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Abstract 

One of the main heritage tools used in scientific and engineering data spectrum analysis 
is the Fourier Integral Transform and its high performance digital equivalent - the Fast 
Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, 
such as linearity, of being stationary, and of satisfjmg the Dirichlet conditions. A recent 
development at the National Aeronautics and Space Administration (NASA) Goddard 
Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a 
novel approach to the solution for the nonlinear class of spectrum analysis problems. 
Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) 
sifting process (algorithm), followed by the normalized Hilbert Transform of the 
decomposition data, the HHT allows spectrum analysis of nonlinear and nonstationary 
data. The EMD sifting process results in a non-constrained decomposition of a source 
real value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions 
form a near orthogonal adaptive basis, a basis that is derived from the data. The IMFs can 
be hrther analyzed for spectrum interpretation by the classical Hilbert Transform. A new 
engineering spectrum analysis tool using HHT has been developed at NASA GSFC, the 
HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used 
and commercialized, new applications post additional questions about the theoretical 
basis behind the HHT and EMD algorithms. Why is the fastest changing component of a 
composite signal being sifted out first in the EMD sifting process? Why does the EMD 
sifting process seemingly converge and why does it converge rapidly? Does an IMF have 
a distinctive structure? Why are the lMFs near orthogonal? We address these questions 
and develop the initial theoretical background for the HHT. This will contribute to the 
developments of new HHT processing options, such as real-time and 2-D processing 
using Field Programmable Array (FPGA) computational resources, enhanced HHT 
synthesis, and broaden the scope of HHT applications for signal processing. 
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1. Introduction and Research Methodologv lr 

1.1 Introduction 

One of the main heritage tools used in scientific and engineering data spectrum analysis 
is the Fast Fourier Transform that carries strong a-priori assumptions about the source 
data, such as linearity and of being stationary. The data must originate from a periodic 
waveform and also satisfy the Dirichlet conditions of having a finite number of 
discontinuities and extremas, and be integrable in any sequence of time intervals with 
length of the period T [SI. Heritage spectrum analysis methods use a fixed basis in their 
transforms while EMD derives its basis adaptively from the data itself. 

The EMD sifting process [1]-[3] is a novel algorithm for digital signal processing of non- 
linear and nonstationary data. Given an arbitrary input vector of rational numbers, the 
EMD algorithm invariably sifts out IMF components of different time scales with the 
fastest varying component being sifted out first. This is accomplished by a process known 
as “sifting” which is repeatedly applied to the signal until it converges on criteria that 
defines an IMF. In addition, the EMD process itself converges and produces a finite 
number of IMFs. All this has been observed in all tests conducted so far, in other words, 
empirically. 

. 

However, it is not that obvious why the EMD algorithm behaves this way and this paper 
addresses these questions by examining a few analogies and intuitive examples of signals 
containing artificially created fast and slow varying components. We also consider a 
general case for the EMD sifting process and establish the theoretical foundations of the 
Eh4D algorithm’s sifting sequence of scales and theoretical convergence. We accomplish 
this by providing a hypothesis for why the fastest scale is sifted out first and reporting 
two hypotheses about the sifting process’s symmetric pair invariance and resulting IMF 
structure, and its theoretical rapid convergence in diminishing amplitude regions. We 
then propose a few new applications based on this research, as well as define the areas of 
future research work on the HHT. 

2. EMD Algorithm Overview and Problem Statement 
The EMD algorithm’s empirical behavior is determined by its built-in definitions and 
criteria as well as by the user’s supplied run configuration vector Y as described in more 
details in Section 2.1 

Y = Y(At, my k, p, . . .) (1) 

Y is composed of empirical parameters supplied by a user when running HHT-DPS. 
Among these parameters are At, the sampling time interval, m is the maximum number of 
allowable IMFs to strive for, k is the maximum allowable number of EMD sifts for one 
IMF, and p ,  which allows user to select the “beyond-the- envelope-end-points” prediction 
algorithm option, The following formulation of the Empirical Mode Decomposition 
algorithm is describing the EMD implementation in the HHT-DPS Release 1.4. 



2.1 HHT-DPS EMD Algorithm 

The EMD algorithm is based on a few distinct procedural steps (a) - (g) as follows: 

EMD Algorithm Entry Point 
User specifies EMD Configuration Vector Y = “(At, m, k, p, ...) and input signal s(t), 
where s is the energy values and t is the equally spaced time values ti for i e  [ 1 ,. . ., N]. In 
the first iteration of this algorithm, the “data parent” is the original signal. 

