

Future Directions for Space Transportation and Propulsion at NASA

5th International Symposium on Liquid Space Propulsion Long-Life Combustion Devices Technology Chattanooga, TN October 27-30, 2003

> Robert L. Sackheim Assistant Director and Chief Engineer for Propulsion NASA Marshall Space Flight Center

The NASA Mission:

To understand and protect our home planet,

To explore the universe and search for life,

To inspire the next generation of explorers . . .

... as only NASA can.

Space Is Critical to the World

The New International "Ocean"

Scientific Discovery

- The Search for Life Beyond Earth
- Understanding our Planet
- Understanding our Universe
- Exploration of the Planets and Beyond

The Ultimate High Ground for National Security

- Intelligence, Communications, Rapid Response, GPS . . . World Wide

"Space-Based" Commerce

Communications and Earth Observing

Yet it Remains the Last, Largely Untapped Frontier

MSFC's Heritage – Complex Programs Requiring a Strong Systems Engineering Focus

SATURN V

SHUTTLE

SPACE STATION

NEP VEHICLE DESIGN

CHANDRA

INERTIAL UPPER STAGE

Stepping Stones Overlay on Space Transportation Regimes

Robotic, Beyond Planets R8

Regime Descriptors and Needs

R1	Human Earth Orbit	ISS and other near-Earth missions	Frequent access; safety; medium cargo; reduced cost
R2	Robotic LEO to near planets	Earth & space observation; planetary science; sample return	State of art mainly OK; reduced cost; higher reliability; landing & ascent systems
R3	Human HEO and Iunar	Missions in cislunar space & lunar surface and basing	Medium space transfer/cargo, landing, safety, reduced cost
R4	Robotic near-Sun	Mercury, solar probes, solar polar	High delta V, reduced cost, ETO state of art OK
R5	Human near planets	Mars and Mars surface, asteroids, exploration and basing	Increased lift to LEO, heavy space transfer, short trip time, reduced cost, safety, artificial g
R6	Robotic outer planets	Orbiters, probes, landers, sample return	Reduced trip time, high/very high delta V, nuclear electric power, reduced cost, ETO state of art OK
R7	Human outer planets	To Jupiter and Saturn moons, landing, return	Fast trips, very high delta V, heavy space transfer, nuclear power
R8	Robotic beyond planetary system	Kuiper belt, Oort cloud, interstellar medium	Very/extremely high delta V, nuclear electric power

+

End-to-End Regimes Capture Mission Requirements

Equal emphasis over all Regimes favors NASA-Wide Propulsion Requirements

Office of the Space Architect Work Breakdown Structure

Integrated Space Transportation Architecture Inputs to the Space Architecture Work Breakdown Structure Format

The Physics Problem

New Propulsion Technologies are Needed to Meet NASA's Most Ambitious Goals

NASA's New Integrated Space Transportation Plan (ISTP)

Reliable

Space Shuttle Life **Extension Upgrades**

Safe

Orbital Space Plane (OSP) • ISS Crew Rescue by 2010

ISS Crew Transfer by 2012

Next Generation Launch Technology (NGLT)

Enabling Future National Launch Capabilities

NG T NEXT GENERATION LAUNCH TECHNOLOGY

Safe

Reliab

- Significant Expansion in Robotic Probes Going Throughout the Solar System and Beyond
- Humans Exploring Space Beyond Low Earth Orbit
- Space Solar Power Systems Supplying Cheap Electricity Around the Globe
- Daily Tours To and From Space
- Industrial Space Platforms Developing New Materials and Medicines

A Primary Limitation is Safe, Reliable and Affordable Space Launch

High Leverage, Cross-Cutting Technologies for Any Future Launch System

Reliable

Safe

Safe Reliable Afforda

Cutting Edge Hypersonics Technologies for Future, Aircraft–like Operations

DARPA/USAF Small Launcher Initiative

- DARPA and the Air Force have established a joint program
- DARPA has overall program management primacy
- The program is called FALCON (<u>Force Application Launch from CON</u>US)
- FALCON RFP released on July 29, 2003
- The FALCON SLV initiative has some similarities to MSFC's original Bantam Project

FALCON

FALCON

Many respondents to FALCON RFI (1/30/2003)

Why Will It Work This Time?

