Characterization of an Ultra-High Temperature Ceramic Composite

Stanley R. Levine, Elizabeth J. Opila, Raymond C. Robinson ${ }^{\text {a }}$, and Jonathan A. Lorincz ${ }^{\text {b }}$
NASA Glenn Research Center
Cleveland, Ohio 44135

Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment. The composite was prepared from a carbon fiber perform using ceramic particulates and a preceramic polymer.

The as-received composite plate was non-uniform from front to back surface. Plate dimensions were $150 \times 150 \times 6 \mathrm{~mm}$. The back surface had a fibrous, uniform appearance; XRD analysis revealed the presence of SiC and C . The front surface was smooth and non-uniform in appearance with evidence of a coarse grain structure produced by a liquid phase; XRD analysis revealed the presence of HfB_{2}. Microcracks were present throughout the thickness as one might expect from a carbon fiber reinforced composite with attendant large thermal expansion mismatch between the matrix phases and the fibers. The HfB_{2} phase on the front surface was comparable in thickness to a fiber ply or about 0.6 mm , and surface microcracks were evident. Limited four point flexural tests were carried out at span to depth ratios of approximately 14 and 16 with markedly different results. Tests were run with the front or the back surface in tension. At the shorter span to depth failures occurred under a loading pin for both orientations. At a span to depth of 16 failures occurred in the center of the span with fracture clearly initiating from a tensile failure. Ultimate flexural strength, strain at ultimate stress, stress and strain at deviation from linear elastic behavior are reported. Strains at ultimate stress ranged from about 0.6 to 0.7% for the back surface in tension, and 0.4 to 0.6 for the front surface in tension. At constant span to depth the strain at ultimate stress was about 0.2% greater for the back surface in tension and the ultimate strength was also higher. Strengths were in line with predictions from theory.

Furnace oxidation studies were carried out at 1627 and $1927^{\circ} \mathrm{C}$ in a static furnace environment using ten minute cycles and one, five, and ten cycles. Limited oxidation studies were also carried out in a flowing oxyacetylene torch environment. Specimens were photographed, and weight and dimensional changes were determined. XRD and SEM characterizations were performed. Weight losses were attributed primarily to carbon fiber oxidation. The composite survived the torch test with little visible distress. Further details will be determined once metallographic studies are completed.

[^0]
Stanley R. Levine, Elizabeth J. Opila,
Raymond C. Robinson, and Jonathan A. Lorincz
NASA Glenn Research Center
Cleveland, Ohio 44135
October 19, 2003

Characterization of an Ultra-High
Temperature Ceramic Composite Outline

Ultra High Temperature Ceramic Composite
(UHTCC) Leading Edge

Characterization of an Ultra-High
Temperature Ceramic Composite

- Objectives
- Characterize a UHTC composite plate fabricated
by Starfire
• CAVEAT: Recognize that little or no development effort
went into fabrication of this material. It was a best effort
fabrication for NASA LaRC
- Reveal some of the issues associated with the
UHTCC concept

Constituents

-Zoltek Panex® 30 Carbon Fabric PW06
-Starfire Systems' SP-Matrix Polymer (Allylhydridopolycarbosilane (AHPCS)) - HfB_{2} Powder
As-Received UHTCC Plate

150 mm

Macros of UHTCC Plate

As -Received UHTCC

C/SiC Side of UHTCC

Center of UHTCC

HFB_-rich Side of UHTCC

Flexural Strength Tests

Specimen			Test Fixture			Orientation		Ultimate Load	Calculated Load Based on Beam Theory*
I	width	thickness	inner span	outer span	span/ depth	fracture	side down		
	mm	mm	mm	mm				N	N
A	12.7	5.79	40	80	13.8	under pin	C/SiC	972	112
B	12.7	5.92	40	80	13.5	under pin	UHTC	757	112
C	12.7	6.04	48	96	15.9	center	C/SiC	1025	
D	12.7	6.06	48	96	15.8	center	UHTC	811	1000
E	12.7	6.07	48	96	15.8	center	UHTC	855	

•*Calculated load at 0.7% strain
•Panex 30 minimum property: $\mathrm{E}=193 \mathrm{GPa}$
•Rule of mixtures with no matrix contribution
Flexural Strength Results

			ㅇ $\stackrel{0}{\Sigma}$					
						$\underset{\sim}{\sim}$		
					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			
					$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$			
\pm								-
					$\varangle \infty$	0	O	

UHTCC Flexural Strength Results

UHTCC After $1627^{\circ} \mathrm{C}$ Furnace Oxidation

10
1.667
5
0.833
1
0.167
Cycles
Hours

Cycles in Air at $1627{ }^{\circ} \mathrm{C}$
 UHTCC After 10 Ten-minute

UHTCC Oxy-Acetylene Torch Test

Sample O	
Time, min.	Temp, $^{\circ} \mathrm{C}$
0.5	1720
1.0	1750
1.5	1750
2.0	1755
2.5	1765
3.0	1775
3.5	1790
4.0	1805

SEM of Center of UHTC Surface
After Three Torch Cycles

Processing

- Uniform and through thickness graded microstructure achieved
- Matrix cracking due to thermal expansion mismatch between C fibers
and matrix constituents is a concern
- Mechanical Properties
- Flexural strength was close to expected values based on rule of
mixtures with no matrix contribution
- Some evidence of composite behavior
- Furnace Oxidation
- Based on weight loss, carbon fiber oxidation occurred rapidly
- Torch Test
- Material withstood $\sim 2000^{\circ} \mathrm{C}\left(\sim 3600^{\circ} \mathrm{F}\right)$, severe heat-up and thermal
\quad gradients with no major visible distress
- Based on observed temperature spikes during test, adherence of the
Recommendations
- The thermal stress response of this early
UHTCC makes the concept worthy of
further study
- Fiber coatings need to be incorporated to
address fiber oxidation issues
- Advanced SiC fibers need to be evaluated
to address oxidation and thermal
expansion mismatch issues
Future Work Continue UHTCC development
Continue UHTCC evaluation
- Complete metallography on Starfire specimens
- Evaluate other NASA and industry developed
materials
Acknowledgements

[^0]: ${ }^{\text {a }}$ QSS Group Inc.
 ${ }^{\mathrm{b}}$ Ohio University

