Advances In High Temperature (Viscoelastoplastic) Material Modeling for Thermal Structural Analysis

Dr. Steven M. Arnold

Senior Research Engineer Life Prediction Branch NASA Glenn Research Center

and

Prof. Atef F. Saleeb

The University of Akron Civil Engineering Department

Presented

5th International Symposium on Liquid Space Propulsion, Chattanooga, TN Oct 27-30th, 2003

OUTLINE

Background/Philosophy

- Elevated Material Behavior
- Impact on Analysis
- Multiscale Framework/Vision

• Recent Advances

- Theoretical Modeling/Testing
- Numerical Integration
- Material Characterization

Typical High Temperature Applications Demand High Performance Materials

- Complex Thermomechanical Loading
- Complex Material response requires Time-Dependent/Hereditary Models: Viscoelastic/Viscoplastic
- Comprehensive Characterization (Tensile, Creep, Relaxation) for a variety of material systems

Important Phenomenological Observations of Behavior of Metals at High Homologous Temperatures (T/T_m>0.3)

Strain-rate sensitivity

Relaxation

Creep-Plasticity Interactions

Classic Reason for Introducing Unified Viscoplastic Models (e.g., GVIPS Class)

Important Phenomenological Observations of Behavior of Metals at High Homologous Temperatures (T/T_m>0.3) Cyclic Behavior

Stress-controlled

Glenn Research Center

Material Behavior Can Significantly Impact Structural Response (e.g. Recovery Mechanisms)

Applied Compressive Stress/Euler Stress = 0.095 Normalized Initial imperfection – 0.01 Arnold et al., "Creep Buckling of a Cylindrical Shell Under Variable Loading", Jnl of Eng Mech., ASCE, Vol. 115, No. 5, pp. 1054-1074, 1989.

Normalized radial displacement versus normalized time for variable loading histories given in inserts

Unified Viscoplastic Models Capture Deformation Response in Rocket Engine Nozzle Liners

Nozzle Liner Geometry

Experiment (GRC)

- Severe thermomechanical loading conditions result in irreversible strains
- Unified viscoplastic models successfully predict the experimentally observed deformation trends
 - > Arya and Arnold, AIAA, Vol 30, No. 3, 1992

Prediction Classical Unified (Lockheed) (GRC)

Life Prediction Branch Structures Division GRC SMA 7/97

CONSTITUTIVE MODELING

Structural Mechanics Problem

Knowledge of the material's <u>life and constitutive</u> <u>behavior</u> is a prerequisite for assessment of component performance/reliability

Need to <u>concurrently address</u> three important and related areas:

- i) mathematical formulation for the accurate multiaxial representation
 <u>GVIPS Classes</u>
- ii) algorithmic developments for the updating (integrating) of external and internal state variables -<u>FEA User</u>
 <u>Definable Subroutines</u>

iii) parameter estimation -<u>COMPARE</u>

This approach allows one to **overcome** the **two major obstacles** for **practical utilization** of sophisticated time-dependent (hereditary) models:

- 1) lack of efficient and robust integration algorithms FEA Linkage issues
- 2) difficulties associated with characterization of large number of material parameters and appropriate experimental "data content" COMPARE & sensitivities

The Desired Vision For Design and Analysis

Thermomechanical Testing in Support of Constitutive Model Development

Characterization

Tests

Exploratory Tests

- Identify Fundamental Def & Damage Mechanisms
- Illuminate Salient Material Response Features
 - Isotropic/kinematic Hardening
 - Time Dependent/ Time-Independent
 - Sensitivity Hydrostatic Stress Field
 - Isotropic/Anisotropy Material Symmetry
- Guide Mathematical Structure of Model
- Guides Specimen design/ Test Method Development

NASA Glenn

Constitutive Model Deformation & Damage Provide sufficient database to

determine the specific functional forms
 quantify the associated material parameters

Validation

Tests

so as to represent a particular material over a given range of conditions

• Often structural in nature

- Provide prototypical response data which is to be compared with model predictions
- Ideally provide feedback for subsequent model refinement

Glenn Research Center

Experimental Observations

Reversibility

- rate-dependent instantaneous stiffness
- transient creep/relaxation
- limit equilibrium state
- •Theoretical demarcation (Exp. Verified)

