

Science Instruments and Sensors Capability Roadmap NRC Dialogue

NASA Co-Chair: Rich Barney, NASA External Co-Chair: Maria Zuber, MIT

March 16, 2005

Agenda

Time	Торіс	Riduanced Planning & Int
7:30	Continental Breakfast	
8:00	Welcome and Review Process, Panel Chair & NRC Staff	
8:15	NASA Capability Roadmap Activity	Perry Bankston, NASA
8:30	12.0 Science Instruments & Sensors Overview	Rich Barney, NASA
	-Sub-Team Presentations-	
9:15	12.1 Microwave Instruments & Sensors	Chris Ruf, UMich
9:45	12.2 Multi-Spectral Imaging/Spectroscopy (vis-IR-FarIR)	Craig McCreight, NASA
	– Break –	
10:45	12.3 Multi-Spectral Sensing (UV-Gamma)	Brian Ramsey, NASA
11:15	12.4 Lasers/LIDAR Remote Sensing	Maria Zuber, MIT
	– Lunch –	
12:45	12.5 Direct Sensing of Particles, Fields & Waves	Dick McEntire, APL
1:15	12.6 In-Situ Instrumentation	Tim Krabach, NASA
1:45	Co-Chair Summary	Maria Zuber, MIT
	-Break-	
2:30	Open Discussion	NRC Panel
	A dia uma	

-Adjourn-

Capability Roadmap Team

Co-Chairs

NASA: Richard Barney, NASA/Goddard Space Flight Center NASA Deputy: Juan Rivera , NASA/Goddard Space Flight Center External: Dr. Maria Zuber , Massachusetts Institute of Technology

<u>NASA</u>

Brian Ramsey, MSFC Bruce Spiering, Stennis Tim Krabach, JPL Soren Madsen, JPL Paul Mahaffy, GSFC Azita Valinia, GSFC Craig McCreight, ARC

Other/Independent

Richard McEntire, JHU/APL David Glackin, Aerospace Shyam Bajpai, NOAA

Industry

David Chenette, Lockheed Martin Ron Polidan, Northrop Grumman Rich Dissly, Ball Aerospace

Academia

Chris Ruf, Univ. Michigan Steve Ackerman, Univ. Wisconsin Suzanne Staggs, Princeton

Coordinators

Directorate:Harley Thronson, SMDAPIO:Perry Bankston, JPL

Ex-Officio

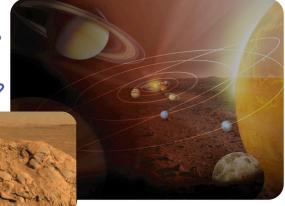
Carl Stahle (GSFC-Nano CRM) Louis Barbier (NASA-SEU Technologist) Thomas Black (National Reconnaissance Office) Amy Walton (Earth Science and Technology Office)

3 📜

Capability Roadmap Description

- The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond).
 - Driving design reference missions
 - Science measurement
 - Capability/technology gaps
 - A description of the developments (including alternate paths and options) required to advance a priority capability to spaceflight
- Specific science instrument and sensor groups include the following:
 - Microwave Instruments and Sensors
 - Multi-Spectral Imaging / Spectroscopy (Vis-IR-FIR)
 - Multi-Spectral Sensing (UV-Gamma)
 - Laser / LIDAR Remote Sensing
 - Direct Sensing of Particles, Fields, and Waves
 - In Situ Instrumentation
- The Science Instruments and Sensors roadmaps will not include:
 - Instruments and sensors performing "engineering" functions
 - Instrument accommodations on a variety of platforms (orbiting, landers, rovers, probes, aerial vehicles)
 - Astronaut tools required to use instruments and sensors
 - Large sets of systems and associated technologies necessary to collect, concentrate and combine electromagnetic bands ranging from gamma-rays to radio waves, and including gravity-waves

Compelling Science Questions


Answers to questions as old as human curiosity have always seemed beyond the reach of science.. UNTIL NOW!

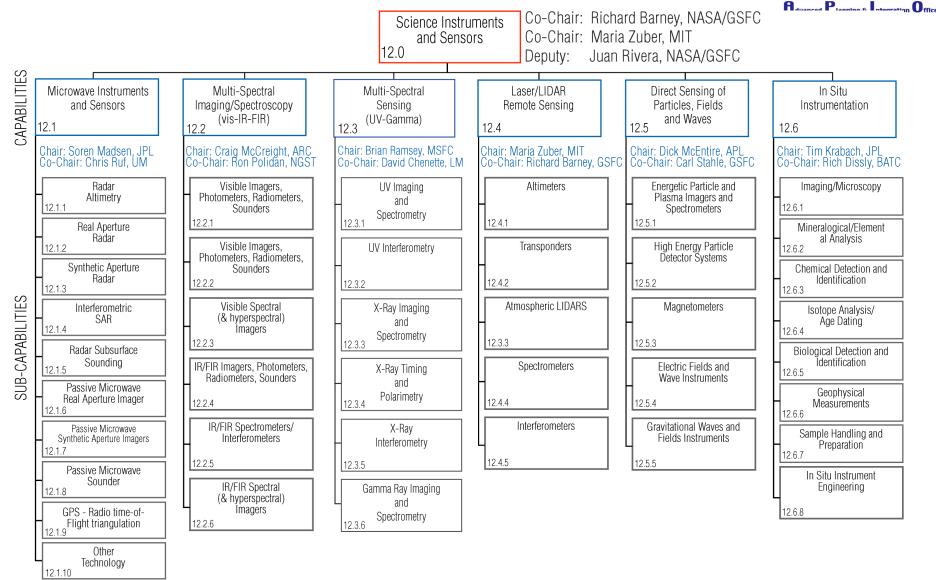
- Understand the fundamental physical processes of the space environment from the Sun to Earth, to other planets, and beyond to the interstellar medium.
- Observe, understand, and model the Earth system to discover how it is changing and to understand the consequences for life on Earth

• Define the origins and societal impacts of variability in the Sun-Earth connection.

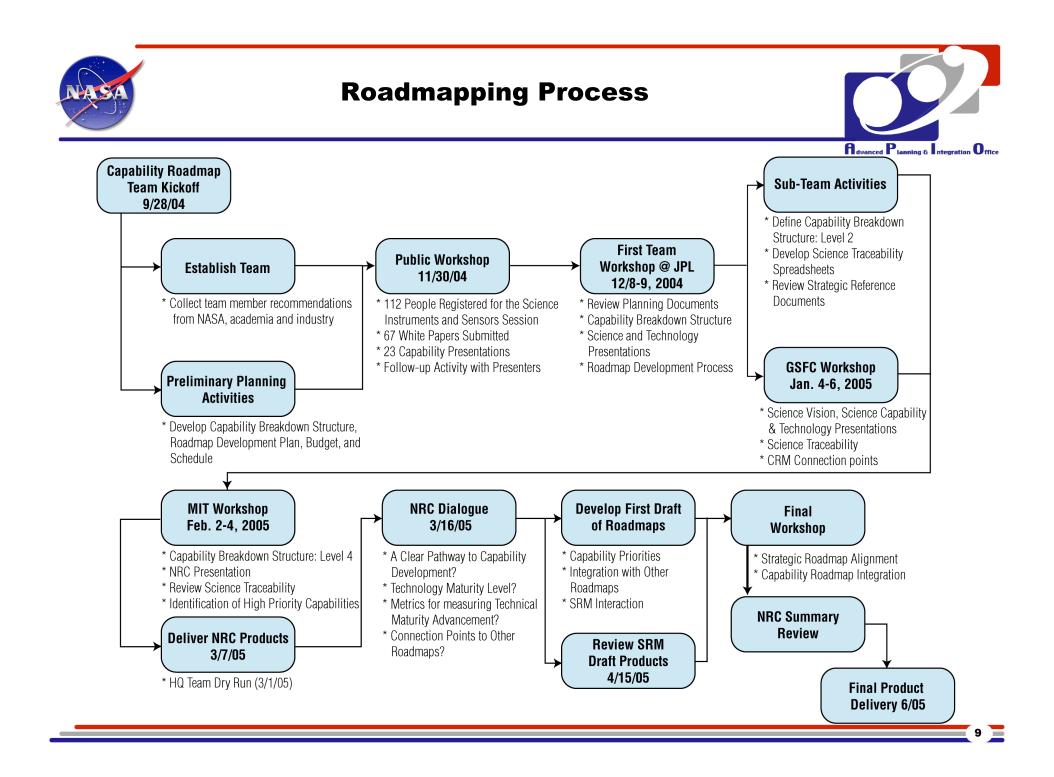
How did the solar system form?How does life begin?How can Humans explore Mars?

How did the Universe begin?
Does time have a beginning and an end?
Where did we come from?
Are we alone?

5 📜


Top Level Assumptions

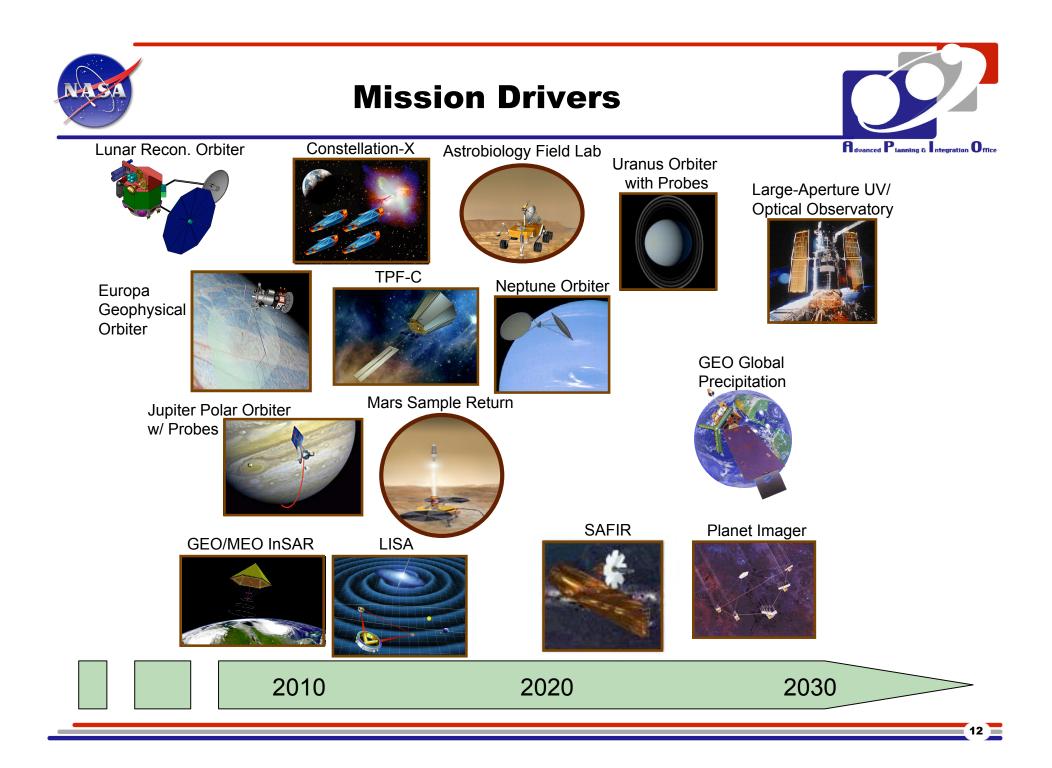
- Design reference missions and strategic science measurement needs must be driven by the Vision for Space Exploration and the New Age of Exploration (NASA's Direction for 2005 and Beyond).
 - Supplemental information was obtained (and documented) from science working group interactions, presentations to the Strategic Roadmap Teams, and science/engineering technical presentations.
- Development of realistic Science Instrument and Sensor roadmaps is dependent upon *many* CRM team development activities. Dual membership occurs within the following CRM teams:
 - Advanced Telescopes and Observatories
 - In Situ Resource Utilization
 - Nanotechnology
- Roadmap Format:
 - Capability needs are shown in the timeline to be met 3-5 years before mission launch.
 - Missions timelines were provided by APIO/SMD via design reference missions or the strategic mission framework.
 - Missions listed with an * are not traceable to a currently defined design reference mission, however, the science measurement is dependent upon significant instrument and sensor capability development.


12. Capability Breakdown Structure

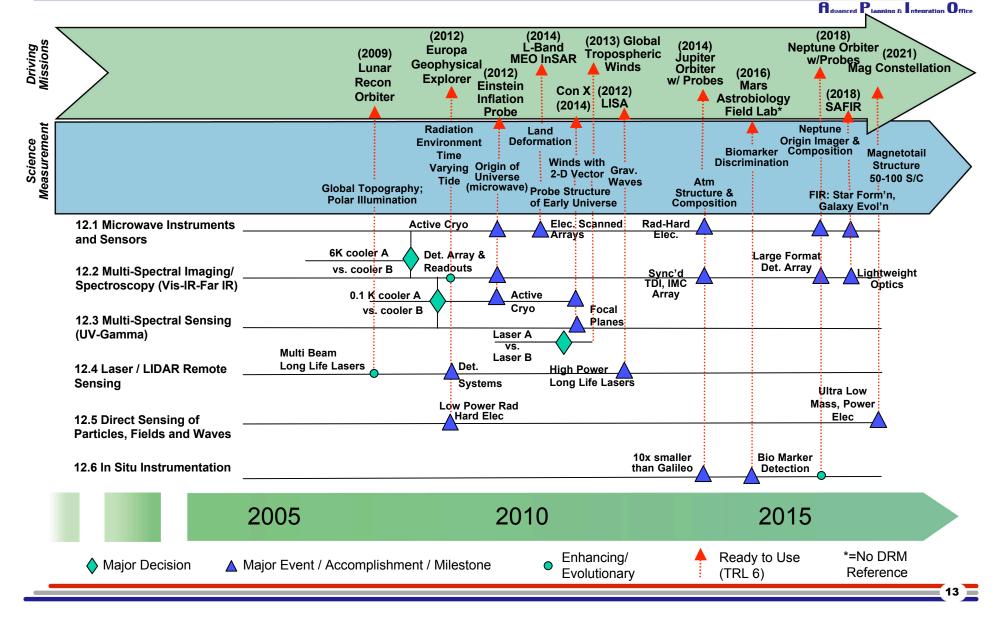
- Science Instruments and Sensors is a <u>broad</u> and <u>diverse</u> roadmapping topic with significant science measurement application challenges.
 - Previous instrument and sensor roadmapping efforts were limited to specific science measurement priorities (Earth Science, Universe, Solar System, etc.).
 - Emphasis was placed on identifying instrument and sensor capabilities that would enable multiple design reference missions.
- Extensive participation from past, present, and future Principal Investigators was encouraged at public meetings and workshops.
 - Development of science instruments and sensors is a competed, peer reviewed process where lessons learned can influence future missions.
 - Specific technology implementation strategies are the outcome of the proposal process and not the science instruments and sensors roadmap strategic planning activity.
- Sub-Capability elements were prioritized by the degree of cross-cutting applicability to multiple design reference missions.
 - Do they enable or enhance scientific discovery?
 - Do they have broad application across instrument and sensor capabilities?
 - Do they meet the needs of multiple design reference missions?

