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Abstract

Advanced thermal/environmental barrier coatings (T/EBCs)
are being developed for low emission SiC/SiC ceramic matrix
composite (CMC) combustor and vane applications to extend the
CMC liner and vane temperature capability to 1650°C (3000°F) in
oxidizing and water-vapor containing combustion environments.
The 1650°C T/EBC system is required to have better thermal
stability, lower thermal conductivity, and improved sintering and
thermal stress resistance than current coating systems.

In this paper, the thermal conductivity, water vapor stability
and cyclic durability of selected candidate zirconia-/hafnia-,
pyrochlore- and magnetoplumbite-based T/EBC materials are
evaluated. The test results have been used to downselect the T/EBC
coating materials, and help demonstrate advanced 1650°C coatings
feasibility with long-term cyclic durability.



Objectives

— Thermal conductivity and sintering behavior of
advanced oxide coating materials

Zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC
materials studied

Hot-pressed specimens and plasma-sprayed coatings
investigated

— Water vapor stability of the advanced oxides at
temperatures of 1650°C (3000°F)

— HfO,-Y,0, coating system 1650°C (3000°F) cyclic
durability



A Laser Heat-Flux Approach for Ceramic Coating
Thermal Conductivity Measurements

== A uniform laser (wavelength 10.6 um) power distribution achieved using integratin
lens combined with lens/specimen rotation

-= The ceramic surface and substrate temperatures measured by pyrometers and/or by an
embedded miniature thermocouple

== Thermal conductivity measured at 5 second intervails in real time
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Thermal conductivity, W/m-K

Thermal Conductivity Measurements of Hot-
Pressed HfO,-Y,0,; Coatings

— Temperature dependence can be determined using the laser heat-flux

test approach
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Thermal Conductivity of Hot-Pressed

Pyrochlore Oxides
]

— Thermal conductivity can increase by more than 100% at high
temperature due to the increased radiation heat-transfer under thermal
gradient conditions

— The multiple rare earth oxide co-doped pyrochlore oxides showed lower
conductivity as compared to the undoped La,Zr,0,
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Thermal Conductivity of Hot-Pressed Pyrochlore
Oxide and Plasma-Sprayed Coating Specimens
A

— Plasma-sprayed coatings showed significantly lower radiation
conductivity due to the increased scattering and reflectivity of micro-

porosity
Hot-pressed dense zirconate material Zr02-8wt%Y203 plasma-sprayed porous coating
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Thermal conductivity, W/m-K
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Thermal Conductivity of Magnetoplumbites

— Thermal conductivity of LaMgAl,,0,,, SmMgAl,,0,, and GdMgAl,,0,,
— The Gd,0, and Yb,0, co-doped oxides showed the lowest conductivity
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Thermal Conductivity of Advanced Oxide

Coatings

— Thermal conductivity of plasma-sprayed HfO,-Y,0,, zirconate/hafnate
and magnetoplumbite coatings tested at 1650°C
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The Water Vapor Stability of Selected HfO,-

and Pyrochlore Oxides
e
— The water vapor stability of selected HfO2-based oxides and pyrochlore
oxides, determined by the TGA tests in a 50-50% flowing water vapor-
oxygen environment at 1650°C.
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Concluding Remarks

Advanced HfO,, pyrochlore and magnetoplumbite oxides are
being developed for 3000°F thermal/environmental barrier coating
applications

Rare earth doping and composition optimization have
demonstrated an effective approach for reducing thermal
conductivity, and improving thermal and water vapor stability.

Mullticomponent, co-doped oxide systems generally showed
better performance.

HfO, and certain pyrochlore oxides are promising candidate
materials for the 1650°C (3000°F) coatings because of their low
thermal conductivity and high temperature stability in oxidizing
and water-vapor containing combustion environments.

Further studies are needed to investigate magnetoplumbite
materials for the high temperature coating applications.
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