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Executive Summary

This report documents test activities, data and analyses to quantify International Space
Station (ISS) solar array wing (SAW) string electrical performance under highly off-nominal,
low-temperature-low-intensity (LILT) operating conditions with non-solar light sources. This
work is relevant for assessing feasibility and risks associated with a revised Sequential Shunt
Unit (SSU) remove and replace Extravehicular Activity (EVA).

Based on this assessment of worst-case (greatest) SAW string steady state electrical
performance under best-case (greatest) eclipse lighting conditions, there is no connector pin
molten metal hazard. There is no EVA crew member shock hazard for cases of full moon
illumination or Extravehicular Mobility Unit (EMU) helmet lighting conditions or combined full
moon plus EMU helmet lighting conditions. However, EVA crew member electrical current
and/or voltage hazards limits were exceeded for certain Video Camera Luminaire (VCL) lighting
cases. Operational solutions to mitigate SAW string electrical hazards from VCL illumination
include: (1) power down the VCL at issue or (2) select a VCL pan angle to point the beam away
from the SAW.

Based on additional analysis, there is minimal risk of electrostatic discharge from or between
SAW string solar cells under any eclipse lighting condition. Similarly, there is minimal risk of
electrostatic discharge at SSU power connectors and test port connectors due to steady state
SAW string current and voltage under any eclipse lighting condition.

The authors recommend that the SAW string electrical performance assessment under VCL
eclipse lighting conditions be repeated once detailed and accurate SSU remove & replace EVA
procedures have been developed. The product of this assessment would be SAW gimbal and/or
VCL pan angle keep-out-zones (KOZs) to decrease SAW current and voltage levels generated as
a result of VCL lighting to safe levels. The authors also recommend that the EVA crew member
electrical hazard thresholds be confirmed as-is or revised to the best possible values to maximize
crew safety. The uncertainty level in this proposed detailed KOZ assessment could be reduced
with additional VCL lighting data.

NASA/TM—2005-213988 v
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Abstract

This paper documents test activities, data and analyses to quantify International Space
Station (ISS) Solar Array Wing (SAW) string electrical performance under highly off-nominal,
low-temperature-low-intensity (LILT) operating conditions with non-solar light sources. This
work is relevant for assessing feasibility and risks associated with a Sequential Shunt Unit (SSU)
remove and replace (R&R) Extravehicular Activity (EVA). The SSU is an electronics box that
regulates the primary power system bus voltage by matching the SAW current output to the
channel load demand. It is desirable to conduct the SSU R&R EV A without retracting the SAW.
With the SAW deployed, there is an electrical risk of mating/demating SAW input connectors to
the SSU. Even during orbital eclipse EVA operations, SAW strings can be energized by low-
intensity, non-solar, natural light sources, such as the moon, and artificial light sources, such as
EVA suit helmet lights or video camera lights. To quantify SAW electrical performance under
this off-nominal, non-solar, low-temperature, low-intensity (LILT) illumination, solar cell and
solar cell panel electrical performance testing was performed using full moon, solar simulator
and Video Camera Luminaire (VCL) light sources. Laboratory test conditions included
temperatures from ambient to —110 °C and illumination intensities from 1-Sun to 0.0001-Suns.
Terrestrial full moon testing was conducted under typical ambient conditions of the north eastern
Ohio in the late spring. An eclipse orbital lighting assessment was also performed to quantify the
maximum lighting intensities on the SAW from all credible natural and artificial sources. By
combining the measured steady state electrical performance data and the calculated orbital
eclipse lighting intensity, SAW string current and voltage performance levels were calculated
and compared with established electrical hazard thresholds. The results of this comparison for all
credible light sources are presented in the paper. These results are discussed in the context of
crew member shock hazards and connector pin molten metal hazard. Results, uncertainties and
limitations are also discussed along with operational solutions to mitigate potential SAW string
electrical hazards from VCL illumination. Finally, results from a preliminary assessment of
SAW arcing to the space plasma or within power connector pins are discussed. The authors
recommend that the SAW string electrical performance assessment under VCL eclipse lighting
conditions be repeated and expanded once detailed and accurate SSU R&R EV A procedures
have been developed. The product of this assessment would be SAW gimbal and/or VCL pan
angle keep-out-zones (KOZs) to decrease SAW current and voltage levels generated as a result
of VCL lighting to safe levels.

