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PHaSE hardware: an interior view of the test section without walls.

Direct examination of atomic interactions is difficult. One powerful approach to 
visualizing atomic interactions is to study near-index-matched colloidal dispersions of 
microscopic plastic spheres, which can be probed by visible light. Such spheres interact 
through hydrodynamic and Brownian forces, but they feel no direct force before an infinite 
repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres 
Experiment (PHaSE), researchers have sought a more complete understanding of the 
entropically driven disorder-order transition in hard-sphere colloidal dispersions. The 
experiment was conceived by Professors Paul M. Chaikin and William B. Russel of 
Princeton University. Microgravity was required because, on Earth, index-matched 
colloidal dispersions often cannot be density matched, resulting in significant settling over 
the crystallization period. This settling makes them a poor model of the equilibrium atomic 
system, where the effect of gravity is truly negligible.

For this purpose, a customized light-scattering instrument was designed, built, and flown 
by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions 
STS–83 and STS–94). This instrument performed both static and dynamic light scattering, 
with sample oscillation for determining rheological properties. Scattered light from a 532-
nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a 
concentric screen covering angles of 0° to 60° or by sensitive avalanche photodiode 



detectors, which convert the photons into binary data from which two correlators compute 
autocorrelation functions. The sample cell was driven by a direct-current servomotor to 
allow sinusoidal oscillation for the measurement of rheological properties.

Significant microgravity research findings include the observation of beautiful dendritic 
crystals, the crystallization of a "glassy phase" sample in microgravity that did not 
crystallize for over 1 year in 1g (Earth’s gravity), and the emergence of face-centered-
cubic (FCC) crystals late in the coarsening process (as small crystallites lost particles to 
the slow ripening of large crystallites).

Significant quantitative findings from the microgravity experiments have been developed 
describing complex interactions among crystallites during the growth process, as 
concentration fields overlap in the surrounding disordered phase. Time-resolved Bragg 
scattering under microgravity captures one effect of these interactions quite conclusively 
for the sample at a volume fraction of 0.528. From the earliest time until the sample is 
almost fully crystalline, the size and overall crystallinity grow monotonically, but the 
number of crystallites per unit volume (number density) falls. Apparently nucleation is 
slower than the loss of crystallites because of the transfer of particles from small to large 
crystals. Thus, coarsening occurs simultaneously with growth, rather than following the 
completion of nucleation and growth as is generally assumed. In the same sample, an 
interesting signature appears in the apparent number density of crystallites and the volume 
fraction within the crystallites shortly before full crystallinity is reached. A brief upturn in 
both indicates the creation of more domains of the size of the average crystallite 
simultaneous with the compression of the crystallites. Only the emergence of dendritic 
arms offers a reasonable explanation. The arms would be "seen" by the light scattering as 
separate domains whose smaller radii of curvature would compress the interior phase.



Crystallization kinetics of sample 3; volume fraction, 0.528 (where τ, time; Lc, average 
crystallite size (in particle diameters), Xc, crystalline fraction, and Nc, number density).

In fiscal year 1999, numerous papers, a doctoral dissertation, and the PHaSE final report 
were produced. Although this flight project has been completed, plans are in place for a 
follow-on colloid experiment by Chaikin and Russel that employs a light microscope 
within Glenn’s Fluids and Combustion Facility on the International Space Station.

PHaSE is providing us with a deeper understanding of the nature of phase transitions. The 
knowledge derived has added to the understanding of condensed matter. In addition, the 
burgeoning study of the dynamics of colloidal self-assembly may lead to the development 
of a range of photonic materials that control the desirable properties of light. Thus, 
applications of ordered colloidal structures include not only ultrastructure ceramics, but 
also photonic crystals and photothermal nanosecond light-switching devices. Industries 



dealing with semiconductors, electro-optics, ceramics, and composites stand to benefit 
from such advancements.

Find out more about this research http://exploration.grc.nasa.gov/phase/.
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