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This report has two parts. Part I summarizes the University of Colorado component, and 
Part I1 summarizes the component from the subcontract to NCAR. 

Part I 

Abstract 

A data assimilation system for specifying the thermospheric density has been 
developed over the last several years. This system ingests GRACEKHAMP-type in situ 
as well as SSULI/SSUSI remote sensing observations while making use of a physical 
model, the Coupled Thermosphere-Ionosphere Model (CTIM) (Fuller-Rowel1 et al., 
1996). The Kalman filter was implemented as the backbone to the data assimilation 
system, which provides a statistically 'best' estimate as well as an estimate of the error in 
its state. The system was tested using a simulated thermosphere and observations. 
CHAMP data were then used to provide the system with a real data source. The results 
of this study are herein. 

INTRODUCTION 

The particular advantage of this research is the creation of a data assimilation 
system that makes use of a physical model, the Coupled Thermosphere-Ionosphere 
Model (CTIM) (Fuller-Rowel1 et al., 1996). To date, no system makes use of a physical 
model for state propagation. The advantage of the physical model, CTIM, over empirical 
models comes from its ability to represent unclimatological features that are often present 
during geomagnetic storm conditions. A physical model, like CTIM, in a 
predictor/corrector-type data assimilation technique like the Kalman filter, is ideal since 
the physical model has the ability to provide the 'best' state of the thermosphere based on 
conditions at a previous time. Correcting the physical model with observations, in a 
statistically rigorous manner, provides an optimal method for minimizing the errors while 
representing the time-dependent conditions of the thermospheric density. Because the 
thermosphere is strongly driven by external processes, the thrust of the research in the 
most recent years has focused on improving the specification of the drivers as well as the 
main parameters for density. It has been shown that improved driver specification can 
greatly improve accuracy during geomagnetic storms. Improved driver specification has 
proven itself to be essential since satellite coverage is not globally available at a single 
epoch and since the upper atmosphere can change much more rapidly in comparison to 
the satellite revisit rate during geomagnetic storms. 

The research examines two main type of satellite platforms: remote sensing and 
in situ. The remote sensing instruments examined here are the Special Sensor Ultraviolet 
Imager (SSUSI) developed by the Applied Physics Laboratory (Paxton et al., 1992) and 
the Special Sensor Ultraviolet Limb Imager, SSULI (McCoy and Thonnard, 1997). The 



in situ satellites under examination are the Challenging Minisatellite Payload (CHAMP) 
from GFZ Potsdam and NASA's Gravity Recovery and Climate Experiment (GRACE). 

U M A N  FILTER OVERVIEW 

Because of its specific design to handle nonlinear systems, an extended form 
(Costa and Moore, 1991) of the Kalman filter is used. The Kalman filter (Kalman, 1960; 
Kalman and Bucy, 1961) is an alternative way of implementing the least squares method 
by sequentially solving the problem with each new observation, where 

y is the observation, x is the state, and H is the linear relationship between the state and 
observation. E represents the error in the observation that is to be eliminated. The 
primary data assimilation system, based on the extended Kalman filter, can also be 
written in ensemble form, as will be shown in a moment. The elements of the state 
vector represent the driver (ap), the density/temperature at each grid point over the globe. 

To propagate the estimated state and its error variance-covariance matrix forward 
in time, CTIM is used. 

and 

where i is the previous best estimate, X is the model propagated state, P is the error 
covariance matrix of the previous best estimate of the state, and P is the model 
propagated error covariance matrix. The physical model, CTIM, is used to calculate the 
state transition matix, Qcm, where the superscript, T, is the transpose. 

The weighting, or Kalman gain, K, is determined from the propagated state error 
covariance matrix, 7, the observation error variance-covariance matrix, 
mapping matrix, H, as 

R, and the 

K = FHT@FHT + R)'. 

The calculated Kalman gain then is used to map the observation vector correction to the 
model propagated state as 

where the new associated error covariance matrix is calculated as 

P = (I - K H ~ ( I  - my + K R K ~ .  



