.85	26.88
	1238	26.58	26.93	26.57	26.75	26.30	26.64	26.54	26.75
	1256	26.47	26.83	26.47	26.61	26.13	26.55	26.44	26.67
	1274	26.37	26.72	26.36	26.52	26.08	26.46	26.32	26.54
	1292	26.26	26.61	26.25	26.43	25.98	26.32	26.21	26.45
	1310	26.15	26.51	26.15	26.29	25.87	26.23	26.11	26.32
	1328	26.05	26.40	26.04	26.20	25.76	26.14	26.00	26.23
	1346	25.94	26.30	25.93	26.10	25.66	26.00	25.90	26.10
	1364	25.83	26.19	25.81	25.97	25.55	25.91	25.79	26.01
	1382	25.72	26.08	25.70	25.87	25.44	25.82	25.69	25.83
	1400	25.61	25.96	25.59	25.78	25.34	25.68	25.58	25.80
	1418	25.48	25.84	25.47	25.64	25.22	25.59	25.46	25.67
	1436	25.36	25.73	25.35	25.51	25.10	25.46	25.34	25.54
	1454	25.24	25.60	25.22	25.42	24.97	25.32	25.21	25.41
	1472	25.11	25.48	25.03	25.28	24.84	25.23	25.09	25.33
	1490	24.98	25.36	24.96	25.14	24.71	25.10	24.96	25.20
	1508	24.84	25.24	24.82	25.05	24.57	24.97	24.81	25.07
	1526	24.70	25.11	24.68	24.92	24.44	24.83	24.68	24.95
4	1544	24.57	24.99	24.54	24.78	24.23	24.74	24.72	24.82
4	1562	24.43	24.86	24.59	24.65	24.17	24.57	24.58	24.63
4	1580		24.72	24.45	24.51	24.22	24.48		24.57
4	1598		24.58		24.38		24.30		24.40
-	1616		24.44		24.25		24.17		24.28
-	1634		24.29		24.11		24.04		24.11
-	1652		24.12		23.94		23.87		23.94
-	1670		23.95		23.76		23.69		23.78
-	1688		23.11		23.58		23.52		23.61
-	1/06		23.58		23.41		23.35		23.45
-	1/24		23.40		23.13		23.13		23.25
-	176.0		20.11		22.31		22.35		23.04
\neg	1779		22.33		22.00		22.0		22.00
-	1796		22.03		22.33		22.40		22.00
-	1814		22.30		22.23		26.12		22.30
-	1830		21.00		21.02		21.10		22.10
	1850				21.44		21.55		21.00
	1868				21.20		20.71		
	1886				20.78	20.40	20.11		
	1304				20.10	19.83	20.01		
	1922		13.28		20.55	19.27	20.20		
	1940		19.11			18 70	19.75		
	1958		18.92			18.37	10.10		
	1976		18.63		17,85	17,89			
	1994		18,21		17.75	17.56			
	2012		10.61		17.63	17.11			
	2019				17.64	17.07			
-									

Appendix 7—Tabulated Young's Modulus Results (cont.)

