

2004

NASA FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

ALABAMA A&M UNIVERSITY

An Open Source Simulation System

Prepared By: Thomas Slack

Academic Rank: Assistant Professor

Institution and Department: The University of Memphis

 Department of Engineering
 Technology

NASA/MSFC Directorate: Engineering, ED 19

MSFC Colleague: Drew Hall

 XLI-1

Doing Real Time, without the Real Royalties
An investigation into the current state of the art of open source real time programming practices.
This document includes what technologies are available, how easy is it to obtain, configure, and
use them, and some performance measures done on the different systems. A matrix of vendors
and their products is included as part of this investigation, but this is not an exhaustive list, and
represents only a snapshot of time in a field that is changing rapidly. Specifically, there are three
approaches investigated:
1. Completely open source on generic hardware, downloaded from the net
2. Open source packaged by a vender and provided as free evaluation copy
3. Proprietary hardware with pre-loaded proprietary source available software provided by the
vender as for our evaluation

The evaluation was one of two projects done in 10 weeks by two summer fellows of the NASA
Faculty Fellowship Program (NFFP) at Marshal Space Flight Center (MSFC) and three
undergraduate students all from different schools, two of whom were summer interns on the
Visiting Researcher Exchange and Outreach (VREO) program. The third was a summer
cooperative student. All of the work done by the group for ED 19 is stored in the Virtual
Research Center (VRC) on line. The group will continue to collaborate with this mechanism
over the next year and hopefully continue this effort next summer. The investigation was spit
into two projects that were each headed by one of the faculty fellows. One was an investigation
of collaborating networked computers the second is summarized in this paper.

The members of Division ED 19 had a goal to upgrade the capabilities of the Marshall Avionics
System Test-bed (MAST) lab. A review of the capabilities of the lab is instructive. This is
composed of hardware in the loop hard real time computer systems and robotic mechanism for
simulating attitude adjustments. The robotic system consists of a table with roll pitch and yaw
capabilities. Figure 1 shows a general view of how the systems interact to do hardware in the
loop simulation. The system to be tested (T) is either strapped to the table, or in the case of some
optical systems is positioned to look at an object strapped to the table. There may be additional
simulation equipment and software (A) provided by the stakeholders involved in testing T. As
much as possible T is placed in the environment and has the same signals that it would have in
the real situation. Models of how the physical systems that are interacting with T may be in A,
or in the MAST lab computers (M). M has the additional task of controlling the robotics in the
lab to maintain whatever attitude that is needed for T to maintain the illusion of being on the
mission.

M

Figure 1: MAST Lab Equipment Configuration

Real Time Computer

T
System under Test

A
Additional Systems

R
Robotic System

 XLI-2

This is a very simple view, but since the project was concerned with the upgrading and
replacement of M, it is important to understand the capabilities required, but the details are less
important.

The current computational capabilities of the computers, called M, are as follows: The systems,
manufactured by Silicon Graphics Inc. (SGI), are called by them “Challenge” or “Origin”
computers. They are an Irix OS on a multiple 200MHz MIPS processor shared memory
platform. This platform has the capability of doing the functions described above, but should be
upgraded as it is 7 years old. Since the upgrade was to be done, a review of the cost history of
the MAST labs reveals that they are very expensive to maintain because of the software in the
essentially proprietary systems build for NASA by SGI. There were also anecdotal incidences
associated with the lack of software source that led personnel to look to systems that are open
source.

During the course of the summer, it became apparent that the upgrade of the computer facility
was timely because the new systems (particularly Integrated Vehicle Health Maintenance
(IVHM)), that need to be simulated are orders of magnitude more complex than the ones
simulated in the past. This fact points to using a different architecture for simulation than has
been used in the past. More will be said about this in the Results and Conclusions section below.

It turns out that the real-time open source community on the Internet has made significant strides
in the last few years, and so this upgrade is an opportunity to move away from more expensive
proprietary towards an open source solution.

The goal then simply stated was to:
Define an architecture for open source based simulation systems to support large scale locally
distributed simulations in real-time with hardware in the loop.