EMD Sifting Process Iterative Loop Entry Point 
(a) The first step of the algorithm is to search the parent dataset and find the local 
maximum and minimum values, also known as extrema. These points are divided into 
two sets, pmax and pmin, containing the respective local maximum and minimum extrema 
values. 

(b) The two subsets for both extrema point types pmax and pmin are splined using 
piecewise cubic splines, comprising the upper and lower boundary of the extrema 
subsets’ envelope boundaries u(t) and d(t). The use of the cubic spline provides a 
relatively slow changing background median M(t) cubic spline (See (d) below) against 
which local fast variations of the signal become prominent and which, in turn, forms the 
basis for the most variant signal being sifted out first by the EMD sifting process. But 
first the extrema sets are extended a bit beyond [tl, tN] to always maintain data over the 
original argument interval, as described next in (c).  

(c) The sets u(t), d(t) are extended a bit beyond the data original argument interval [tl, tN] 
with a few predicted maxima and minima extrema points on both ends of the original 
argument interval [tl, tN]. There are many prediction algorithms, meaning there is no 
accepted one. The extended extrema sets are then splined beyond original argument 
interval [tl, tN] using predicted extrema points and then re-sampled on [tl, tN]. This 
original argument interval is always maintained throughout the HHT-DPS . 

(d) As stated above in (c), splines u(t), d(t) are then re-sampled for sampling time 
arguments ti, where i E [ 1,. . .,N], and the discrete median vector M(ti) is computed as 

This definition of median is essential, because it assures the sifting process convergence. 
When the median computation is iterated k-times in the sifting process, the divisor 
becomes 2k, whxh rapidly becomes a large number. The convergence theoretics are 
based on this number and are described in more details in Sections 3. 

(e) The difference r(ti) = p(tJ - M(ti) is formed and the sifting residue r(ti) is checked 
against the IMF criteria, as follows in (f), 

(f) The IMF Criteria 
The difference between the number E(r(ti)) of extrema points in r(ti), and the number 
Z(r(ti)) of its zero-crossings or the change in two adjacent extrema points’ magnitude 
sign, may not vary by more than 1. Additionally, each IMF must have at least 3 extrema 
points 
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(E(r(ti) > 3) && (IE(r(ti),) -Z(r(ti))( <= 1) , ie[l,...,N] (3) 

An r(ti), which satisfies the IMF Criteria, is called an IMF. It is stored during the EMD 
algorithm verification of the IMF Criteria and it is then subtracted from the current signal 
residue R(t) to obtain the EMD next sifting parent signal p(t). This signal residue 
becomes the new input parent to the EMD sifting process iteration step. Note, that at no 
time does a median M(t) become an input to the EMD sifting process. 

The set of IMFs, which is derived from the data, comprises the signal s(t) near-orthogonal 
adaptive basis and is used for the following signal time-spectrum analysis. 

If the sifting residue r(ti) satisfies the IMF Criteria the IMF is retained and control is 
passed to the Entry Point (a). 

(g) Process Completion Criteria 
When r(ti) is checked above in (e) against the IMF Criteria and Exit Criteria 

( (E(r(ti) <= 3) OR (#IMFs = m) ) 

The EMD sifting process completes with the last signal residue R(tm) becoming the 
process residue from which an IMF couldn’t be made. 

The EMD process completes and exits. 

If r(ti) does not satisfy the Completion Criteria, the control is passed to the Entry 
Point, a). 

Naturally, because of the EMD algorithm construct, the sum of all W k  and the 
last signal residue R(tm) synthesize the original input signal s(t) 

s(t) = CIMFj + Rm, where l<=j<=m-l (4) 

Additional details concerning the EMD can be found in references [4]-[5]. 

2.2 Problem Statement 

With the EMD algorithm described above, the research problem is to understand why it 
works this way and t q  to develop the theoretical fundamentals of this algorithm. 

3. Hypothesis 1 and Theory of the EMD Sifting 
Process Sequence of Scales 
The fastest changing component of a composite signal is invariably being sifted outJirst 
in the Empirical Mode Decomposition algorithm and the first hypothesis in the 
development of the EMD algorithm theory is related to the question: “why?” This 
empirical fact is significant in the respect that it provides the first insight into how the 
EMD algorithm works. Also the EMD algorithm’s computational performance depends 
on the number of extrema in the input data set and taking out first all the extrema for the 
fastest varying component greatly contributes to the EMD algorithm’s next IMF sifting 
steps computational performance. 
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Hypothesis 1: Assuming theoretical convergence of the EMD sifting process, the fastest 
scale is being sifted out first, because the composite signal s(t) extremas’ envelope 
median is approximating the slower variance signal in presence of a fast varying 
component. 