- Simplicity of Design
 - Some simple designs are inherently more reliable and lower cost than others
 - See RLS papers for last 20 years
 - NASA and DOD have really shown zero interest in inherently low costs
- Trade Design Margin Against Performance and Weight
 - Nontraditional aerospace design philosophy
 - Greater design margins enhance reliability
 - Very high Thrust-to-Weight is not that critical for low cost, vertical launch
 - Lower Thrust-to-Weight is more reliable (but vehicle T/W >1.1 @ liftoff)
- Trade Design Margin Against Redundant Systems
 - Redundancy adds complexity and cost
- Use Rack and Stack Design Approach to Achieve Component Commonality
 - Commonality enables simplicity and lowers cost
 - Commonality enhances reliability
 - Provides evolutionary design approach for heavy lift using flight-proven building blocks
- Use Commercial (non-aerospace) Processes and Components As Much as Possible
 - Leverage commercial industry's production rate
 - Commercial components are inherently higher margin; not optimized for performance
 - Commercial hardware is dramatically lower cost than comparable aerospace hardware

Notional Evolutionary Development Path

FALCON Spiral 2 Spiral 3 Spiral 4 Spiral 1 2 SSME New LH Engine (4) Stage 1 Engine New RP Same as Spiral 2 Same as Spiral 2 Stage 2 Engine New RP FALCON Stage 2 Spiral 1 Stage 1 **EELV** Core Same as Stage 1 Stage 3 Engine New RP **FALCON Stage 3** EELV US ___

NG T

Technology Application to Shuttle Upgrades (Initial NGLT Assessment)

Reliable

Safe

External Tank

- Self Reacting Friction Stir Welding
- Advanced Cryoinsulation

Booster

 LOx/RP liquid booster replacement (1+Mlb Prototype Engine)

Airframe Structure

- Ceramic Matrix Composite Control Surfaces
- Structural Health Monitoring Sensors

Thermal Protection Systems

- Light Weight, Intelligent Micrometeoroid Resistant Ceramic TPS
- Durable, Conformal Reusable Insulation
- Long Life, Durable Thermal Seals
- Rapid Waterproofing

Ground Operations

- Space Based Telemetry and Range Safety
- Silent Sentry/Passive Coherent Location (Advanced Range Technology)
- Range Architecture Development
- Advanced Umbilical Development
- Improved Propellant Management
- Densified Propellants
- Advanced Checkout Control and Maintenance System
- Launch Acoustic Environment Prediction

RCS/OMS

 LOx/Ethanol Dual-Thrust Level RCS Thrusters

IVHM System Integration

- Advanced Systems/Subsystems
 Diagnostic Algorithms
- IVHM/Flight Operations Integration

Subsystems

- High Horsepower, Electrically
 Driven Actuators
- PEM Fuel Cells
- Nontoxic Turbine Power Unit

Aero & GN&C Tools

- Separation and Abort Scenarios
- Reentry Heating Environments
- Localized Heating
- Integrated Development and Operations System
- Integrated Aerothermal/TPS Sizing

Aft Compartment

 Oxygen and Hydrogen Leak Detectors

- SSME
 - IPD Channel Wall Nozzle
 - Advanced Turbomachinery
 - GRCop-84 Main Combustion Chamber Liner
 - Advanced Engine Health Management

Safe Reliable Affor

Technology Application to Expendable Launch Upgrades (Initial NGLT Assessment)

<u>Tanks</u>

- Self Reacting Friction Stir Welding
- Advanced Cryoinsulation

Structures

- Structural Health Monitoring Sensors
- Lightweight metal matrix and polymer matrix composite structures

Ground Operations

- Space Based Telemetry and Range Safety
- Silent Sentry/Passive Coherent Location (Advanced Range Technology)
- Range Architecture Development
- Advanced Umbilical Development
- Improved Propellant Management
- Densified Propellants
- Advanced Checkout Control and Maintenance System
- Launch Acoustic Environment Prediction

 LOx/RP liquid booster replacement (1+Mlb Prototype Engine)

IVHM System Integration

- Advanced Systems/Subsystems Diagnostic Algorithms
- IVHM/Flight Operations
 Integration

Subsystems

- High Horsepower, Electrically Driven Actuators
- PEM Fuel Cells
- Nontoxic Turbine Power Unit

Aero & GN&C Tools

- Separation and Abort Scenarios
- Reentry Heating Environments
- Localized Heating
- Integrated Development and Operations System