•Irreversibility

- strain-stress dependent
- honlinearity
- strain rate dependence
- creep with steady-state
- relaxation with finite residual state
- creep/plasticity interaction
- thermal recovery
- nonlinear kinematic/isotropic hardening
- Anelastic recovery during reversal in both quasilinear and fully developed inelastic regions

Experiments Indicated Existence of Reversible and Irreversible Threshold Surface

Experimentally verified for both TIMETAL 21S and Ti-6-4

GRCop-84 doesn't appear to exhibit strong viscoelastic response

Theoretical/Computational Motivation

In view of **four + decades** of active research in the area of inelastic behavior modeling, the **need** still exists for an:

Accurate representation of material response details over an extensive domain of time, stress, temperature, loading conditions ...

Assessment						
Technical	Practical Implication					
Non-associative	\Rightarrow Non-uniqueness of solution					
- Nonsymmetric Tangent Stiffness	⇒ Implementation into large scale FEA codes problematic					
- Coupled system of Stiff Diff. Eq.	\Rightarrow Difficult to integrate					
Numerous nonphysical material parameters	\Rightarrow Requires expertise to characterize model					
Single-mechanism models	⇒Qualitatively capable, yet quantitatively limited in response spectrum					

Utilize Concept of Thermodynamic Internal State Variables to Obtain Constitutive Equations

Advantages and Attributes of Potential Formulation

- Provides a consistent framework for deformation and damage modeling
 - Nonisothermal and/or anisotropic extension straight forward
 - Nonproportional loading histories automatic
 - Automatic satisfaction of the <u>Dissipation Inequity</u> of Thermodynamics
- Eliminates the "ad-hoc" nature of model development
- Provides sufficiently general variational structure.
- Constitutes cornerstone of regularity and bounding (or limit) theorems in plasticity and viscoplasticity.
- Lends itself to robust numerical implementation

Physical Mechanisms Underlying The Partitioning of Energy : Complementary Type

General Multimechanism Hereditary Behavior Model of the GVIPS Class

Glenn Research Center

Specific Choice of Energy Potentials and Material Functional Forms

$$\begin{split} \Phi_R &= \Phi_R(\boldsymbol{\sigma}_{ij}, \mathbf{q}_{ij}^{(a)}) = \frac{1}{2} (\boldsymbol{\sigma}_s)_{ij} \, \mathbf{E}_{ijkl}^{-1}(\boldsymbol{\sigma}_s)_{kl} + \frac{1}{2} \sum_{a=1}^M \mathbf{q}_{ij}^{(a)} [\mathbf{M}_{ijkl}^{(a)}]^{-1} \mathbf{q}_{kl}^{(a)} + \sum_{a=1}^M \mathbf{q}_{ij}^{(a)} \mathbf{p}_{ij}^{(a)} \\ \Phi_{IR} &= \Phi_{IR}(\boldsymbol{\sigma}_{ij}, \boldsymbol{\alpha}_{ij}^{(b)}) = \boldsymbol{\sigma}_{ij} \boldsymbol{\varepsilon}_{ij}^{vp} + \sum_{a=1}^N \bar{H}_{(b)}(G^{(b)}) \end{split}$$

and

 $\Omega_{R} = \frac{1}{2} \sum_{a=1}^{M} \mathbf{q}_{ij}^{(a)} [\boldsymbol{\eta}_{ijkl}^{(a)}]^{-1} \mathbf{q}_{kl}^{(a)}$ $\Omega_{IR} = \Omega_{1}(F) + \sum_{b=1}^{N} \Omega_{2}^{(b)}(G^{(b)})$ Dissipation

b=1

where

$$F = \frac{1}{2\kappa^2} (\boldsymbol{\sigma}_{ij} - \boldsymbol{\alpha}_{ij}) \mathcal{M}_{ijkl} (\boldsymbol{\sigma}_{kl} - \boldsymbol{\alpha}_{kl}) - 1$$
$$G^{(b)} = \frac{1}{2\kappa^2_{(b)}} (\boldsymbol{\alpha}_{ij}^{(b)} \mathcal{M}_{ijkl} \, \boldsymbol{\alpha}_{kl}^{(b)})$$

and the specific functions :