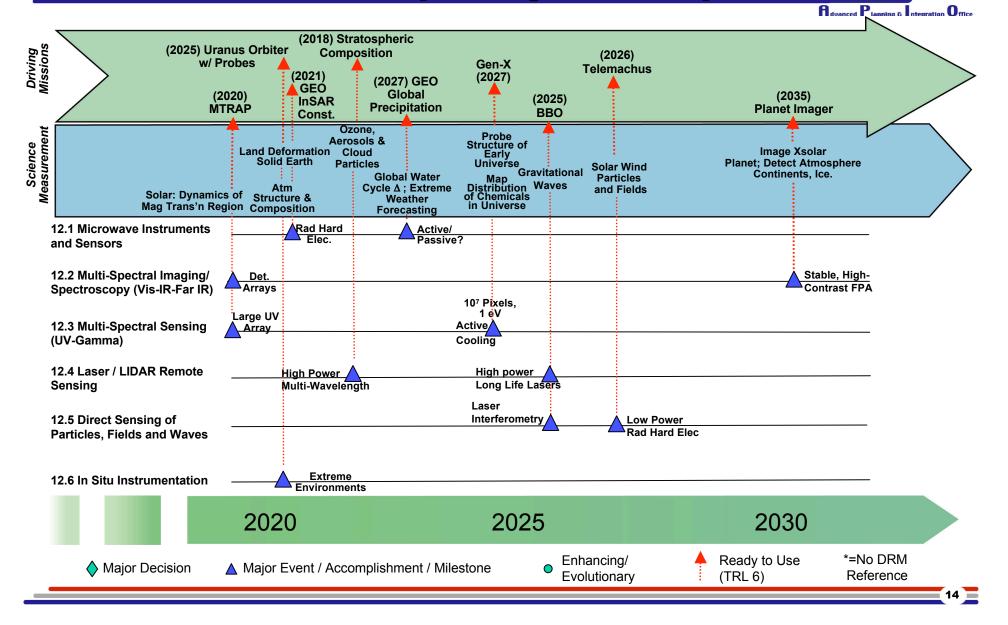
Strategic Traceability

- Science Instrument and Sensor capability needs can be traced directly back to the following top-level strategic documentation (detailed list is shown in backup charts):
 - The Vision for Space Exploration
 - The New Age of Exploration: NASA Strategic Objectives for 2005 and Beyond
 - A Journey to Inspire, Innovate, and Discover: President's Commission Report
 - Our Changing Planet: The US Climate Change Science Program for Fiscal Years 2004 and 2005
 - Design Reference Missions
 - NASA Enterprise Strategies
 - National Research Council Reports
- A Science Traceability Database was developed to establish, track, and communicate linkages between compelling science questions, design reference missions, science instrument measurement needs, and critical instrument and sensor capabilities/technologies gaps.
 - NASA design reference missions, existing enterprise roadmaps, science measurement priorities, and science and engineering community input was collected, reviewed and documented.
 - Interim Earth, Planetary Science, Sun-Solar System and Astrophysics spreadsheets were presented to several Strategic Roadmap Teams for review.



Science Traceability Matrix (Example)


Strategic Roadmap		Science Question	Relevant Missions (DRM exceptions noted in red)	Launch Date	Measurement Parameter	Measurement Scenario	Target Body	Tech Gap Exists ?	Scenario Doc. Ref*	CBS Ref	Technology Component Development	Orbit
8	16	Is there observational evidence supporting the hypothesis that the early universe underwent a period of rapid inflation?	Einstein Inflation Probe	2012- 2020	Polarization structure of the cosmic microwave background	Map the polarization structure of the cosmic microwave background	Cosmic Microwave Background	Yes	15,16	12.1	Very large microwave arrays, 100 mK cryo- cooler, wide-band receiver	
10	11	I ransition Region	Magnetic Transition Region Probe (MTRAP)	2020	Velocity and Vector Magnetic Fields in Chromosphere/ Corona	Doppler Imager/ Magnetograph	Sun	Yes	11		Large, lightweight UV reflective optics; Up to 16K x 16K CCDs with high QE at 150 nm and low power	S/C at GEO
10	11		Jupiter Polar Orbiter (JPO)	2009	Auroral imagery	Vis/UV auroral imager	Jupiter	Yes	11	12.3	TDI image synthesis & relative motion compensation; synchronized shutter for imager radiation shielding	Polar orbit around Jupiter
9	2, 3	How can weather forecast duration and reliability be improved?	Global Tropospheric Winds	2013	Atmospheric wind profile	Coherent Doppler wind lidar	Earth's atmosphere	Yes	5	12.4	2 J/pulse laser with 12 Hz PRF and 3 year life; 0.75 m lightweight diffraction-limited optics; high precision optical alignment;	
10	11		Magnetospheric Constellation (MC)	2021	Fields & Particles	In Situ Instruments	Earth's Magnetosphere	Yes	11	12.5	Nanosatellites and miniaturized rad- tolerant low mass/power instruments	50-100 Nanosats in Nested Orbits
2	7, 8	Characterize the geology and geophysics of the shallow Martian crust at one site, particularly as it relates to interpreting present habitability.	Mars Deep Drill	2018	Investigate the thermal characteristics of the Martian subsurface	Drill (10 m to 50 m)	Mars	Yes	7, 8	12.6		


Science Instruments and Sensors

Near Term Capability Roadmap

Science Instruments and Sensors Far Term Capability Roadmap

Connection Points: Capability Roadmaps

Capability Roadmap	Flow	Connection Points
1. High-energy power and propulsion		
2. In-space transportation		
3. Advanced telescopes and		Dr. Ron Polidan is a member of both CRM teams. Optics,
S observatories		Interferometry, Structures, and Active Cryogenic Systems.
		Future optical and RF communication systems and sensor
EH 4.Communication & Navigation		web navigation
5. Robotic access to planetary		Robotic access for remote sensing orbital reconnaissance,
D surfaces		surface analysis, and sample return.
6. Human planetary landing systems		
		Radiation detection and environmental monitoring
EH 7. Human health and support systems		technologies
8. Human exploration systems and		Access to exploration targets, InSitu analysis, sample return,
LS mobility		mobile sensor platforms, environmental sensing
LS 9. Autonomous systems and robotics	♦	Robotic Systems for surface exploration
10. Transformational spaceport/range		
technologies		
		Dr. Rich Dissly is an ex officio member of the ISRU team.
S 12. <i>In situ</i> resource utilization		Resource assessment and processing relationship
13. Advanced modeling, simulation,		Systems architecture studies, applications for science
LS analysis		discovery and analysis, and instrument design tradespaces.
14. Systems engineering cost/risk		Requirements development, technical solution, process
EH analysis		management, risk management
		Dr. Carl Stahle is an ex officio member of the Nanotechnology
		team. Sensing and devices, mechanisms, electronics,
D 15. Nanotechnology		modeling

No Relationship

Critical Relationship (dependent (D), synergistic (S))

Moderate Relationship (enhancing (EH), Limited Synergy (LS))

g & Integration Office

Connection Points: Strategic Roadmaps

Advanced Planning & Integration Office

Strategic Roadmap	Connection Points
1. Lunar: Robotic and Human	
Exploration	Minimal Design Reference Missions
2. Mars: Robotic and Human	Presented at Meeting #1 and MEPAG follow up. MEPAG
Exploration	reference missions provide strategic guidance.
	Design Reference Missions are defined and strategic
3. Solar System Exploration	guidance documentation has been reviewed.
	Presented at Meeting #1. Design Reference Missions are
	defined and strategic guidance documentation has been
4. Search for Earth-Like Planets	reviewed. (POC: Eric Smith)
6. International Space Station	
7. Space Shuttle	
	Presented at Meeting #1. Design Reference Missions are
	defined and strategic guidance documentation has been
8. Universe Exploration	reviewed (POC: Kathy Flanagan)
	Design Reference Missions are defined and strategic
9. Earth Science and Applications from	guidance documentation has been reviewed. (POC: Azita
Space	Valinia)
	Presented at Meeting #1. Design Reference Missions are
	defined and strategic guidance documentation has been
10. Sun-Solar System Connection	reviewed.
11. Aeronautical Technologies	
12. Education	
13. Nuclear Systems	

No Relationship Critical Relationship Moderate Relationship

Science Instruments and Sensors Capability Roadmap Team

12.1 Microwave Instruments and Sensors

Name

Soren Madsen Chris Ruf Dave Glackin Suzanne Staggs Azita Valinia Juan Rivera Shyam Bajpai

Organization

NASA JPL (Co-Lead) Univ. Michigan (Co-Lead) Aerospace Princeton NASA Goddard NASA Goddard NOAA SIS

Primary Expertise

Radar

Atmosphere & Ocean Radiometry Earth Remote Sensing Satellites Cosmic Microwave Background Earth Science Technology Instruments Design/Engineering Operational Weather Satellites

Capability Description

 Active (Radar & GPS) and Passive (Radiometer) microwave remote sensing instruments operating in the electromagnetic spectrum at wavelengths from 10 km to 100 µm(at frequencies from 30 kHz to 3 THz, respectively)

Reference Documentation

Astronomy & Astrophysics

- Astronomy and Astrophysics in the New Millennium, 2001, NRC Report, Astronomy and Astrophysics Survey Committee
- Connecting Quarks with the Cosmos, 11 Science Questions for the New Century, NRC Report
- Beyond Einstein: From the Big Bang to Black Holes, 2003, Structure and Evolution of the Universe Roadmap Team

Earth Science

- Strategic Plan for US Climate Change Science Program, 2003
- Earth Science Enterprise Strategy, 1 Oct 2003
- Earth Science Research Plan: 6 Jan 2005 Draft
- NASA ESTO "Earth-Sun System: Potential Roadmap and Mission Development Activities" 23 Dec 04 Draft Briefing
- Planetary Science
 - New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)
- Sun-Solar System
 - Sun-Earth Connection Roadmap: 2003 2028
 - The Sun to the Earth And Beyond: A Decadal Research Strategy in Solar and Space Physics
 - Earth-Sun System: Potential Roadmap and Mission Development Activities (Draft) 12/03

5		
	Advanced Planning &	Integration Office
12.	Science Instruments and Sensors 0	
	Vicrowave Instruments and Sensors	-
12	.1	
Ch Co	nair: Soren Madsen, JPL D-Chair: Chris Ruf, UM	
1	Radar Altimetry 2.1.1	
	Real Aperture Radar 2.1.2	
	Synthetic Aperture Radar 2.1.3	
	Interferometric SAR 2.1.4	
1	Radar Subsurface Sounding	
1	Passive Microwave Real Aperture Imager 2.1.6	
	Passive Microwave Synthetic Aperture Imagers 2.1.7	
1	Passive Microwave Sounder 2.1.8	
	GPS - Radio time-of- Flight triangulation 2.1.9	
Г	Other Technology 2.1.10	

Capability Benefits

Astronomy and Astrophysics:

- What powered the big bang?
- · How and when did galaxies first form?
- What are the properties of the earliest stars?

Planetary Science:

- How long did it take Jupiter to form, and how was the formation of the Uranus and Neptune different from that of Jupiter and Saturn?
- Confirm the presence of interior oceans on Europa, measure ice thickness, elucidate formation of surface features

Earth System Science:

- How does the cryosphere respond to and affect global environmental change?
- How do atmospheric trace constituents respond to and affect global environmental change?
- How are global precipitation, evaporation, and the cycling of water changing?
- How can weather forecast duration & reliability be improved?

Earth System Science, (continued)

- How are variations in local weather, precipitation and water resources related to global climate variation?
- How is the Earth's surface being transformed by naturally-occurring tectonic and climatic processes?
- How is the global ocean circulation varying on interannual, decadal, and longer time scales?
- What are the effect of clouds and surface hydrologic processes on Earth's climate?

Assumptions

Roadmapping Philosophy

- Highlight capabilities that enable the maximum number of science applications
- Capability roadmaps are developed at Level 3 (subsystems) to highlight cross-cutting between Level 2 (instrument type) areas

What isn't covered

- Non-microwave electromagnetic science instruments
- Non science microwave (*e.g.* Entry, Descent & Landing navigation)
- In situ microwave science instruments & sensors

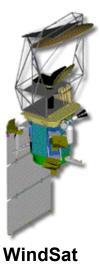
History/Current Missions

Astronomy & Astrophysics: WMAP, Herschel (*aka* FIRST), Planck, SOFIA (airborne)

Wilkinson Microwave Anisotropy Probe

Planetary Science: Pioneer, Apollo–17, Magellan, Cassini, MARSIS

Cassini


Earth System Science: MSU, AMSU, MLS, MLS-2; SeaSat, DMSP, WindSat; SIR-A,B,C; SRTM; NScat, QuikScat; GeoSat, TOPEX, Jason; ESMR, TRMM

SeaSat

DMSP

Mission/Strategic Drivers

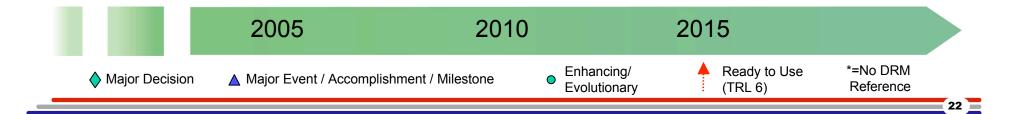
Astronomy & Astrophysics: Einstein Inflation Probe, SAFIR

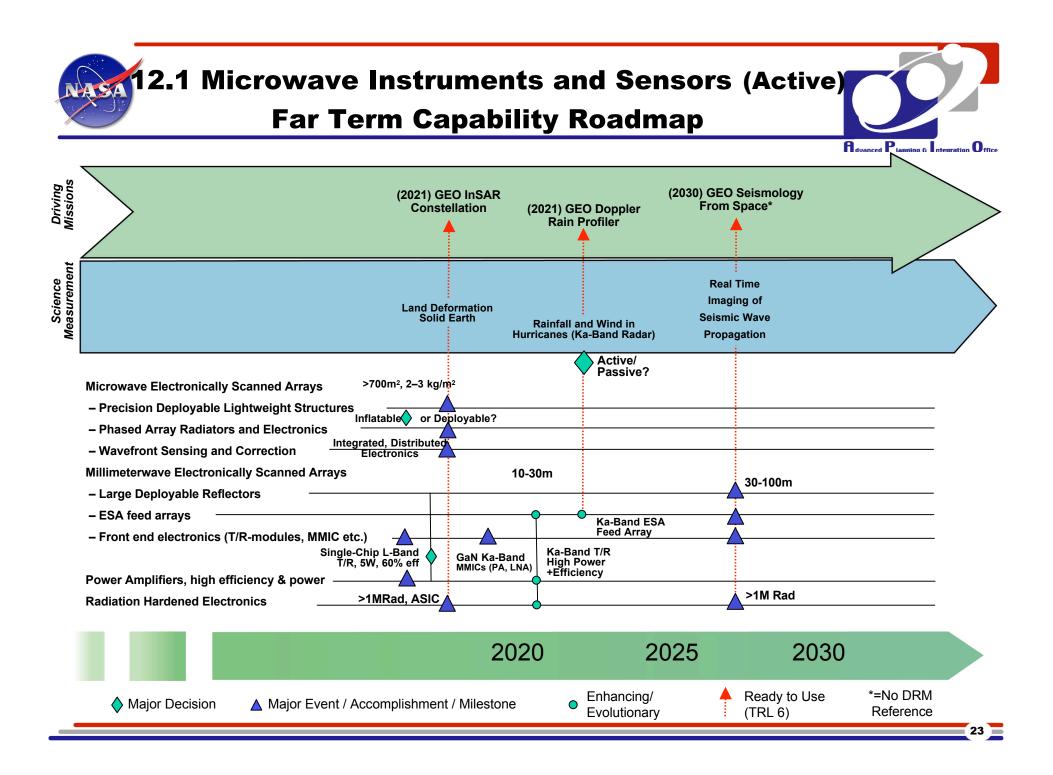
Planetary Science: Jupiter Polar Orbiter/Probes, Neptune Orbiter/Probes, Prometheus (JIMO a.o.)

