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The problem of using engine thrust differentials to compensate for rudder and aileron

failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear

aircraft model that incorporates engine differentials in the dynamic equations is employed

and linearized to describe the aircraft’s longitudinal and lateral motion. In this model two

engine thrusts of an aircraft can be adjusted independently so as to provide the control

flexibility for rudder or aileron failure compensation. A direct adaptive compensation

scheme for asymptotic regulation is developed to handle uncertain actuator failures in the

linearized system. A design condition is specified to characterize the system redundancy

needed for failure compensation. The adaptive regulation control scheme is applied to

the linearized model of a large transport aircraft in which the longitudinal and lateral

motions are coupled as the result of using engine thrust differentials. Simulation results

are presented to demonstrate the effectiveness of the adaptive compensation scheme.

Keywords: Actuator failures, adaptive compensation, aircraft model, engine thrust differentials, lin-
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I. Introduction

On July 19, 1989, United Airlines Flight 232, a McDonnell-Douglas DC-10, encountered a terrible disaster
during its flight from Denver to Chicago.1, 2 While flying at a cruise altitude of 37000 feet, the tail-

mounted engine suffered a catastrophic failure. The fan disk of this engine fragmented and the debris severed
all the hydraulic lines, making all three hydraulic flight control systems paralyzed. The pilots controlled the
plane by adjusting the thrust differentials of the two wing-mounted engines and managed to reach the runway
at Sioux City Airport, Iowa. Unfortunately, the landing was not successful, leading to a broken aircraft and
a number of casualties among the passengers. This event demonstrated that even in the presence of severe
failures there may still be usable actuation capacity for certain control tasks, and that it is desirable to
develop flight control systems that are able to accomplish the desired control tasks when some of aircraft
control surfaces fail during the flight. The Flight 232 accident motivated NASA’s effort to develop flight
control systems that can utilize engine thrusts to maneuver an aircraft when other control surfaces are lost.3

In 4, a propulsion-controlled aircraft (PCA) emergency backup control system using only engine thrust for
longitudinal control is addressed and flight tested on an MD-11 airplane. In 5, the flight test results of the
PCA system on an MD-11 for both longitudinal and lateral control are illustrated. Robust control theory has
also been studied for control of aircraft using engine thrusts only. In 6, an H-infinity controller is presented
for lateral motion of crippled airplanes and a control strategy is simulated for a Lockheed L-1011 airplane.

Our goal is to develop adaptive control systems that are capable of utilizing the remaining system
controls to achieve desired performance in the presence of uncertain actuator failures such as failure of the
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aircraft rudder system. In this paper, we address some major issues in developing such adaptive failure
compensation schemes for aircraft flight control. An engine differential based design is used for rudder or
aileron failure compensation. The key issue is to develop an adaptive failure compensation controller which
is capable of achieving desired system performance in the presence of uncertain rudder or aileron failures.
For this purpose it is necessary to use an aircraft model that incorporates engine differentials in the dynamic
equations describing the aircraft’s longitudinal and lateral motions. One unique feature of this adaptive
failure compensation design is that the controller does not need to know that the failure has occurred, that
is, the same controller design works for both normal and failure conditions.

The paper is organized as follows. In Section II, we describe an aircraft dynamic model with engine
differentials, in which the two engine thrusts can be adjusted independently. This model provides the needed
flexibility for the design of control signals for actuator failure compensation such as rudder failure or engine
malfunction. In Section III, we develop an adaptive actuator failure compensation scheme which is able to
asymptotically stabilize a class of linear dynamic systems, in the presence of unknown actuator failures. In
Section IV, we apply the adaptive failure compensation and stabilization scheme to adaptive rudder and
aileron failures compensation using engine thrust differentials, based on the aircraft model which includes
the effect of engine differentials. We also present simulation results for a linearized large transport aircraft
model with rudder and aileron failures to illustrate the effectiveness of the adaptive failure compensation
scheme.

II. Aircraft Modeling with Engine Differentials

For the control design and simulation of modern aircraft, a six degree-of-freedom model is usually used
in the literature. Such a model is based on the assumption that the engine propulsive forces are symmetric.
However, an aircraft model with symmetric engine thrusts is not sufficient for failure compensation control.
To compensate aircraft failures such as rudder failure or engine malfunction, an aircraft model with indepen-
dently adjusted engine thrusts is necessary. In this section, we will first describe an aircraft nonlinear model
with independent engine thrusts as well as independent left and right ailerons. A linearized dynamic model
will be described at the end of this section. Unlike models based on symmetric engine thrusts, the aircraft
models with non-symmetric engine thrusts cannot be decoupled into separate longitudinal and lateral motion
equations.

A. Nonlinear Aircraft Model

Before introducing an aircraft model with engine thrust differentials, we recall that under the assumption of
geometric and mass symmetry about the body axis x–z plane in the NASA standard coordinate system, as
given in references 7, 8, and 9, the nonlinear rigid body force and moment equations with symmetric engine
thrusts in the body-axis coordinates are

m(u̇+ qw − rv) = X −mg sin θ + T cos ǫ,

m(v̇ + ru − pw) = Y +mg cos θ sinφ, (1)

m(ẇ + pv − qu) = Z +mg cos θ cosφ− T sin ǫ,

Ixṗ+ Ixz ṙ + (Iz − Iy)qr + Ixzqp = L,

Iy q̇ + (Ix − Iz)pr + Ixz(r
2 − p2) = M, (2)

Iz ṙ + Ixz ṗ+ (Iy − Ix)qp− Ixzqr = N,

where

m = mass of the aircraft,

[u, v, w] = body-axis components of the velocity of the center of mass,

[p, q, r] = body-axis components of the angular velocity of the aircraft,

[X,Y, Z] = body-axis aerodynamic forces about the center of mass,

[L,M,N ] = body-axis aerodynamic torques about the center of mass,

(θ, φ) = Euler pitch and roll angles of the aircraft body axes with respect
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to body axes,

ǫ = angle between thrust and body x-axis,

T = propulsive thrust resultant,

Ii = inertias in body axes,

g = gravitational force per unit mass.