It is implied in this Section that the EMD sifting process converges theoretically in all 
cases. The EMD sifting process rapid theoretical convergence hypotheses are formulated 
in this paper and will be reported in future papers. 

In order to prove this hypothesis we are first considering two analogies to the EMD 
sifting process - one from optical physics and the other fiom electrical and electronics 
engineering disciplines. These analogies provide initial insight into why the signal fastest 
changing component is being sifted out first by the EMD sifting process. We then 
consider three examples of the EMD sifting for a few artificially created signals 
comprising of fast and slow varying components. These analogies and intuitive examples 
allow us to gain an initial insight into the mechanism of why the fastest scale gets sifted 
out first. We then examine the EMD sifting of an arbitrary signal and prove the 
hypothesis for a general case. 

3.1 Analogy 1, Light Spectrum 

Thefirst analogy has to do with light. Light spectrum analysis, which has played such an 
important part in astronomical work, is essentially a method of ascertaining the nature of 
a remote celestial body by a process of sifting or analyzing into different components the 
light receivedfrom them [9]. It was first clearly established by Newton that ordinary 
white light is comprised of waves of different Ji.equencies. The prism sifts out different 
colors. This known empirical phenomenon has a well-established theoretical basis in that 
the prism bends light of different wavelength by a different degree p ,  resulting in a 
distinctive order of output light spectrum (colors), with higher frequency components 
appearing first ’’ in the prism spectrum. It results in a definitive sequence of colors at 
the output of aprism. 

3.2 Analogy 2, RC-Chain Filter 

The second analogy has to do with and electrical RC-chain (circuitry). This circuitry 
comprises a resistance (R) and capacitor (C), with the RC-chain characteristic constant 
z = RC as depicted in Picture 1. This circuitry is often used to smooth filter out) fast 
variable jluctuations of a constant input voltage U I , , ~ ~ ~ .  The functioning of the RC-chain 
as a filter depends on its user selected hardware parameter, the characteristic constant z. 

’m-- Fluctuation 
R 

0 -1 11 0 
Uoutput 1- 

UInput C 

Picture 1. RC-chain 
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The RC-chain’s transfer function K(o) [7] can be described as the ratio of the output 
voltage to input voltage, with both voltages considered as a function of frequency a: 

or 

K(o) = 1 / d( 1 + o2 I?) (8) 

For a near constant input voltage ( ~ 0 ,  absence of fluctuations) the capacitor impedance 
Xc = l/oC = 1/O*C = 00 and K(0) = 1. As o + 00 increases, the capacitor impedance to it 
is decreasing, Xc + 0, and the amplitude of the output voltage variable component factor 
K(o) is approaching 0, as shown on the graph in Picture 2. 

0 w 

Picture 2. RC-chain Transfer Function 

If we arbitrarily select the output voltage amplitude as a fraction of the input voltage, for 
example, as K(w) = 0.707 = 1/62 (this threshold value of 1/42 is selected to get the 
following convenient computations and is actually the nnf power of a sinusoid voltage 
function), then the corresponding frequency band OB or filter upper boundary can be 
evaluated from the transfer function as follows: 

or 

or 

Frequencies higher than OB are filtered out (sifted out) by this RC-chain filter and the 
stability of the output is increasing with the increase in the RC-chain’s constant z. 

3.3 The Analogies Applicability 

The EMD sifting process is computationally analogous to the “hardware” phenomenon 
of a prism sifting out white light into a distinctive sequence of components of difSerent 
frequencies, from highestfrequency in violet (790 Tera Hertz - Thz) to blue, cyan, green, 
yellow, orange and to lower frequency in red (480 Thz). If the bottom face of the prism is 
horizontal, the light beam entering from the bottom of the prism is not deviated. When 

6 



the light leaves the prism at the inclined face and enters the air, it is refracted, and the 
beam is deflected to the right; the deflection is larger at shorter, bluer, wavelengths. 

The EMD sij2ingprocess is also analogous to the RC-chain that is sijjing out the input 
voltage fast varying fluctuations of frequencies exceeding the less varying or a constant 
input voltage, as determined by the RC-chain characteristic constant z. 