Jupiter Polar Orbiter

Earth System Science: Ice Thickness, Global Tropospheric Aerosols, Global Soil Moisture, Ocean Surface Winds, GEO Global Precip, mmWave GEO Radar, Land deformation InSAR, Ocean Circulation and Eddies, Cloud System Structure, Land deformation repeat pass InSAR

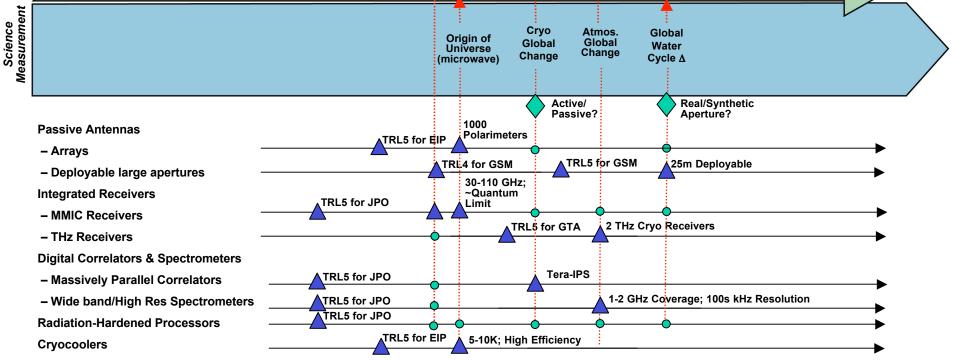
GEO Global Precip




12.1 Capability Need/Gap Assessment

Sub Capabilit y	Figures of Merit	Current Technology	Needed Technology
Interferometric SAR	Temporal and Spatial Resolution, swath width	Moderate High efficiency L-band T/R modules, Moderate ~30m ² antennas	Large (400–700m ²), deployable antennas, High efficiency rad-hard T/R modules, Digital Beam Formation (DFB) Rad-hard processor
Millimeter Wave RAR, SAR, and Interferometry	Electronic Beam Steering, Phase stability, Transmitted power, Receiver noise figure.	Non-deployable antenna; mechanical beam steering, Discrete power amplifier (EIK)	Large deployable antenna, Electronic Beam Formation, High freq. T/R modules
Millimeter wave Polarimeter Arrays, Spectrometers & Sounders	Noise limit, frequency resolution, bandwidth, number of pixels, degree of system integration; DC power requirement	non-Quantum limit cryo receiver; moderate power consumption; 10s of pixels;individual ass'y; moderate bandwidth digital autocorrelator	Quantum limit cryo receiver, 1000s pixels; highly integrated; wideband digital autocorrelator, Rad-hard processor, high efficiency Cryocooler
Passive Synthetic Aperture Microwave Imagers	Spatial resolution, swath width, number of frequency/polarization channels, DC power, noise limit	TRL 6 synthetic aperture aircraft demos; TRL 4 MMIC correlating receivers, TRL 4 ASIC correlators	Low power MMIC receiver, massively parallel digital correlator, Rad-hard processor

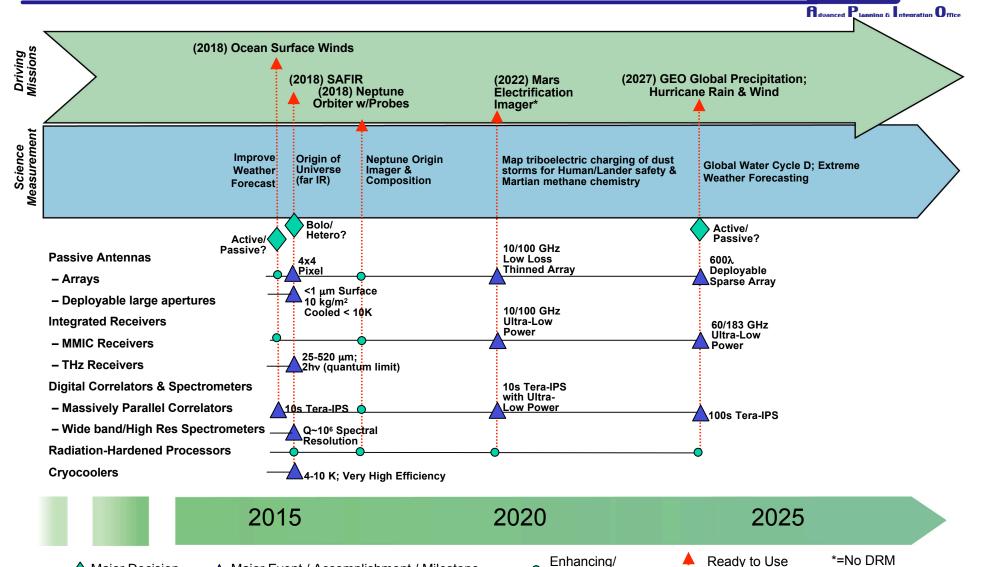
12.1 Microwave Instruments and Sensors (Active) **Near Term Capability Roadmap A**dvanced P gration Office Driving Missions (2019) (2015) LEO Wetland (2014) L-Band MEO Ocean Structure InSAR and River and Circulation Monitor (2010) L-Band LEO InSAR (2017)(2014) Land (2020) LEO Cloud **Prometheus** Surface System Structure (e.g. JIMO)* Topography* Science Measurement **River stage** Height & Land Ocean Deformation Discharge **Circulation & Cloud Cover &** Rate; Water Planetary Layers; Cloud Microphysics; Land Eddies Storage in Topomapper Deformation InSAR Land Wetlands Precipitation Topomapper (Ka-InSAR) 400m² Aperture, 30KW, 5-8 kg/m² K-band InSAR **Microwave Electronically Scanned Arrays** 100m Altimeter boom - Precision Deployable Lightweight Structures 1kg/m Membrane or Panel? - Phased Array Radiators and Electronics 50m² Aperture, Metrology Comp. 5KW, 8-10 kg/m² - Wavefront Sensing and Correction Distributed Millimeterwave Electronically Scanned Arrays or Sngl TX? - Large Deployable Reflectors Ku-, Ka-, and W-Band - ESA feed arrays Ku-Band T/R W-Band T/R Ka-Band T/R Front end electronics (T/R-modules, MMIC etc.) Single-chip L-Band T/R, 2W, 40% eff. 2-5W, 30% eff 10W. 40% eff 1W, 20% eff Ka-Band, 5-10KW W-Band Power Amplifiers, high efficiency & power MMICs FPGA-Based, 1 MRad Radiation Hardened Electronics



Driving Missions

12.1 Microwave Instruments and Sensors (Passive) Near Term Capability Roadmap

Advanced P a & Integration Office (2014) Sea Ice Thickness* (2014) Jupiter Polar **Orbiter with Probes** (2016) Global Tropospheric (2012) Einstein Aerosols (2017)Inflation Probe **Global Soil Moisture** Cryo Atmos. Global Origin of Global Global Water Universe Change Change (microwave) Cycle ∆



	2005	2010		2015		
Major Decision	A Major Event / Accomplish	ment / Milestone	Enhancing/ Evolutionary	Ready to Use (TRL 6)	*=No DRM Reference	24

🔷 Major Decision

12.1 Microwave Instruments and Sensors (Passive) Far Term Capability Roadmap

 \bigcirc

Evolutionary

(TRL 6)

Reference

25 🚃

▲ Major Event / Accomplishment / Milestone

12.1 Capability Maturity Assessment

Sub Capability	Integrated Technologies	State-of-the-Art	Req Perf @TRL 6	Mission Driver	Need Date
	Lightweight L-band ESA	Rigid panels, 10-15 kg/m ² Plus deployment structure	Lightweight manifold, Interconnects, signal distribution, integrated T/R modules. 2-3kg/m ²	InSAR LEO/ MEO/ GEOSync	2007/ 2010/ 2017
Microwave			Adaptive wavefront sensing and control. Thermal mgmt.	InSAR (see above)	2010/ 2017
Interferometric SAR	Low cost, efficient L-band T/R modules	10-30W, 40% eff, 4-5 chip MCM, \$1K/module,	Single chip T/R (GaAs, SiGe, or CMOS), Rad Hard, Aperture Integrated, 60% eff, \$100/mod	InSAR (See above)	2007–17
		Tx/Rx only	Integration of Waveform Generator and Dig receivers For DBF.	InSAR MEO/GEO	2010–17
	Efficient MMIC T/R Modules	Exist up to X-band 10W, 30%	10W @ Ku-band, 40% eff, Phase stable	Ocean Structure Cloud Structure	2015
		efficiency	5W @ Ka-band, 30% eff, Phase stable	LEO Wetland… Cloud; Topo	2010/11/15
			1W @ W-band, 20% eff, 4dB NF	Cloud System Structure	2015
Millimeter Wave			Higher power, efficiency GaN Ka-band electronics	GEO Doppler Rain Profiler	2016
Radar	MMW	Exist up to X-band,	Ku-band ESA, 5KW	Cloud Structure	2015
	Electronically	5-10KW ESA,	Ka-band ESA, 1KW	LEO Wetland	2011
	Scanned Array (ESA)	10-15kg/m ²	W-band ESA, 500W	Cloud Structure	2015

12.1 Capability Maturity Assessment

Sub Capability	Integrated Technologies	State -of-the-Art	Req Perf @TRL 6	Mission Driver	Need Date
Millimeter	THz Receiver s	currently ~100 element array @ 110 GHz;	~1000 element @ 110 GHz	Einstein Inflation Probe	2009
wave Polarimeter		2 THz but not cryo	Individual elements @ 2 THz (cryo but not quantum limit)	Global Tropo Aerosols	2013
Arrays,			3 THz, cryo, quantum limit	SAFIR	2015
Spectrometer s	Wide band / High	Input bandwidth	Current BW @ TRL 6	E. I. P.	2009
& Sounders	res spectrometers	currently ~1 00	4-8 GHz BW	G. T. A.	2013
		MHz for autocorrelator & polyphase digital spectrometers	Same performance in Hi Rad Environment	SAFIR	2015
	MMIC Receiver s	500 mW @ < 60 GHz	500 mW @ < 37 GHz	Sea Ice Thickness	2011
			250 mW @ < 37 GHz	Ocean Sfc Winds	2015
Passive			100 mW @ < 90 GHz	Neptune Orbiter	2015
Synthetic Aperture			250 mW @ < 200 GHz	GEO Global Precip	2018
Microwave	Massively Parallel	1 Tera instruction	1 TIPS @ TRL 6	S. I. T.	2011
Imager s	correlator s	per second	10 TIPS	O. S. W.	2015
		(TIPS)	10 TIPS Hi Rad Environment	N. O.	2015
			100 TIPS	G. G. P.	2018

Other Key Technologies

Technology elements were prioritized by the degree of cross-cutting applicability to multiple DRMs. Following are elements critical (i.e. enabling) to certain DRMs but not sufficiently cross-cutting to be assigned a high priority.

- Global Soil Moisture Mission
 - Precision deployable/inflatable structures (other than reflectors)
 - Control of Spinning apertures (balancing)
- Solar Radio Bursts & Termination Shock
 Large Data Storage
- Next Generation Geodetic Networks/Observatory
 Next Generation GPS/GNSS receivers

Capability Dependencies

- Cross-cutting between Microwave and other groups' DRMs
 - Rad-hard processors
 - Cryo-coolers
- Cross-cutting between Microwave DRMs
 - MMIC RF Technology
 - Large scale ASIC digital signal processing
 - Rad-hard processors
- Cross-cutting between major science themes
 - Earth Science missions serve as capability test beds for other missions
 - Nimbus NEMS&SCAMS => TIROS MSU => DMSP SSM/T
 - SeaSat SAR => Magellan SAR
 - Jason MMICs => JUNO Water/Ammonia Radiometer
 - MLS receivers & spectrometers => Jupiter & Neptune Orbiters
- Microwave Science instruments have historically led to breakthrough science, enabled operational measurement capabilities and provided technology for critical exploration initiatives.

Science Instruments and Sensors Capability Roadmap Team

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR)

<u>Name</u>

Craig McCreight Ron Polidan Bruce Spiering Steve Ackerman Rich Dissly Tim Krabach

Organization

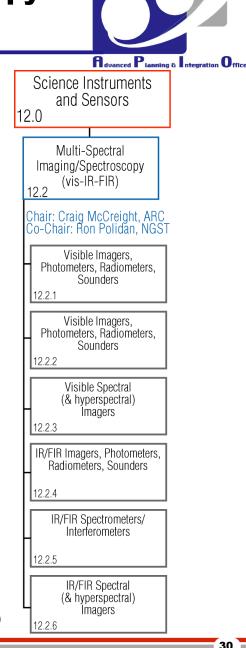
NASA Ames (co-lead) Northrop Grumman (co-lead) NASA Stennis U. Wisconsin Ball Aerospace NASA-JPL

Primary Expertise

IR detectors for astronomy UV-visual-IR sensors, instrum systems Vis-IR remote sensing instrum'n / oceans Meterology, cloud science, aerosols *In situ*, & atmospheric applications LWIR to FIR detectors

12.2 Multispectral Imaging/Spectroscopy (vis-IR-FIR)

Capability Description


 Instrument-level, & component, needs for advanced imaging & spectroscopy in the visible and infrared regions, extending from 0.4 -1000+ µm. Consideration includes key support technologies, *e.g.*, cryogenics for IR.

Reference Documentation (partial)

- Astronomy & Astrophysics
 - Astronomy and Astrophysics in the New Millennium, 2004, NRC Astronomy and Astrophysics Survey Committee (Note that this is a National Academy study rather than a specific NASA roadmap)
 - Beyond Einstein: From the Big Bang to Black Holes, 2003, Structure and Evolution of the Universe Roadmap Team
 - Origins Roadmap (2003)

Earth Science

- Strategic Plan for US Climate Change Science Program, 2003
- Earth Science Enterprise Strategy, 1 Oct 2003
- Earth Science Research Plan: 6 Jan 2005 Draft
- NASA ESTO "Earth-Sun System: Potential Roadmap and Mission Development Activities" 23 Dec 04 Draft Briefing
- Planetary Science
 - New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)
- Sun-Solar System
 - Sun-Earth Connection Roadmap: 2003 2028
 - The Sun to the Earth And Beyond: A Decadal Research Strategy in Solar and Space Physics
 - Earth-Sun System: Potential Roadmap and Mission Development Activities (Draft) Dec 2003

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR)

Capability Benefits

Earth Science:

- How do trace atmospheric constituents affect global climate change?
- How is climate change affected by trends in solar irradiation?
- How can weather forecasting be improved and made more reliable?

Planetary Science:

- What processes marked the initial stages of planet & satellite formation?
- Which processes produce & maintain habitable zones within the solar system?
- How long did it take for Jupiter to form, & how did its formation differ from that of the other gas giant planets?

Sun-Solar Studies:

- What are the dynamics of the sun's transition region?
- What are the similarities between auroral acceleration processes of different planets?

(Universe & Earth-like planet search):

- Is there evidence of life in other planetary systems?
- How are planetary systems formed, & what are their properties?
- Did the early universe undergo a process of rapid expansion?