 $r(G^{(b)}) = R_{(b)}[G^{(b)}]^{m_{(b)}}$

$$\Omega_1(F) = \int \frac{\kappa^2 F^n}{2\mu} dF \qquad \qquad \Omega_2^{(b)}(G^{(b)}) = \kappa_{(b)}^2 \int \frac{r(G^{(b)})}{h(G^{(b)})} dG^{(b)} \qquad \bar{H}_{(b)} = \kappa_{(b)}^2 \int \frac{1}{h(G^{(b)})} dG^{(b)}$$

$$h_{nonsat}(G^{(b)}) = \frac{H_{(b)}}{[G^{(b)}]^{\beta_{(b)}}}$$

$$h_{sat}(G^{(b)}) = H_{(b)} \left\langle 1 - \sqrt{G^{(b)}}
ight
angle^{\beta_{(b)}}$$

Stored Energy

Results Illustrating Recent Improvements Made to the Hardening Functional Form in GVIPS Model

Previous Non-saturating g(G)=H / G^ß

Current Saturating Form $g(G)=H(1-G)^{\beta}$

$$\mathsf{G} = [\texttt{1/2}(\alpha_{ij}\,\alpha_{ij})/\,\kappa^2_{(b)}]^{0.5}$$

TIMETAL 21S: 650°C Strain Controlled Tensile Single Mechanism

Comparison of Specific Hardening Forms Under Cyclic Loading

TIMETAL 21S: 650°CStrain Controlled

Glenn Research Center

New Saturating Form Does Not Adversely Impact Ability to Represent Creep/Relaxation

• But need at <u>least two</u> mechanisms to capture both creep and relaxation well

Robust Integration Scheme Key For Efficient Inelastic Finite Element Analysis

Common approaches for integration of rate equations:

1) Non-Iterative: explicit; semi-implicit

No local iterations ☑ less overhead stability problems

2) <u>Iterative</u>: fully-implicit

Requires local iterations 🗹 additional overhead

Unconditional stability

Consistent Tangent Stiffness ☑ Quadratic Convergence of global Newton-Raphson Iterations

Selected: Backward Euler with Line Search

Glenn Research Center

Advantages of Implementation

- Directly applicable for 3-D and sub-space loading(plane strain, axisymmetric, etc)
- Generalized Material Symmetry Operators (which influence flow, hardening, recovery, relaxation spectrum, etc.)
- Efficiency (through explicit algorithmic tangent stiffness)
- Robustness (through "slack" line search)

Results Illustrating the Efficiency of The Numerical Implementation of GVIPS

Backward Euler with Line Search

Under cyclic conditions

Key to Accurate Characterization of GVIPS Involves Sufficient "Data Content"

Viscoelastic Material Parameters

2+2M number, i.e., E_s , v, $(M_{(a)}, \rho_{(a)})$

Viscoplastic Material Parameters

- Flow κ , μ , n
- Hardening H_b , K_b and β ,
- Recovery: R_b and m_b
- **3 + 5N** irreversible material constants

Types of Experimental Tests

Strain controlled Tensile Tests (multiple rates)
Creep Test (Monotonic and/or step)
Relaxation (Monotonic and/or step)
Cyclic Tests (Fully reversed, ratcheting)
Biaxial Tests (tensile, creep, relaxation, cyclic)

Temperature

Desire a mixture (rather than numerous of one type) of tests at numerous temperatures

Quality vs. Quantity

Glenn Research Center

COMPARE CORE

Comprehensive Characterization of The Deformation Response of TIMETAL21S

Characterization of IN738LC @ 850 °C

Elastic + 4 Viscoplastic Mechanisms

Final characterized parameters using four Viscoplastic mechanisms for IN738LC $@850^{\circ}$ C						
Material Parameter	Units	Value	Material Parameter	Units	Value	
Е	MPa	1.5×10^5	β_1	-	1 (6)*	
ν	-	0.33	β_2	-	1 (6)*	
к	MPa	0.1	β ₃	-	1 (6)*	
κ ₁	MPa	61.43	β_4	-	1 (6)*	
K 2	MPa	64.37	R ₁	1/s	1.0×10^{-21}	
K 3	MPa	62.30	R ₂	1/s	1.0×10^{-21}	
К4	MPa	75.08	R ₃	1/s	1.0×10^{-21}	
n	-	1.486	R ₄	1/s	1.0×10^{-21}	
μ	MPa -s	3.79×10^{14}	H ₁	MPa	$4.6 \mathrm{x10}^4$	
m1	-	0.001	H ₂	MPa	5.13×10^4	
m ₂	-	0.001	H ₃	MPa	8.33x10 ⁷	
m ₃	-	0.001	H ₄	MPa	9.458x10 ⁷	
m ₄	-	0.001				
* the value between parentheses was determined in the FE simulation of the						