Analogous to these two processes, with their characteristic parameters p and z, the EMD 
sifting process is defined both by its implementation definitions and criterions in the 
HHT-DPS, as well as by its user supplied empirical run-time configuration vector Y. 

The EMD sifts out the input signal’s components in a definitive sequence of scales, 
analogous to that of a prism sifting out the light waveform into a sequence from shortest 
to longest wavelength, and performs it in a way similar to that of an RC-chain filtering 
out the frequency band around the slow signal component or the signal intrinsic median 
level (s), as further elaborated below. 

3.4 The EMD Sifting Process, Analogies and First Intuitive Insights 

Intuitively, the EMD sifting process can be initially rationalized in the following way. 
Visualize a composite signal comprising two components of which one is a highly 
variable component and the other is a relatively slow varying trend-like component. It is 
obvious that the fast varying component will be observable as a curve following in the 
shape of the slow varying component in the composite signal, similar to the multitudes of 
small inlets and bay fractals in the broad outline of an ocean shore, when observed from 
afar at sea, or from Space. In other words, the slow varying component can be interpreted 
as an approximate median of the composite signal’s envelope built on fast varying 
component extrema points with maybe a few standout extrema points (accidental large 
amplitude spikes) belonging to the slow varying component. The signal extremas 
envelope’s upper and lower boundaries are defined by the EMD HHT-DPS 
implementation as two piecewise cubic splines, connccting the signal’s adjacent maxima 
or minima points correspondingly. The piecewise curves are also smoothly connected, 
meaning their slopes must be contiguous and be of the same value at juncture points. The 
EMD sifting process computes the composite signal envelope upper and lower 
boundaries’ median as the algebraic sum of the envelope upper and lower curves ’ data 
at sampling time points divided by 2, and subtracts the resulting median from the parent 
signal to arrive at the next “sifted out” residue component candidate, as defined above in 
the EMD sifting algorithm overview (Section 2.1 equation (2)). Intuitively, the EMD 
essentially subtracts the slow varying component from the composite signal, yielding the 
signal’s fastest varying component. This sifting residue is then checked against the IMF 
criteria and the process is repeated when necessary until the fastest varying IMF is found 
or made from the input composite signal. 

Before proving the proposed Hypothesis 1 and elaborating on the theoretical details of 
the EMD sifting process, let us first consider three intuitive examples, using a few 
artificially constructed composite signals for which the workings and the results of the 
EMD sifting process are known in advance due to the way in which the input signals 
were constructed. 
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3.5 Three Intuitive Examples 

The purpose of the following three examples is to demonstrate how the EMD sifting 
process works for data when the results of the sifting process are known intuitively and a 
priori. We know these results beforehand, because of the artificial way the input data in 
these examples was constructed. We know that the envelope of a fast varying sinusoid 
signal is obviously composed of two straight lines and its median is a straight line too. If 
we include in the signal a slower varying signal as a straight line the median intuitively 
will be approximated by this straight line. Considering then the low varying component a 
straight line (whch approximates the envelope median), makes the composite signal 
sifting process’ results intuitively clear, because the subtraction of the straight line 
median results in the fast varying sinusoid component. Following this line we constructed 
three composite signals with the purpose of observing how they are processed by the 
EMD. 

3.5.1 Example 1 
Consider a composite signal comprised of a known constant signal sl=0.5 (non-variant 
signal presented geometrically by a horizontal straight line) and a known relativelyfast 
(as compared to sl) varying signal s2 that is a 5 Hz sinusoid with amplitude in the range 

s(t) = sl  + s2 = 0.5 + 1 .O*cos(2*pi*Pt) 
[-1.0, 1.01 

The EMD of this signal results in sifting out first the 2 Hz sinusoid followed by the 
straight line s 1 = O S  residue. 

3.5.2 Example 2 
We consider now a composite signal comprised of a known and relatively slow varying 
signal sl(t) = k*t representing an inclined straight line with slope k and a second known 
signal that is a 5 Hz sinusoid with amplitude 1.0, identical to s2(t) in Example 1: 

s(t) = l*t + 1 .O*cos(2*pi*5*t) 

The EMD of this signal results in sifting out first the 5 Hz sinusoid followed by the line 
s 1 =t residue. 