		Av.					
		Cooling					
		Rate		0.2%	Ultimate		
		Soln to		Yield	Tensile		
		1600F-	Test	Strength-	Strength-	Elongation-	Reduction
Disk	SpecID	Fimin	Temp-F	ksi	ksi	<u> </u>	in Area-%
Supersolvus	BT1	75	1100	147.9	220.7	15.0	18
Supersolvus	BT2	70	800	146.7	217.4	20.5	25
Supersolvus	BT3	70	1300	142.3	193.5	21.3	24.5
Supersolvus	BT4	70	75	155.6	227.9	20.7	23
Supersolvus	BST	80	1500	131.8	151.6	3.9	9.5
Supersolvus	BSB	70	400	148.7	220.5	18.7	21.5
Supersolvus	VT1	105	1000	154.3	222.4	13.1	19.5
Supersolvus	WT2	97	75	162.5	232.9	23.9	26
Supersolvus	W13	95	1200	144.7	213.0	24.7	24
Supersolvus	W14	95	1000	148.4	215.6	19.6	21.5
Supersolvus	W15	97	1400	145.2	177.7	11.6	15.5
Supersolvus	WT6	83	1300	146.0	194.9	15.0	18
Supersolvus	WTS	87	1100	145.3	218.5	17.9	22.2
Supersolvus	RT1	165	1100	157.1	226.5	14.0	17.5
Supersolvus	RT2	160	1400	156.9	168.7	5.8	9
Supersolvus	RT3	155	1300	149.3	192.1	9.9	14.5
Supersolvus	RT5	120	1200	150.3	220.3	14.3	18.5
Supersolvus	RT6	115	400	151.6	221.1	15.3	19.8
Supersolvus	<u>RT7</u>	110	800	152.6	217.5	21.3	23
Supersolvus	RT8	115	1400	142.8	168.5	10.7	18
Subsolvus	BT1	360	1100	173.4	251.4	19.7	19.5
Subsolvus	BT2	325	800	173.5	242.9	18.1	21.5
Subsolvus	BT3	325	1300	168.6	192.0	13.6	19.5
Subsolvus	BT4	360	75	186.4	253.1	20.3	26
Subsolvus	BST	450	1300	169.7	211.3	12.0	15.9
Subsolvus	BSB	500	400	179.7	247.9	18.3	19.1
Subsolvus	WT1	570	1000	172.2	241.8	19.7	18.5
Subsolvus	WT2	375	75	187.5	252.3	21.8	26
Subsolvus	W13	350	1200	171.6	223.7	13.7	17
Subsolvus	WT4	360	1000	172.5	240.9	20.1	26.5
Subsolvus	WT5	490	1400	161.5	177.9	7.1	11
Subsolvus	W16	360	1300	169.9	199.5	9.2	14
Subsolvus	WTS	375	1200	167.0	223	10.0	15.5
Subsolvus	RT1	725	1100	173.5	243.1	14.0	16.5
Subsolvus	RT2	600	1400	165.9	170.6	5.4	11
Subsolvus	RT3-B	400	1300	171.3	194.3	8.1	9.5
Subsolvus	RT4	590	1500	134.1	154.7	9.3	8.5
Subsolvus	RT6	420	400	174.8	241.9	18.9	25
Subsolvus	RT7	420	800	175.8	242.7	16.9	21
Subsolvus	RT8	510	1400	159.0	176.1	10.0	7.5

Appendix 8—Tabulated Tensile Results

Appendix 9—Tabulated Notch Tensile Results

		Av. Cooling Rate		Ultimate
		Soln to		Tensile
		1600F-		Strength-
Disk	SpecID	Fimin	Temp-F	ksi
Supersolvus	BNT1	78	75	266.6
Supersolvus	BNT3	80	1000	254.4
Supersolvus	BNT4	77	1300	259.4
Supersolvus	BNT5	77	1100	251.4
Supersolvus	WNT1	95	1200	245.8
Supersolvus	WNT2	85	800	256.1
Supersolvus	WNT3	83	1400	241.5
Supersolvus	WNT4	85	1100	250.9
Subsolvus	BNT1	600	75	297.5
Subsolvus	BNT2	375	400	280.3
Subsolvus	BNT3	320	1000	284.6
Subsolvus	BNT4	320	1300	252.6
Subsolvus	BNT5	420	1100	274.5
Subsolvus	WNT1	430	1200	268.6
Subsolvus	WNT2	325	800	284.5
Subsolvus	WNT3	325	1400	225.1
Subsolvus	WNT4	480	1100	284.4

Appendix 10—Tabulated creep results

÷									
			Av.						
			Cooling						
			Rate						
			Soln to		Creep	0.2%		Rupture	Rupture
			1600F-		Stress-	Creep	Rupture	Elongation-	Reduction
	Disk	SpecID	Fimin	Temp-F	ksi	Time-h	Life-h	%	in Area-%
	Supersolvus	BC1	75	1300	100	557	1691.9	7.3	9.8
	Supersolvus	BC2	65	1200	135	233			
	Supersolvus	WC1	115	1400	80	153			
	Supersolvus	WC2	100	1300	95	710			
	Supersolvus	WC3	100	1500	35	1590	2231.4	2.9	4.2
	Supersolvus	WC4	110	1400	100	14.8			
	Supersolvus	WC5	100	1500	50	132			
	Supersolvus	WC6	100	1400	65	680			
	Supersolvus	VC7	110	1500	35	935			
	Supersolvus	VC8	100	1400	80	86			
	Supersolvus	VC9	125	1300	125	46.6			
	Supersolvus	VC10	110	1500	65	42.4	141.4	14.2	16.2
	Supersolvus	VC11	110	1200	125	1347	3574.2	3.2	7.3
	Supersolvus	RC1	135	1300	100	895	1881.7	5.4	8.5
	Supersolvus	RC2	130	1500	50	93.6			
	Supersolvus	RC3	125	1400	65	970	1849.7	4.0	5.7
	Supersolvus	RC4	110	1300	110	183			
9	Subsolvus	BC1	685	1300	100	495.2	886.7	7.1	10.1
9	Subsolvus	BC2	685	1200	135	1260			
9	Subsolvus	VC1	650	1300	80	1380	2647.1	8.4	13.3
9	Subsolvus	WC2	400	1400	35	420			
9	Subsolvus	WC3	500	1500	35	17.7	157.1		
9	Subsolvus	WC4	650	1400	65	50			
9	Subsolvus	WC5	400	1300	80	415			
9	Subsolvus	WC6	520	1200	125	1616	5265	6.7	11.9
- [9	Subsolvus	VC7	725	1400	35	225			
9	Subsolvus	WC8	560	1200	150	202			
9	Subsolvus	WC9	670	1300	125	139	224	5.7	9.6
9	Subsolvus	WC10	425	1200	150	94.5			
9	Subsolvus	WC11	525	1400	100	5.7	34	5.9	11.2
9	Subsolvus	RC1	700	1300	100	86	671.5	9.6	14.2
9	Subsolvus	RC2	550	1500	50	4.3			
9	Subsolvus	RC3	675	1200	135	770			
9	Subsolvus	RC4	575	1400	65	33			

