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Capability Breakdown Structure

Human Planetary
Landing Systems

CRM # 7

AEDL Human
Mission Drivers

1.0

AEDL Systems
Engineering

2.0

AEDL
Communication

& Navigation
3.0

Hypersonic
Systems

4.0

Aerodynamic and
Propulsive

Decelerators
5.0

Terminal
Descent

& Landing
6.0

A Priori Mars
Observations

9.0

AEDL Analysis
& Validation

Infrastructure
10.0

5.1 Supersonic Aerodynamic Decelerators
5.2 Subsonic Aerodynamic Decelerators
5.3 Supersonic Propulsive Decelerators
5.4 Systems Design, Development, Testing, and 
Qualification



4

Decelerator Functions

Decelerators typically provide one or more of the 
following functions in planetary landing systems:

Deceleration from supersonic to subsonic speed–
Controlled acceleration–
Minimize descent rate–
Provide specified descent rate–
Provide stability (parachute drogue function)–
System deployment (parachute pilot function)–
Provide difference in ballistic coefficient for separation events–
Provide height–
Provide timeline–
Provide specific state (e.g., altitude, location, speed for  –
precision landing)
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Aerodynamic and Propulsive Decelerator Capabilities
for Mars - Integrated Mission Architecture

Options for 
Hypersonic
Decelerators

Options for 
Supersonic & 
Subsonic
Decelerators

Options for 
Terminal 
Descent 
Systems

Parachutes Inflatable Decelerators Propulsion
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5.0 Aerodynamic and Propulsive Decelerator 
Candidate Solutions

Subsonic parachute cluster•
Parafoils•
Lifting body/wings•

Human direct entry or landing from •
orbit

Earth Return 
(Lunar)

Subsonic parachute cluster•
Parafoils•
Lifting body/wings•

Human direct entry or landing from •
orbit

Earth Return 
(Mars)

Supersonic parachutes, subsonic •
parachute clusters
Inflatable decelerators•
Supersonic and subsonic •
propulsion
Combination•

Mars human and cargo landing•Mars Descent

Candidate SolutionsCandidate Mission Scenario

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Current Mars Aerodynamic Decelerator Technology 
Capabilities and Limitations

Supersonic Parachutes

• Disk-Gap-Band (DGB) heritage parachutes
• Deployment at Mach number

M • 2.1 (Viking heritage)
• Deployment at dynamic pressure

q • 800 Pa (MER heritage)
• Nominal diameter, D0 • 16.15 m (Viking heritage)
• Maximum drag area, CDS • 108 m2 (approximate for Viking 

parachute with D0 = 16.15 m at M = 2.1)
• No reefing, clustering, or glide control
• Mortar deployment
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Current Mars Aerodynamic Decelerator 
Technology Capabilities and Limitations



9

Subsonic Parachutes
DGB heritage parachutes (see •
supersonic parachutes)

Maximum drag area, CDS • 139 m2•

Ringsail heritage parachutes•
Beagle 2, MTP Subsonic Parachute, extensive •
Earth-flight experience (e.g.,Mercury, Gemini, 
Apollo)
Deployment at Mach number•
M • 0.8 (MTP Subsonic Parachute)
Nominal diameter, D0 • 33.5 m •
(MTP Subsonic Parachute)
Maximum drag area, CDS • 679 m2•
Reefing•
No clustering or glide control•

Current Mars Aerodynamic Decelerator 
Technology Capabilities and Limitations
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Drag vs Stability Comparison
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Inflatable Supersonic Decelerators
No inflatable supersonic decelerators have been –
flown in planetary exploration missions
Several concepts proposed, some tested–
Some concepts show promise–

Materials
Kevlar, Nylon, Polyester (Dacron) are “qualified” –
materials
Vectran, Spectra, Technora, Nextel, Zylon now –
used in some “qualified” applications
Coated materials (impermeable, ablative) have –
been used for munitions programs

Current Mars Aerodynamic Decelerator 
Technology Capabilities and Limitations
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Analysis Methods
Current methods have a significant empirical component (need –
data to calibrate)
First-principle methods (e.g., Fluid Structures Interaction analyses) –
are available but validation is lacking

Scaling of results (physical size and test conditions) possible but –
poorly understood

Test Methods
Need improvements in our ability to adjust results of all testing to •
other scales and different conditions
Wind tunnel testing (sub-scale and full-scale)•

