
July 2005

NASA/CR-2005-213500

A Survey of Singular Value Decomposition

Methods and Performance Comparison

of Some Available Serial Codes

Gerald E. Plassman

Raytheon Technical Services, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA’s

scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office is

also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are published by

NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI

Program Office’s diverse offerings include creating

custom thesauri, building customized databases,

organizing and publishing research results ... even

providing videos.

For more information about the NASA STI Program

Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and

Space Administration

Langley Research Center Prepared for Langley Research Center

Hampton, Virginia 23681-2199 under Purchase Order L-70750D

July 2005

NASA/CR-2005-213500

A Survey of Singular Value Decomposition

Methods and Performance Comparison of

Some Available Serial Codes

Gerald E. Plassman

Raytheon Technical Services, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

 1

A Survey of Singular Value Decomposition Methods and Performance
Comparison of Some Available Serial Codes

Gerald E. Plassman, Raytheon

Introduction

A growing need for accurate and robust noise measurement has emerged over the past several
years. To meet this need, NASA Langley Research Center has developed and tested
instrumentation incorporating two-dimensional directional acoustic sensor arrays and post-
processing procedures involving classical beam-forming of a discrete two-dimensional acoustic
image based on array steering followed by image deconvolution to obtain high resolution maps of
source noise.1 Deconvolution for this application represents an inverse problem that typically
requires the solution of a large and very ill-conditioned linear system characterized by a real-
valued, dense, and mildly non-symmetric system matrix, A. While DAMAS2, a most recent and
promising Langley developed algorithm for solving this problem, incorporates an iterative
solution method, singular value decomposition (SVD) remains a solution method of interest. In
this report, the SVD requirement for a recently tested alternative source image deconvolution
algorithm is addressed, and the computational bottleneck it represents in that application
motivates a corresponding interest in identifying the most efficient methods and implementations
for achieving SVD.

The serial computation of a complete SVD of a square matrix of order n by the classic method of
Golub-Kahan-Reisch (GKR) requires O(n3) time.3 The Numerical Recipes4 implementation of
this method, routine SVDCMP, is currently being used and, for problems with A of order
n=1000, represents a computational bottleneck in SVD-based implementations of the
deconvolution algorithm. In this algorithm, A is defined in terms of array steering vectors which
depend on the size and relative orientation of the acoustic source grid with respect to the sensor
array, the shear effects of the flow field, and the frequency of acoustic response addressed.1 The
desire to address sequences of many test problems with A of larger order, together with the
knowledge that, given the above dependencies, A will generally not be identical over these
sequences, identifies the criticality of identifying a more efficient SVD method.

The addressed alternative algorithm for source image deconvolution first applies SVD and then
computes a regularized solution subject to a non-negativity constraint. SVD of A allows for
solution expression as a singular value (SV) expansion. For such an A, solution regularization
eliminates or reduces the magnitude, and noise-induced distorting effects, of all but the small
number of leading (dominant SV) terms of a SV solution expansion. The non-negativity
constraint adjusts the regularized solution if necessary to remove any physically non-meaningful
negative elements or source pressure values.

This alternative deconvolution algorithm, using a truncated solution expansion form of
regularization followed by a non-negative solution primal method by deVilliers etal.5, produces
encouraging results when tested on idealized point source synthetic data. A user-supplied
threshold on SV magnitude determines the truncation point. The deVilliers non-negative solution
method is formulated as a constrained quadratic programming problem on the coefficients of a
full SV solution expansion, wherein the leading term coefficients are held fixed and the
coefficients of the reintroduced non-leading terms are selected to yield the minimum 2-norm
solution such that the sum of all their associated expansion terms are non-negative. This non-

 2

negative solution method demonstrates the advantages of reproducing the original truncated
expansion solution whenever that is non-negative, adding a minimum 2-norm extra solution
component (the remainder of the expansion with altered coefficients) when required to achieve
solution non-negativity, and generally improving solution resolution.

The primary purpose of the work reported in this paper is a performance comparison of available
alternative complete SVD methods/implementations. A secondary purpose is a survey of a wider
scope of alternatives, including partial SVD, special case SVD, and others developed for
concurrent processing systems, with particular focus on computer clusters such as Beowulf
systems.

The remaining sections of this paper will address the extent of the SVD requirement for the
addressed SVD-based alternative deconvolution algorithm, a brief and selective summary of SVD
methods currently available, a description of the serial full SVD method implementations selected
for comparison with SVDCMP, a description of the test problems addressed during this
comparison, and the results of that testing including the identification of Lapack 3.0 routine
DGESDD as a recommended full SVD replacement for SVDCMP.

SVD Requirement

This section describes the extent of the SVD requirement for the addressed SVD-based
alternative deconvolution algorithm.

The SVD of a real-valued square A, say n by n, the type of A obtained for the addressed
application, can be expressed as the factorization, A = U*W*VT, where W is diagonal with
monotonically non-increasing positive elements, U and V are orthogonal (i.e. columns Ui of U are
orthonormal and columns V i of V are orthonormal), and all three are n by n. Since V is
orthogonal, VT, the transpose of V is also the inverse, V-1, of V. Similarly, UT = U-1. Therefore,
given the linear system Ax = b, where x and b are respectively the n by 1 vectors representing the
unknown desired solution and known right hand side (beam-formed acoustic image in the
addressed application), we can obtain solution x as follows:

Ax = b (U*W*VT)x = b x = (U*W*VT)-1b x = V*W-1UTb (1)

where W-1 = diag(1/wi) and wi is the i’ th diagonal element (SV) of W. Thus x can be expressed as
the SV expansion of scalar multiples of the orthonormal columns of V:

x = i ci* V i (2)

where scalars ci = Ui

T
 *b/wi, that is the inner products of the columns of U and b divided by the

associated SV. Thus a truncated expansion, say the first k terms, requires only the first k elements
of W and first k columns of U and V. Notice that the leading terms of this expansion are those
corresponding to the dominant SVs, and also that the small wi associated with the later terms will
magnify any noise in those terms.

While equation (2) shows that solution regularization by truncated solution expansion requires
only a partial SVD, that is the determination of only the leading k SVs (elements of W) and left
and right hand singular vectors (columns of U and V), the deVilliers positive solution primal
method requires the availability of the remaining n-k columns of V in order to both define the

 3

constraints on the coefficients and evaluate the terms of the altered remainder of the expansion.
The use of the classical regularization method of Tikhonov6, an alternative to regularization by
truncated solution expansion, employs a weighting of all the SV expansion terms based on SV
magnitude, and therefore requires all W elements and U rows.

An alternative positive solution method defined by deVilliers etal is based on solving the dual of
the primal method. This dual method alternative requires the solution of a non-linear problem of
order k to obtain new coefficients of the k terms of the truncated expansion for x leading to a non-
negative solution. The advantages of this dual method are reduced problem order and elimination
of the requirement for columns of V beyond k. Its disadvantage is that computational cost in part
scales as k3 while that of the primal method scales as n. For k << n, as is typical for current
applications of the addressed deconvolution algorithm, deVilliers etal recommend the dual
method. For such cases, deVilliers etal demonstrate the ability of a quasi-Newton implementation
of this dual method, including a simple remedy for potential non-convergence, to compute non-
negative solutions comparable with the primal method in a fraction of the time.

In summary, the current implementation of the SVD-based alternative deconvolution algorithm,
with solution regularization by truncated SV expansion and non-negative solution assurance by
the deVilliers primal method, requires an SVD that provides only truncated W elements and UT
rows (i.e. leading U columns) but all (columns) of V, where U truncation corresponds to that of
W as established by a user specified threshold on SVs. A new implementation, obtaining non-
negative solution assurance by the deVilliers dual method would require only a partial SVD, i.e.
only the k leading elements of W and k leading columns of both U and V. This suggests that any
further investigation of an SVD-based alternative deconvolution algorithm has the potential to
dramatically reduce the SVD computational cost and possibly overall algorithm cost by
combining partial SVD computation with the deVilliers dual method.

SVD Methods

A selective literature review of SVD methods and their implementation provided a basic
understanding of their applicability to and potential for use in the addressed SVD-based
alternative deconvolution algorithm, and guided the selection of alternative codes for a
performance evaluation against SVDCMP. This section outlines the knowledge gained by that
review as it applies to serial computation of complete or partial SVD of a real-valued square A
using direct (or transformational) methods. Methods for obtaining SVD by eigendecomposition of
Hermitian (or symmetric for real-valued) matrices related to A are also described. The potential
for a parallel implementation of iterative methods is only briefly addressed.