NASA/TM—2005-213988 1



1.0 Background

The Sequential Shunt Unit (SSU) is an electronics box that regulates the International Space
Station (ISS) primary power system bus voltage by matching the US Solar Array Wing (SAW)
current output to the channel load demand. There is one SSU per SAW and at assembly
complete, the ISS will have eight active SSUs. The baseline SSU removal and replacement
(R&R) Extravehicular Activity (EVA) calls for the SAW to be fully retracted. This places the
solar array blankets into compact fan-folded, panel stacks with minimal light reaching solar cells.
In this configuration, solar cell string electrical performance is minimal and is not considered an
electrical hazard.

However, there is a risk of mechanical fouling in the retraction or re-deployment of aged
solar array blanket assemblies and the solar array mast. If the array gets stuck in a partially
retracted or deployed state, the mast may not have sufficient strength capability to handle space
shuttle orbiter docking loads. If this is the case, then the stuck array must be jettisoned. The
baseline jettison procedure requires an ISS crew of at least 3 people: 2 crew members on EVA
and 1 crew member inside the ISS to operate the ISS Remote Manipulator System robotic arm.
Until the space shuttle program return-to-flight milestone is achieved, the ISS has only a 2
person crew. Under this circumstance, the solar array jettison procedure is not feasible which
makes retracting the solar array for SSU R&R not feasible.

Therefore, the ISS Program Office is refining the procedure for SSU R&R EVA undertaken
with SAWs fully deployed. This refined procedure includes disconnecting the SAW power
connectors to the SSU input and places SAW solar cell strings in an open-circuited condition.
Since the SSU R&R EVA can not be completed during one orbital eclipse period, the crew will
insert a shunt plug to collapse solar array string voltage levels during orbital sun periods.
Although EVA procedures are performed during eclipse, the cold SAW strings are exposed to
several types of non-solar, weak light sources.

Natural weak light sources include moonlight, meteor ionization trails, lightning, sprites,
elves and supernovae. Of these light sources, only moonlight was assessed. The latter sources
were eliminated from further consideration due to their low probability and short-lived, transient
nature.

Artificial weak light sources on the ISS exterior include Video Camera Luminaires (VCLs),
Crew/Equipment Translation Aid (CETA) Lamps, and Extravehicular Mobility Unit (EMU —
1.e., space suit) helmet lights. Figure 1a shows a schematic diagram and photograph of a VCL
light source. Figure 1b shows the location of ISS camera ports (CP) with attendant VCLs.
Figure 1c shows on-orbit photographs of a functioning VCL on the S1 truss segment. Figure 2
shows a composite photograph of EMU helmet lights.

Artificial and natural weak light sources can produce enough light to energize solar array
strings and present a potential current and/or voltage hazard to EVA crew members and ISS
hardware during SSU R&R activities. This report documents test data and analyses to quantify
solar array string electrical performance under highly off-nominal, LILT (low-temperature, low-
intensity) operating conditions with non-solar light sources.

NASA/TM—2005-213988 2
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Figure 1a.—ISS Video Camera Luminaire (VCL) schematic drawing
(McDonnell Douglas, 1F01194-1) and photograph.
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Figure 1¢.—ISS on-orbit photographs of S1 and US lab module “Destiny” VCLs.
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Figure 2.—Composite photograph of EMU helmet lights.
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Figure 3a.—Effect of light intensity on solar cell current-voltage response.
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Figure 4.—Simplified solar cell electrical model schematic.

1.1 LILT Basics

Solar cells exhibit a reasonable and predictable behavior over a wide range of operating
temperatures and light illumination intensities. As shown in Figure 3a, the solar cell short-circuit
current (Isc) is generally proportional to light intensity while open-circuit voltage (Voc) is
generally proportional to the natural logarithm of Isc. The primary solar cell temperature effect is
increased bandgap energy at reduced temperature (Ref. 1). This has the combined effect of
increasing cell voltages while decreasing cell current output (Fig. 3b).

As the solar cell operating temperatures and light intensities become very low, potential
unexpected performance behaviors can occur (Refs. 2 to 5). For example, with low solar
intensity, the photo-generated current, Iy, becomes increasing smaller compared to the nominal
shunt current and diode saturation current (see Fig. 4 for a simplified solar cell electrical model
schematic) and solar cell current and voltage output capacity drops substantially. At very low
temperatures, moderately doped rear contacts (ohmic at nominal operating temperature) can
exhibit Schottky behavior and cause a substantial solar cell voltage loss. Also at very low
temperatures, metals can come out of solution form metal-like semiconductors and/or dendritic
growth under front contact metallization. Both of these result lead to solar cell current and fill
factor losses. Through careful design, all of these solar cell performance LILT issues can be
effectively addressed. However, ISS solar cells were not specifically designed for LILT tolerance
and therefore, must be tested to determine their LILT performance characteristics.