Available facilities at risk of closing–
Low altitude flight testing (subsonic)•
High altitude flight testing (supersonic and subsonic)•

Sounding rocket–
Balloon–
Balloon/Rocket–

Current Mars Aerodynamic Decelerator 
Technology Capabilities and Limitations
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Sub-Scale Wind
Tunnel Testing

Sounding Rocket

Balloon/Rocket

Full-Scale Wind
Tunnel Testing

Full-Scale
Flight Testing

Current Earth and Mars Aerodynamic Decelerator 
Technology Capabilities and Limitations
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Mars Propulsive Decelerators

Supersonic deceleration at Mars may require a propulsive •
component

An aerodynamic-decelerator only solution may not be –
realistic (extremely large parachutes)

Use of retrorockets to decelerate from supersonic to •
subsonic speeds has issues

Initiation of thrusting is likely to require blow-out covers in –
TPS

MER TIRS motor covers are a primitive example•
Thermal protection must be provided while vehicle is –
enveloped in high enthalpy recirculating exhaust
Plume / freestream interaction will be fundamentally –
unsteady 

Freestream Mach number and dynamic pressure change rapidly•
Rapidly changing aerodynamic forces on aeroshell will require •
significant control authority, especially in the transonic regime

Development of modeling capability for this “inverse base •
flow” problem will be likely require subscale wind tunnel 
tests and flight testing.
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Mars:  Performance Needs

Supersonic-to-Subsonic Deceleration
Larger aero decelerator drag area (CDS) at supersonic speeds•
Aero decelerator drag area control at supersonic speeds •
(loads and trajectory)
Aero decelerator deployment at Mach number > 4•
Propulsive supersonic deceleration•

Subsonic Terminal Descent
Larger aero decelerator drag area (CDS) at subsonic speeds•
Large propulsive descent system•

Pinpoint Landing Capability
Ability to make parachute glide in a chosen direction•
Propulsive descent system guidance and hazard avoidance•
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Earth and Mars: Aerodynamic 
Decelerators Technology Needs

Fluid-Structures Interaction Analyses
Joining of Computational Fluid Mechanics (CFD) with structural •
Finite Element Methods (FEM)
Allows for numerical design optimization•
Can yield insight on scaling of test results (physical size and test •
conditions)
Can yield values of quantities usually obtained by test (e.g., CD0)•
Can yield values of quantities that are difficult to obtain by test •
(e.g., dynamic aero coefficients - Cmq)
Has possibility of reducing testing and qualification costs by •
decreasing number of tests
Works with trend of cheaper computing•
In need Verification (are we solving the equations right?) and •
Validation (are we solving the right equations?) to obtain level of 
trust suitable for exploration missions
Must-have technology•
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Scaling
Ability to scale test results to the system size and test conditions•
May allow for relevant sub-scale testing of systems in flight at •
supersonic conditions
Must-have technology for large Mars systems•

Testing
Adequate wind tunnel and flight test (e.g., high-altitude balloons, •

sounding rockets) capabilities must be retained and in some cases 
expanded

Capability to flight test supersonic systems will become a necessity for •
Mars systems

Materials
Development of new space-qualified materials will have a significant •
impact on aerodynamic decelerator design (i.e., mass to drag area 
ratio)
Materials with high temperature capabilities for parachutes (M > 2.5) •
and inflatable decelerators will be required

Earth and Mars: Aerodynamic 
Decelerators Technology Needs
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Key Wind Tunnel Testing Facilities

NFAC at NASA ARC
Full- and Sub-Scale Testing
Subsonic

TDT at NASA LaRC
Sub-Scale Testing

Subsonic and Transonic

10’ x 10’ Supersonic at NASA GRC
Sub-Scale Testing Supersonic

Earth and Mars: Aerodynamic 
Decelerators Technology Needs
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2 Metric Ton Entry Mass Level
Disk-Gap-Band Supersonic ParachuteRingsail Subsonic Parachute (single canopy)

4 Metric Ton Entry Mass Level
Disk-Gap-Band Supersonic Parachute (reefed)
Ringsail Subsonic Parachute (cluster)

10 Metric Ton Entry Mass Level
Inflatable Supersonic Decelerator
Ringsail Subsonic Parachute (cluster)

50 Metric Ton Entry Mass Level (Human)
Inflatable Supersonic Decelerator
Ringsail Subsonic Parachute (cluster)
Propulsion Assisted Deceleration

Possible Mars Configurations
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Launch orbiter-based Mars Atmosphere Recon.