The model discussed above is under the assumption that the engine propulsive forces are symmetric
(equal), so only one engine thrust term T is used in these equations. In order to analyze the aircraft model
with engine differentials, it is necessary to include two engine thrust terms, TL and TR which denote the
left and right engine thrusts. The engine thrust differentials influence the longitudinal and lateral motions
of the aircraft simultaneously, that is, these two motion components cannot be decoupled and the control
design should be based on a coupled longitudinal and lateral dynamic model.

To analyze the effects of engine differentials on aircraft motion, we decompose these two engine thrusts
into the x–y plane, the x–z plane and the y–z plane which are shown in Figures 1, 2 and 3, respectively.

Figure 1 shows the vectors of the engine thrusts in the x–y plane, where ǫ denotes the angle between
the thrusts and the x-axis, l represents the distance between engines and the x–z plane, and TL cos ǫ and
TR cos ǫ represent the engine forces along the x-axis.

Figure 2 shows the vectors in the x–z plane, where TL cos ǫ and TR cos ǫ represent the vectors of the
engine thrusts along the x-axis, and TL sin ǫ and TR sin ǫ represent the vectors along the z-axis. Here we
assume the thrust vectors are aligned to pass through the y-axis when the engines are above or below the
center of mass, so that there is no moment about the y-axis.

Figure 3 indicates the engine thrust components along the z-axis, that is, TL sin ǫ and TR sin ǫ.
Unbalanced engine forces will generally produce translational motion of the center of mass and rotational

motion about some axis through the center of mass. The six degree-of-freedom equations with independent
engine thrusts are

m(u̇ + qw − rv) = X −mg sin θ + (TL + TR) cos ǫ,

m(v̇ + ru− pw) = Y +mg cos θ sinφ, (3)

m(ẇ + pv − qu) = Z +mg cos θ cosφ− (TL + TR) sin ǫ,

Ixṗ+Ixzṙ+(Iz−Iy)qr+Ixzqp = L+l(TL−TR) sin ǫ,

Iy q̇+(Ix−Iz)pr+Ixz(r
2−p2) = M, (4)

Iz ṙ+Ixzṗ+(Iy−Ix)qp−Ixzqr = N+l(TL−TR) cos ǫ,

where

TL = left engine force,

TR = right engine force,

l = distance between engine and body x–axis.

When TL and TR are equal, this model reduces to the conventional model described by (1), (2).

B. Linearized Aircraft Model

In this section, we address the linearization of the nonlinear aircraft model with engine differentials. The
linearized model cannot be decoupled into separate longitudinal equations which are commonly seen in the
literature.

Linearization of a nonlinear system. To linearize a nonlinear system of the form

ẋ = f(x, U), x ∈ Rn, U ∈ Rm, (5)

we first select the equilibrium values of xo, Uo, that is, the values such that ẋo = f(xo, Uo) = 0.10 If we
expand the nonlinear equations (5) using its Taylor series about the equilibrium point (xo, Uo) and keep
only the first-order terms, we obtain

ẋ ≈ f(xo, Uo) + F (x− xo) +G(U − Uo), (6)
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Figure 1. Engine thrust components in the x–y plane.
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Figure 2. Engine thrust components in the x–z plane.
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Figure 3. Engine thrust components in the y–z plane.
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where

F =

[

∂f

∂x

]

xo, Uo

, G =

[

∂f

∂U

]

xo, Uo

. (7)

Let x = xo + δx and U = Uo + δU , so that

ẋo + δẋ ≈ f(xo, Uo) + Fδx+GδU. (8)

By subtracting out the equilibrium solution: ẋo = f(xo, Uo), we have

δẋ = Fδx+GδU (9)

which is a linear differential equation approximating the motion of (5) near the equilibrium point (xo, Uo).
For simplicity, the notation δ is often dropped, and x, U are used to represent deviations from the equilibrium
states xo and Uo.

Linearization of the aircraft model. Now we linearize the nonlinear aircraft model with engine thrust
differentials. The state and control vectors of the linearized model are chosen as

x = [u w q θ v r p φ ψ ]T (10)

U = [ δe δtl
δtr

δal
δar

δr ]
T

(11)

where, with the notation δ dropped from δx and δU for simplicity of presentation,

[u, v, w] = velocity perturbations along x, y, z axes,

[p, q, r] = angular velocity perturbations about x, y, z axes,

(θ, φ, ψ) = pitch, roll and yaw angle perturbations of the aircraft,

(δe, δal
, δar

, δr) = elevator, left and right aileron and rudder deflections,

(δtl
, δtr

) = left and right throttle perturbations.