LAPACK/ScaLAPACK

A 1996 survey by Higham7 of a decade of recent developments in dense linear algebra, including
SVD, identifies LAPACK8 as a state of the art (public domain) package of Fortran linear algebra
software and successor to EISPACK and LINPACK. As such, LAPACK serves as a
clearinghouse for available implementations of new linear algebra methods. LAPACK routines
also make use of partitioned implementations of imbedded vector-vector through matrix-matrix
operations, by means of potentially hardware optimized Basic Linear Algebra Subprograms
(BLAS), that enable execution efficiency on high performance (hierarchical memory) computers
over problem scale by preserving a high ratio of floating point operations to data movement. This

 4

identifies LAPACK as a likely source of efficient alternatives to SVDCMP. LAPACK 3.0, the
latest version, offers several such alternatives based on a range of SVD methods.

ScaLAPACK9 is a scalable version of LAPACK designed for distributed memory parallel
architectures, including networked clusters of processors, supporting message passing.
ScaLAPACK utilizes a set of Basic Linear Algebra Communication Subprograms (BLACS)
along with BLAS to enable efficiency and portability. ScaLAPACK provides only one of the
LAPACK SVD methods, but for sufficiently large problems offers a potential for faster
computation on parallel architectures with sufficient communication performance.

SVD by Eigendecomposition

A recent SIAM publication10, serving as a practical guide for the solution of algebraic eigenvalue
problems, provides a good description of current methods for both complete and partial SVD. It
also identifies those that are available in LAPACK 3.0 or anticipated in a future version. It
similarly addresses methods for computing the eigenvalues and eigenvectors of Hermitian (or
symmetric for real-valued) matrices. These eigendecomposition methods can be used to obtain
the SVD of any real-valued square A by computing the eigendecompostion of the symmetric
matrix S = AT*A, which is:

S = AT*A = (U*W*VT)T*(U*W*VT) = (V*WT*UT)*(U*W*VT) = V*(W*W)*VT (3)

and is always symmetric and positive semidefinite. Thus the singular values, wi, of A are the
square roots of the non-negative eigenvalues, wi

2, of AT*A, while the right singular vectors, Vi, of
A are the eigenvectors of AT*A. The left singular vectors, Ui, of A can then be computed as Ui=
A*Vi/wi. SVD computation based on eigendecompostion is somewhat less efficient than SVD
specific methods, but supplements the set of available codes, particularly with respect to partial
SVD computation. A similar approach involves the eigendecomposition of A*AT. These two
approaches do not increase the order of S beyond that of A, but require significant pre- and post-
processing (e.g. computations of S = AT*A and Ui = A*Vi/wi, i =1,n) and may reduce the
accuracy of computed small SV and associated singular vectors.

An alternative choice for the symmetric matrix S from which eigendecomposition methods can be
used to obtain the SVD of any real-valued square A is S = H(A) which is defined as:

S = H(A) = | 0 A | = Q*Z*QT (4)
 | AT 0 |

Where: Q = 1/sqrt(2)*| U -U |, Z = | W 0 |; Z and W diagonal
 | V V | | 0 -W |

This approach does not require significant pre- and post-processing nor reduces the accuracy of
computed small SV and associated singular vectors, but results in an S of order twice that of A.

Direct SVD Options

Direct or transformational SVD specific methods, those intended for dense, typically non-
symmetric (and in our case real square) matrices, A, typically involve the following three phases

 5

when implemented for serial computation; where subscripts 1 and 2 on U and V indicate distinct
orthogonal matrices rather than columns of U and V, and I is the identity matrix:

1) U1

T*A*V1 = B, U1
T*U1 = V1

T*V1 = I; orthonormal reduction to bidiagonal form, B
2) U2*W*V2

T = B, U2
T*U2 = V2

T*V2 = I; an SVD of bidiagonal form B
3) U = U1*U2 and V = V1*V2 A = U*W*VT an SVD of A

Phase 1 is typically computed by Householder reflections at a cost of (8/3)*n3 floating point
operations (flops). Phase 3 cost is also O(n3) flops. Phase 2 cost, however, depends both on the
method used and the character of matrix A. A similar phase and associated flops cost breakdown
is applicable to the related eigendecomposition for AT*A; where phase 1 now results in a
symmetric tridiagonal matrix at a cost of (4/3)*n3 flops.

We now briefly describe the standard available phase 2 alternatives, some of which are only
suitable for complete SVD. We also identify available LAPACK/ScaLAPACK implementations,
limiting ourselves to those addressing the SVD of A when available, and identifying those
addressing the SVD of AT*A when that is the only option. A doctoral dissertation by Dhillon11
provides (eigendecomposition) flops analyses of these standard phase 2 methods and presents a
very promising new one, suitable for both partial and complete SVD and based on
eigendecompostion of related hermitian matrices, which has the potential for O(n) cost per SVD
triplet (wi and associated Ui and V i), compared with near O(n2) for existing alternatives.
Reference 10 also provides flops analysis, including those for SVD directly from A.

Classic Complete SVD. Use of the classic QR algorithm for phase 2 of the complete SVD of A,
long considered the best serial implementation, incurs a cost of O(n3) flops (6*n3 when addressing
AT*A), including O(n2) expensive square root operations. This QR algorithm is implemented in
the LAPACK computational routines xBDSQR (x=S or D for single or double precision) and
called by their SVD driver’s xGESVD. These drivers implement the classic GKR method for
SVD by combining Householder based phase 1 with QR based phase2. This is the only direct
SVD method supported by ScaLAPACK.

Divide and Conquer Based Complete SVD. A more recent phase 2 algorithm for complete
SVD, based on a divide and conquer technique proposed by Cuppen for parallel implementation
of the related hermitian (or symmetric) eigenproblem (eq. 3), is typically faster than other
complete SVD phase 2 algorithms on serial computers as well. This divide and conquer approach
recursively applies a technique of independently diagonalizing two equal sized sub-tridiagonal
matrices followed by a coupling step. Recursion is continued until a sub-matrix order of about 25
is reached, at which point the classic QR is applied. The smaller serial cost stems from deflation,
or the common recurrence of identical eigenpairs (eigenvalue and eigenvector) in the successive
sub-bidiagonal/tridiagonal matrices. For the worst case, when no deflation occurs, O(n3) flops are
required, but the typical flops requirement with deflation is much less. While the accuracy of
classic QR is not guaranteed, it is typically achieved in practice. Mild assumptions about the
implementation of floating point arithmetic are made, but modern processors typically meet them.
This phase 2 algorithm is the fastest currently available in LAPACK specifically for the complete
SVD problem. It is most efficient when eigenvalues are clustered. It is implemented in xBDSDC
and called by SVD driver routines xGESDD. One drawback of this phase 2 algorithm is the
significant amount (more than 8n2) of floating point workspace required, which could become
prohibitive for sufficiently large problems.

Standard Partial SVD. When only a partial SVD is required, a bisection method of determining
singular values followed by an inverse (power) iteration method to find the corresponding

 6

singular vector pairs becomes attractive. When the desired singular values are isolated, this
approach to solving the phase 2 algorithm can cost as little as O(n) flops per singular triplet.
However, this per-triplet cost can increase to O(nk2), in achieving singular vector orthogonality,
when the desired singular value is within a cluster of k-1 others. When many singular values are
clustered, the total cost could approach O(n3) and singular vector orthogonality is not guaranteed.
This phase 2 algorithm is not available in LAPACK for direct SVD of A, but SVD by the (eq. 3)
related eigenproblem solution of AT*A or the (eq. 4) related eigenproblem solution of H(A) by
this algorithm is supported by the LAPACK driver xSYEVX, with the bisection and inverse
iteration steps respectively performed by the computation routines xSTEBZ and xSTEIN. When
eigenvalues are well separated each eigen-value/vector pair can be computed independently,
yielding a simple and embarrassingly parallel implementation. Thus, despite the potential for
heavy communication when computing orthogonal eigenvectors associated with closely clustered
eigenvalues, the bisection/inverse iteration algorithm for the phase 2 solution remains popular for
parallel implementation. ScaLAPACK supports such an implementation in the driver PxSYTRD
and the computational routines PxSTEBZ and PxSTEIN.