Sub-Team Assumptions

- Vis-IR near-field sensing, or measurements within planetary atmospheres, covered by *in situ*
- Important overlaps with telescope technology team (long-baseline systems) in developing advanced interferometers
- Agency will support necessary infrastructure (fabrication, testing, expertise)

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR)

History/Current Missions


Earth Science: LandSat, Ikonos, Quickbird 2, MODIS (Terra, Aqua), AIRS (Aqua)

Planetary: THEMIS, VIMS (Cassini), HiRISE & CRISM (Mars Recon Orbiter), TES (Mars Global Surveyor)

Sun-Solar: LASCO, MDI-SDI (SOHO), SOT (Solar-B), SECCHI/STEREO

Mission/Strategic Drivers

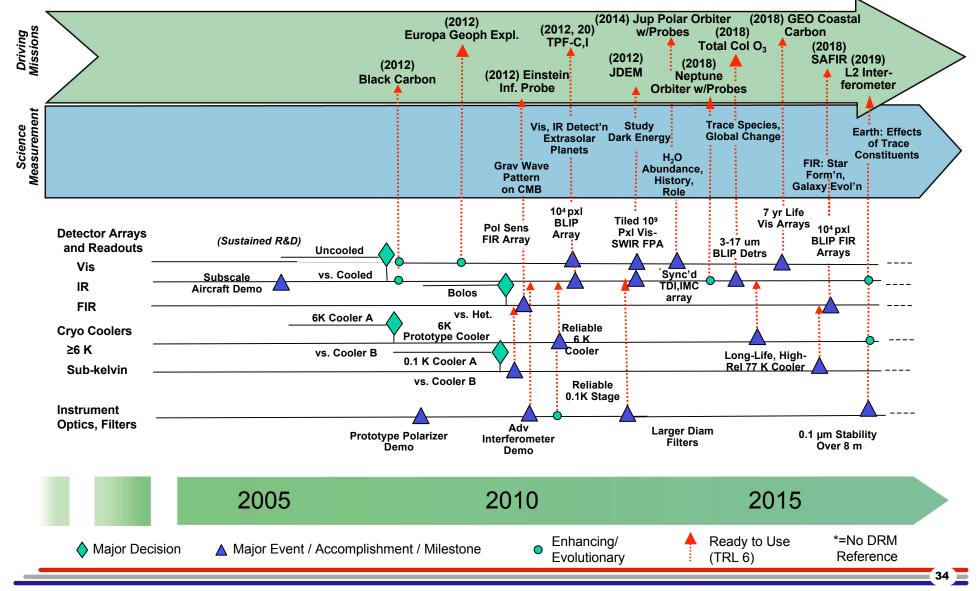
Earth Science: Black Carbon, Total Column Ozone, GEO Coastal Carbon, L2 Earth Atmosphere Solar Interferometer, LEO Cloud Particle Structure, GEO Lightning Imager

Planetary Science: Jupiter Polar Orbiter/Probes, Europa Geophysical Explorer, Neptune Orbiter/Probes

Sun-Solar: MTRAP, Jupiter Polar Orbiter/Probes

Universe+Earth-like Planets: TPF-C, TPF-I, Einstein Inflation Probe, JDEM, Lg Ap. UVO Observ, SAFIR, Life Finder, Planet Imager/Mapper

12.2 Capability Need/Gap Assessment



Figures of Merit Current Technology Needed Technology Sub Capability Pixel Count. Uniformity >2 k x 2 k format: mosaics Visible Detector ≤1 k x 2 k format Quantum Efficiency Arrays Radiation degradation Radiation tolerance Transition (CCD <-> CMOS) Noise Stable fabrication Crosstalk Few, changeable foundaries infrastructure ~1E4 pxls for some **IR Detector Arrays** Pixel Count Large formats for all Noise applications applications: mosaics **Power Dissipation** ~1E6 pxls for astrophysics. Higher T arrays proven Temperature limited mosaics Wider spectral response Low-T's required Frame Time, and ability to Linear, fast response sync to scene Irregular effects High-throughput fab & testin g Pixel Count. Uniformity Parallel investigations of Far-IR Detector Mature 1E4 pxl background -limited arrays Arrays Quantum Efficiency best detection approaches Demonstration of polarization, & Noise Early development of readout / 0.1-0.3 K cryogenics High-T FIR broadband detectors Crosstalk mux approaches Limited system demonstrations Stable fab & testing **Cooling Power** ≥6 K Cryocoolers for Limited flight experience Flight experience Sig. reluctance to adopt in projects Space Ultimate temperature No reluctance to adopt in projects Thermodynamic Life tests in lab-preliminary but Long-life proven in lab (unattended) Efficiency encouraging Lifetime Vibration Cooling Power Few systems developed & gual'd Mature, high-efficiency Sub-kelvin coolers Ultimate temperature for flight systems for zero-q Alternate systems under Proven when staged to adv. Thermodynamic Efficiency investigation 6 K coolers Lifetime Instrument Optics Transmissivity Moderate size filters Large, high- τ filters Spectral resolution Moderate capability dispersive Large, powerful dispersive instruments Element diameter and instruments Proven masks, & other techniques uniformity Emerging active masks Survives thermal cycling

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR) Near Term Capability Road

Advanced Planning & Integration Office

NASA

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR) Far Term Capability Road

Advanced P

6 Integration Office

35 🚃

Driving Missions (2020)Lg Ap. UV Optl Observ'y (2024)(2027)LEO Cloud (2025)**GEO** Lightning Particle (2035)(2020)Life Finder Structure Imager MTRAP **Planet Imager** Science Measurement Dist'n of Elements, Improved Weather Know Climate Effects of Image xsolar planet; Forecast Duration, Lg Scale Structure **Cloud, Surface Processes** Detect atmosphere, Reliability, Models continents, ice. Solar: Dynamics of **Xsolar Planet: Find** Mag Trans'n Region Cond'ns for Life 10⁸ Pxl Hi Sens Vis Arrays Vis & SWIR 3-30 µm **Detector Arrays** FPAs **High-Speed** Spect'r and Readouts MpxI FPA FPA Vis IR FIR Stable, High-Higher Effic'y Contrast FPA **Cryo Coolers** Active Coolers ≥6 K Sub-kelvin Fabry-Pérot etalon or Birefringent Instrument **Optics**, Filters Lightwt Wide Angle FOV, Light, Low-**Ultra-Stable High Thruput** Narrow Band Filters at Optics Scatter Optics Optics Stable Optics H-alpha 2020 2025 2030 Ready to Use *=No DRM Enhancing/ ▲ Major Event / Accomplishment / Milestone 🔷 Major Decision \bigcirc Evolutionary (TRL 6) Reference

12.2 Capability Maturity Assessment

Integrated Sub Capability State-of-the-Art **Required Performance** Mission **Need Date** (@TRL 6) Driver (@TRL 6) Technologies Visible Visible focal plane, 2 k x 4 k pixel ~5E8 BLIP CCD pxls at JDEM 2008 140 K. ASIC. 4 e⁻ noise Photometer / readout CCD. Two-chip electronics. FPA. TPF-C High contrast FPA w/ 2008 Camera Conventional imaging optics coronograph ~1E8 pxl vis array mosaic, Lg UVO Obs 2016 drive electronics. ~5 e⁻ noise photon counting JDEM IR Photometer / IR focal plane, adv 2 k x 2 k pixel ~2E8 BLIP NIR pxls at 2008 Sounder / readout, adv near-IR array. 140 K (4 e⁻ noise) +ASIC 2014 optics, cryocooler Lab cryocooler. ~1E6 room temp array. Neptune Pol Camera 0.02 K NE∆T Orbiter 320 x 240 ubolo 3-17 um BLIP arravs Total Col O₃ 2014 array (THEMIS). 0.04 K NEΔT ~400 element 1E3 pxl BLIP array with Far IR Imaging **FIR** bolometer Einstein Infl 2008 array with readout. polarization sensitivity Probe arrays; ~1E-18 Instrument 1E4 pxl BLIP array; NEP 6 K cooler. sub-K W/√Hz. Unproven SAFIR 2014 cooler muxing. Lab 1E-18 W/√Hz crvocoolers Adv Vis and IR IR Imaging FTS 2014 Focal planes, Small-scale Neptune Pol Orbiter instruments f configuration. ~1E6 pxls Spectrometers readouts, dispersive optics & space, <Mpxl 8 m boom, 0.1 µm path L2 Interf'r 2015 mech'sms arrays. stab'v Ground-based 1E3 pxl BLIP array; NEP SAFIR 2014 interferometers. 1E-20 W/√Hz Hi-thruput filter at 10 µm; TPF-I 2016 high contrast FPA Highstability demo

12.2 Multi-Spectral Imaging/Spectroscopy (Vis-IR-FIR)

Other Key Technologies

- Intra-instrument calibration sources
- Imaging optics
- Data processing & compression systems (real-time feature extraction, *etc.*)
- Mechanisms

Connection Points to Other Roadmaps

- In situ
- UV-gamma sensing
- Microwave (sub-mm astrophysics)
- Telescopes
- Nanotechnology
- Infrastructure (fabrication, test, expertise)

- Sustained development of larger-format, higher-sensitivity focal plane arrays is key to meeting future instrument needs, across the spectrum.
- Important component (e.g., optics) and support (e.g., cryogenics) technologies are also critical, & they need to be proven at the instrument-system level.

38

Science Instruments and Sensors Capability Roadmap Team

12.3 Multi-spectral Sensing, UV – Gamma

Name

Co-Lead Brian Ramsey Co-Lead David Chenette Ron Polidan Juan Rivera Azita Valinia

Organization

NASA MSFC Lockheed Martin Northrop Grumman NASA GSFC NASA GSFC

Primary Expertise

X-Gamma Instrumentation Space Radiation Measurements UV Instrument Systems Instruments Design/Engineering Earth Science Technology

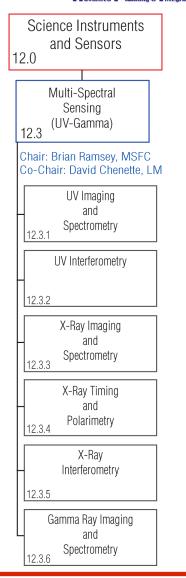
12.3 Multi-spectral Sensing, UV – Gamma

Capability Description

 This contains all the capability requirements to enable remote sensing and scientific investigations (Imaging, Spectrometry, Polarimetry, Timing, and Interferometry) for the UV to gamma ray wavelength range (_ < 0.4 _m)

Reference Documentation

Astronomy & Astrophysics


- Astronomy and Astrophysics in the New Millennium, 2004, NRC Astronomy and Astrophysics Survey Committee (Note that this is a National Academy study rather than a specific NASA roadmap)
- Beyond Einstein: From the Big Bang to Black Holes, 2003, Structure and Evolution of the Universe Roadmap Team

Earth Science

- Strategic Plan for US Climate Change Science Program, 2003
- Earth Science Enterprise Strategy, 1 Oct 2003
- Earth Science Research Plan: 6 Jan 2005 Draft
- NASA ESTO "Earth-Sun System: Potential Roadmap and Mission Development Activities" 23 Dec 04 Draft Briefing

Planetary Science

- New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)
- Sun-Solar System
 - Sun-Earth Connection Roadmap: 2003 2028
 - The Sun to the Earth And Beyond: A Decadal Research Strategy in Solar and Space Physics
 - Earth-Sun System: Potential Roadmap and Mission Development Activities (Draft) Dec 2003

12.3 Multi-spectral Sensing, UV – Gamma

Capability Benefits

Universe & Earth-like planet search:

- Determine origin of stars, planets, life
- Determine origin of elements
- Probe early universe
- Map distribution of dark matter
- Perform black hole census
- Probe formation and evolution of black holes
- Probe space and time around black hole

Sun-Solar Studies:

- Measure and understand the magnetic transition region
- Determine the dynamics of the sun's transition region
- Determine solar reconnection mechanisms
- Probe structure of region between heliosphere and local galactic environment

Sub-Team Assumptions

- Light-weight, high-resolution, grazing & normal incidence and diffractive optics, plus coatings, are covered by Advanced Telescopes and Observatories(CRM #4)
- Formation flying capabilities and necessary metrology are covered by CRM #4
- Cooling of large structures (including large-area detectors) and general thermal control covered elsewhere
- Adequate provisions made at the appropriate time for calibration and testing
- Advanced data handling capabilities are available when needed (high-speed telemetry, data compression, etc)


12.3 Multi-spectral Sensing, UV – Gamma

History/Current Missions

- Sun-Solar:

SOHO (1995) IMAGE (2000) RHESSI (2002) Solar-B (2006) STEREO (2006)

TW

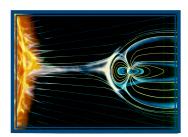
SOHO

– Universe & Origins:

EUVE (1992) HST (1990) FUSE (1999) Uhuru (1970) Einstein (1978) Chandra (1999) Compton GRO (1991) GLAST (2007/8)

Chandra

FUSE


Mission/Strategic Drivers

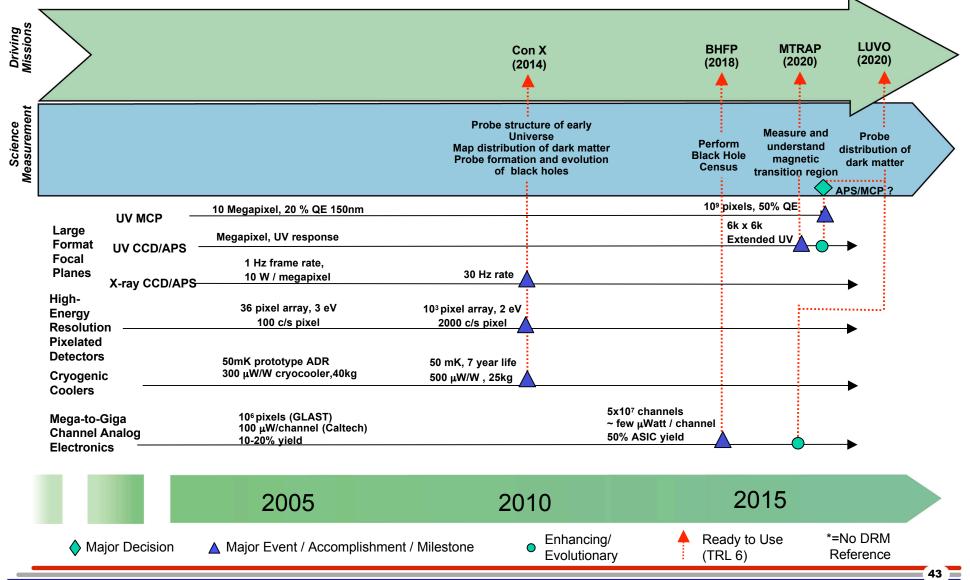
– Sun-Solar:

MTRAP (2020) RAM (2032) SCOPE (2033)

- Universe+Earth-like Planets:

Constellation-X (2014) Black Hole Finder Probe (2018) Large UV Observatory (2020) Black Hole Imager (2025) Advanced Compton Telescope (2026) Gen-X (2027) Stellar Imager (2034)

12.3 Capability Need/Gap Assessment



Sub Capability	Figures of Merit	Current Technology	Needed Technology
UV Imaging and Spectrometry	Large-format focal plane detectors: Microchannel plate performance	Limited by quantum efficiency and overall number of pixels	Factor of 10 increase in pixel number and factor of 2-5 increase in quantum efficiency
UV & X-ray Imaging and Spectrometry	Large-format focal plane detectors: CCD and active pixel sensor performance	Megapixel CCDs with moderate power requirements, moderate readout speeds, and limited UV and X-ray response	Larger CCDs with two orders of magnitude less power (possible change of technology to active pixel sensors), faster readout rate, and extended UV (< 200 nm) and x-ray (> 6 keV) response
X-Ray Imaging and Spectrometry	High-energy-resolution pixelated detector performance	Limited energy resolution, pixel array sizes and count rate capability	Factor of 2 and 4 (near and far term) improvement in energy resolution, 30 and 3.10^5 (near and far term) increase in pixel number and factor of ten increase in rate capability
	Cryogenic cooler performance	Limited lifetime (laboratory prototype) continuous (50mk) coolers	Long-lifetime (7 year) systems
		Cryocoolers requiring too much power and weight.	Reduced mass and power (factors of two) and increased robustness
Gamma Ray Imaging and Spectrometry	Readout electronics power, noise, yield and architecture	Systems cannot handle future channel counts and noise requirements	Systems to handle 100 x more channels with low-noise interconnects
		Low custom-chip yields (10-20%)	Factor of 2-5 increase in custom chip yield (due to large number needed)
		Typical current architecture leads to long interconnects.	Novel ways to interconnect to reduce noise and provide near seamless arrays

12.3 Multi-Spectral Sensing (UV-Gamma) Near Term Capability Road

Advanced Planning & Integration Office

12.3 Multi-Spectral Sensing (UV-Gamma) Far Term Capability Road

Driving Missions SI ACT SCOPE* BHI Gen-X RAM (2034) (2026)(2025)(2027)(2033)(2032)Science Measurement Probe Probe Understand Determine Determine how, structure of Determine space structure and early universe effects of when and where time solar elements are made. dynamics of stars driving around reconnection mechanisms mechanisms on Monitor expansion Map of Universe distribution black Determine origin of of Universe hole planetary of chemicals in Universe stars, planets, life, environments APS/cryo ? Large Format UV CCD/APS Focal Planes 0.1 W/Megapixel X-ray CCD/APS **High-Energy** UV 10⁷ pixels, 1 eV cryogenic Resolution detector Pixelated Detectors 50 μW load Cryogenic lightweight Coolers Mega-to-Giga **Channel Analog** Electronics

Advanced P

a & Integration Office

	2020	2025	2030)	
Major Decision	▲ Major Event / Accomplishment / Milestone	 Enhancing/ Evolutionary 	Ready to Use (TRL 6)	*=No DRM Reference	44