In our study, we consider a steady-state rectilinear wings-level flight condition as the equilibrium point and
the linearization is carried out about this point. For this steady-state flight condition, the derivatives of all
states, the angular velocity components (p, q, r) and the roll angle φ at the equilibrium point are all zero,
that is,

[ u̇ ẇ q̇ θ̇ v̇ ṙ ṗ φ̇ ψ̇ ]xo, Uo
= 0, (12)

po = qo = ro = φo = ψo = vo = 0, (13)

where xo and Uo are determined as

xo =[uo wo 0 θo 0 0 0 0 0 ]
T
,

Uo =[ δeo δtlo
δtro

δalo δaro δro ]T. (14)

To perform linearization, we derive the explicit forms of the nonlinear equations. The force equations in (3)
can be written as

u̇=
1

m
X−g sin θ+

1

m
(TL+TR) cos ǫ−qw+rv,

v̇=
1

m
Y +g cos θ sinφ−ru+pw, (15)

ẇ=
1

m
Z+g cos θ cosφ−

1

m
(TL+TR) sin ǫ−pv+qu.

The explicit form of the moment equations in (4) can be derived as

ṗ=c1qr+c2qp+c3L−c4N+c5l(TL−TR),

q̇=c6pr+c7(p
2−r2)+c8M, (16)

ṙ=c9qp−c2qr+c10N−c11L+c12l(TL−TR),
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where

c1 =
IyIz−I

2
xy−I

2
z

IxIz−I
2
xz

, c2 =
IxzIy−IzIxz−IxIxz

IxIz−I
2
xz

,

c3 = Iz
IxIz−I

2
xz

, c4 = Ixz

IxIz−I
2
xz

,

c5 =Iz sin ǫ−Ixz cos ǫ
IxIz−I

2
xz

, c6 =Iz−Ix
Iy

,

c7 =Ixz

Iy
, c8 = 1

Iy
,

c9 =
I2
x+I2

xz−IxIy
IxIz−I

2
xz

, c10 = Ix
IxIz−I

2
xz

,

c11 = Ixz

IxIz−I
2
xz

, c12 =Ix cos ǫ−Ixz sin ǫ
IxIz−I

2
xz

.

There are also three kinematic equations which determine the relations between the rates of θ, φ and ψ
and the body-axis components of the angular velocity p, q and r:7

φ̇ = p+ tan θ(q sinφ+ r cosφ),

θ̇ = q cosφ− r sinφ,

ψ̇ =
q sinφ+ r cosφ

cos θ
. (17)

Applying the above general linearization procedure to the aircraft equations (3), (4) and (17), we obtain the
linearized aircraft model as

ẋ =

[

A
(1)
4×4 A

(2)
4×5

A
(3)
5×4 A

(4)
5×5

]

x+

[

B
(1)
4×3 B

(2)
4×3

B
(3)
5×3 B

(4)
5×3

]

U, (18)

where

A(1) =







X̄u X̄w −wo −g cos θo

Z̄u Z̄w uo −g sin θo

M̄u M̄w M̄q 0
0 0 1 0






,

A(2) =







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0






, (19)

A(3) =











0 0 0 0
T̄u T̄w 0 0
T̄ ′

u T̄ ′
w 0 0

0 0 0 0
0 0 0 0











,

A(4) =











Yv −uo wo g cos θo 0
N̄v N̄r N̄p 0 0
L̄v L̄r L̄p 0 0
0 tan θo 1 0 0
0 1

cos θo
0 0 0











, (20)

B(1) =









Xδe
T̄δtl

T̄δtr

Zδe
−T̄ ′

δtl
−T̄ ′

δtr

M̄δe
0 0

0 0 0









,

B(2) =







0 0 0
0 0 0
0 0 0
0 0 0






, (21)
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B(3) =













0 0 0
0 T̄ ′′

δtl
−T̄ ′′

δtr

0 T̄ ′′′
δtl

−T̄ ′′′
δtr

0 0 0
0 0 0













,

B(4) =











Yδal
Yδar

Yδr

N̄δal
N̄δar

N̄δr

L̄δal
L̄δar

L̄δr

0 0 0
0 0 0











. (22)

In this linearized model, the non-zero terms in A(3) and B(3) represent the effect of engine thrust differentials,
that is, if the left and right engine thrusts are equal to each other, those terms become zero. The other
parameters in these matrices are determined as