2.0 Approach

The approach to assess SAW string electrical performance during a refined SSU R&R EVA
procedure was 4-fold. First, solar cell LILT test data was obtained with several low-intensity
light sources. Second, an orbital eclipse lighting analysis was performed to calculate light
intensity on SAWs for several scenarios. Third, SAW string electrical performance was
calculated based on the calculated values of eclipse lighting intensity and measured values of
solar cell performance on LILT conditions. Fourth, and lastly, calculated SAW string current and
voltage capabilities were compared to safe values determined for EVA crew and ISS hardware.

NASA/TM—2005-213988 6



Safe current-power levels to avoid a molten metal hazard with connector pins are less than
3-amp per pin and less than 180-watt per pin (Refs. 6 and 7). To avoid SAW electrostatic
discharge (ESD) trigger arcs to the space plasma, negative solar cell voltage must not exceed -
200-volts (Refs. 8 and 9). To avoid SAW cell-to-cell sustained arcs, solar cell-to-cell differential
voltage times the string current capacity must not exceed 40-watts for closely spaced cells (gap
size of 1.0x107° m). Safe current-voltage levels to avoid human shock are less than 32-volt and
less than 0.001-amp (Refs. 6, 7, and 10).

3.0 Test Plan
3.1 Test Articles

Six available ISS silicon solar cells (Spectrolab k6700B) (Ref. 11) were used in LILT testing
(Fig. 5). Each cell was marked with a serial number and a grade level for traceability. Three of
these were “grade 5 cells (serial numbers 2532, 2570, 2574) and three were “grade 8” cells
(serial numbers 3055, 3060, 3193). After manufacture, solar cells are graded 1 to 11 by the
current level produced at a 0.495-volt operating voltage. The SAW specification calls for the
SAW circuits to have an average grade level of 7 or above. These individual cells were obtained
from spare Photovoltaic Panel Modules (PPMs) from the US-Russian Mir Cooperative Solar
Array (MCSA) program (Refs. 12 and 13).

ISS solar array technology panels, with 80 series-connected solar cells mounted to a flexible
Kapton-scrim composite panel material, were also used in LILT testing. For example, panel
#1083, manufactured by Lockheed-Martin, is a “grade 7 spare PPM unit from the MCSA
program. Figure 6 shows an electrical schematic and photographs of the PPM #1083 test article.

Figure 5.—38 by 8-cm Spectrolab k6700B (ISS) silicon solar cells.

NASA/TM—2005-213988 7
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3.2 Light Sources

Panel ambient current-voltage measurements were obtained with illumination from the full
(or nearly full) moon on April 5-6, 2004 and on May 5-6, 2004. Specific test information is

provided below in Table 1.

The intensity of full moon illumination is on the order of millionth’s of Suns (1 Sun =
1371 W/m?). The spectrum of moon light in Earth orbit is obtained by convolving the AMO

solar spectrum with the lunar spectral reflectance shown in Figure 7. The spectrum of moon light
on the Earth’s surface must be further convolved with atmospheric transmittance as a function of

effective air mass. The integrated loss in light intensity has been estimated and is shown in

Table 1.
Table 1.—Full Moon Test Conditions
Test Date April 5-6, 2004 May 5-6, 2004
Sky Condition Clear Clear
Test Location Strongsville, OH Cleveland, OH
Ambient Temperature —4°C +10 °C
Local Lunar Transit Time 2:12 AM (4/6/2004) 2:44 AM (5/6/2004)
(Test performed <2-hr from Lunar Transit)
Lunar Zenith Angle 42° 65°
(0° is overhead)
Effective Atmospheric Air Mass AM1.34 AM2.40
Integrated Intensity Loss Relative to AMO Intensity 34 percent 61 percent
Test Articles 15-cell section, grade 7, | 80-cell, grade 7, PPM #1083
PPM #1040 80-cell, grade 5, PPM #1010
Measurement Instrumentation Craftsman 82025 high Keithly 2420 Sourcemeter,

Precision Multimeter

NEC Versa S/50 Laptop PC

0.20 y

g 0.15 |
il

—— July 1995 (3 orbils)
—— November 1995 {3 orbits)
—— Ssptambar 1996 {4 orbits)
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Figure 7.—Spectral reflectance of the Moon. Averaged geometrical Moon albedos measured by
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GOME from July 1995, November 1995, and September 1996 (Ref. 14).