12.3 Capability Maturity Assessment

Integrated Figures of Sub State of the Art **Required Performance** Mission Need Merit Capability Technology (@ TRL 6) Driver Date (@TRL 6) 10⁹ Large Format Focal 10' pixels **UV** Imaging Overall size LUVO 2016 Plane Detectors : and **Microchannel Plates** 10-15% 50% LUVO Quantum 2016 Spectrometry efficiency Large Format Focal $> 10^{8} (UV)$ MTRAP 2016 UV & X-Rav Total pixels Megapixel 6k x 6k, buttable (UV) MTRAP 2016 Plane Detectors : Pixels / chip Megapixel Imaging and CCDs and Active 2021 4k x 4k, 4-side buttable (X-ray) BHI Spectrometry. **Pixel Sensors** Power 10 W / Megapixel 0.1 W / Megapixel BHI 2021 Resolution 120 eV @ 6 keV < 120 eV BHI 2021 Readout speed 1 Hz 30 Hz Con-X 2010 Response > 150 nm. below ~ 6 Extended UV response MTRAP 2016 keV X-ray response above 6 kev Gen X 2023 6 eV. 6 keV ASTRO-E X-Ray High-Energy-Energy resolution 2 eV (Con-X), Con-X 2010 2.7 eV in lab Gen-X **Resolution Pixelated** 1eV (Gen-X) 2023 Imaging and 10³ pixel Detectors Number of pixels 36 pixels array Con-X 2010 Spectrometry 10⁷ pixel Gen-X 2023 (ASTRO-E) Count rate $> 10^3$ c/s-pixel capability 100 c/s per pixel Con-X 2010 Cryogenic Coolers Temperature 50 mK 50 mK Con-X 2010 Load 5 μW 5 μW Con-X 2010 Gen-X 2023 ~ 50 µW 2010 Operation Continuous ADR Con-X Continuous or duty cycle > 95% Lifetime Con-X 2010 lab prototype 7 year Efficiency Con-X 2010 300 µW/W (cryocooler) 500 μW/W Mega-to-Giga 10⁶ (GLAST) $5.10^{\circ} - 10^{\circ}$ BHFP Gamma-Ray Number of 2014 Channel Analog channels Imaging and Electronics Power/channel 100µW / channel 100uW-2uW /channel BHFP 2014 Spectrometry (Caltech) Noise/channel 200 e rms (no < 300 e rms with BHFP 2014 interconnects) interconnects/coupling 50% for 10^4 ASICs BHFP Yield 10-20% 2014

Other Key Technologies

- High-resolution, light-weight optics
- Formation flying
- Precision metrology
- On-board data processing, storage, and high-bandwidth telemetry
- Cooling of large area detectors and thermal control in general
- On ground (and in flight) calibration of high-resolution detector systems and associated optics

Connection Points to Other Roadmaps

- Telescopes and large structures
- Telecommunications
- Advanced modeling
- Infrastructure (fabrication, test, expertise)

- The key development for the UV through X-ray range is higher-performance focal plane detectors and their associated systems.
- For gamma-ray missions, the driving technology requirement is low-power electronics and architectures supporting Mega-to-Giga channel instruments.

Science Instruments and Sensors Capability Roadmap Team

12.4 Laser/LIDAR Remote Sensing

Name

Maria Zuber Richard Barney Richard Dissly

Organization

MIT (co-lead) NASA/GSFC (co-lead) Ball Aerospace

Primary Expertise

Laser ranging and altimetry Laser instrument design In Situ and atmospheric instrumentation

Capability Description

 Laser/LIDAR remote sensing includes active laser and LIDAR instrumentation used on situ, roving, aerial and orbital platforms and operating from the ultraviolet to near-infrared wavelengths.

Reference Documentation

Astronomy & Astrophysics

- Astronomy and Astrophysics in the New Millennium, 2004, NRC Beyond Einstein: From the Big Bang to Black Holes, 2003
- Connecting Quarks with the Cosmos (2003)
- Earth Science
 - Strategic Plan for US Climate Change Science Program, 2003
 - Earth Science Enterprise Strategy, 1 Oct 2003
 - Earth Science Research Plan: 6 Jan 2005 Draft
 - NASA ESTO "Earth-Sun System: Potential Roadmap and Mission Development Activities" 23 Dec 04 Draft Briefing

Planetary Science

- New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)
- Solar System: Executive Summary from Solar System Exploration Program (2003)
- Solar System Exploration Roadmap (2003)

Sun-Solar System

- Sun-Earth Connection Roadmap: 2003 2028
- The Sun to the Earth And Beyond: A Decadal Research Strategy in Solar and Space Physics
- Earth-Sun System: Potential Roadmap and Mission Development Activities (Draft) Dec 2003
- Solar and Space Physics and Its Role in Space Exploration

Advanced Planning & Integration	n O ffice
Science Instruments]
and Sensors	
12.0	
Laser/LIDAR	
Remote Sensing	
12.4	
Chair: Maria Zuber, MIT Co-Chair: Richard Barney, GS	
Co-Chair: Richard Barney, GS	SFC
Altimeters	
Н	
12.4.1	
Transponders	
Н	
12.4.2	
Atmospheric LIDARS	
H	
12.3.3	
Spectrometers	
H	
12.4.4	
Interferometers	
4	
12.4.5	

Illustrative Capability Benefits

• Earth Science:

- What do the distributions of ozone, aerosols and climate change imply about present-day climate?
- · How do tropospheric winds affect weather?
- What do the distributions of trace gases imply for global warming?
- What is the three-dimensional structure of the world's vegetation?
- What are the implications of photosynthetic efficiency for biological productivity?

Planetary Science:

- What is the surface evolution of the solid planets and how does surface geology relate to planetary thermal evolution?
- What is the history of volatile compounds, especially water, across the solar system?
- What does the solar system tell us about the development and evolution of extrasolar planetary systems, and vice versa?

Astrophysics & Search for Earthlike Planets:

- What happens at the edge of black holes?
- What is the nature of the pre-inflation universe?

Assumptions

- Receiver optics and infrastructure also addressed by Advanced Telescopes and Observatories Capability Roadmap.
- Agency will support risk reduction activities, including aircraft and ground-based prototype testing.
- Sensors must reach technical maturity 3-5 years before launch.
- Some Earth science sensors have direct planetary applications and vice versa.
- Astrophysical applications using metrology included.
- Tradeoffs:
 - Detection probability: power vs. aperture vs. detector sensitivity
 - Spatial coverage: # beams vs. scanning vs. pixelated detectors
- <u>Not covered here</u>: optical communication, landing range finders, *in situ* systems.
- <u>Other things that matter</u>: platform stability, alignment, precise & stable oscillators, precision optics, rad-hard, low-noise electronics

Past/Current Missions

- -Clementine LIDAR -- 1994
- LITE -- 1994
- NEAR NLR -- 1997
- MGS MOLA -- 1999
- SLA 1 & 2
- Icesat/GLAS -- 2003
- MESSENGER MLA -- launched 2004
- CALIPSO/CALIOP -- 2005 launch
- ALADIN/AEOLIS ADM -- 2007 launch
- LRO LOLA -- 2008 launch

Future Driving Missions

-- Earth Science:

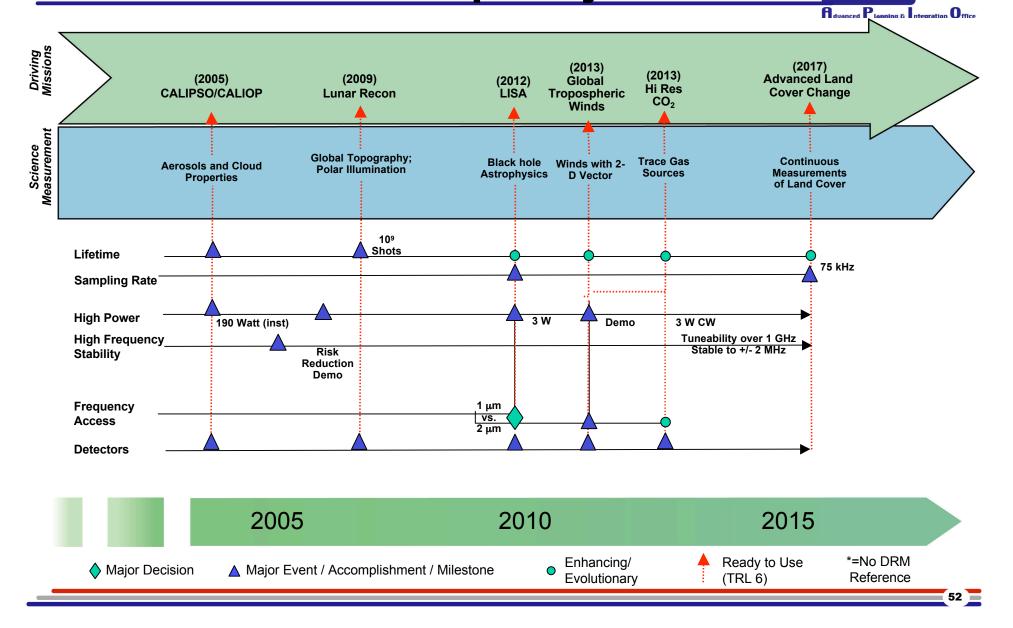
- -CALIPSO/CALIOP
- -Tropical Winds
- High Resolution CO₂
- Advanced Land Cover Change
- Stratospheric Composition
- Photosynthetic Efficiency

- Planetary Science:

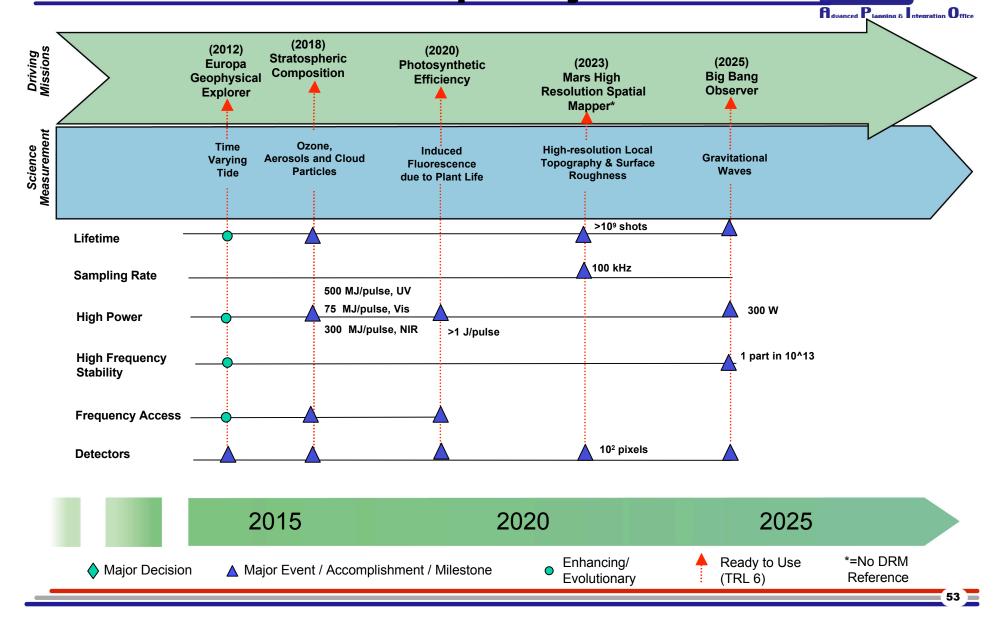
- Lunar Reconnaissance Orbiter
- Europa Geophysical Orbiter
- Mars High-resolution Spatial Mapper

- Universe+Earth-like Planets:

- LISA
- Big Bang Observer


12.4 Capability Need/Gap Assessment

Sub Capability	Figures of Merit	Current Technology	Needed Technology
Ranging Altimeters/	Time of flight	Single laser profiling	Multiple beams,
Backscatter LIDARS	Signal intensity	systems	scanning or pixelated
	Detector sensitivity		detectors with long lifetime.
Doppler Wind	Doppler shift of	Demonstrated from	Longer lifetime,
Profilers	narrow linewidth beam	ground & aircraft;	increased resolution
		Orbital sensors	for Earth and planetary
		underdevelopment	applications
Surface/Atmosphere	Detect presence of	Demonstrated from	Requires high-power
Reflectance	chemical component	aircraft	systems with tunability
Spectrometers	and concentration		and fine range gating
	through absorption,		
	fluoresence at		
	targeted wavelengths		
Interferometers	Precise measurement	Demonstrated in lab	Advanced systems
	of distance		capable of operation in orbit and free space.



12.4 Laser/LIDAR Remote Sensing Near Term Capability Road

12.4 Laser/LIDAR Remote Sensing Far Term Capability Road

12.4 Capability Maturity Assessment

Sub Capability	Integrated Technologies	State-of-the-Art	Required Performance @ TRL 6	Mission Driver	Need Date (@TRL 6)
Ranging Altimeters/ Backscatter LIDARS	Surface coverage Range resolution Sampling rate	5 beams along track 10 cm 40 Hz	Near-total surfical sampling 1 cm 10^2 kHz	Europa Geophysics Orbiter Advanced Land Cover Change Mars High resolution Mapper	2009 2014 2020
Doppler Wind Profilers	Laser lifetime Laser energy Laser tunability Frequency lock settiling time	None space qualified	3-5 years 2 J/pulse +/- 5 GHz 10 msec	Global Tropospheric Winds	2010
Surface/Atmosphere Reflectance Spectrometers	Laser power Laser frequency access Laser frequency stability	None space qualified	3 W various; particularly IR +/- 2 MHz, continuously tunable over 1 GHz	High Resolution CO2 Stratospheric Composition Photosynthetic Efficiency	2011 2014 2016
Interferometers	Laser power Laser lifetime Laser frequency stability Laser tunability Laser noise Laser phase measurement	30 mWatt <1 year 1 part in 10^13 (lab) Engineering Model 10^-11 m (in lab) 10^-4 over +/- 50 kHz	300 Watt >5 years 1 part in 10^13 (space) +/-5 GHz 10^8 improvement	LISA Big Bang Observer	2009 2022

Other Key Technologies

- Radiation-hard electronics
- Imaging optics
- Mechanisms

Connection Points to Other Roadmaps

- In situ
- Telescopes & structures
- Data processing & storage
- Advanced communications
- Infrastructure (fabrication, test)
- Nanotechnology
- Formation Flying

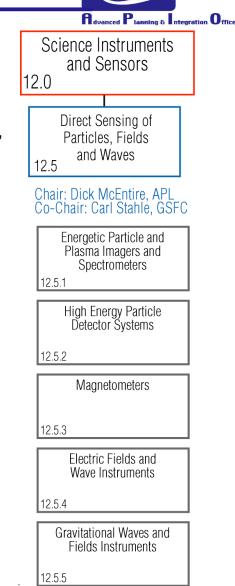
- Key challenge is to develop reliable, efficient, space-qualified laser sources at wavelengths required by science.
- Identified tradeoffs dictate that competition must be used to choose optimal designs.
- Funding transition from low TRL (~1) to mid TRL (~4) is essential to risk and cost management.

56 🚃

Science Instruments and Sensors Capability Roadmap Team

12.5 Direct Sensing of Particles, Fields and Waves

Name	Organization	Primary Expertise
Richard McEntire	JHU/APL	Particle Instrumentation
Carl Stahle	NASA GSFC	Detector Systems
Tim Krabach	NASA JPL	LWIR to FIR Detectors
Paul Mahaffy	NASA GSFC	Analytical Systems
Dave Chenette	Lockheed Martin	Space Radiation Measurement


12.5 Direct Sensing of Particles, Fields and Waves

Capability Description

 Direct sensing of Particles, Fields and Waves includes both in-situ and remote sensing of particles (ions, electrons, neutral atoms, from plasma energies to over 100 MeV), electric, magnetic, and gravity fields; and gravitational, electric, magnetic and plasma waves. The measurements cover the entire range of space environments from earth, solar, planetary, interplanetary, to galactic and beyond.