X̄u = 1
m

[∂X
∂u

+ cos ǫ(∂TL

∂u
+ ∂TR

∂u
)],

X̄w = 1
m

[∂X
∂w

+ cos ǫ(∂TL

∂w
+ ∂TR

∂w
)],

Z̄u = 1
m

[∂Z
∂u

− sin ǫ(∂TL

∂u
+ ∂TR

∂u
)],

Z̄w = 1
m

[∂Z
∂w

− sin ǫ(∂TL

∂w
+ ∂TR

∂w
)],

M̄u = c8(
∂M
∂u

), M̄w = c8(
∂M
∂w

),

M̄q = c8(
∂M
∂q

), T̄u = c12l(
∂TL

∂u
− ∂TR

∂u
),

T̄w = c12l(
∂TL

∂w
− ∂TR

∂w
), T̄ ′

u = c5l(
∂TL

∂u
− ∂TR

∂u
),

T̄ ′
w = c5l(

∂TL

∂w
− ∂TR

∂w
), Yv = 1

m
∂Y
∂v
,

N̄v = c10
∂N
∂v

− c11
∂L
∂v
, N̄r = c10

∂N
∂r

− c11
∂L
∂r
,

N̄p = c10
∂N
∂p

− c11
∂L
∂p
, L̄v = c3

∂L
∂v

− c4
∂N
∂v
,

L̄r = c3
∂L
∂r

− c4
∂N
∂r
, L̄p = c3

∂L
∂p

− c4
∂N
∂p
,

Xδe
= 1

m
( ∂X

∂δe
), T̄δtl

= cos ǫ
m

(∂TL

∂δtl

),

T̄δtr
= cos ǫ

m
( ∂TR

∂δtr
), Zδe

= 1
m

( ∂Z
∂δe

),

T̄ ′
δtl

= sin ǫ
m

(∂TL

∂δtl

), T̄ ′
δtr

= sin ǫ
m

( ∂TR

∂δtr
),

M̄δe
= c8

∂M
∂δe

, T̄ ′′
δtl

= c12l(
∂TL

∂δtl

),

T̄ ′′
δtr

= c12l(
∂TR

∂δtr
), T̄ ′′′

δtl

= c5l(
∂TL

∂δtl

),

T̄ ′′′
δtr

= c5l(
∂TR

∂δtr
), Yδal

= 1
m

( ∂Y
∂δal

),

Yδar
= 1

m
( ∂Y

∂δar
), Yδr

= 1
m

( ∂Y
∂δr

),

N̄δal
= c10

∂N
∂δal

− c11
∂L

∂δal
, N̄δar

= c10
∂N
∂δar

− c11
∂L

∂δar
,

N̄δr
= c10

∂N
∂δr

− c11
∂L
∂δr

, L̄δal
= c3

∂L
∂δal

− c4
∂N
∂δal

,

L̄δar
= c3

∂L
∂δar

− c4
∂N
∂δar

, L̄δr
= c3

∂L
∂δr

− c4
∂N
∂δr

.

All ci parameters are defined in equation (16), and the values of the derivative signals are determined at the
equilibrium point (xo, Uo) given in (14).
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This model, in which the two engine thrusts and the ailerons are taken into account separately, provides
the built-in redundancy in the system to cope with some actuator failures, such as rudder failure or engine
failure on one side. This feature is not captured in the conventional aircraft models that assume equal engine
thrusts and aileron angles. The dynamic coupling in this aircraft model is useful for compensation of rudder
or aileron failure by engine thrust differentials and introduces new challenges for flight control.

III. Adaptive Failure Compensation

In this section, we first formulate an actuator failure compensation problem for linear systems, and then
develop an adaptive failure compensation scheme for asymptotic stabilization of the system state variables
in the presence of certain actuator failures.

A. Problem Formulation

Consider the linear time-invariant system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, (23)

whose actuators u = [u1, u2, . . . , um]T may fail during system operation, in the form:11

ui(t) = ūi, t ≥ ti, i ∈ {1, 2, . . . ,m}, (24)

where ti is the unknown failure time instant and ūi is the unknown failure constant. An example of such
actuator failures is when an aircraft control surface (such as the rudder or an aileron) is stuck at some
unknown fixed position at an unknown time instant.

The control objective is to design an adaptive state feedback control signal to be applied to the actuators
in u, to ensure closed-loop signal boundedness and asymptotic stabilization: limt→∞ x(t) = 0, in the presence
of unknown actuator failures which cause system parameter and structure uncertainties.

B. Adaptive Compensator Design

In the presence of actuator failures, u(t) becomes

u(t) = v(t) + σ(ū− v(t)), (25)

where v(t) ∈ Rm is the applied control input vector, ū = [ū1, ū2, . . . , ūm]T is the failure vector, and σ

represents the failure pattern defined as

σ = diag{σ1, σ2, . . . , σm} (26)

σi =

{

1 if the ith actuator has failed, that is, ui = ūi,

0 otherwise.
(27)

The failures are assumed to occur instantaneously, i.e., σ is a piecewise constant function of time. We denote
the set of all possible failure patterns as Σ̄ = {σi, i = 1, 2, . . . , 2m}.

The system (23) can be rewritten as

ẋ(t) = Ax(t) +B(I − σ)v(t) + σBū. (28)

For our adaptive control design, the following assumption is needed:

Assumption III.1 (A,B) is stabilizable, and rank[B(I − σ)] = rank[B], ∀σ ∈ Σ, where Σ ⊂ Σ̄ is the set of
recoverable failure patterns.

Next we present the adaptive scheme for the above control objective. For adaptive stabilization, similar to
that in reference 12, we choose the state feedback control law

v(t) = K̂x(t) + θ̂, (29)
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where K̂ = [K̂1, K̂2, . . . , K̂m]T ∈ Rm×n and θ̂ = [θ̂1, θ̂2, . . . , θ̂m]T ∈ Rm×1, and the adaptive law

˙̂
Ki = −Γixx

TPbi, i = 1, 2, . . . ,m (30)

˙̂
θi = −λix

TPbi, i = 1, 2, . . . ,m, (31)

where Γi = ΓT
i > 0, λi > 0, bi is the ith column of B, i = 1, 2, . . . ,m, and P = PT > 0 is the matrix

satisfying the Riccati equation
ATP + PA− PBR−1BTP +Q = 0. (32)

for some chosen matrices Q = QT > 0, R = RT > 0.
This adaptive actuator failure compensation scheme has the desired properties:

Theorem III.1 The control law (29), updated from (30)–(31) and applied to the system (23) subject to the
actuator failures (24) under Assumption III.1, ensures that all closed-loop system signals are bounded and
limt→∞ x(t) = 0, for any σ ∈ Σ.