Capability 
Roadmap 
#7: HPLS

2017 Human Lunar 
Missions

7.5 Aerodynamic and Propulsive  
Decelerator Capability

Key Assumptions:

Team 7: Supersonic Decelerators Capability Roadmap 

Begin AEDL 
System 
Design 
Modeling 

Major Event / Accomplishment / Milestone
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Ensemble of 
Evaluation 
Architectures 
Selected

AEDLA System 
Architecture 
Down select 

Capability to begin 
scaled Fly-off Tests 
(Earth) for System 
downselect

2006 MRO 
Surface site 

Characterization

Sub scale Earth flight 
tests 

Pin point landing at Mars (MSL)

Detailed testing & 
materials dev. 

Project Start of 
Sub Scaled 
Mars Flight 
Model Validation 
Test. (phase A)

AEDL Subscale 
System at CRL 3

Supersonic 
Decelerator Scaled 
Capability Data 
(TRL6)TRL 5

TRL 5 Sub Scale CRL 1

Aerodynamic Decelerators

Propulsive Decelerators

4 MT 30m Supersonic 
Parachute 

4MT  30 m Supersonic       
Chute       Capability 

Detailed testing & 
materials dev. 

10 MT >50 m dia. Sub scale 
Earth flight tests 

80x100 Wind 
Tunnel 

10 MT Dia 
>50 m Chute 
or Propuls.

AND/OR Solution

Mars Sub Scale Tests 

CFD Analysis of 
Propulsion Methods Supersonic Wind Tunnel  (9X7)

Sub scale Earth flight 
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If OK
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Capability Roadmap 7: 
HLPS

Key Assumptions:

Begin Full Scale (Earth) 
Development

Major Event / Accomplishment / Milestone

Ready to Use

Sub Scale AEDL 
Capability Exists: System 
Model validated at Mars

2020 2025 2030

Sub Scaled Mars 
Flight Model 
Validation Project 
PDR

PDR Full scale 
Flight Tests 
(Earth)

Project start of First 
Mars Human Mission

PDR

AEDL Human Scale Sys Capability  
Qualified for Flt (CRL 5)

Launch Landing

AEDL Human Scale 
System at  (CRL  1)

Launch First Human 
Mission to Mars

AEDL Subscale = CRL 6

CRL 5 AEDL Human 
Scale 
Operational 
(CRL 7)

AEDL Human Scale 
System at  (CRL  3)

Subscale AEDL Model 
Validation Mission Launch

Launch

Aerodynamic Decelerators

Propulsive Decelerators

10 MT >50 m dia. 
Sub scale Mars 
flight tests 

AND/OR Solution

50 MT >100 m Full 
Scale Parachute 
integ. Sys. Tests at 
Earth 

10 MT >50 m dia. Sub scale Mars 
sub scale flight tests 

50 MT >100 m Full Scale 
Parachute Development & Tests

50 MT >100 m Full Scale Mars Parachute Capability

Propulsive Mars sub scale flight 
tests (10 MT)

Propulsive Decel. Full Scale 
Development & Tests (50 MT)

Full Scale Propulsive 
integ. Sys. Tests at Earth 

Full Scale (50 MT) Mars Propulsive Deceleration Capability

Decision Point

Full scale 
Flight Tests 
(Earth)

Full scale sys. 
Integration 
(Earth)

Full scale 
Mars 
Landing

Team 7: Supersonic Decelerators Capability Roadmap 

7.5 Aerodynamic and Propulsive  
Decelerator Capability
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Backup Material
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Symbols
CD0 drag coefficient
CDS drag area
Cmq derivative of pitching moment with respect to pitch rate
D0 nominal diameter
M Mach number
q dynamic pressure

Acronyms
AAO Average Angle  of Oscillation
ARC Ames Research Center
CFD Computational Fluid Dynamics
DGB Disk-Gap-Band
FEM Finite Element Method
FSI Fluid Structures Interaction
GRC Glenn Research Center
LaRC Langley Research Center
MER Mars Exploration Rover
MT Metric Ton
MTP Mars Technology Program
NFAC National Full-Scale Aerodynamics Complex
TDT Transonic Dynamics Tunnel
V&V Verification and Validation
WT Wind Tunnel

Symbols and Acronyms


