

James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Cryogenic Component Test Facility

Presented by Edward A. Packard

23rd Space Simulation Conference November 8-11, 2004

Presentation Overview

- JWST / ISIM Overview
- ISIM Thermal Verification Requirements – Emittance Test Objectives
- Cryochamber Design Requirements
- Cryochamber Construction
- Emittance Test Sample Selection and Configuration
- Error Sources and Error Mitigation
- Cryochamber Operation
- Cryochamber and Emittance Sample Test Results
- Future Considerations

- Large infrared observatory positioned at L2
- Proposed launch date: August 2011
- Mission goals:
 - Understand the birth and formation of stars
 - Determine how planetary systems form
 - Explain galaxy formation
 - Determine the shape of the universe
 - Provide a better understanding of the intriguing dark matter problem

JWST Conceptual Illustration

ISIM & Enclosure on JWST

Integrated Science Instrument Module (ISIM)

- Near Infrared Camera (NIRCam)
- Near Infrared Spectrograph (NIRSpec)
- Mid Infrared Instrument (MIRI)
- Fine Guidance Sensors (FGS)

ISIM Thermal Verification Flow

- To determine the emittance of candidate thermal control coatings for the JWST/ISIM Instrument Assembly from 30K to 293K
- To minimize associated error bars in determining emittance values (goal <5%) at 30K

First Analytical Method

• Transient Cool-Down

$$\left(mC_{p}dT/dt\right)_{sample} = \sigma\left(A\varepsilon\right)_{sample} \left(T_{sample}^{4} - T_{LHeShroud}^{4}\right) + Q_{loss}$$

where
$$(mC_p)_{sample} = \sum (mC_p)_{substrate+coating+sensors}$$

and $T = f(t)$

m	mass	measured pre test
C _p	specific heat capacity	theoretical*
T	temperature	measured test data
t	time	measured test data
σ	Stephan-Boltzmann constant	= 5.67x10 ⁻⁸ W/m ² /K ⁴
Α	sample radiating area	measured pre test
Q _{loss}	lead wire+residual gas loss	calculated
Е	emittance	determined from above

equation

Second Analytical Method

Steady State Warm-Up

$$Q_{heater} = \sigma (A\varepsilon)_{sample} (T_{sample}^4 - T_{LheShroud}^4) + Q_{loss}$$

Τ	temperature
σ	Stephan-Boltzmann constant
Α	sample radiating area
Q _{loss}	lead wire+residual gas loss
Q _{heater}	heater power

measured test data = 5.67x10⁻⁸ W/m²/K⁴ measured pre test calcluated measured test data

determined from above equation

Е

emittance

Test Profile – Overview Timeline

- Relatively large: A_∞>>A_s (chamber area >> sample area) and at least 3'x3'x3' (1m³)
- Cool-down from 295K to < 7K in < 8 hours
- Thermal gradient < 1K
- Thermal stability < 0.1K/hr
- Chamber pressure < 1x10⁻⁷ Torr
- Cheap (to build and operate)

Cryochamber on Facility 239 Payload Cart

Cryochamber Design Overview

- Volume: 6'L x 4'W x 5'H (1.9m x 1.2m x 1.5m)
- Utilized 11 existing cryopanels
 - (5) 76" x 29"
 - (2) 76" x 23"
 - (2) 61.5" x 29"
 - (2) 54" x 23"
- Cryopanels painted with Aeroglaze Z307
- Supported by an "exoskeleton" frame
- Plumbed in four parallel circuits
- Covered with single-layer, two-sided VDA

Cryochamber Thermal Isolation

Cryopanels supported by G-10 isolators with L/W=3.6

- Three mil double sided VDA over gaps between panels
- Three mil double sided VDA over all panels
- Four-layer MLI wrapped around all tubing

Calculated conduction and radiation heat loss = 10.7W

Cryochamber Instrumentation

• Temperature

- (15) LakeShore DT-470-CU-13 standard curve silicon diodes used for panel and tube monitoring to LHe temperatures
 - ±1K accuracy
- -(20) Type T thermocouples used for fixture and tube monitoring down to LN_2 temperatures

• Pressure

- NIST traceable calibrated Granville Phillips Stabil-Ion Gauge on Chamber
 - ±4% accuracy per decade from 1x10⁻² to 1x10⁻⁹ Torr