Proof: Since (A,B) is stabilizable, there exists constant K ∈ Rm×n and P ∈ Rn×n such that

P (A+BK) + (A+BK)TP = −Q < 0,

P = PT > 0, Q = QT > 0. (33)

From the condition in Assumption III.1: rank[B(I−σ)] = rank[B], ∀σ ∈ Σ, a linear combination of columns
in B can be expressed by a linear combination of those in B(I − σ), that is, for each σ ∈ Σ, there exists a
Kσ ∈ Rm×n such that

B(I − σ)Kσ = BK. (34)

Therefore, for each σ, there is a Kσ satisfying

P [A+B(I − σ)Kσ] + [AT + (I − σ)Kσ
TBT ]P = −Q < 0, (35)

with the same P = PT > 0 as that in (33).
Suppose that at time t there are p < m actuator failures in the system, that is, ui(t) = ūi, i =

i1, i2, . . . , ip, {i1, i2, . . . , ip} ⊂ {1, 2, . . . ,m}, and that actuator failures happen at time instants tk (when the
failure pattern σ changes), with tk < tk+1, k = 1, 2, . . . , N . For the system (28) with the adaptive controller
(29)–(31), a Lyapunov function candidate can be chosen as

V =
1

2
xTPx+

1

2

∑

i6=i1,i2,...,ip

(K̂i −Ki)
T Γ−1

i (K̂i −Ki) +
1

2

∑

i6=i1,i2,...,ip

λ−1
i (θ̂i − θi)

2, (36)

for each time interval (tk, tk+1), k = 0, 1, . . . , N , with t0 = 0 and tN+1 = ∞, where Ki is the ith row of Kσ,
and θi is a solution of the following equation

∑

i6=i1,i2,...,ip

biθi = −
∑

j=i1,i2,...,ip

bjūj , (37)

and θi = 0, for i = i1, i2, . . . , ip.
The time-derivative of V in each (tk, tk+1) is

V̇ =
1

2
xTP (A+B(I − σ)K̂)x+

1

2
xT (AT + K̂T (I − σ)BT )Px+ xTPσBū

+xTPB(I − σ)θ̂ +
∑

i6=i1,i2,...,ip

(K̂i −Ki)
T Γ−1

i
˙̂
Ki +

∑

i6=i1,i2,...,ip

λ−1
i (θ̂i − θi)

˙̂
θi

=
1

2
xT [P (A+B(I − σ)Kσ) + (AT +KT

σ (I − σ)BT )P ]x+ xTPB(I − σ)(K̂ −Kσ)x

+
∑

i=j1,i2,...,ip

xTPbjūj +
∑

i6=i1,i2,...,ip

xTPbiθi + xTPB(I − σ)(θ̂ − θ)

+
∑

i6=i1,i2,...,ip

(K̂i −Ki)
T Γ−1

i
˙̂
Ki +

∑

i6=i1,i2,...,ip

λ−1
i (θ̂i − θi)

˙̂
θi

= −
1

2
xTQx ≤ 0. (38)
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It follows that x ∈ L2 ∩ L∞, and K̂i ∈ L∞ and θ̂i ∈ L∞ for i 6= i1, i2, . . . , ip. From (30), we have
[

Γ−1
1

˙̂
K1,Γ

−1
2

˙̂
K2, . . . ,Γ

−1
m

˙̂
Km

]

= −xxTPB. (39)

Since B can be represented by a linear combination of bi, i 6= i1, i2, . . . , ip, Γ−1
i

˙̂
Ki, i ∈ {i1, i2, . . . , ip}, is

also a linear combination of Γ−1
i

˙̂
Ki, i 6= i1, i2, . . . , ip. This implies that K̂i ∈ L∞ for i = i1, i2, . . . , ip, and

similarly, that θ̂i ∈ L∞ for i = i1, i2, . . . , ip.
The function V is not continuous at tk, k = 0, 1, . . . , N , and only has finite value jumps at those time

instants. So we can obtain that x ∈ L2 ∩ L∞, K̂ ∈ L∞, and θ̂ ∈ L∞, ∀t ≥ 0. Because v(t) ∈ L∞ and
ẋ ∈ L∞, given that x(t) ∈ L2, we also have limt→∞ x(t) = 0. ∇

This adaptive failure compensation scheme is applicable to the linearized aircraft dynamic model around
an equilibrium point (xo, Uo) which represents the steady-state rectilinear wing-level flight condition. The
physical meaning of a non-zero state vector x(t) in (23) is that the state of the nonlinear system is perturbed
away from the equilibrium point, i.e., the steady-state condition. The adaptive scheme is applicable when
the actuator failure patterns belong to a set specified by Assumption III.1 and some of the m actuators in
u = [u1, u2, . . . , um]T may fail. For example, for the rudder failure case, u6 = δr = ū6 may happen for an
unknown value ū6 which is an unknown value not influenced by the commaneded control input signal.

The result of Theorem III.1 implies that under Assumption III.1 the adaptive control scheme is able to
achieve asymptotic regulation of x(t) to zero. This means that, under the condition of Assumption III.1
(which is indeed satisfied in the case of rudder failure), the aircraft will be automatically returned to the
steady-state flight condition under both normal and upset conditions, (the condition is unknown to the
feedback controller). This will be demonstrated in Section IV in detail.

IV. Application to Aircraft Flight Control: Regulation

In this section, we present simulation results to show the effectiveness of our adaptive scheme, applied to
compensation of aircraft rudder and aileron failures, primarily using engine thrust differentials. We will first
present an aircraft model and the adaptive design for this model, then introduce a nominal control design,
and finally give the simulation results of adaptive actuator failure compensation.