Ultimate Partial/Full SVD. The “ultimate” , O(n2) cost, phase 2 solution for complete SVD is
theoretically achieved by both the fast multipole divide and conquer method of Carrier,
Greengard, and Rokhlin and the recently developed algorithm by Dhillon11. No software for
performing SVD with the former method has been identified. The Dhillon algorithm, also called
the Relatively Robust Representation (RRR) algorithm, however, is implemented in the
LAPACK computational routines xSTEGR in support of the hermitian (or symmetric)
eigenproblem which can address AT*A or H(A) to obtain an SVD of A. This RRR algorithm
implementation is usually faster than the “divide and conquer” method implemented in xSTEDC
(and in xBDSDC for SVD), and is expected to directly support SVD as well in a future release of
LAPACK. While RRR is capable of supporting both partial and complete eigenproblems,
LAPACK xSTEGR currently addresses only the complete case. The RRR algorithm represents
an alternative way of performing inverse iteration, a very fast method for isolated eigenvalues
that avoids the high expense of re-orthogonalizing the eigenvectors associated with clusters of
eigenvalues. When clusters of eigenvalues are encountered, RRR abandons inverse iteration in
favor of a matrix shift operation that permits a triangular factorization such that the small shifted
eigenvalues, those in the cluster, are determined to high relative accuracy. Their eigenvectors are
then accurately obtained by an optimal twisted (or double ended triangular) factorization. The low
cost of these computations relies on recently discovered (differential qd) algorithms that produce
the twisted factorizations without computing matrix products.

Jacobi SVD Methods

Jacobi methods for computing SVD are fundamentally different than those already discussed in
that they seek (for real valued A) to obtain the factorization A = U*W*VT directly, to within
some convergence criteria, by iterative application of elementary orthogonal transformations or
Jacobi rotations. In effect it combines phases 1 and 2 of the identified direct SVD methods. The
orthogonal transformations applied in phase 1 of these direct SVD methods retain introduced zero
elements and thus attain the bidiagonal (or tridiagonal) B in a fixed number of steps determined
by n, the order of the A. The phase 2 objective of achieving a diagonal W to some convergence
criteria is then achieved by applying to B one of the methods described above. Each Jacobi
rotation eliminates (zeros out) a single element of the matrix to which it is applied. Successive
Jacobi rotations each eliminate some other single element, while possibly reintroducing non-zero
values in the place of elements eliminated by preceding Jacobi rotations, but doing so in a manner
that reduces the sum of the squares of all off-diagonal elements. Thus a sufficient but unknown

 7

number of iterations (Jacobi rotations) will yield a diagonal W to within some convergence
criteria in the least squared sense. Serial implementations of Jacobi methods are slower than serial
implementations of any of the direct SVD methods, but have the potential to determine much
more accurately the smallest SV and their associated singular vectors and are more amenable to
parallelization.

Selected Codes

Code selection for a comparison with SVDCMP (NRsvdcmp) in terms of complete SVD
computation accuracy and cost was limited to four routines. These routines, like SVDCMP, do
not support partial SVD computation. The testing of partial SVD computation is not addressed in
this paper. The first is the routine F02WEF (NAGf02wef) from the licensed NAG Fortran
Library. The remaining three, all from the public domain LAPACK 3.0 library, include DGESVD
(LPdgesvd), DGESDD (LPdgesdd) and DSYEVR (LPdsyevr). The alternate names given in
parentheses identify the labels used in plotted test results to identify SVD computation method by
source library and routine name. SVDCMP is a single precision code with critical computations
implemented to retain double precision accuracy. The four routines selected for comparison are
all implemented in double precision. All testing was performed on a DEC Alpha machine. The
three LAPACK selections include the use of generic BLAS routines. The use of DEC Alpha
optimized BLAS may result in lower computation costs for these LAPACK selections than those
reflected in the reported test results.

Table 1 summarizes the characteristics of the six tested methods of SVD computation. All
methods are suitable for the complete SVD of the order n, non-symmetric, square, and real-
valued test matrix, A, typical of the addressed test problems. The first four methods listed
represent the use of distinct routines addressing a direct SVD formulation. The last two listed
represent the use of the same routine addressing alternate symmetric matrix, S,
eigendecomposition formulations of the SVD computation, one addressing an order n S = AT*A
and the other addressing an order 2*n S = H(A). The first method, SVDCMP, is the classic SVD
implementation currently used. The second and third methods represent alternate
implementations of the classic SVD method also employing the QR algorithm during phase 2.
They were selected to ascertain the relative efficiency of SVDCMP. The last three methods
employ algorithms that have the potential for significantly faster SVD computation. Their
selection represents likely candidates for more efficient SVD computation. The first of these,
using routine DGESDD, applies the divide and conquer algorithm in phase 2 of the SVD
computation and requires significantly more workspace. The last two make use of the most
promising RRR algorithm in the eigendecomposition of S, but require the overhead of forming S
and retrieving the components of the SVD of A from the eigendecomposition of S. For the last
method, there is also the significant impact of the doubled order of S with respect to A.

Table 1. Summary Characteristics of Tested SVD Computation Methods

Routine Formulation Phase 2 Method Matrix Order Work Storage Flt/Int
NRsvdcmp Direct SVD Classic QR A n 0 (F), 0 (I)

NAGf02wef Direct SVD Classic QR A n n2+5n (F), 0 (I)
LPdgesvd Direct SVD Classic QR A n 5n (F), 0 (I) #
LPdgesdd Direct SVD Divide and Conquer A n 8n2+4n (F), 8n (I)
LPdsyevr Eigendecomposition RRR (Dhillon) S=AT*A n n2+6n (F), 12n (I)
LPdsyevr Eigendecomposition RRR (Dhillon) S=H(A) 2n 4n2+12n (F), 24n (I)

n2+5n (F) provided since storage beyond the required 5n amount may improve performance

 8

Test Problems

The test problems for evaluating the performance of the selected SVD computation methods
identified in table 1 require the complete SVD of synthetic real-valued, dense, square, and
generally non-symmetric matrices, A, of varied order, n, and condition number. All elements of
the main diagonal of these test matrices, a(k,k), k=1,n are set equal to one, while the lower and
upper off diagonal elements are defined as:

a(i,j) = 1/(2*(i-j))pl for i > j (lower) (5)
a(i,j) = 1/(2*(j-i))pu for i < j (upper)

The lower and upper power parameters pl and pu are positive and generally taken from the open
interval (1,0). Those used were limited to reciprocals of integer powers of 10, with powers
ranging from –2 to –9. For a given matrix order, smaller values of pl and pu yield a more ill-
conditioned matrix. Equal values for pl and pu result in a symmetric matrix, while larger
differences in pl and pu result in greater matrix asymmetry. As matrix order increases, the
maximum SV approaches that order, while the minimum SV approaches the smaller of pl and pu.
The ratio of maximum over minimum SV represents the condition number.

Two primary sets of test matrices, ranging in order from 100 to 1200, are addressed. Both are
mildly asymmetric (magnitudes of pl and pu differ by a single order of magnitude). One uses pl =
1/102 and pu = 1/103 and is considered mildly ill-conditioned, with condition numbers ranging
approximately from 105 to 106. The other uses pl = 1/106 and pu = 1/107 and is considered highly
ill-conditioned and to approach the ill-conditioning typical of inverse problems such as those
associated with acoustic source image deconvolution. Condition numbers in this case ranged
approximately from 109 to 1010. These primary sets of test matrices are summarized in table 2.
Additional symmetric (pl = pu) and mildly asymmetric (|pl-pu| = 1) test matrices using other
values of pl and pu were used to ascertain SVD method performance over a range of level of ill-
conditioning.

The largest (order 1200) test matrices addressed represent, with one exception, the largest that all
tested SVD computation methods could address given the memory size available on the DEC
Alpha host test machine (array1.larc.nasa.gov). The exception is the computational method
applying eigendecomposition to the symmetric matrix S = H(A), for which an order 1000 A (and
order 2000 S) is the largest addressable integer multiple of 100. Note that the total memory
requirement for all tested SVD computation methods includes, in addition to table 1 identified
work space, a common requirement of order*(2*order+1), where order equals 2*n rather than n
when S = H(A) is addressed.