Reference Documentation

- Astronomy & Astrophysics
 - Beyond Einstein: From the Big Bang to Black Holes, 2003, Structure and Evolution of the Universe Roadmap Team
- Earth Science
 - Earth Science Enterprise Strategy, 1 Oct 2003
 - Earth Science Research Plan: 6 Jan 2005 Draft
- Sun-Solar System
 - Sun-Earth Connection Roadmap: 2003 2028
 - The Sun to the Earth And Beyond: A Decadal Research Strategy in Solar and Space Physics
 - Earth-Sun System: Potential Roadmap and Mission Dev. Activities (Draft) 12/03
- Planetary Science
 - New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)

Capability Benefits

Gravitational Waves and Fields

- What is the geometry of the Universe and the nature of dark energy?
- Is there observational evidence supporting the hypothesis that the early universe underwent a period of rapid inflation?
- How do super massive black holes at the centers of galaxies form or evolve and what happens when they merge?
- What are the motions of the Earth's interior, and how do they directly impact our environment?
- How long did it take the gas giant Jupiter to form, and how was the formation of the ice giants (Uranus and Neptune) different from that of Jupiter and its gas-giant sibling, Saturn?

Assumptions

Laser transmit/receive telescopes, and laser telescope pointing actuator will be covered by the Advanced Telescopes and Observatories CRM.

Laser development will be covered by Laser/LIDAR sub-team.

Development of technology for astrophysics needs to measure gravitational waves will be sufficient for measurements of the gravity field for planetary and earth science applications

12.5 Direct Sensing of Particles, Fields and Waves

Capability Benefits

Energetic Particles, Fields and Waves

- What is the origin and societal impact of variability in the Sun-Earth system?
- How is the supersonic solar wind produced, and how does it evolve from the Sun's transition region to the boundary of the heliosphere?
- How and where are solar energetic particles accelerated, what is their composition, how do they propagate through the heliosphere? What is their impact on the safety of extended manned exploration of the moon, Mars and beyond?
- What is the detailed structure of the heliosphere, how does it change with time and modulate the intensity of galactic cosmic rays?
- What is the nature of the interstellar medium, and how does the heliosphere interact with it?
- How does the space environment and ionosphere and upper atmosphere of the Earth respond to varying external and internal influences? What are the coupling mechanisms? How do interactions at other planets compare? What can magnetic field measurements tell us about the internal structure of these planets?
- What are the fundamental processes that operate in space plasmas; how is energy transferred from stressed magnetic fields to heat plasmas and accelerate particles?

Assumptions

Most future direct measurement missions will be multi-spacecraft and/or very limited in payload mass, power and cost. While many individual Particles and Fields measurement needs can be met with present technology, deliberate evolutionary miniaturization of instruments and electronics is extremely important to enhance or enable these future missions.

Miniaturization and reduction in mass and power needs are shared with the in-situ and remote-sensing teams, and for spacecraft avionics.

12.5 Direct Sensing of Particles, Fields and Waves

Past / Current Missions Terrestrial GRACE Polar IMAGE Constellation TIMED Cluster **Planetary** Galileo Cassini Messenger **Heliospheric** Voyager Ulysses ACE

Future Driving Missions

Terrestrial: lonosphere/Thermosphere Storm Probes (ITSP), Radiation Belt Storm Probes (RBSP), Geospace Electrodynamics Connection (GEC), Magnetospheric

Planetary: Jupiter Polar Orbiter/Probes (JPO), Europa Orbiter

Heliospheric: Solar Probe (SP), Inner Heliosphere Sentinels (IHS), Telemachus, Interstellar Probe (ISP), Heliospheric Imager and Galactic Observer (HIGO)

Astrophysics: Laser Interferometer Space Antenna (LISA), Big Bang Observer (BBO)

12.5 Capability Need/Gap Assessment

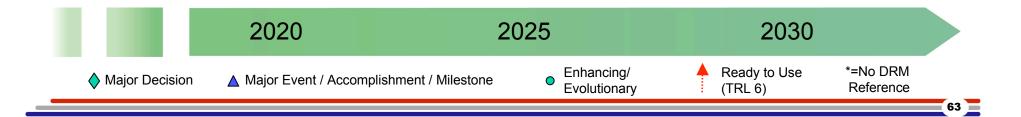
Sub Capability	Figures of Merit	Current Technology	Needed Technology
Gravitational Waves and Fields	High sensitivity to low frequency (10 ⁻³ – 1 Hz) relative displacement of proof masses	Laser Interferometry	High power, stable, long-life lasers; Interferometer system; Disturbance compensation system (DISCOS);Telescope accuracy and pointing
Particle Detectors (plasmas, energetic electrons, ions, neutrals)	Energy/species/charge coverage and resolution, Solid angle coverage and resolution, Dynamic range	Electrostatic analyzers; Time-of-Flight (TOF) and Solid State Detector (SSD) telescopes	Compact sensors with better energy/angle coverage; Low threshold array detectors; UV blind gratings; Conversion surfaces; Highly integrated signal processing
Vector magnetometers Scalar magnetometers	Sensitivity, Absolute accuracy, Radiation tolerance, Orientation knowledge, Spacecraft magnetic field contamination	Vector: Fluxgate Scalar: He Precession 3 - 10 m boom	New fluxgate cores or alternate Miniature scalar sensors Mrad tolerant electronics Multi-sensor systems: 0.5 to 1 m booms
Measurement of EM waves DC Electric Fields	Frequency coverage (DC-40 MHz), Sensitivity 3 axis Sensitivity	Mix of analog & digital electronics in pass bands, each with a different receiver 50 m spin plane boom, 2.25 kg 10 m spin axis boom, 5 kg	Highly flexible, digital coverage of entire bandwidth; Lower power, mass, cost Lightweight electric field booms, reliable deployment for both spinning & non-spinning spacecraft
Lower power, radiation hard electronics	Low power, Radiation hard (>1 Mrad), High speed, High resolution, Reliable	Relatively high power processors; Low efficiency DC converters; High power A/D; HVPS limited reliability; Large.	More standard components that are radiation hard, low power, and miniature.

12.5 Direct Sensing of Particles,

Fields and Waves

(2012)Driving Missions (2014)Europa (2012)(2009)Solar Geophysical LISA JPO Probe (2017)(2021) (2016)Explorer **Tropical ITM** Mag Con GEC (2010)(2012)(2014) ITSP RBSP IHS Science Measurement 3 S/C Jovian Coronal Merging 2 S/C auroral heating Black Holes 4 S/C Radiation Magnetotail fluxes 3 S/C 4 S/C 2 S/C Belt ITM processes Low Lat. IT Inner lonospheric dvnamics coupling and structure coupling Helio. storm 30 S/C Radiation dynamics response environment 10-12 m, 10-3 Hz **Gravitational Waves/Fields** 10⁻¹¹ m. 10 Hz - Laser Interferometry-30 mW 1 W / 10 W 100 W - High Power Laser - Spacecraft Disturbance Control 10⁻¹⁵ m/s/s - Gravitational Reference Sensor <u>10⁻¹⁰ m/s</u>/s High **Particle Detectors** energy Energy, charge, direction charge 0.5 nT absolute state 10 pT Magnetometers vector sens. measurements Stable, accurate, miniaturized electronics Mass Total P&F/ Payload power **E** Fields and Waves <3 kg, 3 W payload rad. Low mass booms <15 kg, Mass Low cost 15 W power Low Power, Rad Hard Electronics rad. [ASICs, uprocessors, etc.]

Advanced P


6 Integration Office

	2005	2010	2015	
Major Decision	▲ Major Event / Accomplis	shment / Milestone	Ready to Use (TRL 6)	*=No DRM Reference

12.5 Direct Sensing of Particles, Fields and Waves

Advanced gration Office Driving Missions (2023)(2025)(2032)L1 Diamond BBO (2029)(2024)HIGO (2026) **ISP** SPI Telemachus Science Measurement Solar Solar Imaging active Wind 4 S/C Interstellar/ Interstellar regions Solar Wind origin 3+ S/C Heliosphere medium turbulence Gravitational interaction Wave Background **Gravitational Waves/Fields** 10-16 m, 1 Hz - Laser Interferometry 300 W - High Power Laser - Spacecraft Disturbance Control 10⁻¹⁷ m/s/s ENA conversion - Gravitational Reference Sensor surfaces, Plasma Verv **Particle Detectors** imaging, isotopic low Energy, charge, direction composition composition mass **Magnetometers** <10pT 1 pTpower Stable, accurate very miniaturized electronics light boom **E Fields and Waves** Low mass booms Low Power, Rad Hard Electronics [ASICs, µprocessors, etc.]

12.5 Capability Maturity Assessment

Sub Capability	Integrated Technologies	State-of-the-Art	Required Performance (@TRL 6)	Mission Driver	Need Date (@TRL 6)
Gravitational Waves and Fields	High power, stable, reliable lasers; S/C DISCOS; Gravitational Reference Sensor (GRS)	30 mW laser, life < 1 yr Interferometry 10 ⁻¹¹ m, 10Hz GRS: 10 ⁻¹⁰ m/s/s	1 W laser, life \ge 5 yr Interferometry 10 ⁻¹² m, 10 ⁻³ Hz GRS: 10 ⁻¹⁵ m/s/s 300 W laser, life \ge 5 yr Interferometry 10 ⁻¹⁶ m, 1 Hz GRS: 10 ⁻¹⁷ m/s/s	Laser Interferometer Space Antenna (LISA) Big Bang Observer (BBO)	2008 2021
Particle Detectors (plasmas, energetic electrons, ions, neutrals)	lon implanted SSD detectors and arrays; MCP TOF systems; Signal processing; HVPS	SSD energy thresholds ≥ 10 keV; Limited arrays and higher power; Soft integrated electronics.	Ion implanted SSDs 15 μm to 5 mm thick; Large arrays; Low power, low noise, rad hard electronics; UV suppression grids;Stable charge conversion coatings	RBSP Solar Probe, IHS ISP HIGO	2008 2010 2025 2028
Vector Magnetometers Scalar Magnetometers	Vector field: fluxgate Absolute scalar: He Electronics: > 16 bit A/Ds, stable oscillator	Fluxgate: 10 pT, 0.1 nT/week; Scalar (He): 1 pT, 1 ppm 30 krad electronics Boom (3 - 10 m)	Low noise core material Multi-sensor system Rad hard electronics (~ Mrad) 1 pT vector sensitivity < 1 W Low resource: <0.2 W, <0.1kg	All Solar Probe, ISP Europa, RBSP ISP Mag Con	2010 2010 2008 2025 2017
Measurement of EM waves DC Electric Fields	A/D converter DSP (Digital Signal Processor chip) Antenna	8 bits, ≤ 20 Msps @ 500 mW Non-rad hard, > 1 W 50 m spin at 3 kg 10 m axial at 5 kg	18 bits @ 80 Msps @ < 100 mW Rad hard, 250 mW, 10 ³ pt. FFT at 3 MHz 50 m spin, ≤ 1 kg (inc. sensor) Axial ~ 20 m, rigid, ≤ 2 kg	RBSP Solar Probe ISP	2008 2010 2025
Lower power, radiation hard electronics	Microprocessor DC/DC converters A/D converters HVPS	~ 10 Mps/W Efficiencies ~ 20 - 50% 14 bits, 10MHz, 250mW 150 - 400 gm	100 Mps/W, on par with cellphone technology Efficiencies ~ 85% ≥ 14 bits, 80 MHz, 50 mW Standard design, < 100 gm	Europa Geo Explorer Solar Probe All multi-spacecraft missions	2008 2010 2008 on

Other Key Technologies

- MEMS
- High quality mirrors
- Miniaturization of S/C avionics
- Manufacturing cost reductions for multiple S/C

Connection Points to Other Roadmaps

- Laser Remote Sensing
- Formation Flying
- Advanced telescopes and observatories
- Visible-UV sensing
- In-Situ instruments
- Nanotechnology
- Infrastructure (fabrication, test, calibration)
- Gravitational Wave measurements address fundamental cosmological physics, and can be made from space over key frequencies (10⁻³ - 1 Hz) with a sensitivity impossible to achieve on the Earth. The technology advances needed will be synergistic with other missions.
- Particles and Fields measurements are planned at many locations in planetary magnetospheres and throughout and beyond the heliosphere. Deliberate evolutionary advances in instrumentation and electronics are needed to enhance mission science and reduce mission cost and are synergistic with In-Situ and many other mission areas.

Science Instruments and Sensors Capability Roadmap Team

12.6 In-Situ Instrumentation

<u>Name</u>

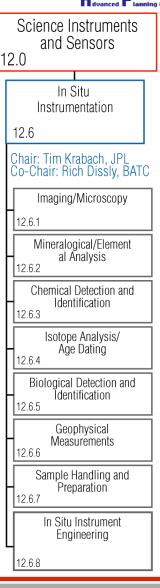
Organization

Tim Krabach Rich Dissly Paul Mahaffy Richard McEntire Dave Chenette NASA-JPL (co-lead) Ball Aerospace (co-lead) NASA-Goddard JHU-APL Lockheed Martin

Primary Expertise

Astrobiological systems Analytical systems Analytical systems Particles and fields High-energy detectors

12.6 In-Situ Instrumentation



Capability Description

- In-situ covers a wide range of measurement techniques and capabilities, with the defining characteristics that the instruments must be in close proximity with the investigation target.
- Includes technologies essential to NASA science missions involving:
 - Landed planetary exploration (e.g. Mars Science Laboratory)
 - Sample return (e.g. Genesis)
 - Atmospheric probes (e.g. Huygens)
- Also includes key technologies for NASA exploration missions:
 - Prospecting for in-situ resources on the moon and Mars

Reference Documentation

- Planetary Science
 - New Frontiers in the Solar System: An Integrated Exploration Strategy (Space Studies Board, NRC, 2003)
 - NASA Solar System Exploration Roadmap (2003)
 - Mars Exploration Program Analysis Group Mission Science Steering Group Reports (2004)
 - _ Astrobiology Field Laboratory SSG
 - _ Groundbreaking Mars Sample Return SSG
 - _ Mars Deep Drill Missions SSG
 - Lunar Under development

12.6 In-Situ Instrumentation

Capability Benefits

Planetary Science:

- What processes marked the initial stages of planet & satellite formation?
- Where are the habitable zones for life in the solar system, and what are the planetary processes responsible for producing and sustaining habitable worlds?
- How long did it take the gas giant Jupiter to form, and how was the formation of the ice giants (Uranus and Neptune) different from that of Jupiter and its gas-giant sibling, Saturn?
- How did the impactor flux decay during the solar system's youth, and in what way(s) did this decline influence the timing of life's emergence on Earth?
- _ What is the history of volatile compounds, especially water, across the solar system?
- _ What is the nature of the organic material in the solar system? Its history?
- What global mechanisms affect the evolution of volatiles on planetary bodies?
- _ Does (or did) life exist beyond Earth?
- _ Why did the terrestrial planets differ so dramatically in their evolution?
- _ How do the processes that shape the contemporary character of planetary bodies operate and interact?
- What does the solar system tell us about the development and evolution of extrasolar planetary systems, and vice versa?