A. Aircraft Flight Control System

For our simulation study, we use a large transport aircraft model (similar to Boeing 747). The airplane flies
at a velocity of 774 ft/sec and an altitude of 40 kft. The linearized dynamic model is

ẋ(t) =

[

A
(1)
4×4 A

(2)
4×5

A
(3)
5×4 A

(4)
5×5

]

x(t) +

[

B
(1)
4×3 B

(2)
4×3

B
(3)
5×3 B

(4)
5×3

]

U(t), (40)

where

x = [u w q θ v r p φ ψ ]T ,

U = [ δe δtl
δtr

δal
δar

δr ]
T
,

A(1) =







−0.003 0.039 0 −0.322
−0.065 −0.319 7.74 0
0.020 −0.101 −0.429 0

0 0 1 0






,

A(2) =







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0






,

A(3) =











0 0 0 0
0.001 0.001 0 0
−0.001 −0.001 0 0

0 0 0 0
0 0 0 0











,
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A(4) =











−0.0558 −7.74 0 0.322 0
0.0773 −0.115 −0.0318 0 0
−0.394 0.388 −0.465 0 0

0 0 1 0 0
0 1 0 0 0











,

B(1) =







0.01 1 1
−0.18 −0.04 −0.04
−1.16 0.598 0.598

0 0 0






,

B(2) =







0 0 0
0 0 0
0 0 0
0 0 0






,

B(3) =











0 0 0
0 0.8 −0.7
0 −0.5 0.6
0 0 0
0 0 0











,

B(4) =











0.03 −0.03 0.0564
0.0036 0.0036 −0.4750
0.0715 0.0715 0.153

0 0 0
0 0 0











. (41)

The non-zero terms in A(3) and B(3) represent the engine thrust differential effect. In this model, the units
of the variables are ft, sec and crad (centi-radians).

In this study, we consider the rudder and aileron failures compensation problem: during the system
operation, the rudder or an aileron is stuck at an unknown constant value at an unknown time instant, that
is, both are unknown to the feedback controller.

According to the adaptive control algorithm in Section B, the feedback control law is

vd(t) = K̂x(t) + θ̂, (42)

with K̂ = [K̂1, K̂2, . . . , K̂6]
T ∈ R6×9 and θ̂ = [θ̂1, θ̂2, . . . , θ̂6]

T ∈ R6×1 updated by

˙̂
Ki = −Γixx

TPbi, i = 1, 2, . . . , 6 (43)

˙̂
θi = −λix

TPbi, i = 1, 2, . . . , 6, (44)

where Γi = ΓT
i > 0, λi > 0, bi is the ith column of B, i = 1, 2, . . . , 6, and P = PT > 0 is such that

ATP+PA−PBR−1BTP+Q=0. (45)

In our simulation, we choose the initial value of the state vector as

x0 =[ 2 −8 −0.3 4 0.7 −0.3 1 −3 3 ]
T
. (46)

This initial state vector represents a non-steady state (perturbed) flight condition in which the aircraft is
climbing with a 2 ft/sec velocity perturbation on x-axis and 8 ft/sec velocity perturbation on z-axis and 0.7
ft/sec on y-axis. The yaw rate and pitch rate are -0.3 crad/sec (-0.17 degree/sec). The pitch angle is 4 crads
(2.29 degrees) and roll angle are -3 crads (-1.72 degrees). The roll rate is 1 crad/sec (0.57 deg/sec) and the
yaw angle is 3 crads (1.72 degrees).

For controller design, Q is chosen as diag{1, 1, 1, 1, 7, 1, 1, 6, 5} andR is chosen as 5I6 to obtain satisfactory
convergence of the state vector in simulation study.

We consider two types of constant rudder failures in this simulation study. The first type is defined as

U6(t) = U6(tf ), t ≥ tf , (47)
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where tf is the failure instant. This type implies that the rudder is stuck at the position of the time when
the failure happens. The second type of failure we consider is defined as

U6(t) = 2 crad, t ≥ tf , (48)

where tf is the failure instant.
The aileron failure we will consider is

U5(t) = 0 crad, t ≥ tf , (49)

which means that the right aileron will be stuck at zero after tf .
The control signal vd(t) is applied to the plant (40) subject to the actuator failure (47), (48), or (49).
In the following simulation study, we will examine eight different cases:

(I) System responses with nominal controller for rudder failure (47),
(II) System responses with nominal controller for rudder failure (48),
(III) System responses with adaptive failure compensation for rudder failure (47),
(IV) System responses with adaptive failure compensation for rudder failure (48),
(V) System responses with adaptive compensation for rudder failure (48) (x(0) = 0),
(VI) System responses with adaptive compensation switched on after failure (47),
(VII) System responses with adaptive compensation switched on after failure (48), and
(VIII)System responses with adaptive failure compensation for aileron failure (49);

where Case (I) and (II) are for the nominal design which we will present in the next subsection, while Case
(III)-(VIII) examine the effectiveness of the adaptive failure compensation scheme. In particular, the Case
(VI) and (VII) are presented as comparisons with Case (I) and (II).