The extended Kalman filter equations are then repeated, using the corrected state estimate 
and its corrected error variance-covariance matrix, to obtain a state and state error 
variance-covariance matrix for the next observation time. 

The advantage of writing the equations of the Kalman filter in extended form 
comes from the continual correction to the nominal state. Typically, estimation methods 
specify the deviation from a nominal state. This deviation is assumed linear, which is an 
adequate assumption if the deviation is sufficiently small enough to lie within the linear 
regime. If, however, the state is not well know, as can happen during storm conditions, 
the current state estimate may not lie within this linear regime of the nominal state 
making the linear assumption invalid. The extended version of the Kalman filter allows 
for the continual correction to the nominal state, which in turn helps minimize the effects 
of nonlinearities by continually decreasing the difference between the current and 
nominal states. 

Additional improvements include the ensemble version of the extended Kalman 
filter (Evensen et al., 2000; Keppenne, 2000; Houtekamer and Mitchell, 1998) which 
avoids the numerical difficulties of calculating the transition and covariance matrices, 
allowing one to correlate the drivers with the thermospheric response. The correlation 
length between adjacent points within the thermosphere is very short, and therefore, 
adjacent points are poorly correlated in the transition and covariance matrices of the 
Kalman filter. However, the relationships between driver, density/temperature, and 
composition change are strongly correlated at a given point and must be properly 
represented in the transition and covariance matrices. Including these correlated points in 
the transition matrix makes traditional calculations of the transition and covariance 
matrices too tedious, even for a computer, and therefore impractical, and an ensemble 
version of the extended Kalman filter must be applied. 

Although 20 members were used in the ensemble Kalman filter in this research, a 
simplified schematic, using 3 members, is shown in figure 1 to illustrate the mechanics of 
the ensemble Kalman filter. 

T 1 

Figure 1 : An 3-member ensemble Kalman filter example. 
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The ensemble K h a n  filter uses direct calculation of the covariances based on the Monte 
Carlo statistics of an ensemble of separate filters. In the ensemble Kalman filter, each 
member of the ensemble is a separate filter estimating a separate state. The ensemble 
Kalman filter uses the variance in these separate states to estimate the covariance of the 
entire ensemble. 

A set of 20 filter processes are run in parallel where the initial states are 
randomized with a Gaussian number generator. The standard deviation of the random 
number generator is the same as that for the desired a priori state error covariance matrix. 
As each of these processes of the ensemble is propagated independently forward in time, 
the resultant distribution of the propagated states of the ensemble will have a new 
associated error variance-covariance matrix. Thus, the propagated state error covariance 
matrix, p, may be calculated directly from the ensemble of propagated states using the 
standard statistical equations below: 

which provides the diagonal, or variance, elements of F.  The ensemble is made of m 
members. a;?, is the variance of all of the member states in the ensemble of the ith 
diagonal element, and p l  is the mean of the ensemble for the ith state element. F,p is the 
ith element of the kth propagated member state element. The off-diagonal, or covariance, 
terms are found by the similar equation 

where 4 is the i-jth element of 7 .  1.1, is the mean of the ensemble for the 

element, and p, is the mean of the jth state element. 

element of the kth member, and F,c is the jth propagated state element of the 
member. 

propagated using the physical model. Once the state is propagated forward to the next 
time step, the state error variance-covariance matrix is calculated statistically, as 
described above in equations (1) and (2). As a result, the transition matrix need not be 
calculated. Since the ensemble caries the state error information, the current error 
variance-covariance matrix, P, need not be stored in memory. Since the current error 
covariance matrix P is stored in the state ensemble. 

The ensemble Kalman filter has an advantage over the traditional Kalman filters 
in that the state error covariance matrix is calculated directly using equations (1) and (2). 

ith state 

Flip is the ith propagated state 

kth 

Each member of the initial estimated state, 2, , is randomized initially and is 



Also, by calculating the state error covariance matrix directly from the ensemble 
distribution, the state error covariance matrix avoids the problem of assymetry. 