Table 2. Characteristics of two primary test matrix sets addressed

Ill-Conditioning Symmetry Order Range pl pu Comparison with deconvolution

Mild Mildly asymmetric 100-1200 in 100s 10-2 10-3 Much less ill-conditioned
High Mildly asymmetric 100-1200 in 100s 10-6 10-7 Similar level of ill-conditioning

 9

Test Results

Test results for all selected SVD computation methods when applied to problems addressing the
identified mildly and highly ill-conditioned sets of test matrices are presented in this section
following discussions of the performance metrics used, compilation optimization used, and a
preliminary comparison of methods performance against a range of fixed order alternative
symmetric and non-symmetric test problems of varied condition number. Presented results will
include, in addition to performance metric comparisons of SVD methods applied to matrices of
each test set, the impact of ill-conditioning level on selected SVD methods. The impact, when
addressing the eigendecomposition problem formulation required by the two LPdsyevr based
methods, of alternative constructions of the symmetric matrix, S, from a test matrix, A, will be
separately addressed. As in the previous statement, all references to SVD computation methods in
this section are made by the alternative (to routine) names presented under the “Routine” column
in table 1. Reference to LPdsyevr without specifying the form of S addressed indicates LPdsyevr
applied to S = AT*A. Figure caption references to “easy” or “hard” A (or S) indicate references to
tests from the test sets addressing, respectively, mildly or highly ill-conditioned A (or S created
from such an A).

Performance Metrics

The two primary test metrics are execution (elapsed) time in seconds for the SVD computation
and the residual of the computed SVD. The residual metric is defined as:

i,j |A(i,j) − U*W*VT(i,j)|

where (i,j) represents the individual elements of original test matrix, A, and the reconstructed A
computed as U*W*VT. Ratios of each these primary metrics for pairs of SVD computation
methods serve as additional metrics. For the eigendecomposition based SVD computation
methods, the total SVD computation time is also broken down into components allowing a
comparison, in percents of total time, of performing the SVD of symmetric matrix, S, and the
associated pre- and post-processing costs (e.g. computations of S = AT*A and Ui = A*V i/wi, i
=1,n). Further references to simply “ time” will indicate total SVD computation time. Secondary
test metrics include the maximum and minimum SV magnitudes and condition number based on
their ratio.

A preliminary validation of proper SVD computation by each method compared all components
of U, V, and W for an order four problem. Methods varied somewhat in the order and sign of
singular vectors (columns of U and V), but all provided a correct SVD.

Selection of Compilation Optimization

Preliminary tests of the four direct SVD methods (NRsvdcmp, NAGf02wef, LPdgesvd, and
LPdgesdd) against the order 700 matrix of the mildly ill-conditioned test set were performed with
various Fortran compilation optimization options to select the option for all further testing.
Figures 1 and 2 respectively compare the time and residual metrics of these four methods for this
test matrix over the range of compilation optimization options. Based on the reduced time metric
for the “O5” optimization option for the methods LPdgesvd and LPdgesvd, and the negligible
differences in the residual metric over all methods and options, the O5 option was chosen. The

 10

slightly reduced residual values for NRsvdcmp and LPdgesdd when using optimization option
“mlibfast” did not sway this decision since this option is designed to favor speed over accuracy.

Condition Number Tests

Additional preliminary tests with most SVD computation methods against a range of both
symmetric and mildly non-symmetric order 400 test matrices of varied condition number were
performed to ascertain the impact of test matrix character on methods performance. The selection
of matrix character for both the mildly and highly ill-conditioned sets of test matrices was based
on the results of these preliminary tests. The only SVD computation method not addressed by
these tests is LPdsyevr applied to S=H(A); LPdsyevr applied to S=AT*A is addressed.

Table 3 summarizes the definition and character of the addressed matrices. For these order 400
test matrices, condition number generally increases as 1/(pl*pu). The level of ill-conditioning is
assigned accordingly. Odd levels represent mildly non-symmetric matrices while even levels
represent symmetric matrices. The condition numbers presented are those computed from the
ratios of maximum SV over minimum SV (of A) returned by LPdgesvd, the SVD method judged
to best approximate the minimum SV. All applied SVD methods returned the same maximum SV
for each of the set of increasingly ill-conditioned order 400 test matrices. Figure 3 compares, over
this same set, the magnitude of the minimum SV computed by LPdgesvd with those computed by
the other tested SVD methods. For matrices up to level 7, all methods but LPdsyevr (applied to
S=AT*A) yield similar condition numbers when determined by this computation. SVD method
LPdgesdd computes minimum SV nearly equal to those of LPdgesvd through level 8, while
NAGf02wef follows suit through level 7. NRsvdcmp computes slightly larger values through
level 7. LPdsyevr (which will now imply its application to S=AT*A unless specified otherwise)
fails to provide meaningful values beyond level 3. This is attributable to the necessity to retrieve
SV values for A as the square roots of the computed eigenvalues of S.

Table 3. Character of order 400 test matrices of varied condition number

Level Symmetric Definition pl Definition pl Condition Number
1 No 10-2 10-3 2.90E+05
2 Yes 10-3 10-3 1.65E+06
3 No 10-4 10-5 3.33E+07
4 Yes 10-5 10-5 7.97E+08
5 No 10-6 10-7 1.20E+10
6 Yes 10-7 10-7 5.98E+11
7 No 10-7 10-8 1.36E+11
8 Yes 10-8 10-8 6.08E+17
9 No 10-8 10-9 > 4.00E+19

10 Yes 10-9 10-9 > 4.00E+19

Figures 4 and 5 respectively compare the time and residual of these SVD methods over the same
set of increasingly ill-conditioned order 400 test matrices. Figure 4 demonstrates that LPdgesdd
time is best (lowest) and very consistent over the entire range of condition level, while LPdsyevr
time is less consistent and ranges from 5 to 45 percent slower and averaging about 30 percent
slower. Times for the remaining three methods up through condition level 8 are consistently at
least twice as slow as those for LPdgesdd, with NAGf02wef about 10 percent faster than
LPdgesvd and NRsvdcmp. For the two most ill-conditioned matrices (levels 9 and 10), these three
methods demonstrate a dramatic reduction in time, especially NRsvdcmp.

 11

Figure 5 indicates that residual values generally increase by one order of magnitude over the
range of condition level. LPdsyevr and NRsvdcmp generally display the lowest residuals, while
the fastest method, LPdgesdd generally displays the highest. Note the erratic fluctuation of
residual for NAGf02wef over the range of condition level. Note also the dramatic reduction in
NRsvdcmp time for levels 9 and 10 is attended at level 10 with a dramatic rise in residual. This
suggests that NRsvdcmp may be starting to experience precision problems at these condition
levels.

The condition levels chosen for the mildly and highly ill-conditioned sets of test matrices to be
addressed during tests over matrix order are 2 and 5 respectively. Given the above discussion, an
argument for a higher-level ill-conditioned set, say level 8 or 9, can be made. Indeed, this appears
to be a desirable third test set. The more modest level 5, however targets the level where
LPdsyevr may begin to have problems, based on it minimum SV performance.

Mildly Ill-conditioned (Easy) Problems

All six of the SVD computation methods identified in table 1 were applied to problems
addressing test matrices from the mildly ill-conditioned or “easy” test set. All but LPdsyevr
(S=H(A)) were applied to all test set matrices, from order 100 through 1200 in increments of 100.
LPdsyevr (S=H(A)) could not be applied to orders 1100 and 1200 due to insufficient host
machine memory. The present discussion and figures 6-11 compare the results of the other five
methods on these problems. Results comparison with LPdsyevr (S=H(A) will be addressed later.

Figure 6 presents a linear-linear plot of execution time over matrix order by SVD method.
LPdgesdd exhibits the best time performance, while LPdsyevr (S=AT*A) is a close second. The
remaining three appear to exhibit a higher order time cost growth with respect to matrix order.
NRsvdcmp exhibits the highest cost for the higher order problems. Figure 7 presents the same
data on a log-log plot. A comparison of the line slopes of LPdgesdd and LPdsyevr (S=AT*A) with
those of the other three methods indicates that LPdgesdd time cost is of the same order (cubic
with respect to matrix order) as these three but has a smaller cost constant. A similar comparison
with the LPdsyevr (S=AT*A) line slope, however, indicates a higher cost constant combined with
a lower cost order that is less pronounced as matrix order increases.

Figures 8 and 9 present similar plots for the SVD residual. Methods LPdgesvd, LPdgesdd, and
LPdsyevr (S=AT*A) exhibit very similar residual behavior, while methods NRsvdcmp and
NAGf02wef are, respectively, slightly better and worse. Figure 9 indicates that, for all five
methods, residual error grows roughly as the square of matrix order, or linearly with the number
of matrix elements (as one might expect).

