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INTRODUCTION 
 
     Specific impulse is defined in words in many ways. Very early in any text on 
rocket propulsion a phrase similar to �specific impulse is the thrust force per unit 
propellant weight flow per second� will be found.(2) It is only after seeing the 
mathematics written down does the definition mean something physically to scientists 
and engineers responsible for either measuring it or using someone�s value for it. A 
very typical mathematical definition is: (3) 
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where tF  is the thrust and em
•

 is the mass flow rate. The dot indicates a time 
derivative as usual and g is the acceleration due to gravity. If the numerator and 
denominator of (1) are multiplied by the inverse of the time period, the two integrals 
take on a new meaning: 
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Now the integrals are averages and the specific impulse can be more correctly defined 
as the average thrust produced by the rocket engine divided by (g times) the average 
mass flow rate. The units of specific impulse are seconds. This definition is much 
more amenable to both scientists and engineers. The procedure followed in most 
textbooks will be reviewed here for completeness and to act as an introduction to the 
modifications to come later. 
     The usual freshman physics development of the rocket flight equations begins with 
the conservation of momentum equation: (4) 
 

0=∑ p                            (3) 
 
0=− eeRR vmvm                      (4) 
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where Rm  is the mass of the rocket, em is the mass of the exhausted propellant, and 

Rv and ev  are the velocities of the rocket and the exhausted propellant respectively. 
Taking the time derivative of momentum gives the force: 
 

F
dt
dp =                                      (5) 

 
and applying this to the momentum equation gives: 
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The last term is the rocket thrust: 
 

( )eet vm
dt
dF =                              (8) 

 
Performing the derivative correctly, knowing that the mass of the rocket is time 
dependent gives: 
 

eeeet mvvmF && +=                                (9) 
 
Now if ev is a constant, then of course ev&  = 0 so that: 

 

eet mvF &=                             (10) 
 
Substituting this into the spI  equation (1) gives: 
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and again, assuming ve is a constant and if it is further assumed that em&  is also a 
constant, then: 
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then: 
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which is the normally encountered result, which is perfectly acceptable if both the 
mass flow rate and the exhaust velocity are constants.(5) This is indeed often the case, 
or is at least assumed to be the case, for most rocket propulsion measurements. In this 
investigation however the interest is in determining how an error in the mass flow rate 
measurement affects the specific impulse, so these simplifications cannot be used. 
 
THE INSTANTANEOUS SPECIFIC IMPULSE 
 
     The very use of the word impulse implies an integration over time so perhaps it is 
not appropriate to use the term as it will be used in the following argument but for 
historical reasons it will be used anyway. An instantaneous specific impulse (which of 
course literally doesn�t make much sense) is defined to be: 
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where the asterisk indicates that the term is related to the classical definition but not 
identical to it. The particular interest in this investigation is in how the specific 
impulse varies with mass flow rate so it is logical to try to determine the derivative of 
the specific impulse with respect to the mass flow rate: 
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Now equation (9) gives the correct form for tF , so substituting this into (16) gives: 
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where all the terms have units of velocity as they should. Substituting (18) into (16) 
and rearranging gives: 
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At this point it is tempting to write an equation relating the mass of the exhausted 
propellant to the mass flow rate and the elapsed time. Such an equation would look 
like: 
 

                                        tmm ee &=                        (20) 
 
and this would greatly simplify (19) thereby leading to a quick solution but there is a 
problem with this if thought goes beyond freshman physics. Assume that (20) is true 
for a moment, then: 
 

( )tm
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dm ee && =                                        (21) 

 

ee mtm &&& +=              (22) 
 
which implies 

                                               0=em&&                                                           (23)                                                  
 
and this certainly is not physical for the problem at hand since the principle interest 
here is in determining how a change in em&  affects *

spI , so em&&  must exist. It is then 
tempting to assume that perhaps em&&  is a constant, which would also help in 
simplifying (19). This implies that: 
 

Atme =&                                                         (24) 
 
where A is a constant. This requires em&  to be a linear function of time which might be 
correct for some applications but is too restrictive for the general problem at hand, so 
it is important to stay with equation (19) as the fundamental result. This is somewhat 
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analogous to a classical mechanics problem with non-constant acceleration. Such a 
problem does not come up often but it is nevertheless quite physical. 
     Examine one term of equation (19): 
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This can be rewritten as: 
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which does simplify equation (19): 
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The last term in (19) can also be simplified: 
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so that equation (19) now becomes: 
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which is the fundamental result of this investigation. 
 