The part of the goal that this investigation covers is to discover what real time software is
available in the open source community, how good is it, and how hard is it to use. We wished to
examine and compare different systems from those available, so for the first two weeks of the
summer we researched on the Internet to find what was available. The result of that search was
collected in a matrix of currently available systems. This matrix, included on VRC, cannot be
considered all encompassing.

The Test Systems

1. System RTAI
The first system is a completely open source system on generic hardware, downloaded from the
net. This system is called RTAI, because RTAI was the open source real time kernel software
used. The computer was placed on the desk of the author for use as a word processing and email
tool during the summer. This turned out to be a Pentium 4 single processor system with 256
Mbytes of memory running at 2.523 GHz. This system was called debian after it was installed.

 XLI-3

2. System RTLinux
The second system was an available Red Hat Linux system, called opus0, which was already in
the MAST lab. This turned out to be a Dual processor Pentium 3 (Xeon) system with 1GByte of
memory running at 2.795GHz. I turned hyper-threading off in an effort to be as time determined
as possible. An evaluation copy of the RTLinuxPro software available from FSMLabs was
installed on this system.

3. System Concurrent
The third system was provided as an evaluation by Concurrent Computer Corporation. This
turned out to be a Dual processor Pentium 4 system with 2GBytes of memory running at 3.0
GHz. This system was provided with a real time clock card that is a key to the real time
performance of the system. The other two systems achieved their real time performance by
using a dual kernel model. This system used a modified Red Hat Linux 2.6 kernel that they call
Red Hawk. Because the 2.6 kernel is fully preemptable, they did not use a dual kernel model to
achieve the performance.

Installation of the Systems
The PC the RTAI system was to be installed on had two partitions already created on its 18 GB
disk. It was therefore fairly straightforward to backup the contents of the second partition onto
the extra space on the first, and repartition the disk to have four partitions instead of two. The
contents were restored to one of the three new partitions on a FAT32 file system volume; the
other two became the swap space and root partition of the new Linux system to be installed.
This process took about two days. Under ideal conditions it would take about two hours.

The next step was to install the Debian linux system. Once the Linux was installed, it was by
default a 2.2.20 kernel. While, on the Debian CDs was source for several kernels none of them
was 2.2.20. After discovering which sources were available on the CDs, and which were needed
by RTAI, we discovered a match between the 2.4.17 linux kernel which we had a source for and
with the 24.1.13 RTAI version. The next step was to rebuild that kernel and reboot with it.
Once the new kernel was installed it had to have the RTHAL patch installed. The RTAI then
installed without a hitch in a few minutes.

The second system, RTLinux, was a download from FSMLabs. They provided us with the key
to a download from their FTP site, and we downloaded and installed their 2.4.18 kernel on
Opus0. This first version did not boot at all. Opus0 has SCUZZY disks, which I understand are
more difficult to boot from. We consulted with FSMLabs and they provided us with a second
download with new drivers on it. This 2.4.25 kernel download booted correctly, but was a beta
version of their software and had some other problems that made it hard for us to use. They also
had not understood that we had a multiple CPU system. When we mentioned this to FSMLabs
they worked for several days and provided us with a third version.

The third system, Concurrent arrived from the vender, fully functional. This provides one end of
the spectrum of installation of the systems. The other end is provided by the RTAI system.
Between these extremes was the experience of installing the RTLinux system provided by
FSMLabs.

 XLI-4

The Test
FSMLabs provided a simple piece of code that we decided would be a good program to compare
functionality on the different platforms. This code was written with POSIX threads. It creates a
thread that has priority zero with the following steps:
1. Calculate a time approx. 1 ms in the future.
2. Ask the system to sleep till then.
3. Wake up and take the time.
4. Calculate how late you woke up.
5. Store the worst number you have found so far, and loop to 1.
This code was chosen and translated to the other two systems with minor changes. On the
FSMLabs system, a second thread with very low priority was used to print the numbers each
time a new worst case was found. The second thread shared the memory where the worst case
was stored. The first thread would signal a semaphore each time it stored a new value in the
worst case. The second thread would wake up and print the value sometime while the first
thread was sleeping. Also on this system, a recording thread is generated for each CPU
available. We added code that would make one CPU exclusively work with one thread. Since
there were two CPUs on this system, after we turned hyper-threading off, we allowed the other
CPU to handle all of the threads and processes left. In this way we hoped that the exclusive
thread would be able to get the best results for this system.