Figure 10 compares time cost ratios of LPdgesdd, the best performing, with each of the other four
methods. While LPdsyevr (S=AT*A) and NAGf02wef are the worst performers for matrices of
order 100, they become the best at order 200. In fact, in this range their behaviors are similar. As
matrix order increases, however, the time cost performance of NAGf02wef abruptly changes to
that of LPdgesvd and NRsvdcmp. These three methods perform similarly until matrix order 1200
when the cost for NRsvdcmp sharply increases relative to the other two. The dominance of
LPdsyevr (S=AT*A) over these three begins at matrix order 300, and increases dramatically as
matrix order increases. Compared with LPdgesdd, LPdsyevr (S=AT*A) performance gradually
increases with matrix order, surpassing the 80 percent mark with respect to LPdgesdd for matrix
order greater than 1000. In general, for matrices of order greater than 400, LPdgesdd is more than

 12

twice as fast as all the other methods except LPdsyevr (S=AT*A), and 20-25 percent faster than
that alternative.

For the easy (mildly ill-conditioned) test matrices, all SVD methods returned equal maximum and
minimum SV over all orders of matrix A. The log-log presentation of the condition number (|max
SV|/|min SV|) in Figure 11 indicates its constant power growth with respect to test matrix order,
with that power equal to 1.0. The companion line plot shows that the condition numbers for the
addressed test matrices are well approximated by the ratio of matrix order over the smaller of the
two power parameters, pl and pu, used to define the off diagonal elements of A. This is a
consequence of the observation that the maximum SV is well approximated by matrix order,
while the minimum SV is approximated by the smaller of pl and pu.

Highly Ill-conditioned (Hard) Problems

All six of the SVD computation methods identified in table 1 were applied to problems
addressing test matrices from the highly ill-conditioned or “hard” test set. All but LPdsyevr
(S=H(A)) were applied to all test set matrices, from order 100 through 1200 in increments of 100.
LPdsyevr (S=H(A)) could not be applied to orders 1100 and 1200 due to insufficient host
machine memory. The present discussion and figures 12-17 compare the results of the other five
methods on these problems. Results comparison with LPdsyevr (S=H(A)) will be addressed later.
The presentation of data in figures 12-17 is the same as that provided in figures 6-11.

Figures 12 and 13 indicate the relative cost performance, over order of the hard test matrices, of
the same five SVD methods addressed in figures 6 and 7 is very similar to that observed for the
set of easy test matrices. A similar comparison of the figures 8 and 9 with figures 14 and 15,
however, indicates some differences in both relative and absolute residual behavior for these five
methods over matrix order. The main relative difference is the superior performance of LPdsyevr
(S=AT*A) for matrix order up through 700, when its performance becomes similar to all other
methods except NRsvdcmp, which is slightly better. The main absolute difference is a generally
more rapid (than square of matrix order) growth of residual error with increased matrix order,
approaching the cube of matrix order. The one exception is LPdsyevr (S=AT*A), which appears
to maintain a matrix order squared residual growth up through matrix order 800.

Figure 16 indicates that time cost ratios of LPdgesdd with each of the other four methods when
addressing hard test matrices are fairly similar to those presented in figure 10 for the easy test
matrices. One main difference is a better (80 to 90 percent) LPdsyevr (S=AT*A) efficiency,
relative to LPdgesdd, for matrix order of 200 or larger. Another is the reduction (from 90 to 80
percent) in that relative efficiency up through matrix order of 500, at which point relative
efficiency increases nearly linearly with still larger matrix order. For the remaining three
methods, efficiency relative to LPdgesdd remains a rather constant 40 to 50 percent with respect
to matrix orders 500 and greater.

Unlike the results obtained when addressing easy test matrices, not all methods returned equal
minimum SV over all orders of matrix A. The SVD method based on LPdsyevr (S=AT*A), which
must compute the minimum SV for A as the square root of the much smaller, and in this case
zero, minimum eigenvalue for S, returns a zero minimum SV for A, for all orders of A.
NRsvdcmp consistently returns one order of magnitude larger minimum SV for A than the other
three methods (NAGf02wef, LPdgesvd and LPdgesdd) which return the same values for all
matrix orders. The log-log presentation, in Figure 17, of the condition number (|max SV|/|min
SV|) dependence on matrix order for both NRsvdcmp and these three methods show a much

 13

noisier linear (in reality constant power) growth. The suspected better estimate (by virtue of
agreement) of these three methods, compared with that from NRsvdcmp, indicates a larger
(approximately 2.0) constant power dependence of condition number on test matrix order, greater
than the power 1.0 predicted by the ratio of matrix order over the smaller of the two power
parameters, pl and pu.

Level of Ill-conditioning Impact

The impact of level of ill-conditioning on the performance of NRsvdcmp and the best two
identified alternatives, LPdgesdd, and LPdsyevr (S=AT*A), is presented in that order by figures
18-23. The left and right hand (even and odd numbered) figures for each method specific pair
compare, respectively, the time and residual metrics for the mildly and highly (easy and hard) sets
of test matrices. Figure pair 18 and 19 indicate execution time for NRsvdcmp is generally only
slightly less for the hard set of test matrices, while the NRsvdcmp residuals for the hard set,
relative to the easy set, increase moderately for matrices up through order 400, but transition to a
consistent order of magnitude increase for matrix orders of 700 and larger.

Figure 20 indicates, for LPdgesdd, no significant difference in execution time over all matrix
orders when addressing easy and hard test matrices. When a difference does occur, however, it is
larger for the hard test matrices. Figure 21 indicates LPdgesdd residuals for the hard set, relative
to the easy set, increase, with matrix order, toward a consistent order-of-magnitude increase over
all but the smallest tested order of 100. Figure 22 indicates, for LPdsyevr (S=AT*A), a
consistently moderate decrease in execution time, for hard test matrices relative to easy, over all
matrix orders greater than 500. This decrease is greater than that experienced with NRsvdcmp
when making the same comparison. Figure 23 indicates LPdsyevr (S=AT*A) residuals for the
hard set remain consistent with those for the easy set for test matrices of up through order 700.
Residual values for the hard set transition to one order of magnitude larger than those for the easy
set over matrix orders 800 and 900, and consistently maintain that difference for matrix order
larger than 900.

Time Cost Breakdown for LPdsyevr (S=AT*A)

Computation of the SVD of a generally non-symmetric matrix, A, by the eigendecomposition of a
related symmetric matrix, S, as is required when exploiting the highly efficient RRR algorithm by
Dhillon11 is currently implemented in LAPACK 3.0 only in support of LPdsyevr. The choice of
the introduced alternative constructions of S effect both the order of S relative to A and the
computational overhead involved, the latter primarily consisting of the construction of S and the
extraction of at least a set of singular vectors of A from the eigenvectors of S. The cost of
extracting the SV of A from the eigenvalues of S is relatively negligible.

For method LPdsyevr (S=AT*A), the order of S remains equal to the order of A, but the
associated overhead costs of computing S=AT*A and extracting the left singular vectors, Ui, of A
by the computations Ui= A*Vi/wi are both significant. Figure 24 compares as percents of total
LPdsyevr (S=AT*A) cost, the component costs of; 1) S=AT*A, 2) the eigendecomposition (EVD)
of S, and 3) Ui= A*Vi/wi, i=1,n (U = A*V*invW). Both overhead costs remain very similar in
percent of total cost over all orders of A, growing from 10 percent for order 100 to near an
asymptotic percent of about 30 for order 700 and larger. In contrast, the percent cost of the
eigendecomposition of S (by the very efficient RRR algorithm) drops sharply from a maximum of
80 for matrix order 100 to near an asymptotic percent of 40 for order 700 and larger. This

 14

indicates that overhead costs account for 60 percent of total SVD cost by the LPdsyevr (S=AT*A)
method for large order A. Figure 25 simply shows the same component cost information in a
cumulative form.

Figure 26 compares the time cost, over easy matrices of varied order, of just the EVD component
of computing SVD by LPdsyevr (S=AT*A) with the cost of computing SVD by LPdgesdd. The
significantly lower cost of computing the EVD (of S) demonstrates the higher efficiency of the
RRR algorithm. Figure 27 shows that the order of EVD cost growth with increase in matrix order
is fractionally less than the corresponding order of SVD cost over matrix order realized with SVD
by LPdgesdd, particularly for matrix order less than 500 where EVD cost order approximates the
theoretical best of 2.0 (i.e. O(n2) cost). Given this excellent performance of EVD by the RRR
algorithm, the proposed plan to implement a direct SVD method based on RRR in a future release
of LAPACK, one expected to be less burdened with overhead cost, promises to make available an
SVD method with the potential for better total SVD computation performance than the current
best method, LPdgesdd.