B. System Performance with A Nominal Design

In this subsection, we present a nominal control design based on a linear quadratic regulator (LQR).13 The
feedback control law is

vd(t) = Kx(t) (50)

where K ∈ R6×9 is a feedback gain matrix chosen to minimize a quadratic performance index

J =

∫ ∞

0

(xTQx+ uTRu)dt, (51)

where Q = QT > 0 and R = RT > 0 are the weighting matrices. For P = PT > 0 satisfying

ATP + PA− PBR−1BTP +Q = 0, (52)

the feedback gain K is given as
K = −R−1BTP. (53)

This LQR design ensures asymptotic stability of the closed-loop system. However, in presence of unknown
rudder failures, the nominal performance is no longer satisfactory. Typical responses are shown in the
simulation results in Case (I) and Case (II), which indicate that some of the states cannot be asymptotically
stabilized.

Case (I). As described in Section A, Case (I) shows the system performance with nominal controller
design in the presence of rudder failure (47). The failure instant is tf = 10 seconds and the initial values for
the states are described in (46). The results are shown in Figures 4 and 5.

From the figures we can see that some states cannot be stabilized with this nominal controller, such as
yaw angle ψ.

Case (II). In this case, we show another situation of the system performance with the nominal controller
in the presence of rudder failure (48). The failure instant is tf = 30 seconds. Other parameters for simulation
are the same with the previous case. The results are shown in Figures 6 and 7.

In this case, some states, such as yaw angle ψ and x-axis velocity u , cannot be stabilized, which is similar
with Case (I). The results in Case (I) and Case (II) show that the LQR design is not capable of coping with
the unknown rudder failure and cannot achieve satisfactory performance.
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Figure 4. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case I).
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Figure 5. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case I).
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Figure 6. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case II).
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Figure 7. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case II).
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C. System Performance with Adaptive Failure Compensation

In this subsection, we present the simulation results for the control system with the adaptive actuator failure
compensation control design given in Section A, to show the performance improvement by adaptive failure
compensation of an uncertain rudder failure.

Case (III). In this case, we consider the rudder failure (47). The failure instant is chosen as tf =
10 seconds. The initial values for the states are defined in (46). The elements in Γi (i = 1, 2, . . . , 6)
are chosen as [ 0.01 0.01 0.01 0.01 0.08 0.02 0.02 4 4 ], and λi (i = 1, 2, . . . , 6) are chosen as
[ 0.02 0.4 0.4 0.4 0.4 0.03 ]. The system response and some control inputs are shown in Figures 8, 9
and 10. We can see from the results that all the states can be stabilized with adaptive failure compensation
in the presence of rudder failure.
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Figure 8. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case III).

Case (IV). In this case, the parameter setting is the same with the last case except that the rudder
failure (48) is consider in this case. The failure instant is tf = 30 second. The results are shown in Figures
11, 12 and 13.

Case (V). In Case (V), we set the initial values of the states to be zero, i.e., the airplane is in steady
wings-level flight. Without the transient response at the beginning, the influence of the rudder failure on
the states is accentuated. The rudder failure (48) is considered with failure instant tf = 30 seconds. The
elements in Γi (i = 1, 2, . . . , 6) are chosen as [ 1 1 1 1 1 1 1 4 9 ], and λi (i = 1, 2, . . . , 6) are
chosen as [ 1 1 1 3 3 2 ]. The results are shown in Figures 14, 15 and 16.

Case (VI). In Case (VI) and (VII), we will show the simulation results of system performance with adap-
tive failure compensation scheme switched on sometime after the failure happens. In Case (VI), we consider
the failure (47) with failure instant tf = 10 seconds. And at t = 60 seconds the adaptive scheme is switched
on. The elements in Γi (i = 1, 2, . . . , 6) are chosen as [ 0.01 0.01 0.01 0.01 0.08 0.02 0.02 4 4 ],
and λi (i = 1, 2, . . . , 6) are chosen as [ 0.02 0.4 0.4 0.4 0.4 0.03 ]. The results are shown in Figures 17,
18 and 19.

Case (VII). In Case (VII), the parameters for simulation are the same with Case (VI) except that the
failure (48) is considered with failure instant tf = 30 seconds. The adaptive compensation scheme is switched
on after t = 60 seconds. The results are shown in Figures 20, 21 and 22. From the simulation results in
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Figure 9. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case III).
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Figure 10. Control signals: δtl, δtr, δal, δar and δr (Case III).
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Figure 11. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case IV).
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Figure 12. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case IV).
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Figure 13. Control signals: δtl, δtr, δal, δar and δr (Case IV).
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Figure 14. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case V).
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Figure 15. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case V).
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Figure 16. Control signals: δtl, δtr, δal, δar and δr (Case V).
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Figure 17. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case VI).
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Figure 18. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case VI).
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Figure 19. Control signals: δtl, δtr, δal, δar and δr (Case VI).

Case (VI) and (VII), we can see that states are eventually stabilized after switching the adaptive scheme on,
which clearly show the effectiveness of the failure compensation scheme comparing with Case (I) and (II).

Case (VIII). In Case (VIII), we consider the aileron failure (49). The failure instant is chosen as
tf = 30 seconds. The initial values for the states are defined in (46). The elements in Γi (i = 1, 2, . . . , 6)
are chosen as [ 0.01 0.01 0.01 0.01 0.08 0.02 0.02 4 4 ], and λi (i = 1, 2, . . . , 6) are chosen as
[ 0.02 0.4 0.4 0.4 0.4 0.03 ]. The system response and some control inputs are shown in Figures 23, 24
and 25. We can see from the results that all the states can be stabilized with adaptive failure compensation
in the presence of aileron failure.

Remark In our simulation, the aircraft is flying in an unsymmetric mode from the very beginning, before
the failure occurs.Therefore the engine differentials and two ailerons all participate in the system regulation
when the initial values of the states are nonzero even though failures have not occured at that time.