NASA/TM—2005-213988




4 2 — —

Figure 8a.—X-25 solar simulator at NASA Glenn (light source on the right;
test chamber on the left).
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Figure 8b.—X-25 solar simulator spectrum.

Individual cells were tested using the industry standard, Spectrolab X-25 Mark II, constant
light solar simulator (Refs. 15 and 16) shown in Figure 8a. Using a xenon arc lamp, the X-25
closely replicates the AMO solar spectrum and intensity (see Figure 8b). Based on past
measurements, the uniformity of X-25 light intensity across the solar cell test plate was within
+0.5 percent.

Individual solar cell LILT tests and 80-cell panel ambient tests were conducted using the
VCL light source produced by McDonnell Douglas Corp. (Drawing #1F01194-1). The VCL,
shown in Figure 1a, is 0.44-m deep, 0.41-m (maximum) across the dual-lamp ellipsoidal face and
has a mass less than 15.5-kg (Ref. 17). It operates at an input voltage of 120-volts DC and
nominally draws about 190-watts of power. The VCL can be operated in a hard vacuum or in an
ambient laboratory environment and can be positioned ~1-m away from the solar cell under test
to provide about 1/4th-Sun intensity. Figure 9a shows the measured VCL illumination uniformity

NASA/TM—2005-213988 10



on 23 by 23 square-foot grid located 18.3-m from the VCL. These data indicate there is a large
variation, +41/=57 percent, about the mean 5.2-footcandle illumination intensity value. A foot-
candle of light at 555-nm wavelength is equal to approximately 0.0157 W/m®. After successfully
processing an Avionics Equipment Request to the ISS Avionics Equipment Panel, the
qualification VCL unit located at NASA Kennedy Space Center was shipped to NASA GRC to
support this testing program. Figure 9b shows a photograph of the VCL during solar cell LILT

testing.
VCL VideoPhotometric Data at 18.3-m (foot-candles on 23x23 square foot grid)
3.13 3.56 3.84 4.04 423 435 4.39 443 4.58 4.66 4.55 3.96 3.62 3.40 3.36 3.29 3.20 3.10 293 276 2.58 241 227
3.60 4.02 4.29 4.49 453 4.65 4.60 4.69 4.80 4.91 4.58 4.41 3.78 3.64 3.64 3.58 3.49 3.36 3.18 3.01 2.86 272 254
4.04 4.52 4.63 4.72 4.83 4.89 4.92 497 4.98 5.15 4.84 4.47 4.31 4.19 4.00 3.84 3.82 3.60 3.49 331 3.14 3.01 2.85
4.32 4.69 4.83 4.87 4.96 5.04 5.06 5.09 5.10 5.20 5.06 4.78 4.81 4.79 4.46 4.29 4.24 3.95 3.81 3.68 3.51 334 3.16
4.56 4.80 4.99 5.10 5.07 5.02 5.06 5.13 5.27 5.38 5.35 5.09 4.93 4.85 4.79 4.81 4.59 4.36 4.16 3.98 3.85 3.74 3.56
4.58 4.95 5.09 5.19 5.04 4.98 5.07 5.22 5.34 5.45 5.48 5.31 5.07 5.06 5.11 5.09 4.94 4.70 4.50 4.28 4.09 414 4.00
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Figure 9a.—Measured VCL illumination uniformity at 18.3-m distance (foot-candles).

Figure 9b.—Operating VCL during LILT testing.
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3.3 Solar Cell LILT Test Conditions

Solar cell LILT testing was performed with effective insolation intensities from 1.0-Sun
(1,371 W/m?) to 0.0001-Sun and solar cell operating temperatures from +30 °C (ambient) to
—110 °C.

3.4 Solar Cell Temperature Control

For LILT testing, solar cells were “vacuum-chuck” mounted to a liquid nitrogen (LN,)
cooled test plate. Test plate, and hence solar cell, operating temperature was controlled by a
liquid nitrogen line heater regulated by a bang-bang controller with type-T thermocouple
temperature signal feedback. Bleed-off nitrogen was used to purge the test chamber and prevent
ice buildup on the solar cells. Bleed-off nitrogen was also directed over the test chamber quartz
window to prevent frost formation. Figure 10a shows the solar cell LILT testing schematic
configuration (Ref. 2) and Figure 10b shows an ISS solar cell mounted on the test plate.