Alternative LPdsyevr (S=H(A)) Performance

The performance, relative to LPdsyevr (S=AT*A), of the LPdsyevr (S=H(A)) alternative to SVD
computation by way of an EVD of S is addressed in figures 28 – 35. A preliminary examination
of time cost breakdown for LPdsyevr (S=H(A)) demonstrated that the overhead costs of
constructing S=H(A) and extracting SVD components of A (U, V, and W, where A=U*W*VT)
from the EVD components of S are negligible. Presuming that the EVD time costs by the RRR
algorithm for alternate S constructions of equal order are comparable, LPdsyevr (S=H(A)) cost
for equal order S should be approximately 60 percent less than LPdsyevr (S=AT*A) cost. The
problem is that, for a given A order, S order for LPdsyevr (S=H(A)) is double that for LPdsyevr
(S=AT*A). Figures 28 and 29 respectively compare, for equal order test matrices, A, the time
cost of these eigendecomposition formulations of SVD computation for the easy and hard test
sets. They illustrate that LPdsyevr (S=H(A)) based SVD cost for equal order A is dramatically
higher than that for LPdsyevr (S=AT*A), particularly for hard test matrices; not an unexpected
result given the doubled order of S, compared with A, for the LPdsyevr (S=H(A)) SVD method.

Figures 30 and 31 respectively compare, for equal order constructed matrices, S, the time cost of
these eigendecomposition formulations of SVD computation for the easy and hard test sets. They
show significantly lower LPdsyevr (S=H(A)) time cost, for a given order S, than that for
LPdsyevr (S=AT*A); a result anticipated by the equal EVD time cost presumption mentioned in
the previous paragraph. This difference in time cost is noticeably smaller, however, for the hard
test matrix set, compared with the easy test matrix set.

Figures 32 and 33 compare, for the easy and hard test matrix sets respectively, the residuals for
the LPdsyevr (S=AT*A) and LPdsyevr (S=H(A)) methods for SVD computation for the same A
matrix over matrix A order. The residuals for LPdsyevr (S=H(A)) are, for both easy and hard test
matrix sets, consistently up to an order of magnitude larger for A of order 800 or less. Figure 33
also indicates that LPdsyevr (S=H(A)) method residuals can be several orders of magnitude larger
when addressing hard test matrices (reference the data point for order 700 A).

Finally, figures 34 and 35 compare, for time and residual metrics respectively, the performance
degradation of LPdsyevr (S=H(A)) when addressing more ill-conditioned test matrices, A. Figure
34 shows this cost performance degradation to increase significantly as the order of A increases.
The residual metric plots in figure 35 show that LPdsyevr (S=H(A)) based SVD accuracy

 15

degrades only slightly with more ill-conditioned test matrices, A, and appears to be only slightly
more pronounced as the order of A increases. The spike in figure 35 for the hard matrix test set at
the order 700 data point again suggests that LPdsyevr (S=H(A)) based SVD has the potential to
be quite limited in accuracy when the addressed A is highly ill-conditioned.

All these observations indicate that LPdsyevr (S=AT*A) is by far the preferred alternative for an
eigendecomposition formulated SVD method.

Conclusions

Based on the above described test results, the following conclusions are drawn:

• NRsvdcmp is comparable with other readily available direct complete SVD codes, such
as NAGf02wef and LPdgesvd, employing some version of the classic algorithm (QR
based reduction to SVD from bidiagonal form in phase 2), but may experience precision
problems for highly ill-conditioned matrices of order greater than 1000.

• LPdgesdd, employing a divide and conquer technique in phase 2, is the best currently
available direct complete SVD code for matrices of order 300 or greater, typically
requiring less than half the execution time as any of the codes based on the classic direct
complete SVD algorithm, and exhibiting comparable accuracy.

• The one disadvantage of LPdgesdd is its factor-of-eight increase in workspace
requirement compared with the classical method based codes.

• A direct complete SVD method based on the most promising Relatively Robust
Representation (RRR) algorithm for phase 2 reduction to SVD from bidiagonal form has
the potential to be significantly faster than LPdgesdd, but an implementation does not
currently appear to be readily available, although a future version of LAPACK is
expected to provide one.

• Complete RRR based EVD is significantly faster than the current best (LPdgesdd)
method of complete SVD for equal order matrices.

• Regarding SVD computation of a non-symmetric order n square matrix, A, by means of
symmetric matrix, S, eigendecomposition, the order n S = AT*A construction is strongly
recommended over the addressed order 2*n alternative of S = H(A).

• The currently available LPdsyevr method for S = AT*A based SVD computation by
eigendecomposition is significantly faster than the classical direct complete SVD
methods, but is not as fast as LPdgesdd. This is due to a 60 percent overhead for S
construction and SVD component extraction from EVD of S for moderate or larger order
A.

Limitations

This evaluation is limited to serial methods for complete SVD. While parallel and partial SVD
methods were addressed in the presented survey of SVD methods, they were not tested. All
LAPACK implementations have the potential to display performance beyond that documented in
this paper when linked with host hardware optimized BLAS. The characteristics of the singular
value distributions for the generated test matrices have not been analyzed, may not be similar to
those typical of acoustic noise deconvolution problems, and that dissimilarity may have a
significant impact on the speed of the newer SVD methods LPdgesdd and LPdsyevr (S=AT*A).

 16

References

1. Humphreys, W. M.; Brooks, T. F.; Hunter, W. W.; and Meadows, K. R.: “Design and Use of

Microphone Directional Arrays for Aeroacoustic Measurements”, AIAA Paper 98-0471,
AIAA 36st Aerospace Sciences Meeting & Exhibit, Reno, Nevada, January 12-15, 1998.

2. Brooks, T. F.; Humphreys, W. M.: “A Deconvolution Approach for the Mapping of Acoustic
Sources (DAMAS) Determined from Phased Microphone Arrays”, AIAA Paper 2004-2954,
10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, May 10-12, 2004.

3. Pan, Y. and Hamdi, M.: “Singular value decomposition on processor arrays with a pipelined
bus system”, Journal of Network and Computer Applications 19, pp. 235-248, 1996.

4. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flannery, B. P.: Numerical Recipes in
Fortran 77, 2nd Edition, Vol. 1, Cambridge University Press, 1992.

5. deVilliers, G. D.; McNally, B.; and Pike, E. R.: “Positive solutions to linear inverse
problems”, Inverse Problems 15, pp. 615-635, 1999.

6. Hanson, P. C.: “The L-curve and its use in the numerical treatment of inverse problems”,
Department of Mathematical Modeling, Technical University of Denmark, DK-2800 Lyngby,
Denmark.

7. Higham, N.J.: “Recent Developments in Dense Numerical Linear Algebra”, Numerical
Analysis Report No. 288, Manchester Center for Computational Mathematics, April 1996
(revised August 1996).

8. Anderson, E.; Bai, Z.;Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.;
Greenbaum, A.; Hammarling, S.; McKenney, A.; and Sorensen, D.: Lapack User’s Guide, 3rd
Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.

9. Blackford, S.; Choi, J.; Cleary, A.; D'Azevedo, E.; Demmel, J.; Dhillon, I.; Dongarra, J.;
Hammarling, S.; Henry, G.; Petitet, A.; Stanley, K.; Walker, D; and Whaley, R.: ScaLAPACK
Users' Guide, Society for Industrial and Applied Mathematics (SIAM), 1997.

10. Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; and van der Vorst, H: Templates for the Solution
of Algebraic Eigenvalue Problems, A Practical Guide, Society for Industrial and Applied
Mathematics (SIAM), 2000.

11. Dhillon, I. S: “A New O(n2) Algorithm for the Symmetric Tridiagonal
Eigenvalue/Eigenvector Problem”, Doctoral dissertation, University of California, Berkeley,
1997.

 17

 Figure 1. Time by compiler option Figure 2. Residual by compiler option

.