Sub-Team Assumptions

- Vis-IR far-field sensing, or measurements outside of planetary atmospheres, covered by **Multi-spectral Imaging subteam**
- In-situ measurements of interplanetary plasmas covered in **Particles, Fields and Waves subteam**
- In-Situ sensors for astronaut health and safety are **not** covered by this group
- General curatorial facilities for sample return will be covered by NASA, including quarantine facilities, independent of this assessment
- Analytical instrumentation and mission-specific environmental maintenance for returned samples are not necessarily provided; this team has not covered capability needs in this area yet
- Complete in situ instrument development must include appropriate environmental testbeds for evaluation of components, subsystems, and instruments;

12.6 In-Situ Instrumentation

Past / Current Missions

-Mars


Viking Pathfinder MER Phoenix

-Sample Return

MSL

Apollo Genesis Stardust

-Other Planetary

Pioneer Venus Probes Galileo Probe _Huygens Lander

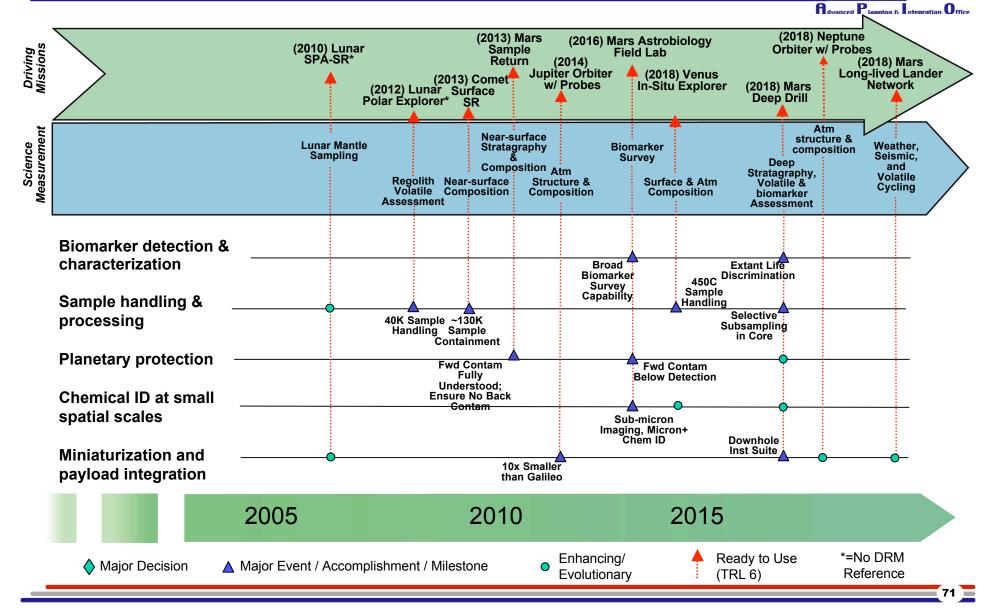
Future Driving Missions

Mars: Astrobiology Field Lab, Groundbreaking Mars Sample Return, Deep Drill, Long-Lived Lander Network

Sample Return: Lunar South Pole-Aitken Basin SR, Comet Surface SR, Comet Cryogenic SR, Asteroid SR, Venus Surface SR, Mercury SR

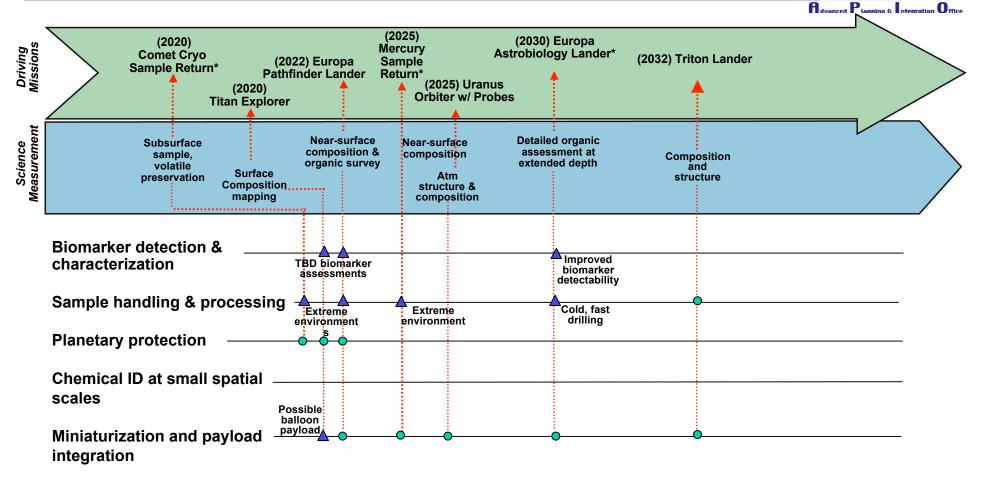
Other Planetary: Lunar Seismic Network, Venus In-Situ Explorer, Jupiter Polar Orbiter/Probes, Neptune Orbiter/Probes, Europa Pathfinder Lander, Titan Explorer, Europa Astrobiology Lander, Uranus Orbiter/Probes, Neptune Orbiter w/ Triton Lander

12.6 Capability Need/Gap Assessment



Sub Capability	Figures of Merit	Current Technology	Needed Technology
Biomarker Detection and Characterization	 Sensitivity Selectivity Contamination ID and quantification 	 Characterization of viable organisms that can be cultured Terrestrial contamination exceeds detection limits 	 Quantitative assessment of all organic material Technology to ensure isolation from terrestrial contamination
Sample Handling & Preparation	 Operability in relevant environment Degree of sample alteration Subsampling accuracy 	 Bias from particle size and density Qualitative ability to preserve volatile fractions Operability over limited temperature ranges 	 No bias or fractionation in end-to- end sample handling chain, even in multi-phase samples Ability to selectively subsample in primary sample acquisition Operability from 40K to 750K
Planetary Protection	 Sensitivity to detection of viable organisms Breadth of detection of viable organisms Degree of sterilization 	 Characterization of viable organisms that can be cultured Detection levels well below sterilization levels 	 Characterization of any viable organisms Sterilization levels on par with detection levels
Chemical Identification at Small Spatial Scales	 Spatial resolution Sensitivity Selectivity or mass resolution 	 Micron-level chemical and isotopic assessment in terrestrial labs AFM for crude surface analysis 	 Micron-level chemical and isotopic assessment in flight package
Miniaturization, Ruggedization, and Payload Integration	 Mass Power Volume Shock/Vibe tolerance Survivability in extreme environments 	 Payload elements developed separately, little common mass and power elements 	 Payload elements developed together minimize mass and power resources

Capability 12.6 In-Situ Instrumentation


Near Term Roadmap

Capability 12.6 In-Situ Instrumentation

Far Term Roadmap

	2020	2025	2030		
Aajor Decision	▲ Major Event / Accomplis	shment / Milestone Enhancing/ Evolutionary	Ready to Use (TRL 6)	*=No DRM Reference	72

12.6 Capability Maturity Assessment

Sub Capability	Integrated Technologies	State-of-the-Art	Req Perf @TRL 6	Mission Driver	Need Date (@ TRL 6)
Biomarker assessment	Multiple assay techniques	Lab-based commercial systems	ppb sensitivity and miniaturization to flight scales	Mars AFL	2012
Sample Handling	Cryo mechanisms	MER	40K demo	Lunar Polar Explorer	2009
	Subsampling	MER RAT	mm-scale sampling of sedimentary layers	AFL	2012
	Sample phase preservation	MER	No heating of samples above -20C	AFL	2012
Planetary Protection	Sensitive assays	Subset of viable spores cultivated	Full range of viable life characterized	Mars SR	2009
	Contamination control in sample handling	Organic contamination in lunar sample of tens of ppb	Sub-ppb organic contamination in returned samples	Mars SR	2009
Chem ID at small spatial scales	Minaturized imaging systems Miniaturized composition probes	Submicron imaging, Phoenix AFM Lab-based systems	Submicron imaging combined with chemical / isotopic analysis	Mars AFL	2012

12.6 In-Situ Instrumentation

Other Key Technologies

- Environmentally relevant testbeds
- Payload system integration
- Mechanisms in extreme environments
- Electronics in extreme environments
- Distributed processing

Connection Points to Other Roadmaps

- Atmospheric entry systems
- Landing systems
- Planetary surface and subsurface access
- Cryogenic sample handling
- Remote sensing and sounding of surface/subsurface composition
- Nanotechnology
- Robust 'mid-TRL programs needed to close gap between needed and available capabilities for lunar and non-Mars destinations (for example, a MIDP-like program for New Frontiers)
- In situ performance should be validated in relevant testbeds prior to competitive selection (for example, instrument breadboard sensitivity and precision proven in realistic Mars testbed)
- In situ instrument development will be key enabling technology for exploration missions to the Moon, Mars, and beyond; specific driving missions may change, but driving science likely will not.

Science Instruments and Sensors Capability Roadmap Co-Chair Summary

NASA Co-Chair: Rich Barney, NASA External Co-Chair: Maria Zuber, MIT

March 16, 2005

Science Instruments and Sensors

Key Sub-Capabilities

- Large deployable antennas
- Integrated high efficiency T/R modules
- Radiation hard electronics
- Quantum limited cryogenic receivers
- High frequency, low power MMIC receivers
- Large scale digital spectrometers and correlators (rad-hard FPGAs and ASICs)
- Low power, long life cryocoolers
- 12.2 Multi-Spectral Imaging / Spectroscopy (vis-IR-FIR)
 - Low power, long life Coolers
 - Detectors & Readout Electronics (large format, better sensitivity)
 - Optics (dispersive/imaging; instrument level including filters, coolers,polarimeters)
- 12.3 Multi-Spectral Sensing (UV-Gamma)
 - Large format CCDs / active pixel sensors
 - High-energy-resolution single-photon detectors
 - Low power, long life cryogenic coolers to achieve less than 0.1K
 - Mega-to-Giga channel analog electronics
 - Optics (Normal / grazing incidence, higherenergy optics, gratings)

- 12.4 Lasers / LIDAR
 - High energy lasers (for atmospheric sensing, formation flying, etc.)
 - Quality control of laser systems (all components)
 - Frequency stability & selection
 - Spatial coverage: multibeam, scanning, pixelated detectors
 - High-sensitivity detectors
- 12.5 Direct Sensing of Fields Particles, and Waves
 - High power lasers
 - Spacecraft disturbance compensation systems
 - Detectors and detector arrays, light weight rigid booms
 - Compact, rad hard, high integration electronics and sensors
- 12.6 In Situ Instrumentation
 - Sample Handling in Multiple Relevant Environment as a function of Mission specific target
 - Sample Acquisition on the surface of Mars
 - Miniaturization for instruments and integrated payloads (Nano) electronics; better integrated across the board.

- Major challenges in development required technologies/capabilities:
 - Science Payloads may operate in severe environments:
 - _ Jovian radiation belts
 - Venus surface environment (460C, 90 bars)
 - Outer planet surfaces and atmospheres (sub 100K)
 - Flight demonstration to retire risks that require an orbital flight will continue to be a pacing item for the introduction of new technologies required to reduce capability gaps.
 - Infrastructure investments are required to develop performance testing capabilities for long term technology development.
- Science Payloads are (usually) extremely resource constrained.
 - Limited mass, volume, power and data rate
 - Impacts applicability of cryogenically cooled sensors
 - High fidelity instrument systems models are required to perform early risk assessments and technical resource trade studies.
- Linkage of orbital and ground-based observations (sensor webs) represents a significant future opportunity for Earth and solar system studies.

- Prioritization of capabilities/technologies needed to achieve the Vision for Space Exploration must be traceable to science measurement needs.
- A sustained, low TRL, science instrument component technology development program is needed to close identified capability gaps.
- An organized, prioritized technology plan that is well coordinated with and supported by the science community served is key to acquiring technology funding.
- Proposal teams to share their experiences and "wish lists" of technologies that would have made their science more achievable and competitive.
- Commercial/Academia partnerships with NASA are essential to implementing technology solutions required to narrow or close critical capability gaps.

Summary

- The Science Instruments and Sensors Capability Roadmap team has investigated current NASA exploration and science measurement strategies, design reference missions, and science instrument/sensor technology roadmaps to identify critical science measurement capability gaps and assess future technology development needs.....a work in progress.
 - Excellent interaction with the public Science and Engineering communities at open meetings and workshops
 - Limited discussions with Strategic Roadmap Teams has been very productive
- Several key sub-capabilities have been identified that cut across instrument and sensors capabilities. NASA technology investment in these subcapabilities will enable several exploration missions.
- Need for maturation plan / program for enabling advanced instrument insertion into flight.
- Integration with the Strategic Roadmap Teams is key to developing science instrument and sensor roadmaps that are responsive to strategic mission needs.
- <u>Competed</u>, peer-reviewed development programs are best approach for NASA.

- Make changes to roadmaps based on verbal feedback from NRC review.
- Receive the draft Strategic Roadmaps by April 15th.
 Continue productive interchange with SRM teams.
- Make changes to CRM Title roadmaps to ensure consistency with Strategic Roadmaps requirements.
- Develop rough order of magnitude cost estimates for the CRM Title Capability Roadmap (awaits input on current investment from NASA).
- Prepare for 2nd NRC Review which will address 4 additional questions:
 - Are there any important gaps in the capability roadmaps as related to the strategic roadmap set?
 - Do the capability roadmaps articulate a clear sense of priorities among various elements?
 - Are the capability roadmaps clearly linked to the strategic roadmaps, and do the capability roadmaps reflect the priorities set out in the strategic roadmaps?
 - Is the timing for the availability of a capability synchronized with the scheduled need in the associated strategic roadmap?
- Complete Capability Roadmaps by June, 2005.

Backup

Reference Documentation

(Docushare Library)

- The Vision for Space Exploration
- The New Age of Exploration (NASA's Direction for 2005 & Beyond).
- A Journey to Inspire, Innovate, and Discover: President's Commission Report
- Our Changing Planet: The US Climate Change Science Program for Fiscal Years 2004 and 2005
- Design Reference Missions
 - APIO DRMs
 - _ Solar System Exploration 2000 to 2035 (Draft 3): DRM_SSE
 - _ Earth-Sun System: Potential Roadmap and Mission Development Activities (12/23/04)
 - _ Universe Design Reference Missions (12/13/04)
 - Architecture Study #2, Human Exploration of Mars, Artificial-Gravity Nuclear Electric Propulsion Option (7/15/03)
 - _ Reference Mission Version 3.0 Addendum to the Human Exploration of Mars (6/01/98)
 - _ Mars 98 Reference Mission: Reference Mission of the NASA Mars Exploration Study Team (7/7/97)
 - _ Lunar Surface Reference Missions: A Description of Human and Robotic Surface Activities (07/01/03)
 - _ The Mars Surface Reference Mission: A Description of Human and Robotic Surface Activities (12/01)
 - Other DRMs
 - Advanced Mission Studies: Mars Exploration Program Analysis Group
 - Astrobiology Field Laboratory-2013 (Biosignature Detection)
 - Ground Breaking Mars Sample Return
 - Mars Deep Drill: Explore Active Hydrothermal Habitats
 - Mars Deep Drill: Search for Evidence of Past Life

Reference Documentation

(Docushare Library)

- Enterprise Strategies
 - Earth Science Application Plan
 - Earth Science Research Plan (Draft)
 - Sun-Earth Connection Roadmap (2003-2028)
 - Physics of the Universe: A Strategic Plan for Federal Research
 - Solar System Exploration Roadmap
 - Origins Roadmap (2003)
 - Structure and Evolution of the Universe Roadmap
- National Research Council Reports
 - <u>Astronomy and Astrophysics in the New Millennium</u> Astronomy and Astrophysics Survey Committee, Board on Physics and Astronomy, Space Studies Board
 - Implementing Climate and Global Change Research: A Review of the Final U.S.
 <u>Climate Change Science Program Strategic Plan</u> Committee to Review the U.S.
 Climate Change Science Program Strategic Plan
 - <u>New Frontiers in the Solar System: An Integrated Exploration Strategy</u> <u>Solar System</u>
 <u>Exploration Strategy</u>, NRC
 - Solar and Space Physics and Its Role in Space Exploration Committee on Assessment of the Role of Solar and Space Physics in NASA's Space Exploration Initiative, NRC
 - <u>The Sun to the Earth -- and Beyond: A Decadal Research Strategy in Solar and Space</u>
 <u>Physics</u> Solar and Space Physics Survey Committee
 - <u>The Sun to the Earth -- and Beyond: Panel Reports</u> Solar and Space Physics Survey Committee, Committee on Solar and Space Physics
 - <u>Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century</u>, Committee on the Physics of the Universe, NRC