3.5.3 Example 3 
Finally, we consider the third intuitive example, a composite signal s comprising four 
components sl, s2, s3 and bias bl .  Namely these are a 1 Hz, 2 Hz and 50 Hz sinusoids 
(cos function) and a constant bias with amplitude 1 .O: 

s l  = bl + l.O*cos(2*pi*l*t) 
s2 = 2.0*cos(2*pi*2*t)) 
s3 = 2.O*cos(2*pi*5O*t) 

s = sl + s2 + s3 

The EMD of this signal results in sifting out first the 50 Hz sinusoid followed by the 2 Hz 
sinusoid and residue equal to component s l  . 
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3.6 EMD Sifting Process Output Sequence of Scales for an Arbitrary Signal 

In a general case, we now consider an arbitrary composite signal s(t). We will prove the 
Hypothesis 1 for an arbitrary signal by demonstrating the reason why the fastest varying 
component in an arbitrary signal s(t) is being sifted out first by the EMD sifting process. 
We are assuming the sifting process’ theoretical convergence. The theoretical 
convergence of the EMD siRing process is proved in the following Section 4. 

The only not-restrictive convention we make here is that we view an arbitrary signal 
being comprised of two components - a relatively fast or high variance component sh(t) 
and a slower or low variance component sl(t), similar to signals in the analogies and 
intuitive examples considered above in Sections 2.1-2.5 

This convention about the signal s(t) structure, again, is based on the two analogies we 
had described above, and is not-restrictive in any sense. There is no mystery of what Sh(t) 
may be. For example, the locations of the initial set of extremas of s(t) coincide, in 
general, with the location of the Sh(t) extremas, except an occasional spike rooted in the 
remaining components. The set of extremas of the parent signal characterizes the fastest 
scale at the time of the sifting process. 

3.6.1.2 Linear Approximation of a Slow Varying Component 

In order to explain why the fastest scale is being sifted our first priority is to consider the 
approximation of the slow varying signal component sl(t) on a small interval tE[tl, tl+ 
tit] by a straight line passing through the interval two end points (linear approximation is 
here actually the definition of a slow varying component) 

(Sl(t) - sl(t1) ) / (t-tl) = (sl(tl+ tit) - sl(t1) ) / tit = k 
or 

sl(t) (Sl(t + 6t) - sl(t) ) / 6t = sl(t1) + k*(t - t l )  

sl(t1) + k*(t - t l )  
or 

sl(t) 

Slope k is negligibly small because of the selection of sl(t) as the slow varying component 
and thus the straight line is being almost parallel to the Ot axis. A fast varying oscillation 
component combined with a line segment must satisfy above equality (9). 

This leads to a median point M(t) for any tE [tl, t l  + st] being computed as 

M(t) = ( ( (sl(t1) + k*(t - t l)  ) + (max)sh(t) ) + ( (sl(tl) + k*(t - t l )  ) + (min)sh(t) ) ) / 2 = 

sl(t1) + k*(t - t l )  sl(t1) sl(t) 
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or that the resulting median point is being situated approximately on the slower varying 
component sl(t). When this is subtracted from the signal we get the fastest varying 
component of the signal sh(t) 3 IMF. 

We proved that the fast varying component is being sifted out first in the EMD sifting 
process when the arbitrary slow varying component can be approximated by a piecewise 
straight line. 

3.6.2 Piecewise Cubic Spline for Signal Envelope Construction and its Role in the 
EMD Sifting Scale Sequence for an Arbitrary Signal 

The selection of a piecewise straight line approximation for the signal envelope 
boundaries u(t), d(t), except for very small time intervals 6t used in the above conceptual 
proof, is unproductive for an EMD implementation. Instead the EMD uses the piecewise 
cubic spline interpolation. Surprisingly, the above examined linear approximations of the 
low varying component of a composite signal on small intervals of the argument prove 
useful, when considering the implications of piecewise cubic splines selection for 
envelope boundaries. 

In the algorithm, we deal with discrete data and their envelopes being interpolated by 
EMD using a piecewise cubic spline function for adjacent extrema points of the same 
type, either maxima or minima. To distinguish these extrema data points among all 
signal data s(t) we will call them x(0. On an interval of two adjacent extrema of the same 
type [Xi, xj], the function x(t) can be expressed by a cubic polynomial of variable t 
belonging to interval [0, 11 

x(t) = a + b*t + c*t2 + d*t3 (10) 

For small values o f t  (in the neighborhood of t=O) the second and third terms in x(t) 
become very small and can be ignored. In general, x(t) can also be expressed as a sum of 
two terms, yielding 

x(t) = (a + bt) + (c*t2 + d*t3) 

While the upper and lower envelopes represented by a piecewise cubic spline connecting 
maxima and minima extrema points on an interval [tlzti, (tl + At)= tj] can be 
conceptually viewed as a line segment (a + bt) or slow varying signal component 
modulated with a fast varying component (c*t2 + d*t3). The same considerations hold for 
the extrema envelope lower boundary approximation by piecewise cubic splines. 