In summary, in our study we simulated some typical aircraft motions for some realistic failure conditions
and scenarios in which adaptive compensation of the uncertain rudder and aileron failures is achieved by using
the non-failed actuators, primarily engine thrust differentials. The failure uncertainties are characterized by
the failure value and failure time instant, both of which are unknown to the adaptive controller. The
controller ensures desired system performance under both normal and upset conditions, which cannot be
achieved by a fixed controller.

V. Conclusions and Future Work

This paper addressed adaptive flight control of aircraft in the presence of rudder and aileron failures,
using engine thrust differentials as primary actuators. A dynamic model of aircraft with nonsymmetric
controls, i.e., independent engine thrusts, was developed and linearized at certain steady-state operating
conditions. An adaptive actuator failure compensation scheme that ensures asymptotic regulation of the
aircraft state vector and signal boundedness of the closed-loop system was developed. The scheme was
applied for adaptive compensation of a large transport aircraft model under unknown rudder and aileron
failure conditions occurring at unknown instants of time. Several simulation results were presented, which
show that the functioning actuators, primarily the differential engine thrusts, seamlessly take over for the

21 of 25

American Institute of Aeronautics and Astronautics



0 20 40 60 80 100 120 140 160 180
−2

0

2

time, s

u,
 ft

/s

0 20 40 60 80 100 120 140 160 180
−10
−5

0
5

time, s

w
, f

t/s

0 20 40 60 80 100 120 140 160 180
−0.2

0

0.2

time, s

q,
 d

eg
/s

0 20 40 60 80 100 120 140 160 180
−2

0

2

4

time, s

θ,
 d

eg

Figure 20. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case VII).
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Figure 21. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case VII).
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Figure 22. Control signals: δtl, δtr, δal, δar and δr (Case VII).
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Figure 23. System states x1 = u, x2 = w, x3 = q, x4 = θ (Case VIII).
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Figure 24. System states x5 = v, x6 = r, x7 = p, x8 = φ, x9 = ψ (Case VIII).
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Figure 25. Control signals: δtl, δtr, δal, δar and δr (Case VIII).
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failed rudder or aileron, and demonstrate the effectiveness of the adaptive scheme. The distinguishing
feature of this actuator failure compensation scheme, compared to the recent work11 by the authors, is
the relaxation of the “proportional actuation” condition that requires multiple actuators of the same type
and physical characteristics, e.g., multiple rudder segments. It expands the adaptive failure compensation
approach to handle the important case where the functioning actuators are of different type from the failed
ones. Further research is needed in many aspects of this work. In order to assess the adaptive scheme
performance it will be desirable to investigate application to detailed nonlinear piloted aircraft simulations,
and subsequently flight testing, possibly on small remotely piloted aircraft. In addition, the adaptive scheme
needs to be extended to address unknown damage (in addition to failures) to control actuators, surfaces,
engines, and aircraft structure, and also to nonlinear flight regimes.

References

1Haynes, A., The Crash of United Flight 232 , Excerpt from talk at NASA Dryden Flight Research Center, 1991.
2National Transportation Safety Board, “Aircraft Accident Report: United Airlines Flight 232, McDonnell Douglas DC-

10-10, Sioux Gateway Airport, Sioux City, Iowa, July 19, 1989,” Tech. Rep. NTSB/AAR-90/06, National Transportation Safety
Board, 1990.

3Tucker, T., Touchdown: The Development of Propulsion Controlled Aircraft at NASA Dryden, No. 16 in Monographs
in Aerospace History, NASA History Office, 1999.

4Burken, J. J., Maine, T. A., Burcham, Jr., F. W., and Kahler, J. A., “Longitudinal emergency control system using thrust
modulation demonstrated on an MD-11 airplane,” Proc. of the 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference,
Lake Buena Vista, Florida, 1996.

5Burken, J. J. and Burcham, Jr., F. W., “Flight-test results of propulsion-only emergency control system on MD-11
airplane,” Journal of Guidance, Control and Dynamics, Vol. 20, No. 5, 1997, pp. 980–987.

6Jonckheere, E. A., Yu, G. R., and Chiang, C. Y., “H∞ control of crippled aircraft in lateral motion with throttles only,”
Proc. of the 35th Conference on Decision and Control , Kobe, Japan, 1996.

7Bryson, Jr., A. E., Control of Spacecraft and Aircraft , Princeton University Press, NJ, 1994.
8Franklin, G. F., Powell, J. D., and Emami-Naeini, A., Feedback Control of Dynamic Systems, Prentice-Hall, NJ, 4th ed.,

2002.
9Stevens, B. L. and Lewis, F. L., Aircraft Control and Simulation, John Wiley & Sons, NY, 1992.

10Rugh, W. J., Linear System Theory , Prentice-Hall, NJ, 2nd ed., 1996.
11Tao, G., Chen, S., Tang, X., and Joshi, S. M., Adaptive Control of Systems with Actuator Failures, Sringer-Verlag,

London, 2004.
12Tang, X., Tao, G., Wang, L., and Stankovic, J. A., “Robust and adaptive actuator failure compensation designs for a

rocket fairing structural-acoustic model,” IEEE Transaction on Aerospace and Electronic Systems, Vol. 40, No. 4, October
2004, pp. 1359–1366.

13Lewis, F. L., Applied Optimal Control and Estimation, Prentice-Hall, NJ, 1992.

25 of 25

American Institute of Aeronautics and Astronautics