Sample selection

- -(2) Bare 8" x 8" x 0.024" (8 ply) M55J-954-6 Composite
- (2) Black Kapton (2 mil) on 8" x 8" x 0.020" A1100
 Aluminum Substrate
- (2) Z306 Black Paint on 8" x 8" x 0.020" A1100
 Aluminum Substrate
- One transient (without heaters) and one steady state (with heaters) sample for each sample type

Test Sample Description

Steady State Sample Heaters

- (4) 3" x 3" Minco HK5174R82.3l12B
- 82.3 Ohms each wired in series

Temperature Sensors

- (2) LakeShore DT-470-SD-13 silicon diodes per sample
- Calibrated from 4K-100K within at least +/-50mK

• Wiring

- Heater to heater: 40AWG Cu; PTFE insulation; Aluminum tape overlay
- Power leads: 30 AWG Manganin; Formvar insulation; VDA overcoat
- Voltage leads: 36 AWG Manganin; Formvar insulation; VDA overcoat
- Silicon diodes: 36 AWG Phosphor bronze; 2 twisted pairs; Formvar insulation

Steady State Test Sample Configuration

Suspension holes (4) -Thermal control coating applied over heaters (except M55J) Heaters (4) -For M55J sample heaters covered with Aluminum tape. SD Sensors (2) - Heaters for steady state samples only. -Al tape over SD sensors & heater leads -Sensor/heater lead wires not shown A1100 Al or M55J Substrate

Test Sample Configuration

Test Sample Support Frame

- •Black anodized
- •Conductively coupled to He shroud
- •Tension springs to attach Kevlar to frame

Test Sample Control & Measurement

Thermal Balance Equations

- Transient

 $Q_{c} = \left(mC_{p}dT / dt\right)_{sample} = Q_{rad} + Q_{gas} + Q_{wire}$

- Steady State $Q_{htr} = Q_{rad} + Q_{gas} + Q_{wire}$

where:

 Q_c sample internal energy rate of change m mass C_{ρ} TtSpecific heat capacity temperature time Q_{rad} radiation to He shroud Q_{gas} residual gas conduction to He shroud Q_{wire} heater / sensor lead wire loss **Q**_{htr} heater dissipation

Radiation Heat Loss

$$Q_{rad} = \sigma A_s \varepsilon_{eff} \left(T_s^4 - T_\infty^4 \right)$$

where $\varepsilon_{eff} = \left[\frac{1}{\varepsilon_s} + \frac{A_s}{A_\infty} \left(\frac{1}{\varepsilon_\infty} - 1 \right) \right]^{-1}$

for

 $A_{s} \ll A_{\infty}$

 $\mathcal{E}_{eff} = \mathcal{E}_s$

- $-\sigma$ = Stefan-Boltzmann constant
- $A_s = area of the test sample$ $<math>A_{\infty} = area of the shroud$
- $-\epsilon_{eff}$ = effective emissivity
- $-\epsilon_{s}^{e}$ = emissivity of test sample
- $-\epsilon_{\infty}$ = emissivity of shroud
- $-T_{s}^{"}$ = sample temperature
- T_{m} = shroud temperature

Residual Helium Gas Heat Loss

 $Q_{gas} = \alpha_{eff} XYP_{\infty} A_s (T_s - T_{\infty})$ where $\alpha_{eff} = \left[\frac{1}{\alpha_s} + \frac{A_s}{A_{\infty}} \left(\frac{1}{\alpha_{\infty}} - 1\right)\right]^{-1}$

$$X = \frac{\gamma_{He} + 1}{\gamma_{He} - 1}$$
$$Y = \left(\frac{R_{He}}{8\pi T_{\infty}}\right)^{1/2}$$

for $A_s \ll A_\infty$ $\alpha_{eff} = \alpha_s$

- $-A_s = area of the test sample$
- A_{∞} = area of the shroud
- α_{eff} = effective accommodation coefficient (ac)
- α_s = ac of He @ sample temperature
- α_{∞} = ac of He @ shroud temperature
- T_s = sample temperature
- T_{∞} = shroud temperature
- P_{∞} = pressure @ He shroud
- $-g = C_p / C_v$
- C_p = specific heat @ constant pressure
- C_v = specific heat @ constant volume
- R_{He} = Helium gas constant

Ref: "Cryogenic Engineering", T.M. Flynn, p372 (7.9)