experiment

Correlation of GRCop-84 Utilizing Multimechanism GVIPS Model

35 30 25 □ 5.E-04 Stress (ksi) 5.E-04 20 ♦ 8.E-05 8.E-05 △ 5.E-05 15 5.E-05 × 6.E-06 6.E-06 10 O 3.E-06 Strain controlled -3.E-06 5 **Tensile Tests** 0 0.005 0.01 0.015 0.02 0.025 0 Strain

1 VE mechanisms

4 VP mechanisms

Structural Verification Testing

- Ideally should provide feedback for subsequent model refinement
- Provide prototypical response data which is= to be compared with model predictions

Consequently:

- Need accurate temperature, strain and load information at a variety of locations - required for any true validation
- Number of cycles to failure (alone) not enough
- Instrumentation incredibly challenging (sever environment)

Summary of Advances in Material Modeling (Synergistic Technology)

- Generalized, Fully Associative, Multimechanism, Viscoelastoplastic Model Available
 - Reversible/Irreversible Regimes
 - Spanning wide time, stress, temperature spectrum
 - Nonlinear Hardening with Saturation
 - Ability to capture ratcheting
 - Stiffness and/or Strength Reduction
- Automated Material Model Characterization
 - via COMPARE
 - Materials thus far:
 - Ni based; Cu based; Ti
 - MMC and PMC

- Implicit Integration Algorithms
 - Directly applicable for 3D/sub-space loading
 - Generalized Material Symmetry Operators (which influence flow, hardening, recovery, relaxation spectrum, etc.)
 - Efficiency (through explicit algorithmic tangent stiffness)
 - Robustness (through "slack" line search)
- Now Commercially Available
 - COMPARE
 - GVIPS via UMATs

Open Channel Software

Future Work

- Extend formulation to account for
 - Coupled Nonisothermal Issues
 - Probabilistic Material Behavior
- Characterize additional material systems
- Verify under prototypical loading histories

- Implement softening (damage) mechanisms into COMPARE theory complete
 - Characterize strength/stiffness reduction parameters to account for softening effects

Thank You

Questions?

Selected References

- Arnold, S. M., and Saleeb, A.F., "On the Thermodynamic Framework of Generalized Coupled Thermoelastic-Viscoplastic -Damage Modeling", Jnl of Int. Plasticity, Vol. 10, No. 3.,pp. 263-278, 1994
- Arnold, S. M., Saleeb, A.F. and Wilt, T.E., "An Investigation of the Modeling of Thermal/Dynamic Recovery and Nonlinear Hardening in Potential Based Viscoplasticity", Int. Jnl. of Engng. Mat. & Tech., Vol. 117, No. 2, pp. 157-167, 1995
- Arnold, S. M., Saleeb, A.F., Castelli, M.G., "A Fully Associative, Nonisothermal, Non-Linear Kinematic, Unified Viscoplastic Model For Titanium Based Matrices", *Thermo-Mechanical Fatigue Behavior of Materials: Second Volume*, ASTM STP 1263, M. Verrilli and M.G. Castelli, Eds., 1996, pp.146-173.
- Saleeb, A.F. and Arnold, S. M.; "A General Reversible Hereditary Constitutive Model: Part I Theoretical Developments", JEMT, Vol. 123, 2001, pp.51-64.
- Arnold, S. M., Saleeb, A.F., Castelli, M.G.; "A General Reversible Hereditary Constitutive Model: Part II Application To Titanium Alloys", JEMT, Vol. 123, 2001, pp. 65-73.
- Saleeb, A.F., Arnold, S.M., Castelli, M.G, Wilt, T.E., and Graf, W.E., "A General Hereditary Multimechanism-Based Deformation Model With Application to The Viscoelastoplastic Response of Titanium Alloys, Int. Jnl. Of Plasticity, Vol. 17, No. 10, pp. 1305-1350. Oct. 2001
- Saleeb, A.F. and Arnold, S.M. ; "Specific Hardening Function Definition and Characterization of A Multimechanism Generalized Potential-Based Viscoelastoplasticity Model", accepted *Int. Jnl of Plasticity*, 2003