     Rewriting equation (29) slightly: 
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Now if the last term was not present, then: 
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Integrating: 
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gives: 
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which is the classical textbook result (equation 13) obtained if the exhaust velocity 
and mass flow rate are assumed to be constants. 
     The last term in equation (30): 
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can be thought of as a �correction� to 
e
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md
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 for the case of  ve and em&  being non-

constant. So the classical specific impulse can be written in terms of the instantaneous 
specific impulse as: 
 

∫ 







−+= e

e

e

e

e

e

e
spsp md

dm
dv

md
vd

m
m

g
II &

&

&

&2
1*

              (35) 

 
This is the final result.  
 
DISCUSSION 
 
     As an exercise and example, it is possible to construct plausible functions for the 
derivatives in the last term of equation (30) to get an idea of how the specific impulse 
error depends on the error in the mass flow rate. It seems reasonable to assume that 
the mass of the expelled propellant increases in time, but that dependence is usually 
not known, so as a guess, assume that: 
 

                                            ( ) n
e Attm =                                             (36) 

 
where A is a constant and n represents a collection of  random numbers whose 
average is 1. For n = 1 the dependence is linear which might make sense for some 
applications. If equation (36) is assumed to be true then: 
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Now the dependence of the exhaust velocity on the mass flow rate is required. It 
seems that there shouldn�t be much of a dependence here so it is assumed that: 
 

q
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where B is a constant and q is defined similar to n except the average is 0. This says 
that the exhaust velocity does not vary much with the mass flow rate. This leads to: 
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For the dependence of the time derivative of the exhaust velocity on the mass flow 
rate, a dependence similar to equation (36) is assumed: 
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where C is a constant and j is defined like n and q and it has an average of 1. This 
then leads to: 
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As a reality check, notice that the time derivative of the mass flow rate is: 
 

( ) ( ) 21 −−= n
e Atnntm&&                                             (42) 

 
which is not a constant in time, and that was required from the outset. However, if n is 
allowed to take its average value then the derivative is zero, which might be 
reasonable as a steady state condition. The final functional form needed is the 
dependence of the exhaust velocity on the mass flow rate. This is assumed to be 
simply linear: 
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so that the derivative is a constant: 
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The functional assumptions made thus far allow the basic result (equation 30) to be 
written in terms of a time variable only: 
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RESULTS 
 

                             The result of fundamental interest is that of equations (30) and (35). The 
traditional specific impulse can be written in terms of a new instantaneous 
specific impulse. This new term is useful in that the parameters are more readily 
measurable and applicable in experiments where high speed data can be obtained. 
The assumptions made in the discussion may not be very physical but do allow a 
visualization of how the error in the specific impulse due to an error in the mass 
flow rate might change in time. To plot the results of equation (45) a range of 
values was chosen for n, j, and q which met the basic criteria for the averages: 
 

n = 0, 1, 2  q = -1, 0, 1   j = 0, 1, 2 
 
A curve was generated for each of the 27 possible combinations of the indices and 
then the curves were averaged. The result is shown in Figure 1. A general increase in 
the derivative of the instantaneous specific impulse with respect to the mass flow rate 
is an indication of an increase in the error expected in the instantaneous specific 
impulse when an error in the mass flow rate is present. If the derivative was zero it 
would mean that the instantaneous specific impulse does not depend on the mass flow 
rate, which is non-physical. If the derivative was a constant then that would mean that 
the instantaneous specific impulse changes linearly with mass flow rate, which is the 
textbook result. The results in Figure 1 indicate that the derivative depends on the 
chosen variable (time) in a nonlinear way, which is a more physical result given the 
initial assumptions taken at the beginning of this research. 
                                   
                                             
 



XVIII-10

   

 
Figure 1: A plot of equation (45) showing the dependence of the derivative of the 

instantaneous specific impulse with respect to the mass flow rate versus time. 
 
CONCLUSIONS 
 
     The initial goal of this research was to determine how an error in the measure of 
the mass flow rate in a rocket engine would affect the specific impulse. This well 
defined problem developed into an examination of the specific impulse itself and why 
it is used and what the limitations are when it is measured. In order to describe the 
physics of the problem, a new term had to be defined that was related to the specific 
impulse and it was called the instantaneous specific impulse for lack of a better term. 
The definition proved to be useful in that the parameters could be measured more 
readily than the integral required in the usual definition and the new term could be 
written in terms of the old one with the addition of a correction which took care of the 
non-constant behavior of the exhaust velocity and the mass flow rate, which was 
assumed from the beginning. A simple, perhaps nonrealistic set of dependencies on 
time were later assumed for the various parameters so that a visual representation of 
the results could be derived. 
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