 Figure 3. Minimum SV comparison (SV = 10-17 represents zero or any smaller value)

 Figure 4. Time by condition Figure 5. Residual by condition

Time Comparison of SVD Methods by f77 Options for Order
700 Mildly ill_Conditioned Matrix (3 run avg, ~ 1% spread)

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

def
au

lt O5

O5+
nopipe

m
lib

fas
t

tu
neh

ost

T
im

e
(E

la
p

se
d

 S
ec

o
n

d
s)

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Residual Comparison of SVD Methods by f77 Options for
Order 700 Mildly ill-Conditined Matrix (same on all 3 runs)

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

8.00E-10

9.00E-10

1.00E-09

def
au

lt O5

O5+
nopip

e

m
lib

fa
st

tu
neh

ost

R
es

id
u

al

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Min SV Comparison of SVD Codes (f77 Opt= O5) for All
Order 400 Matrices of Increased ill-Conditioning

1.00E-17

1.00E-15

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01

0 1 2 3 4 5 6 7 8 9 10 11

Level of ill-Conditioning

M
in

im
um

 S
in

g
u

la
r

V
al

u
e

(S
V

)

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Residual Comparison of SVD Codes (f77 Opt= O5) for All
Order 400 Matrices of Varied Conditioning

1.00E-10

1.00E-09

1.00E-08

0 1 2 3 4 5 6 7 8 9 10 11

Level of ill-Conditioning

R
es

id
u

al

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Execution Time Comparison of SVD Codes (f77 Opt= O5)
for All Order 400 Matrices of Varied Conditioning

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

0 1 2 3 4 5 6 7 8 9 10 11

Level of ill-Conditioning

T
im

e
(S

ec
on

d
s) NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

 18

 Figure 6. Time by method for easy Figure 7. Time order for easy

 Figure 8. Residual by method for easy Figure 9. Residual order for easy

 Figure 10. Method time ratios for easy Figure 11. Condition number for easy

Execution Time Comparison of SVD codes (f77Opt=O5) on
Mildly ill-Conditioned Matrices of Varied Order

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

Ti
m

e
(S

ec
o

nd
s) NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Execution Time Comparison of SVD codes (f77Opt=O5) on
Mildly ill-Conditioned Matrices of Varied Order

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

100 1000 10000

Matrix Order

T
im

e
(S

ec
o

n
d

s)

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Residual Comparison of SVD codes (f77Opt=O5) on Mildly
ill-Conditioned Matrices of Varied Order (Log/Log)

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200 1400

Matrix Order

R
es

id
ua

l

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Residual Comparison of SVD codes (f77Opt=O5) on Mildly
ill-Conditioned Matrices of Varied Order (Log/Log)

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

10 100 1000 10000

Matrix Order

R
es

id
u

al

NRsvdcmp

NAGf02wef

LPdgesvd

Lpdgesdd

Lpdsyevr

Ratio of LPdgesdd Times (Opt= -O5) Over Other SVD
Routine Times by Order for Mildly ill-Conditioned Matrix

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

0 200 400 600 800 1000 1200 1400

Matrix Order

R
at

io

R:dgesdd/svdcmp

R:dgesdd/f02wef

R:dgesdd/dgesvd

R:dgesdd/dsyevr

Approx. Cond. Nbr (Max/Min SV) for Mildly ill-Conditioned
Matrix Over Order (Min:Max SV ~ 1.0e-3=Min(pl,pu):Order)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

10 100 1000 10000

Matrix Order

A
pp

ro
xi

m
at

e
C

on
di

tio
n

N
um

be
r

Max/Min SV

Order/min(pl,pu)

 19

 Figure 12. Time by method for hard Figure 13. Time order for hard

Figure 14. Residual by method for hard Figure 15. Residual order for hard

 Figure 16. Method time ratios for hard Figure 17. Condition number for hard

Execution Time Comparison of SVD codes (f77Opt=O5) on
Highly ill-Conditioned Matrices of Varied Order

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

4.00E+02

4.50E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

T
im

e
(S

ec
on

ds
)

NRsvdcmp

NAGf02wef

LPdgesvd

LPdgesdd

Lpdsyevr

Execution Time Comparison of SVD codes (f77Opt=O5) on
Highly ill-Conditioned Matrices of Varied Order (Log/Log)

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

10 100 1000 10000

Matrix Order

T
im

e
(S

ec
o

nd
s) NRsvdcmp

NAGf02wef

LPdgesvd

LPdgesdd

Lpdsyevr

Residual Comparison of SVD codes (f77Opt=O5) on Highly
ill-Conditioned Matrices of Varied Order (Log/Log)

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200 1400

Matrix Order

R
es

id
u

al

NRsvdcmp

NAGf02wef

LPdgesvd

LPdgesdd

Lpdsyevr

Residual Comparison of SVD codes (f77Opt=O5) on Highly
ill-Conditioned Matrices of Varied Order (Log/Log)

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

10 100 1000 10000

Matrix Order

R
es

id
ua

l

NRsvdcmp

NAGf02wef

LPdgesvd

LPdgesdd

Lpdsyevr

Ratio of LPdgesdd Times (Opt= -O5) Over Other SVD
Routine Times by Order for Highly ill-Conditioned Matrix

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

8.00E-01

9.00E-01

1.00E+00

0 200 400 600 800 1000 1200 1400

Matrix Order

R
at

io

R:dgesdd/svdcmp

R:dgesdd/f02wef

R:dgesdd/dgesvd

R:dgesdddd/dsyevr

Approx. Cond. Nbr (Max/Min SV) for Highly ill-Conditioned
Matrix Over Order (Min:Max SV ~ Min(pl,pu)=1.0e-7:Order)

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

10 100 1000 10000

Matrix Order

A
pp

ro
xi

m
at

e
C

on
di

ti
on

 N
um

b
er

NRsvdcmp (SP)

Typical DP

Order/min(pl,pu)

 20

 Figure 18. NRsvdcmp easy/hard times Figure 19. NRsvdcmp easy/hard residuals

 Figure 20. LPdgesdd easy/hard times Figure 21. LPdgesdd easy/hard residuals

 Figure 22. Lpdysevr easy/hard times Figure 23. LPdysevr easy/hard residuals

Comparison of NRsvdcmp Times for Mildly and Highly ill-
Conditioned Matrices Over Order

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

Ti
m

e
(S

ec
on

d
s)

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of NRsvdcmp Residuals for Mildly and Highly
ill-Conditioned Matrices Over Order

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200 1400

Matrix Order

R
es

id
u

al

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of LPdgesdd Times for Mildly and Highly ill-
Conditioned Matrices Over Order

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

Ti
m

e
(S

ec
on

d
s)

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of LPdgesdd Residuals for Mildly and Highly
ill-Conditioned Matrices Over Order

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200 1400

Matrix Order

R
es

id
ua

l

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of LPdsyevr Times for Mildly and Highly ill-
Conditioned Matrices Over Order

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

Ti
m

e
(S

ec
on

d
s)

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of LPdsyevr Residuals for Mildly and Highly ill-
Conditioned Matrices Over Order

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200 1400

Matrix Order

R
es

id
u

al

Mildly ill-Conditioned

Highly ill-Conditioned

 21

 Figure 24. Lpdysevr component times Figure 25. Lpdysevr cumulative times

 Figure 26. LPdysevr EVD vs LPdgesdd times Figure 27. LPdysevr EVD vs LPdgesdd time orders

 Figure 28. Equal order easy A times Figure 29. Equal order hard A times

Individual Percents of LPdsyevr Based SVD (of AT*A)
Component Cost Over Mildly ill-Conditioned Matrices of

Varied Order

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400

Matrix Order

P
er

ce
nt

 T
o

ta
l T

im
e

S = A'*A

EVD of S

U = A*V*invW

Cumulative Percents of LPdsyevr Based SVD (of AT*A)
Component Cost Over Mildly ill-Conditioned Matrices of

Varied Order

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

Matrix Order

P
er

ce
n

t T
o

ta
l T

im
e

Total (plus U =
A*V*invW)

Plus EVD of S

S = A'*A

Execution Time Comparison of Only Lpdsyevr EVD (on

S=AT*A) with LPdgesdd (on A) (f77Opt=O5) on Mildly ill-
Conditioned Matrices of Varied Order

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

1.80E+02

0 200 400 600 800 1000 1200 1400

Matrix Order

T
im

e
(S

ec
on

ds
)

LPdsyevr (EVD of S)

LPdgesdd

Execution Time Comparison of Only Lpdsyevr EVD (on

S=AT*A) with LPdgesdd (on A) (f77Opt=O5) on Mildly ill-
Conditioned Matrices of Varied Order

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

10 100 1000 10000

Matrix Order

T
im

e
(S

ec
o

nd
s)

LPdsyevr (EVD of S)

LPdgesdd

Execution Time Comparison of LPdsyevr (S=AT*A) and
LPdsyevr (S=H(A)) codes (f77Opt=O5) for Equal Order A on

Mildly ill-Conditioned Matrices

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

0 200 400 600 800 1000 1200

Order of Matrix A

T
im

e
(S

ec
on

d
s)