When the median is then viewed as a cubic spline polynomial, as it actually is as 
difference of two envelope polynomials, it is also obvious that all three approximation 
lines - the upper envelope, lower envelope and the median line - are essentially parallel, 
with the median line following the slower varying signal component trend. 

For a fast varying component the interval [tl=ti, (tl + St)=tj] between two adjacent 
arguments is very small and the linear part of the piecewise cubic spline is the envelopes’ 
and their median’ approximation on the entire interval and the proof for the general case 
signal is similar to one provided above in Section 3.6.1. 
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However, two adjacent extrema points, as indicated by their two indices, of the same type 
xi, xi++, may be widely separated among all signal data points and this case requires 
frlrther considerations as follows. The coefficients {a, b, cy d} for the piece of a cubic 
spline passing through point pairs xi and xi+l for parameter arguments ti=O and ti+l=i and 
O<=i<=N-1 can be computationally determined from the four conditions for these two 
obvious end points and two more controversially selected slopes of x(t) at interval ends, 
namely ki and ki+l: 

Xi - - a  
xitl = a + b + c + d  
ki = b  
ki+ 1 

(at given argument t=O and signal data Xi) 
(at given argument t=l and signal data Xi +I)  

(the first derivative of x(t) b + 2ct + 3dt2 at t=O) 
(the first derivative of x(t) b + 2ct + 3dt2 at t=l) = b + 2c + 3d 

The solution for the cubic spline polynomial coefficients (a, by cy d} in terms of the two 
known extrema data point magnitudes xi and Xi+l, and EMD process selected finite slopes 
ki, ki+ly are: 

For example, if we consider the two slopes being zero or ki = ki+l = 0 (as they should be 
for s(t) at any extrema point argument), then the solution determines the following 
polynomial 

or 

If xi = xi+l, then the cubic spline polynomial (13) becomes a straight line x(t) = axi. If the 
envelope becomes very symmetric and extrema of the same kind are close in value, then 
the cubic spline becomes very close to straight line segments x(t) xi and this is resulting 
in fast varying component adjacent extrema (pair of a consecutive maxima and minima) 
to be selected as first invariants. 

In the general case there are N points and N- 1 piecewise splines. If we denote a piecewise 
spline that begins at point Xi as Yi(t), we have N-1 polynomials and need to determine {bi, 
Ci, di,, ki} for O<=i<=N-2 or 4(N-1) unknowns. For this we will need 4(N-1) equations. 
System of equations (11) is not valid for the last polynomial and we need more 
conditions imposed on the polynomials. These are obtained by requiring the polynomial’s 
continuity at joint points, the continuity of their first and second derivatives, as well as 
second derivatives being zero at the two data end points. This completes the 
specifications of the full system of linear equations for {a, by cy d} for N-1 cubic splines 
which has been proven to have a unique solution [ 101. It is sufficient for our task to just 
know that this system has a solution and that the polynomials present a “natural” curve 
smoothly connecting the control data points. It is not obvious but the median M(t) of two 
piecewise cubic splines u(t) and d(t) as defined in Section 2 equation (2) is also a 
piecewise cubic spline. Indeed, if we set 
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u(t) = a1 + blt +clt2 -t dlt3 
d(t) = a2 + b2t +c2t2 + d2t3 

then 

M(t) = u(t) - d(t) = (a1 + a2)/2 + ((bl + b2)/2)t + ((cl + c2)/2)t2 + ((dl + d2)/2)t3 

and function M(t) is obviously contiguous and differentiable and its first derivative is also 
continues and differentiable with the resulting second derivative being contiguous. In 
other words, function M(t) is also a smooth function. In the proximity of an extrema point 
M(t) is close to the line of which the other end is the next opposite type extrema, making 
this pair an invariant for the following sifting steps. In the beginning of the EMD sifting 
process all the extremas obviously belong to the fastest varying component. Smooth 
connection of them by a piecewise cubic spline results in a piecewise cubic spline median 
which is also smooth and as a consequence the fast varying adjacent extrema pairs are 
near symmetric or quickly molded (being made) into being symmetric and thus become 
first invariant pairs in the sifting process. 