Aft Compartment

 Oxygen and Hydrogen Leak Detectors

LH₂ Engine Upgrades

- IPD Channel Wall Nozzle
- Advanced Turbomachinery
- GRCop-84 Main Combustion Chamber Liner
- Advanced Engine Health Management

Reliable Afford

Enabling "Firsts" in Space Launch Technology

Booster Engine Prototype

Safe

Highly reliable hydrocarbon fueled rocket booster engine High reliability, long life hydrogen rocket engines

Vehicle Research and Technology

Non-toxic propellants for orbital propulsion

- Airframes capable of containing cryogenic propellants and reentering the Earth's atmosphere
- Durable high temperature thermal protection systems
- An intelligent, autonomous "all electric" launch system

Long life, lightweight high temperature materials, seals and components

X-43A and C

1st controlled flight of a vehicle powered by a scramjet from Mach 5 - 7 and 10

Lightweight, long life jet engines capable of flight at Mach 4

Safe Reliable Afforda

Think of What We Have Accomplished in the 100 years Since the Wright Brothers 1st Flight

..... Imagine What We Will Do On the New "Ocean of Space"

In-Space Focused Scope

In-Space Propulsion

Enabling New Scientific Discoveries

Solar System Exploration

Planetary Exploration Examples:
 Orbiters
 Landers
 Sample Return

Sun Earth Connection

Solar Science Examples (inc. Solar Sails):
 LaGrange Missions
 Orbiters
 Pole Sitters

In-Space Propulsion Systems

Typical Mission Examples

	∆ V Required KM/SEC
 10 Year GEO Stationkeeping 	~0.5
 LEO to GEO (0.3 days) 	~4
 LEO to GEO (250 days) 	~6
 Titan Orbiter (1way) 	~11
• Neptune SR (NEP)	~85
 LEO to Alpha Centauri 	30000.0

Far Away Places Truly Stress the Bounds of Propulsion

In-Space Transportation

Enabling New Scientific

In-Space Propulsion Program Will Advance Mid-TRL Technologies to Support NASA Mission Applications

Electric Propulsion Overview Three Classes of Concepts

Electrothermal:

Gas heated via resistance element or discharge and expanded through nozzle

Examples -Arcjets Resistojets Microwave

Electrostatic:

lons created and accelerated in an electrostatic field

Examples -Ion Engines Hall Accelerators

Electromagnetic:

Plasma accelerated via interaction of current and magnetic field

Examples -Pulsed Plasma MPD/LFA Pulsed Inductive

Match the Power System to the Destination

Inner Planets	Jupiter S and Moons M	aturn and Uranus Ioons and Moons	Neptune Pluto/Charon and Moons
Solar Electric Confined to Inner Solar System – Also limited reach to large outer planetary bodies with aerocapture (Jupiter, Saturn, Uranus, Neptune only)	Radioisotope New Frontiers Solar System –Targets with – 500 W Clas – <50 kg payl –Delta II Laur	Electric for Class Outer Lai n Missions low Mass ss RTG load nchers	Nuclear Electric for ge Flagship Missions to Outer Planets –Large Targets –100 kW Class Reactor –>500 kg Payloads –Delta IV Launch Vehicles

ΚI

G for Surface Lander

Electric Propulsion and Power Source for Space Missions

Electric Propulsion Performance

Project Prometheus

"Jupiter Icy Moons Orbiter"

Fissioning 12 fl oz (341 ml) of Uranium yields 50 times the energy contained in a Shuttle External Tank Energy Density: 82 billion joules per gram

- Overcomes limitations of other candidate power sources
 - Chemical: already near theoretical performance limits
 - Radioisotopes: versatile and long-lived, but low power density and limited Pu-238 supply
 - Natural sources (e.g., solar, EM tethers): highly dependent on location w/respect to sun or planet
 - Advanced concepts (e.g., beamed energy, fusion): too immature, may not work, and/or require substantial in-space infrastructure and investment
- Greatly extends capability, sophistication and reach of future science missions
 - Enables use of high-performance electric propulsion beyond inner solar system
 - Provides long-duration, power-rich environments for sophisticated scientific investigations, high-data rate communications and complex spacecraft operations
- Improves safety, capability and performance of future human planetary missions
 - Power-rich spacecraft and surface operations
 - Rapid transportation to reduce extended exposure to solar/cosmic radiation and zero-g

Mission Objectives

- This mission responds to the National Academy of Sciences' recommendation that a Europa orbiter mission be the number one priority for a flagship mission in Solar System exploration
- JIMO will search for evidence of global subsurface oceans on Jupiter's three icy moons: Europa, Ganymede, and Callisto.
- JIMO will be the first flight mission to use nuclear power and propulsion technologies.
- This mission will set the stage for the next phase of exploring Jupiter and will open the rest of the outer Solar System to detailed exploration.

