Abstract:

Until recently, the design of jet engines for quiet operation was
limited by engineers' ability to predict the jet noise generated by a
nozzle exhaust system. More importantly, the 'intermediate steps'
between nozzle design and noise had not been understood, limiting
the design process to small variations around existing solutions. In
recent years NASA's Quiet Aircraft Technology (QAT) Program
has advanced the understanding and modeling of jet noise to give
engineers the tools they need to design quiet nozzle systems for
subsonic exhaust systems. The presentation discusses the approach
followed for QAT and argues that a similar effort aimed at
supersonic jet exhaust systems will be needed to allow designs of
quiet military aircraft in the future.
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Jet Noise Problem
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Our understanding of the
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A comprehensive understanding of jet flowfield is at
the heart of any jet noise reduction strategy
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Global Scaling Laws

Single most effective jet noise
reduction technique is to
reduce the jet velomty
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This level of knowledge will not allow us to design a
quiet aircraft

Page 3



Jet Noise Focu
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Develop diagnostic and analytical tools to Understand jet
noise mechanisms

Create physics-based Predictive tools for general
subsonic jets—flow and noise.

Use Understanding to create noise Reduction concepts
and use Predictive tools to guide experiments.

We are pursuing these objectives in the subsonic
Quiet Aircraft Technology program
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* How do jets make noise?
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Important to account for temperature effects in
modeling and experiment
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« What is the flow and acoustic fields produced by a
given nozzle with specified cycle conditions?
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» Empirical correlation with nozzle conditions
—~ NOISEMAP, ARP, SAE, ANOPP
— Database interpolation (Noise, Power, Distance)
— All cases approximated as simple round nozzle

« Time-averaged physics-based codes
-~ Jet3D, MGBK
— Reynolds-averaged NS + acoustic analogy
— Can handle unique configurations
« Time-dependent full-physics codes
— LES, DNS

— Discrete versions of Navier-Stokes
— Info overload; infinite cost
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Good mean flow predictions
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Prediction of turbulence quantities still deficient
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NASA is currently developing
several CAA type codes

Acoustic Source Density Prediction
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» How should jet be modified to reduce noise?
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Baseline Nozzles

1997 Model Tests
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Use CFD and testing to optimize
DEN thrust and acoustic

performance
95
90
85
> T
£ 75 ~—
70 .
\‘\ o
Round AY
~ =~ =~ DEN
LOCITY / 1116.45 (f/s) ' 60 ( !
90 110 130 150
Directivity Angle

Page 17



ow Would NA:
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 Develop an understanding of unique supersonic
noise sources and propagation

» Include additional sources in prediction tools

» Extend experimental facilities and validate
techniques at higher pressure and temperature
flows to test noise reduction concepts.
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Prediction and noise reduction technology must address
each of these depending on flight regime
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These effects MUST be correctly represented
to provide research relevant to military aircraft
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« |dentify specific areas of need as they relate to
aircraft mission

wave emission noise

« Couple aeroacoustic modeling

and experiments to
identify and validate noise reduction concepts

Implement balanced research tasks that address
understanding, predicting, and reducing supersonic
jet noise
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Backup Charts

Page 23



Shevron Mixing

Plume Turbulence is the Main Source of Jet Noise
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