Exploration/Science Traceability

	* References:		
Earth	1: Strategic Plan for US Climate Change Science Program, 2003		
	2: Earth Science Enterprise Strategy, 1 Oct 2003		
	3: Earth Science Research Plan: 6 Jan 2005 Draft		
ш	4: Earth Science Applications Plan, 2004		
	5: NASA ESTO "Earth-Sun System: Potential Roadmap and Mission Development Activities" 23 Dec 04 Draft Briefing		
	6: New Frontiers in the Solar System: An Integrated Exploration Strategy (2003)		
Planetary Science	7: Mars Deep Drill Search for Evidence of Past Life, Sylvia Miller, John Essmiller, David Beaty, JPL, January 16, 2004		
ien	8: Mars Deep Drill Explore Active Hydrothermal Habitats, Sylvia Miller, John Essmiller, David Beaty, JPL, January 16, 2004		
Sc	9: Astrobiology Field Laboratory - 2013 Biosignature Detection, Roger Dhiel, JPL, March 10, 2004		
	10: Groundbreaking Mars Sample Return, Richard Mattingly, JPL, March 8, 2004		
	11: Sun-Earth Connection Roadmap: 2003 - 2028		
Sun- Solar	12.: The Sun to the Earth - And Beyond: A Decadal Research Strategy in Solar and Space Physics		
S S	13: Earth-Sun System: Potential Roadmap and Mission Development Activities (Draft) Dec 2003		
(0	14. Astronomy and Astrophysics in the New Millenium, 2004, NRC Astronomy and Astrophysics Survey Committee		
sics	15. Design Reference Missions Universe, NASA Document		
yh	16. Beyond Einstein: From the Big Bang to Black Holes, 2003, Structure and Evolution of the Universe Roadmap Team		
Astrophysics	17. Origins, Roadmap of the OSS Origins Theme, 2003,		
Ast	18. Benford, D. "SAFIR: Single Aperture Far Infrard Observatory"		
	19. Young, E. et al "Detector Needs for Long Wavelength Astrophysics",		

(sorted by mission name)

Design Reference Mission	CBS	Launch	
Advanced Compton Telescope	12.3	2026	
Advanced Land Cover Change	12.4	2017	
Astrobiology Field Laboratory*	12.6	2016	
Big Bang Observer	12.4	2025	
	12.5	2025	
Black Carbon	12.2	2012	
Black Hole Finder Probe-Einstein	12.3	2018	
Black Hole Imager	12.3	2025	
CALIPSO/CALIOP	12.4	2005	
Comet Cryo Sample Return*	12.6	2020	
Comet Surface Sample Return	12.6	2013	
Constellation-X	12.3	2014	
Einstein Inflation Probe	12.1	2012	
	12.2	2012	Le
Europa Astrobiology Lander*	12.6	2030	Mis
Europa Geophysical Explorer	12.2	2012	driv
	12.4	2012	
	12.5	2012	
Europa Pathfinder Lander	12.6	2022	AP
Generation-X	12.3	2027	do
GEO Coastal Carbon	12.2	2018	
GEO Doppler Rain Profiler	12.1	2021	La
GEO Global Precip	12.1	2027	Op
GEO In SAR Constellation	12.1	2021	
GEO Lightning Imager	12.2	2027	
Geospace Electrodynamics Connection (GEC)	12.5	2016	CB
GEO Seismology from Space*	12.1	2030	Bre

Legend:

*Missions**= Capability driven missions not currently listed in the APIO/SMD reference documentation.

Launch Date=Earliest Opportunity

CBS=Capability Breakdown Structure

85 🚃

(sorted by mission name)

Design Reference Mission	CBS	Launch
Global Soil Moisture	12.1	2017
Global Troposheric Winds	12.4	2013
Global Tropospheric Aerosols	12.1	2016
Heliospheric Imager and Galactic Observer (HIGO)	12.5	2032
Hi Res CO2	12.4	2013
Inner Heliosphere Sentinels (HIS)	12.5	2014
Intersteller Prob	12.5	2029
Ionosphere Thermosphere Storm Probes	12.5	2010
Joint Dark Energy Mission	12.2	2012
Jupiter Polar Orbiter	12.5	2009
Jupiter Polar Orbiter with Probes	12.6	2009
	12.1	2014
	12.2	2014
L1 Diamond	12.5	2023
L2 - Earth Atmosphere Solar Interferometer	12.2	2019
Land Surface Topography*	12.1	2014
Large Aperture UV Optical Observatory	12.2	2015-2020
	12.3	2020
Laser Interferometer Space Antenna	12.4	2012
Laser Interferometer Space Antenna	12.5	2012
L-band LEO InSAR	12.1	2010
L-band MEO InSAR	12.1	2014
LEO Cloud Particle Structure	12.2	2024
LEO Cloud System Structure	12.1	2020
Leo Wetland & River Monitor	12.1	2015

Legend: <i>Missions*=</i> Capability driven missions not currently listed in the APIO/SMD reference documentation.
Launch Date=Earliest Opportunity
CBS=Capability

CBS=Capability Breakdown Structure

(sorted by mission name)

Design Reference Mission	CBS	Launch
Life Finder	12.2	2025
Lunar Polar Explorer*	12.6	2012
Lunar Recon Orbiter	12.4	2009
Lunar SPA-SR*	12.6	2010
Magnetic Constellation	12.5	2021
Magnetic Transition Region Probe (MTRAP)	12.2	2020
	12.3	2020
Mars Deep Drill	12.6	2018
Mars Electrification Imager*	12.1	2022
Mars High Resolution Spatial Mapper*	12.4	2023
Mars Long Lived Lander Network	12.6	2018
Mars Sample Return	12.6	2014
Mercury Sample Return*	12.6	2025
Neptune Orbiter w/Probes	12.1	2018
	12.2	2018
	12.6	2018
Ocean Structure and Circulation	12.1	2019
Ocean Surface Winds	12.1	2018
Photosynthetic Efficiency	12.4	2020
Planet Imager	12.2	2035
Planet Mapper	12.2	2045
Prometheus (JIMO)	12.1	2017

Legend:
Missions*=
Capability driven
missions not
currently listed in the
APIO/SMD
reference
documentation.
Launch
Date=Earliest
Opportunity
CDC-Conchility
CBS=Capability
Breakdown
Structure

(sorted by mission name)

Design Reference Mission	CBS	Launch
Radiation Belt Storm Probes	12.5	2012
Reconnection and Microscale	12.3	2032
Sea Ice Thickness*	12.1	2014
Single Aperture Far-Infrared Observatory (SAFIR)	12.1	2018
	12.2	2018
Solar Connections Observatory for Planetary	12.3	2033
Environments (SCOPE)*		
Solar Polar Imager	12.5	2024
Solar Probe	12.5	2014
Stellar Imager	12.3	2034
Stratospheric Composition	12.4	2018
Telemachus	12.5	2026
Titan Explorer	12.6	2020
Total Column Ozone	12.2	2018
TPF, C-I	12.2	2012, 2020
Triton Lander	12.6	2032
Tropical ITM Couplet	12.5	2017
Uranus Orbiter w/Probes	12.6	2025
Venus In-Situ-Experiment (Explorer)	12.6	2018

Э

- ACE- Advanced Composition Explorer
- ACS- Advanced Camera for Surveys
- ACT- Advanced Compton Telescope
- ADR-Adiabatic Demagnetization Refrigerator
- AFL- Astrobiology Field Laboratory
- AIRS- Atmospheric Infrared Sounder
- Aladdin/AEOLUS ADM- ESA Aladdin (Satellite) AEOLUS Atmospheric Dynamics Mission (Doppler Wind Lidar)
- AMSU-Advanced Microwave Sounding Unit
- APL- John Hopkins University Applied Physics Laboratory
- ARC- Ames Research Center
- ASIC-application-specific integrated circuit
- ASTEP- Astrobiology Science and Technology for Exploring Planets
- ASTID- Astrobiology Science and Technology Instrument Development
- ATO- Advanced Telescopes and Observatories
- BATC- Ball Aerospace and Technologies Corporation
- BBO- Big Bang Observer
- BHFP- Black Hole Finder Probe
- BHI- Black Hole Imager
- BLIP- background limited infrared photo-detector
- Bolos- Bolometer Arrays
- BW- bandwidth
- Calipso/CALIOP Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations/
- Cloud Aerosol Lidar with Orthogonal Polarization.
- CCDs- Charge Coupled Devices
- Cluster- it is a Mission to study small-scale structures of the magnetosphere and its environment in three dimensions. Cluster is constituted of four identical spacecraft that will flight in a tetrahedral configuration.
- CMB- Cosmic Microwave Background
- CMOS complementary metal-oxide semi-conductor
- Con-X- Constellation-X
- CRISM- Compact Reconnaissance Spectrometer for Mars

- CRM- Capability Roadmap
- CSSR- Comet Surface Sample Return
- DBF- Digital Beam Formation
- DC- direct current
- DMSP- Defense Meteorological Satellite Program
- DRMs- Design Reference Missions
- DSP- Digital Signal Processor chip
- EG- Europa Geophysics
- EIP- Einstein Inflation Probe
- ESA- electronically scanned arrays
- ESMR-Nimbus-5 Electrically Scanning Microwave Radiometer
- ESTO- Earth Science Technology Office
- Far IR- Far Infrared
- FIR- Far Infrared
- FOV- Field- of-View
- FPGA- Field-Programmable Gate Array
- GaAs- Gallium Arsenide
- GEC- Geospace Electrodynamics Connection
- Gen X-Generation X
- GEO- Geosynchronous Orbit
- GEO Coastal C- GEO Coastal Carbon
- GEOSAT- Geodetic Satellite Mission
 GGP- GEO Global Precipitation
- GLAST- Gamma Ray Large Area Space Telescope
- GPS- Global Positioning System
- GPS/GNSS- Global Positioning System/Global Navigation Satellite System
- GRACE- Gravity Recovery and Climate Experiment
- GSFC- Goddard Space Flight Center
- GSM- Global Soil Moisture
- GTA- Global Tropospheric Aerosols
- HCIPE- High Capability Instruments

- HIGO- Heliospheric Imager and Galactic Observer
- HIRISE- High Resolution Imaging Science Experiment
- HRes CO2- High Resolution CO2
- HST- Hubble Space Telescope
- HVPS- High Voltage Power Supply
- ICESAT/GLAS- Ice, Cloud and land Elevation Satellite/Geoscience Laser Altimeter System
- IHS- Inner Heliosphere Sentinels
- IMAGE- Imager for Magnetopause to Auroral Global Exploration
- InSAR (MEO)- Interferometric Synthetic Aperture Radar
- IPS- integrated power systems
- IR- Infrared
- IRAC- Infrared Array Camera (Spitzer)
- IRS- Infrared Spectrograph (Spitzer)
- ISP- Interstellar Probe
- ITSP-Ionosphere/Thermosphere Storm Probes
- JIMO- Prometheus Jupiter Icy Moons Orbiter
- JPL- Jet Propulsion Laboratory
- JPO- Jupiter Polar Orbiter
- JPOP- Jupiter Polar Orbiter Probes
- JWST- James Webb Space Telescope
- LASCO- Large Angle and Spectrometric Coronagraph Experiment
- LEO- Low Earth Orbit
- Leo LFSM- LEO Low Frequency Soil Moisture
- LF- Life Finder
- LFF InSAR- L-band Formation Flying InSAR
- LHP- Loop Heat Pipe
- LIDAR- Light Detection and Ranging
- LISA- Laser Interferometer Space Antenna
- LITE- Lidar in Space Technology Experiment
- LM- Lockheed Martin
- LOLA- Lunar Reconnaissance Laser Altimeter

- LRO- Lunar Reconnaissance Orbiter
- Lunar SPA-SR- Lunar South Pole-Aitken Basin Sample Return
- LUVO- Large Aperture Ultraviolet Optical Observatory
- LWIR- Long Wave Infrared
- L2 Interfr- L2 Interferometer
- MARSIS- Mars Advanced Radar for Subsurface and Ionosphere Sounding
- MC- Magnetospheric Constellation
- MCM- multi-chip module
- MCP- Micro-channel Plate
- MDI/SOI- Michelson Doppler Imager/Solar Oscillations Investigation
- MEMS- Micro-Electro-Mechanical Systems
- MEO- Mid Earth Orbit
- MER- Mars Exploration Rover
- MER RAT- Mars Exploration Rover Rock Abrasion Tool
- MHRSM- Mars High Resolution Spatial Mapper
- MIPS- Multiband Imaging Photometer for SIRTF
- MIRI- Mid Infrared Instrument
- MIT- Massachusetts Institute of Technology
- MLA- Mercury Laser Altimeter
- MLS- Microwave Limb Sounder
- MMIC- Monolithic Microwave Integrated Circuit
- MMS- Magnetospheric Multiscale
- mmWave- millimeter wave
- MMW- millimeter wave
- MODIS- Moderate Resolution Imaging Spectro-radiometer
- MGS MOLA Mars Global Surveyor Mars Orbiter Laser Altimeter
- MIDP- Mars Instrument Development Program
- MRO- Mars Reconnaissance Orbiter
- MSFC- Marshall Space Flight Center
- MSL- Mars Surface Laboratory
- MSU- Microwave Sounding Unit

- MTRAP- Magnetic Transition Region Probe
- Nano- Nanotechnology
- NEAR NLR- Near Laser Rangefinder
- NGST- Northrop Grumman Space Technology
- NIRCam- Near Infrared Camera
- NIRSpec- Near Infrared Spectrometer
- NO- Neptune Orbiter
- NOAA- National Oceanic and Atmospheric Administration
- NRC- National Research Council
- NRO- National Reconnaissance Office
- NSCAT-NASA Scatterometer
- OSS- Office of Space Science
- OSW- Ocean Surface Winds
- Phoenix AFM- Phoenix Atomic Force Microscope
- PI- Planet Imager
- PIDDIP- Planetary Instrument Development and Definition Program
- PM- Planet Mapper
- QE- Quantum Efficiency
- QGG- Quantum Gravity Gradiometer
- QuickScat- NASA Quick Scatterometer
- RAM- Reconnection and Microscale
- RBSP- Radiation Belt Storm Probes
- SAFIR- Single Aperture Far Infrared Observatory
- SAR- Synthetic Aperture Radar
- SC- Stratospheric Composition
- S/C- Spacecraft
- SCOPE- Solar Connections Observatory for Planetary Environments
- SeaSat-JPL-designed Earth-orbital mission, launched in 1978, to flight-test five instruments
- SECCHI/STEREO- Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory
- SEU- Structure and Evolution of the Universe

- SI- Stellar Imager
- SiGe- Silicon Germanium
- SIR-A,B, C- Spaceborne Imaging Radars- A, B, C
- SIT- Sea Ice Thickness
- SLA 1 and 2- Shuttle Laser Altimeters 1 and 2
- SMD- Science Mission Directorate
- SOFIA- Stratospheric Observatory for Infrared Astronomy
- SOHO- Solar and Heliosphere Observatory
- SOT- Solar-B Solar Optical Telescope
- SP- Solar Probe
- SPI- Solar Probe Imager
- SRTM- Shuttle Radar Topography Mission
- SSD- Solid State Detector
- SSED- Solar System Exploration Division
- SSES- Solar System Exploration Subcommittee
- SWIR FPA- Short Wave Infrared Focal Plane Assembly
- TDI- Time Delay and Integration
- TES- Thermal Emission Spectrometer (Mars Global Surveyor)
- THEMIS- The History of Events and Macroscale Interactions During Substorms
- TIMED- Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics
- TIPS- tera instruction per second
- TOF- Time-of-Flight
- TOPEX- TOPEX/Poseidon- Joint US-French orbital mission
- TPF-C- Terrestrial Planet Finder-Coronagraph
- TPF-I- Terrestrial Planet Finder- Interferometer
- T/R- transmitter/receiver
- TRL- Technology Readiness Level
- TRMM-Tropical Rainfall Measuring Mission
- UM- University of Michigan
- UV- Ultraviolet

- UW- University of Wisconsin
- VIMS- Visual and Infrared Mapping Spectrometer (Cassini)
- Vis- Visible
- VISE- Venus In Situ Explorer
- WindSat- Ocean Surface Wind Measurements from Space
- WMAP- Wilkinson Microwave Anisotropy Probe