		Av.			
		Cooling			
		Rate			
		Soln to	_		
		1600F-	Temperature-	Strain	Fatigue life-
Disk	SpecID	Fimin	F	Range-%	cycles
Supersolvus	BL1	87	800	1.196	3,033
Supersolvus	BL2	80	1300	0.8	6,937
Supersolvus	BL3	78	800	0.598	48,725
Supersolvus	BL4	75	800	0.598	81,939
Supersolvus	BL5	75	800	0.598	94,733
Supersolvus	BL13	75	800	0.997	8,125
Supersolvus	WL2	110	800	0.798	20,254
Supersolvus	RL2	110	800	1.192	3,150
Supersolvus	RL3	132	800	0.799	28,195
Supersolvus	RL5	130	800	0.998	6,986
Supersolvus	RL8	130	800	0.597	77,950
Supersolvus	BL6	83	1300	0.597	332,061
Supersolvus	BL7	78	1300	0.598	223,970
Supersolvus	BL8	75	1300	0.598	10,366
Supersolvus	BL9	95	1300	1.195	1,023
Supersolvus	BL11	85	1300	0.999	2,557
Supersolvus	BL12	85	1300	0.797	7,128
Supersolvus	WL3	90	1300	0.999	2,157
Supersolvus	RL1	117	1300	0.798	7,128
Supersolvus	RL4	125	1300	1.199	1,038
Supersolvus	RL7	135	1300	0.599	246,425
Subsolvus	BL1	400	800	1.199	6,586
Subsolvus	BL3	350	800	0.598	350,207
Subsolvus	BL4	275	800	0.6	572,745
Subsolvus	BL5	375	800	0.597	338,501
Subsolvus	BL13	300	800	0.998	8,134
Subsolvus	WL2	425	800	0.798	104,771
Subsolvus	RL2	440	800	1.196	8,225
Subsolvus	RL3	550	800	0.8	68,356
Subsolvus	RL5	550	800	0.999	7,547
Subsolvus	RL8	520	800	0.596	307,903
Subsolvus	BL2	300	1300	0.798	44,737
Subsolvus	BL6	325	1300	0.6	9,529,316
Subsolvus	BL7	275	1300	0.594	916,939
Subsolvus	BL8	350	1300	0.597	2,557,193
Subsolvus	BL9	425	1300	1.197	499
Subsolvus	BL11	320	1300	0.997	16,951
Subsolvus	BL12	300	1300	0.797	12,185
Subsolvus	WL1	525	1300	0.999	3,121
Subsolvus	RL1	525	1300	0.802	9,133
Subsolvus	RL4	490	1300	1.195	1,214
Subsolvus	RL7	560	1300	0.601	963,423

Appendix 11—Tabulated Low Cycle Fatigue Results

Appendix 12—Tabulated Notch Fatigue Results

		Av.				
		Cooling				
		Rate				
		Soln to				
		1600F-	Temperature-	Maximum	LCF or FCG	
Disk	SpecID	F/min	F	Stress-ksi	life -cycles	Notes
Supersolvus	BNL2	97	800	158	8,122	5Hz
Supersolvus	RNL3	130	800	137	15,061	5Hz
Supersolvus	BNL6	75	800	115	29,744	5Hz
Supersolvus	BNL5	75	800	94.5	218,404	5Hz
Supersolvus	BNL4	120	1300	137	4,675	5Hz
Supersolvus	BNL4	85	1300	126.5	18,242	5Hz
Supersolvus	BNL1	105	1300	116	187,412	5Hz
Supersolvus	BNL1	115	1300	126.5	456	90s dwell
Supersolvus	RNL2	100	1300	137	1,163	90s dwell
Subsolvus	BNL6	360	800	158	9,642	5Hz
Subsolvus	RNL3	550	800	137	15,831	5Hz
Subsolvus	BNL5	300	800	115	51,207	5Hz
Subsolvus	BNL4	350	800	105	621,145	5Hz
Subsolvus	RNL2	420	800	94.5	2560007+	5Hz, Runout
Subsolvus	BNL2	400	1300	158	2,168	5Hz
Subsolvus	RNL4	450	1300	137	57,722	5Hz
Subsolvus	BNL1	730	1300	115	2,163,114	5Hz
Subsolvus	RNL6	450	1300	126.5	14,112	90s dwell
Subsolvus	RNL1	500	1300	126.5	57	90s dwell