This results in the fastest varying component of an arbitrary signal s(t) to be sifted out 
first by the EMD sifting process. 

Finally, what is important is to re-visit the concept of piecewise cubic spline smoothness 
by evaluating the polynomials' global maximum G on [Xi, xi+l] 

where tI0, t 2  are the two roots of the cubic spline polynomial (10) first derivative 

b + 2ct + 3dt2 = 0 (15) 

It is important that the piecewise cubic splines u(t), d(t) control points are the data 
extrema points {xi 1. i%is ensures that G is veiy close to max(s1, s2, ..., sN)=max{xi 1. 

It is also, for example, important to work with near-zero slopes for which G is close to 
max{xi, xi+l}, assuring near-linear behavior of the cubic spline between two sparse 
extrema points of the same type. For example, if 

Iki - ki+l( = E and (xi+, - Xi1 = E,  where E is small 

Then c and d are also small and 

x(t) = a + bt 

G in (14) can also be evaluated using the law of the mean from Calculus [6], [ l l ] .  The 
first derivative .of the cubic spline (1 5) is a parabola varying from bi to 2~i+3di (for 0 and 
1 end parameter values at t=tj). The second derivative of the cubic spline is 2c+6dt and is 
a straight line while it can only grow or only decrease on [Xi, xi+l] and it is definitely 
differentiable on the open interval (xi, xi+l). The law of the mean states: 
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Let x be a fbnction o f t  which is continuous at each point of the closed interval A<=t<=B, 
and let it have a derivative at each point of the open interval A<t<B. Then there is a point 
t=8 in the ope9 interval (A<t<B) such that 

The point 0 is such that the derivative at 0 gives a slope equal to the slope of the straight 
line connecting X(ti+l) and x(ti) and which is the straight line around which the fastest 
varying component is locally weaving around on interval [Xi, xi+l]. That the locally fastest 
varying component is being sifted out first in such a case has been already proven above. 

Ths  concludes the initial proof of Hypothesis 1 that for an arbitrary signal the fastest 
scale component is sifted out first by the EMD sifting process, and as a consequence, the 
remaining sifting becomes computationally less difficult. Other issues, such as the theory 
of local symmetry and IMF structure; the theory of the EMD rapid convergence; HHT 
signal synthesis; and ways of breaking up the signal for faster EMD processing, are left 
for a future paper in which we will prove the following Hypotheses 2 -3: 

Hypothesis 2: The EMD sifting process preserves an intermediate locally symmetric 
zero-crossing pair of extrema points with interleaved regions of diminishing amplitudes 
yielding an IMF with a definitive structure. 

Hypothesis 3: The EMD sifting process’ rapid convergence is of order 0(2k). This is a 
consequence of the EMD envelope control points definition as sets of extremas of the 
same type, its interpolation by piecewise cubic spline whose control points are the data 
extremas, and envelope’s median construction as an arithmetic median- the envelops’ 
sum divided by 2. 

Conclusions 
We have reported the initial theoretical proof of why the fastest changing component of a 
composite signal is being sifted out first in the Empirical Mode Decomposition sifting 
process as implemented in the HHT-DPS. We have also provided the two hypotheses for 
the theoretical explanation of why the EMD algorithm converges and converges rapidly 
while using cubic splines for signal envelope interpolation. As part of this research we 
developed a few practical techniques for cutting a large input data set into smaller files, 
which facilitates faster HHT-DPS processing of large sound files. We have also 
developed in parallel with this investigation a few related to this research applications. 
For example, we have developed one of the first techniques for signal synthesis using the 
Hilbert Spectrum, by “painting” a recognizable 2-D pattern in Hilbert Spectrum image 
and then tracing back (direct inversion) the painted subset pixels to their origin in the 
IMFs, and deleting them from the W s .  This then allows reconstructing the portion of 
the input signal (its synthesis) from the modified IMFs that depicts the extracted feature 
being successfully removed. These developments will be presented in follow up papers. 
Future work includes research on the IMFs basis orthogonality, the affects of 
normalization on the Hilbert Transform and resulting instantaneous frequency, as well as 
further research in the 2-D signal processing domain and handling of intermittency. 
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