PHYSICAL MODEL OVERVIEW 

The Coupled Thermospheric-Ionospheric Model, CTIM (Fuller-Rowel1 et al., 
1996 and 2000), provides a complex and well-tested physical model for the propagation 
of the state. CTIM is a combination of two independently developed physical models. 
The first part of CTIM contains a global, non-linear, time-dependent neutral atmospheric 
model developed at the University College London (Fuller-Rowel1 and Rees, 1980 and 
1983). The second part contains a mid- and high-latitude ionospheric convection model 
that originated at Sheffield University (Quegan et al., 1982). The amount of Joule 
heating, which depends on the electric field strength, is one of the contributors to the 
ionospheric-thermospheric coupling. The neutral atmospheric portion of CTIM, 
however, is the primary part of the algorithm used for the state propagation when 
assimilating the neutral species. 

The thermospheric portion of the code numerically solves the non-linear 
equations of momentum, energy, and continuity to provide a time-dependent structure of 
the wind vector, temperature, and density in the neutral atmosphere. The altitude scale of 
the thermospheric model is pressure dependent. The range begins at 1 Pascal, 80 km 
altitude, and extends from 300 km to 700 km altitude depending on the amount of 
expansion from heating. 

The non-linear equations of the thermospheric portion are solved self-consistently 
with a high- and mid-latitude ionospheric convection model poleward of 23 degrees 
latitude. The ionospheric portion numerically solves the non-linear equations for ion 
continuity, difhsion, and temperature. Additionally, odd nitrogen species are taken into 
account in calculating the molecular ion concentrations as well as other diffusion 
parameters. 

The advantage of CTIM becomes more obvious during geomagnetic storm times 
when localized Joule heating creates regions of sudden density change in the 
thermosphere. The dynamical equations in CTIM reproduce these sudden local changes - 
whereas models based on statistical climatology cannot. Additionally, these changes are 
generally too sudden for persistence to accurately represent, and thus, a physical model 
may provide the only means for accurately forecasting the neutral composition during 
geomagnetic storm times. 

One may also be faced with loss of data for extended periods of time. Delays in 
downloading the data from the satellite to the user will inevitably occur. Also, large 
areas may not be covered due to satellite and instrument malfunctions or daily and 
seasonal effects. Therefore, a physical model is necessary to provide a forecast to cover 
any limitations in the availability of data 

Lastly, it may be necessary to provide a forecast of the state in the future. In this 
case, a physical model, like CTIM, provides the most accurate means for propagating the 
state. However, the accuracy of this forecast will degrade with time, and relaxation of the 
state to climatology over a specific time period will be necessary. 



DRIVER ESTIMATION 
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In the most recent years of this project, the main thrust has primarily focused on 
specifying the thermospheric drivers. In meteorological and ocean data assimilation, the 
fluid atmosphere or ocean is also described by a constantly changing state. In 
comparison to the troposphere, however, estimating the upper atmosphere brings about 
even greater challenges as the winds typically have higher speeds in the range of 
hundreds of meters per second. Additionally, the coverage is poorer for the upper 
atmosphere in comparison to the more numerous observation sources available to the 
meteorological and oceanographic communities. As a result, the state describing the 
neutral atmospheric density can change significantly between observations - particularly 
during geomagnetic storms. 