Emissivity Determination

Lead Wire Heat Loss – Sensor Wires

- Assumptions
 - Ohmic dissipation insignificant
 - Wire radiation significant
 - Long lead wires

$$Q_{wire} = \pi \left(0.1\sigma \right)^{\frac{1}{2}} \left(k^{\frac{1}{2}} D^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} \right)_{wire} T_s^{\frac{5}{2}}$$

- Q_{wire} = lead wire loss
- $-\sigma$ = Stephan-Boltzmann constant
- k_{wire} = Lead wire thermal conductivity (weighted average)
- D_{wire} = Lead wire outer diameter (includes insulation)
- ϵ_{wire} = lead wire insulation emittance
- T_s = sample temperature

• Lead Wire Heat Loss / Gain – Heater Wires

- Assumption
 - Ohmic dissipation significant (heater wires)
 - Wire radiation insignificant

$$Q_{wire} = \left(\frac{\pi D^2 k}{4L}\right)_{wire} \left(T_s - T_{\infty}\right) + \left(\frac{2I^2 \rho L}{\pi D^2}\right)_{wire}$$

- Q_{wire} = heater lead wire loss/gain
- k_{wire} = Lead wire thermal conductivity (weighted average)
- D_{wire} = Lead wire outer diameter (includes insulation)
- L_{wire} = Lead wire length
- I_{wire} = Lead wire current
- ρ_{wire} = Lead wire electrical resistivity

• All quantities in the aforementioned equations are known or measured except for the sample emissivity, ε_s . For either the steady-state or transient case, we can isolate this term and derive an expression in terms of the other variables.

$$\varepsilon_{s} = f\left(A_{s}, A_{\infty}, A_{wx}, A_{ws}, L, T_{s}, T_{\infty}, \varepsilon_{w}, \varepsilon_{\infty}, \alpha_{He}, \alpha_{\infty}, P_{\infty}, Q_{heater}, m, C_{p}, \frac{dT}{dt}\right)$$

- The variance of $\boldsymbol{\epsilon}_{s}$ is then given by

$$E_{\varepsilon_s}^2 = \left(\frac{\partial \varepsilon_s}{\partial A_s}\right)^2 E_{A_s}^2 + \left(\frac{\partial \varepsilon_s}{\partial A_\infty}\right)^2 E_{A_\infty}^2 + \dots + \left(\frac{\partial \varepsilon_s}{\partial Q_{heater}}\right)^2 E_{Q_{heater}}^2$$

Ref: "Physics Quick Reference Guide", American Inst. of Physics, p198

Error Bar Determination

Emissivity Error Contributions $P_{shroud}=10^{-7} torr, Error(P_{shroud})=20\%$

Error Bar Determination

Sample Emissivity, & Emissivity Error

P_{shroud}=10⁻⁷ torr, Error(P_{shroud})=20%

- Baked-out cryochamber and emittance samples at 323K (50°C)
- Flooded Facility 225 chamber shroud with LN₂
- Pre-cooled cryochamber to 233K (-40°C) with GN₂ TCU
- Purged cryochamber with GHe
- Cooled cryochamber to 4.5 K with LHe

Cool-Down on 9/17/04

Cryochamber Temperature Profile

Cryochamber Average Temperature Versus Time

Cryochamber Test Results

- All cryochamber test objectives were met
 - Cooled-down from >300K to 4.5K in less than 6 hours
 - Thermal gradient < 0.5K</p>
 - Thermal stability < 0.1K/hr</p>
 - Chamber pressure < 5x10⁻⁸ Torr
- Total cost of cryochamber was \$77,738 which included
 - Design, fabrication and construction
 - Helium transfer lines
 - Instrumentation
 - Thermal blanketing
- Helium consumption was as predicted about 500 liters/day

Test Sample Results

- Emittance test samples
 - M55J and Z306 sample results look good
 - Black Kapton delaminated from A1100 substrate
 - Steady state approach superior less error than transient approach
- Emittance data not released
 - Parasitic losses and error bars being characterized
 - Emittance data to be published soon

- Cryochamber
 - Improve GN₂ TCU pre-cooling
 - Eliminate GHe purge during dewar changes
 - Plug inlet instead
 - Procure second helium transfer line
 - Improve time to change-out helium dewars
- Test Samples
 - Eliminate transient samples pending analysis
 - Perform emittance testing of external radiator coating candidates:
 - Ball Infrared Black (BIRB)
 - Ball S13GLO
 - Black anodized aluminum