On the RTAI system, the printing program was in a separate process. The programs
communicated with FIFOs. Since this was a uniprocessor, the issue of making the CPU
exclusively work on one thread did not arise.

On the Concurrent system, the translation was almost directly from the FSMLabs code, without
the extra threads for each processor. This system has a special scheduler, which allows you to
guard a CPU from interrupts and designate it as being exclusively being used by a single process.
We used this scheduler to create two processes running the single thread. We guarded one CPU
so that it would exclusively run the one thread. The other CPU was allowed to run the rest of the
system. Since this system had hyper-threading turned on, we guarded both the other virtual
CPUs so that they would be idle.

Results and Conclusions
The results of the sleep-jitter test program are shown in Figure 2.

 Test duration CPU0 CPU1

RTAI 89 min 17.4
RTLinux 25 min 92.85 158.24
Concurrent 60 min 133.82

Figure 2: The Results of the Sleep-jitter test

As we look at these results we realize that there are many factors making the comparison weak.
First the second two machines are symmetric multiprocessing machines, and the first is a uni-
processor. Second, the RTLinuxPro system is a Beta release, and may therefore have some
things not tested nor tuned. Third the second two machines are networked, and the first one, has

 XLI-5

only a loopback interface working. With all of these weaknesses, I believe that the order of the
systems would not be changed significantly, only the distance between them.

During my discussions of these technologies with the venders, I got many numbers for the
quickest interrupt latency that could be obtained. As they talked about the different systems that
are out there they gave their opinion as to how the systems would fare in comparison. In general,
this is the order that they gave. One thing can be said is that the completely open source solution
is as at least as good any other available in pure performance.

As far as programming is concerned, when you are programming for RTAI it is certainly
disconcerting at first to be continually adding modules to the kernel and removing them as you
test software. It is also irritating to discover that under these conditions a normally rock solid
Unix OS is as vulnerable to crashing as any Windows or Macintosh OS as you try out your
software. After a while you get used to doing a sync before trying any new module just to be
sure the disk is clean since you may have to power cycle the machine to get it back.

However, just because you do more programming in the user space, does not mean that you will
be less likely to deadlock using RTLinux. It is the nature of real time programming on the edge
of what a processor can perform to make an error that deadlocks the system regardless of the
mechanism used to do it.

Of the three systems, the concurrent was the least likely to have a programming problem. This
was because you could do the entire program in user space and in general test it. They use the
fancy scheduler to play with placing it at a higher priority. You must pay a price in performance
for this capability. First, it is using processes instead of threads to schedule. This is inherently
less efficient. Second, the tools for tracing the operation must have some overhead however
small.
Finally, we must consider the IVHM project when considering the upgrade. Such a project will
lend itself to simulation by a large number of parallel CPUs working together. A benefit of using
open source for real time simulation is that many more processors can be considered in the
architecture because you are not paying for the software by the machine.

It is the opinion of the author that perhaps all of these systems be used in the upgrade of the
computational facilities of the MAST lab. As a first step, an 8 processor CPU (perhaps with 4
now and upgradable to 8) with the concurrent technology be considered. This would be the
development machine. A 16 or 32 node cluster of processors with minimal linux OS and either
RTAI or RTLinux might be considered for the next addition. The ability to get the speed you
need in the individual processors, at the same time control the whole with a overall system like
that proposed by Gene Sheppard in his final report would give you the flexibility to expand to as
large a system as you need.

The ability of the development machine to expand to multiple nodes as needed by tying the clock
cards together is also a plus.

 XLI-6