Because the upper atmosphere is strongly forced, driver specification can also be 
used to one‘s advantage. Unlike the troposphere, external processes drive most of the 
variability in the upper atmospheric dynamics as described in figure 2. During quiet 
times, the Sun directly heats the upper atmosphere by solar radiation in the extreme 
ultraviolet (EUV) frequencies. EUV heating occurs on the sunlit side of Earth with the 
maximum heating occurring at the region nearest to the sub-solar point. In the 
troposphere, for example, much of the variability arises from internal stochastic processes 
and is not strongly localized. Unlike the troposphere, most of the minute-to-minute 
variability in the thermosphere arises from the magnetospheric source imposed at high 
latitudes. During geomagnetic storm times, the heating process becomes more 
complicated and even more spatially and temporally variable. Geomagnetic storms occur 
when material, ejected from the sun by a coronal mass ejection, hits the Earth’s 
magnetosphere. If the solar wind plasma has a southward magnetic field, it creates a 
coupling with the magnetosphere. Initially, plasma convection increases and auroral 
particle precipitation expands to lower latitudes. Besides the increased heating rate from 
particle precipitation and from Joule dissipation, the expanded convective electric field 
also redistributes the plasma. 
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Figure 2: The Sun to Neutral Composition Connection. 



As often occurs during geomagnetic storms, localized heating can result from the 
particle precipitation and Joule heating. Localized heating creates changes in very 
specific regions causing greater variations in the neutral density structure. Empirical 
models have greater difficulty representing this more varied structure due to their 
statistical representation of the neutral atmosphere structure, and errors typically increase 
to up to 50% (Bowman and Storz, 2003). During these times, the data assimilation 
system must rely more on improved driver specification to correctly ‘drive’ the physical 
model representation. 

The most recent work has concentrated on incorporating the high latitude forcing 
into the data assimilation system. This forcing includes knowledge of the spatial and 
temporal variations of the convection electric field and the auroral precipitation. 
Inaccurate knowledge of these drivers in data assimilation systems for space weather 
applications will lead to limitations in improving the specification further. Compared 
with the solar wind parameters that force the magnetosphere, the drivers of the upper 
atmosphere, although well understood, have been to date poorly quantified. This 
research has sought to better quantify the balance between solar and magnetospheric 
forcing over the range of solar and geomagnetic activity through the implementation of 
an ensemble Kalman filter to specify the drivers for the troposphere. Since the solar 
heating at low latitudes and the magnetospheric sources at high latitudes control the 
magnitude and spatial distribution of the global circulation, these drivers strongly affect 
the neutral composition and density structure, and as a result, the ensemble Kalman frlter 
approach for specifying the drivers is suited for the thermosphere. Further, the improved 
driver specification, in turn, improves the density specification in the data assimilation 
system. 

DRIVER ESTIMATION THROUGH THE PHYSICAL MODEL 

Compared with the solar wind parameters that force the magnetosphere, the 
magnitude and spatial distribution of the upper atmospheric drivers, although well 
understood, are difficult to quantify. To truly have any effect on reducing the errors 
during storm conditions, specification of the spatial and temporal variations of the 
convection electric field and the auroral precipitation is required. Without data 
assimilation, the globally averaged Joule heating rate at a given time is probably only 
known within a factor of two. At a given location, this uncertainty can rise to a factor of 
ten. Therefore, research has concentrated primarily on quantifying the high altitude 
forcing during geomagnetic storm by using the approach of also observing the response, 
rather than just the conventional input parameters alone. Since a given response defrnes 
the magnitude and spatial distribution of the source, vastly more information is available 
for specifying the drivers as well as the current upper atmospheric conditions. From 
observing the thermospheric response, research has focused on determining if it is 
possible to specify the real-time driver and heating distribution from observations of the 
upper atmospheric conditions alone. Since the dynamics of the composition structure is 
strongly directed by the distribution of the Joule heating, observing the change in 
composition should act as an additional source for the upper atmospheric drivers and 
subsequently should provide a better specification for the change in density through the 
physical model. 
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The energy input, primarily through the Joule heating is typically the most 
significant driver of the changes in neutral composition during geomagnetic storms. As 
energy is added to the thermosphere, the temperature increases, and the pressure at 
specific altitudes changes hydrostatically. In a pressure coordinate system, the 
mechanism can be illustrated as in Figure 3. 

h" 

Thermosphere r 'r'5 r 

Figure 3. The creation of horizontal winds by increasing the pressure level height. 