Appendix 13—Tabulated Fatigue Crack Growth Results

			Av.						
			Cooling						
			Rate			da/dt at		da/dn at	
			Soln to		da/dt at 20	25	da/dn at	25	
			1600F-	Temperature-	ksi*in.5,	ksi"in.5,	20 ksi*in.5,	ksi"in.5,	
	Disk	SpecID	F≀min	F	in./sec	in/sec	infeye	infeye	Test Type
	Supersolvus	BK2	66	800			2.7E-06	6.0E-06	0.33Hz
	Supersolvus	WK1	110	75			5.0E-07	2.2E-06	0.33Hz
	Supersolvus	WK2	90	400			9.5E-07	3.2E-06	0.33Hz
	Supersolvus	RK3	110	1200			5.8E-06	9.8E-06	0.33Hz
	Supersolvus	RK4	110	1300			7.3E-06	1.8E-05	0.33Hz
	Supersolvus	BK1	66	1200	1.0E-07	3.9E-07			90s dwell
	Supersolvus	BK1	130	1300	2.0E-06	4.5E-06			90s dwell
	Supersolvus	RK2	130	1200	2.0E-07	3.2E-07			90s dwell
	Subsolvus	BK2	360	800			4.0E-06	9.0E-06	0.33Hz
	Subsolvus	WK1	425	75			2.0E-06	4.7E-06	0.33Hz
	Subsolvus	WK2	340	400			2.2E-06	5.0E-06	0.33Hz
	Subsolvus	RK3	425	1200			1.8E-05	3.5E-05	0.33Hz
	Subsolvus	RK4	425	1300			2.8E-05	5.5E-05	0.33Hz
_	Subsolvus	BK1	360	1200	8.0E-07	1.8E-06			90s dwell
	Subsolvus	RK1	470	1300		2.5E-05			90s dwell
	Subsolvus	RK2	470	1200	8.5E-07	1.8E-06			90s dwell

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of int	formation is estimated to average 1 hour per n	esponse, including the time for revie	wing instructions, searching existing data sources,					
collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 222	for reducing this burden, to Washington Head 202-4302, and to the Office of Management an	quarters Services, Directorate for Int d Budget, Paperwork Reduction Pro	formation Operations and Reports, 1215 Jefferson ject (0704-0188), Washington, DC 20503.					
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED					
	June 2005	Tec	hnical Memorandum					
4. TITLE AND SUBTITLE		5	. FUNDING NUMBERS					
Thermal and Mechanical Pr Disk Alloy LSHR	dvanced	NING 22 070 20 00						
6. AUTHOR(S)			WBS-22-079-30-09					
Timothy P. Gabb, John Gay	da, Jack Telesman, and Peter T.	Kantzos						
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)	8	B. PERFORMING ORGANIZATION REPORT NUMBER					
National Aeronautics and S	pace Administration							
John H. Glenn Research Ce	enter at Lewis Field		E-15133					
Cleveland, Ohio 44135–31	191							
9. SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)	1	0. SPONSORING/MONITORING					
			AGENCY REPORT NUMBER					
National Aeronautics and S Washington, DC 20546–00	pace Administration 001		NASA TM—2005–213645					
Institute, 22800 Cedar Poin RMM, 216–433–3272.	t Road, Brook Park, Ohio 44142	. Responsible person, Tin	nothy P. Gabb, organization code					
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	1	2b. DISTRIBUTION CODE					
Unclassified - Unlimited Subject Category: 07								
Available electronicelly at http:/								
This publication is available from	<u>rentrational and the second s</u>	Formation 201 621 0200						
13. ABSTRACT (Maximum 200 word	in the NASA Center for Aerospace ini (s)	offilation, 501–021–0590.						
A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 °F.								
14. SUBJECT TERMS	ng disks: Heat resistant allows: N	Achanical properties	15. NUMBER OF PAGES					
Thermal properties	reenamear properties,	16. PRICE CODE						
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	20. LIMITATION OF ABSTRACT					
Unclassified	Unclassified	Unclassified						
I NSN 7540-01-280-5500		<u>I</u>	Standard Form 298 (Rev. 2-89)					