LPdsyevr (S=A'*A)

LPdsyevr (S=H(A))

Execution Time Comparison of Lpdsyevr (S=AT*A) and
Lpdsyevr (S=H(A)) codes (f77Opt=O5) for Equal Order A on

Highly ill-Conditioned Matrices

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0 200 400 600 800 1000 1200

Order of Matrix A

Ti
m

e
(S

ec
o

n
ds

)

Lpdsyevr (S=A'*A)

Lpdsyevr (S=H(A))

 22

 Figure 30. Equal order easy S times Figure 31. Equal order hard S times

 Figure 32. Equal order easy A residuals Figure33. Equal order hard A residuals

 Figure 34. S=H(A) easy/hard times Figure 35. S=H(A) easy/hard residuals

Comparison of Lpdsyevr (S=H(A)) Times for Mildly and
Highly ill-Conditioned Matrices Over Order

0.00E+00

2.00E+02

4.00E+02

6.00E+02

8.00E+02

1.00E+03

1.20E+03

0 200 400 600 800 1000 1200

Order of Matrix A

Ti
m

e
(S

ec
o

n
ds

Mildly ill-Conditioned

Highly ill-Conditioned

Comparison of Lpdsyevr (S=H(A)) Residuals for Mildly and
Highly ill-Conditioned Matrices Over Order

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0 200 400 600 800 1000 1200

Order of Matrix A

R
es

id
ua

l

Mildly ill-Conditioned

Highly ill-Conditioned

Execution Time Comparison of LPdsyevr (S=AT*A) and
LPdsyevr (S=H(A)) codes (f77Opt=O5) for Equal Order S on

Mildly ill-Conditioned Matrices

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

0 200 400 600 800 1000 1200

Order of Matrix S

T
im

e
(S

ec
on

ds
)

LPdsyevr (S=A'*A)

LPdsyevr (S=H(A))

Execution Time Comparison of Lpdsyevr (S=AT*A) and
Lpdsyevr (S=H(A)) codes (f77Opt=O5) for Equal Order S on

Highly ill-Conditioned Matrices

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

0 200 400 600 800 1000 1200

Order of Matrix S

Ti
m

e
(S

ec
on

d
s)

Lpdsyevr (S=A'*A)

Lpdsyevr (S=H(A))

Residual Comparison of LPdsyevr (S=AT*A) and LPdsyevr
(S=H(A)) codes (f77Opt=O5) for Equal Order A on Mildly ill-

Conditioned Matrices

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

0 200 400 600 800 1000 1200

Order of Matrix A

R
es

id
u

al

LPdsyevr (S=A'*A)

LPdsyevr (S=H(A))

Residual Comparison of Lpdsyevr (S=AT*A) and Lpdsyevr
(S=H(A)) codes (f77Opt=O5) for Equal Order A on Highly ill-

Conditioned Matrices

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 200 400 600 800 1000 1200

Order of Matrix A

R
es

id
u

al

Lpdsyevr (S=A'*A)

Lpdsyevr (S=H(A))

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE

Contractor Report
 4. TITLE AND SUBTITLE

A Survey of Singular Value Decomposition Methods and Performance
Comparison of Some Available Serial Codes

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Plassman, Gerald E.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center Raytheon Technical Services Company
Hampton, VA 23681-2199 Hampton, Virginia 23666

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Prepared for Langley Research Center under GSA Contract GS-00T-99-ALD-0209.
Langley Technical Monitor: William M. Humphreys.
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 71
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This contractor report describes a performance comparison of available alternative complete Singular Value Decomposition
(SVD) methods and implementations which are suitable for incorporation into point spread function deconvolution algorithms.
The report also presents a survey of alternative algorithms, including partial SVD’s special case SVD’s, and others developed
for concurrent processing systems.

15. SUBJECT TERMS

Applied mathematics; Data processing; Numerical Analysis

18. NUMBER
 OF
 PAGES

27

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

L-70750D
5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-781-10-11

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2005-213500

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

07 - 200501-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /APCCourier
 /APCCourierBold
 /APCCourierBoldOblique
 /APCCourierOblique
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AmericanTypewriter
 /AmericanTypewriter-Bold
 /AmericanTypewriter-Condensed
 /AmericanTypewriter-CondensedBold
 /AmericanTypewriter-CondensedLight
 /AmericanTypewriter-Light
 /AndaleMono
 /Apple-Chancery
 /AppleGothic
 /AppleMyungjo
 /AppleSymbols
 /AquaKana
 /AquaKana-Bold
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /Baskerville
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /Baskerville-SemiBold
 /Baskerville-SemiBoldItalic
 /BastionBold
 /BastionBoldOblique
 /BastionOblique
 /BastionPlain
 /BigCaslon-Medium
 /Bookman-DemiItalic
 /Bookman-Light
 /BrushScriptMT
 /CapitalsRegular
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chalkboard
 /Charcoal
 /Chicago
 /Cochin
 /Cochin-Bold
 /Cochin-BoldItalic
 /Cochin-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Copperplate
 /Copperplate-Bold
 /Copperplate-Light
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /CourierCE
 /CourierCE-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /DFKaiShu-SB-Estd-BF
 /Didot
 /Didot-Bold
 /Didot-Italic
 /Dirtyhouse
 /EdwardianScriptITC
 /Futura-CondensedExtraBold
 /Futura-CondensedMedium
 /Futura-Medium
 /Futura-MediumItalic
 /GadgetRegular
 /GeezaPro
 /GeezaPro-Bold
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GrHelvetica
 /GrHelveticaBold
 /GrPlain
 /GrTimes
 /GrTimesBold
 /Hangang
 /Helvetica
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-CondensedBlack
 /HelveticaNeue-CondensedBold
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItalic
 /Herculanum
 /HiraKakuPro-W3
 /HiraKakuPro-W6
 /HiraKakuStd-W8
 /HiraMaruPro-W4
 /HiraMinPro-W3
 /HiraMinPro-W6
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Impact
 /JCHEadA
 /JCfg
 /JCkg
 /JCsmPC
 /LatinskijBold
 /LatinskijBoldItalic
 /LatinskijBook
 /LatinskijItalic
 /LiGothicMed
 /LiHeiPro
 /LiSongPro
 /LiSungLight
 /LucidaGrande
 /LucidaGrande-Bold
 /LucidaHandwriting-Italic
 /MarkerFelt-Thin
 /MarkerFelt-Wide
 /Monaco
 /MonotypeCorsiva
 /MonotypeSorts
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-ExtraBlack
 /Optima-Italic
 /Optima-Regular
 /Osaka
 /Osaka-Mono
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Papyrus
 /RoPlain
 /SIL-FangSong-Reg-Jian
 /SIL-Hei-Med-Jian
 /SIL-Kai-Reg-Jian
 /SIL-Song-Reg-Jian
 /SandRegular
 /Skia-Regular
 /StoneInformal
 /StoneInformal-Bold
 /StoneInformal-BoldItalic
 /StoneInformal-Italic
 /StoneInformal-Semibold
 /StoneInformal-SemiboldItalic
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Symbol
 /Tahoma
 /Tahoma-Bold
 /TechnoRegular
 /TextileRegular
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TimesOERoman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /WarnockPro-Bold
 /WarnockPro-BoldCapt
 /WarnockPro-BoldDisp
 /WarnockPro-BoldIt
 /WarnockPro-BoldItCapt
 /WarnockPro-BoldItDisp
 /WarnockPro-BoldItSubh
 /WarnockPro-BoldSubh
 /WarnockPro-Capt
 /WarnockPro-Disp
 /WarnockPro-It
 /WarnockPro-ItCapt
 /WarnockPro-ItDisp
 /WarnockPro-ItSubh
 /WarnockPro-Light
 /WarnockPro-LightCapt
 /WarnockPro-LightDisp
 /WarnockPro-LightIt
 /WarnockPro-LightItCapt
 /WarnockPro-LightItDisp
 /WarnockPro-LightItSubh
 /WarnockPro-LightSubh
 /WarnockPro-Regular
 /WarnockPro-Semibold
 /WarnockPro-SemiboldCapt
 /WarnockPro-SemiboldDisp
 /WarnockPro-SemiboldIt
 /WarnockPro-SemiboldItCapt
 /WarnockPro-SemiboldItDisp
 /WarnockPro-SemiboldItSubh
 /WarnockPro-SemiboldSubh
 /WarnockPro-Subh
 /Webdings
 /Wingdings
 /ZapfDingbatsITC
 /Zapfino
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