Localized Joule heating raises the temperature within a given area, and the heights 
of the pressure levels, say PI and P?, increase at the location where the heating is 
occurring. In Figure 2, a constant reference altitude, h*, is chosen so that it passes 
through the two pressure levels. Because of the localized increase in height of the 
pressure levels, the pressure is no longer uniform at all locations along h*, and a pressure 
gradient results. Since PI is at a lower altitude than P2, by the hydrostatic equation, the 
pressure at PI will be higher, or in other words, the pressure at point B is higher than at 
point A.  As a result of this ,mdient, a flow occurs from point B toward point A,  and thus, 
a diverging horizontal wind at h* moves a away in the radial direction from the region of 
Joule heating. 

Since, in pressure coordinates, the atmosphere can be treated as incompressible, 
the divergence of the flow on the global scale is conserved, a larger circulation pattern is 
formed and a convergence of the horizontal winds occur at lower altitudes as shown in 
Figure 4 below. 

Earth 

Figure 4: Circulation pattern resulting from the divergence of the horizontal winds at 
higher altitudes and the balancing convergence at lower altitudes. 

The size of the circulation pattern depends largely on the temperature gradient, i.e. the 
amount of Joule heating and the previous state of the thermosphere. The divergence of 
the horizontal winds at the higher altitudes is the source of the vertical wind that is 
responsible for neutral composition changes. An example of the resultant horizontal 
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winds due to heating is shown in figure 5 .  The true vertical velocity is a combination of 
the change in height due to temperature change from the Joule heating and the upward 
flow resulting from the divergence pattern. 

0 50 100 150 200 250 300 350 

Figure 5: The Resultant Horizontal Winds Due to Joule Heating. 

These horizontal and vertical neutral winds are responsible for the transport of the 
neutral species. The horizontal winds, resulting from the localized Joule heating, 
transport changes in composition. By observing the neutral composition and density 
response, the magnitude of the heat sources can be inferred. An example of how this is 
possible is shown in figure 6 .  The top panel shows simulated thermospheric density 
conditions under storm conditions. The middle panel shows typical quiet conditions. 
Quiet conditions can be estimated with a high degree of accuracy, and any deviation from 
these conditions are very noticeable and indicate the storm effects. The bottom panel 
shows the difference between the storm and quiet conditions where the red regions show 
where the thermosphere is being heated and the density in these regions at a given 
altitude (450 km) is increasing. Also, in the bottom panel, the electric field patterns are 
illustrated by the blue outlines. Because the heating (red regions) overlap with the 
electric field location (blue outlines), a strong correlation between electric field strength 
and distribution and heating magnitude and distribution can be statistically drawn. 
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Figure 6. How deviations from the quiet state can indicate the regions 
of heating due to storm conditions. 

Estimating the magnitude and distribution of the drivers enables one to ‘drive’ the 
physical model toward the observations. Two examples of controlling the physical 
model are shown in figures 7 and 8. Figure 7 shows the measurements (indicated with 
the black dots) taken by Challenging Minisatellite Payload (CHAMP). The model output 
is shown by the blue circles in each panel, when no driver is included in the state 
estimate. Since the model has no driver correction., the data assimilation system cannot 
properly represent the thermospheric density and an offset can be seen. 

Figure 7, on the other hand, shows a much different story. Here, the ‘innovation’ 
is shown, which is the difference between the actual observation and the physical model 
prediction. In this example, an attempt is made to estimate the amount of heating in the 
upper atmosphere. The driver is included in the Kalman state, and the physical model is 
’driven’ based on this estimate. Ideally, one wishes to obtain an innovation that is as near 
zero as possible, i.e. the observation matches the model prediction. The innovation is 
often a good indicator of the accuracy in the Kalman filter if no *truth‘ thermosphere or 
other data are available for comparison. A non-zero innovation indicates that the 
physical model is being pushed away from the ’truth’ due to inaccurate or non-existant 
driver estimation. 
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Figure 6: A comparison of CHAMP data and CTIM (without driver specification). 
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Figure 7: Obtaining a Near-Zero Innovation through Driver Estimation. 