Nuclear Electric Propulsion

Nuclear Systems Initiative; Revolutionizing Space Exploration

Broad Set of Concept Options with Common Technologies

- Faster Missions into Deep Space
- Power-rich Spacecraft for Sophisticated Investigations
- Ambitious Missions involving Multiple Planetary Destinations
- High-data Rate Communication
- Civil and Military Power Spinoffs

Fission Electric Power & Propulsion System Diagram & Representative Technology Options

Reactor

Heat pipe cooled Liquid metal cooled Gas cooled

Power Conversion

Thermoelectric Segmented thermoelectr Sürling Brayton Thermo photovoltaic

Electric Propulsion

on thruster Jall thruster JPD, PIT

Heat Rejection

2-phase loops (capillary pumped loop, loop heat pipes) Heat pipes Pumped loops

Power Management and Distribution

Depends upon power conversion: AC DC Low/high input voltage

Technical Challenges Required For NEP Systems Development

Potential Support to Human Space Exploration

- Nuclear power and propulsion are key enablers of expanded human exploration
 - Enables human exploration beyond earth orbit
 - Provides high power for human protection against charged solar particles
 - Provides abundant power at destination
 - Enables complex, long duration missions
- Nuclear surface power is essential for extended reconnaissance of the Mars surface
 - Long-range surface and sub-surface exploration
 - · Human habitat and life support
 - In-situ manufacturing of consumables
 - In-situ propellant production

Development of Low-TRL Propulsion Technologies Can Take Decades

Propulsion Research

Unlocking the Potential of A Broad Spectrum of Revolutionary Concepts

Fission & Fusion Propulsion Antimatter Propulsion Breakthrough Physics

Advanced Chemical Propulsion Electro-magnetic Propulsion

Rocket Engine Prototype (REP) Project Overview

Objectives

- Provide risk mitigation for large class, Oxygen Rich Stage Combustion Engine (ORSC)
- Design and Test a high-fidelity prototype engine
- Validate existing analytical tools
- Develop and validate new analytical tools as required to develop the flight ORSC engine system

Success Criteria

• ORSC Engine System @ TRL 6 (demonstration in relevant environment)

Goals

- Improved Safety
- Reduced Cost
- Improved Operability and Responsiveness

Current Activity limited to Prototype Engine Design and Technology Development

ORSC Prototype Engine Characteristics

	Prototype	Reference
Thrust		
 Sea Level klb. 	1064	1049
 Vacuum klb. 	1130	1160
Reliability		
 Failures Per Mil 	lion Missions traceable	e 18
Operability		
 Shift turn time 	8	8
Specific Impulse		
 Sea level sec. 	305	301
 Vacuum sec. 	324	335
Weight		
 Dry lbm. 	17,922	14,956
Life		
 Missions 	100	100
Dimensions		
 Length in. 	147	184
 Diameter in. 	108	108
 Area Ratio 	20:1	36:1

Rocket Engine Prototype Project Overview

Deliverables

- Oxygen Compatible Materials
- Manufacturing Technology Demonstrations
- Turbopump Inducer Waterflow Test
- Turbine Damping "Whirligig" Test
- Single Element Preburner and Main Injector Test
- 40K Multi-Element Preburner and MI
- Full-Scale "Battleship" Preburner
- Prototype Preburner Test Article
- Full-Scale Prototype TCA
- Turbopump Hot-Fire Test Article
- Prototype Engine

On Current Contract

• Validated Analytical Models

Inducer & Impeller Test Articles

Single Element Test Rig

Whirligig Test Article

Inertial Weld Sample

Prototype Engine

Turbine Blade Analytical Model

Full-Scale Preburner

- High fidelity simulation of internal flow geometry
- Injectors, Chamber, Splitter Ducts, and Turbine Simulators

Objectives

- Stability demonstration
- Flow uniformity at turbine inlets
- Materials usage

Full Scale Battleship Preburner

REP ORSC Combustion Devices Roadmap

Combustion Devices

RLS0011 **Trogram Milestone**

REP ORSC Turbomachinary Roadmap

Turbomachinary