Specifying the driver greatly improves of the physical model prediction, as also 
Here, a closer match to the CHAMP indicated by the blue circles in figure 8. 
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measurements (black dots) can be seen as compared to the previous figure 6 .  Again, the 
estimates of the density are obtained fiom including the drivers in the state. 
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Figure 8: A comparison of CHAMP data and CTIM (with driver specification). 

As can be seen in figures 7 and 8, some inaccuracies still exist in the Kalman 
filter estimate as indicated by the non-zero oscillations around the near-zero mean in 
figure 7 and various miss-matches seen in figure 8. The errors are an effect of the 
inability to globally observe all features at any given time using a single satellite. The 
use of a single instrument may miss storm-induced features in the density structure if the 
feature occurs in a region not covered by the satellite orbit. 

An analysis is performed to see what effect satellite coverage has on estimate 
accuracy. Here a simulated thermosphere is created so that root mean squared (RMS) 
errors can be calculated for a given satellite arrangement. 

Various combinations of SSULI/SSUSI-type (remote sensing) and 
GRACE/CHAMP (in situ) are examined, and the RMS errors are shown in figure 9. 
Errors that exist in the density specification can be attributed to errors in the heating 
distribution knowledge in poorly observed regions. Figure 9 indicates that estimating the 
magnitude and the distribution of the heating by increasing the satellite coverage can 
reduce errors, particularly during geomagnetic storm conditions. The errors that still 
exist come fiom the nonlinearities between the drivers and the thermospheric response. 
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Figure 9: A Comparison of Various Satellite Arrangements. 

CONCLUSIONS 

A data assimilation system for specifying the thermospheric density has been built 
and tested using thermospheric simulation and also data from CHAMP. Results show 
that quiet geomagnetic conditions can be specified to a high degree of accuracy, but 
storm conditions pose special problems that have required a closer examination of the 
thermospheric physics as well as the operation of the filtering techniques. The focus over 
the most recent years of this project has moved toward specifling the thermospheric 
forcing since this system is so strongly externally driven. Results have shown that errors 
during geomagnetic storms can be reduced if the drivers can also be specified. Due to the 
nonlinear relationship between the drivers and the thermospheric response, special 
attention has been devoted to filtering techniques that are specifically designed for 
nonlinear systems, which have greatly helped in reducing numerical errors associated 
with these nonlinearities. 
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This project resulted in three publications, summarized below. 

Matsuo et al. (2002) showed that Empirical Orthogonal Functions (EOFs) can be 
obtained from innovative analysis of satellite data, which capture a sizable fraction of the 
total variability of the high-latitude electric fields, and which offer the potential of 
simplifying the AMIE basis functions and covariance matrices. 

Matsuo et al. (2003) quantified the seasonal and interplanetary-magnetic-field (IMF) 
dependence of electric-field variability over the polar regions, based on statistical 
analysis of satellite data. This work has led to an improved ability to quantify Joule 
heating in the high-latitude thermosphere. 

Matsuo et al. (2004) developed a version of the AMIE procedure that dynamically 
estimates the AMIE background covariance matrix using the data at hand, using EOFs as 
basis functions in order to make the matrix diagonal. Applying this to observations from 
the 1997 January 10 magnetic storm, we found that the dominant mode of electric-field 
variability changed with time during the storm, as the direction of the IMF rotated due to 
its flux-rope character. Autocorrelation bc t ions  calculated fiom the t h e  series of fitted 
basis-function coefficients showed correlation times considerably shorter than the 
correlation times of variations in the IMF or solar-wind parameters. T ~ K  suggests a 
substantial amount of variability associated with internal magnetospheric processes. The 
AMIE electric fields were used as input to a thermosphere/ionosphere general circulation 
model and compared with a companion simulation that used climatological electric fields 
derived from an empirical model, using observed IMF inputs. During certain storm 
phases these two simulations showed significantly different Joule heating, related partly 
to different wind systems that are produced. 
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