N, Purge

1 Quartz Window

[y LJHL L 4

N
|
Test Plate H Monitor Cell
J Screen

Figure 10a.—Solar cell LILT test configuration (Ref. 2).
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Figure 10b.—Solar cell mounted to LILT test cold plate.

Figure 11.—Solar cell LILT test intensity reducing screen.

3.5 Solar Cell LILT Testing Illumination Intensity Control
The intensity of illumination on the solar cell test plate was controlled by placing one or

more screens in front of the test chamber quartz window (Fig. 10a). The screening, shown in
Figure 11, acts as a neutral density filter and does not affect the light spectrum on the solar cells.
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The intensity reduction of various screens and combination of screens was measured using two
methods. The first method made use of calibration standard solar cell short-circuit current (Isc)
output with and with out the screening in front of the light source. Over a wide range of
intensities, the solar cell Isc is directly proportional to the incidence light intensity. The screening
light transmission fraction was determined by dividing Isc-with-screen measurement by the Isc-
without-screen measurement. The second method used a radiometer to measure the total light
source heat input before and after screen placement. The screening light transmission fraction
was determined by dividing the heat-with-screen measurement by the heat-without-screen
measurement. Table 2 summarizes the achievable intensity reductions (shown as effective Suns)
by various screens or screen combinations and the resulting Isc expected from an ISS solar cell.

Table 2.—LILT Test Screening Intensity Reductions

X-25 VCL

Intensity Est. Cell Intensity Est. Cell

Screen (Suns) Isc, A (Suns) Isc, A
None 1.00000 2.6950 0.22000 0.5950
A 0.01700 0.0458 0.00374 0.0101

B 0.02800 0.0755 0.00616 0.0167

Cc 0.08000 0.2156 0.01760 0.0476
A&B 0.00047 0.0013 0.00010 0.0003

3.6 Test Equipment

Solar cell voltage biasing for LILT testing was provided by an HP6129C digital voltage
source. An Eppley Absolute Cavity Radiometer with 0.5-cm?” aperture was used to measure LILT
testing light source intensity with and without light blocking screens. The radiometer thermal
power measurement uncertainty was £1.5 percent.

For ambient panel testing, a Keithley 2420 Sourcemeter was used to bias the solar cell string
and sweep the operating current-voltage curve. Control and data collection functions were
performed by an NEC Versa S/50 Laptop PC operating Qbasic software.

The VCL was powered by a Sorensen DCS150-7E VCL power supply. VCL relative spectral
radiance was measured using an Analytical Spectral Devices Inc., FieldSpec Spectroradiometer.
Solar cell spectral response was measured with the Oriel Model 66070 Xenon Arc Solar
Simulator (Fig. 12) with 46, 2-inch filters and a spectral range of 350 to 1900-nm at 10-nm
intervals. The instrument has a 3 percent absolute measurement uncertainty and provides an
integrated solar cell Isc value within 5 percent of that directly measured.
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3.7 Test Instrumentation

During LILT testing, a monitor solar cell and standard reference solar cell were used to
verify the integrity of illumination of the solar cell test plate. The simulator 1-Sun intensity was
set using a calibrated standard solar cell of like material (performance characteristics). The
silicon standard reference cell “A-161" has been flown on an aircraft or balloon to high altitude
where its electrical performance has been measured periodically over the last 20-years. These
high-altitude data can then be reliably extrapolated to obtain AMO illuminated performance
(Ref. 18).

With the standard reference cell calibrated light intensity, a monitor cell was used to maintain
the nominal light intensity and adjust for temporal stability in the arc lamp (flicker). At each
current-voltage point, the test cell current, test cell voltage and monitor cell current were all
measured simultaneously (after a trigger signal). The test cell current was then corrected by the
ratio of the monitor cell current/calibrated monitor cell current. The measurements are recorded
at a ~40 Hz sampling rate with an average of 16 measurements per point. Based on the monitor
solar cell and calibrated, standard reference cell, the LILT test X-25 light source intensity
magnitude and uniformity was controlled with an uncertainty of less than +0.5 percent.

LILT test solar cell and cold plate temperatures were measured by type-T thermocouples
with an uncertainty of £1 °C. Solar cell temperature was typically maintained within 2 °C during
a current-voltage data test point (Ref. 2). The test cell temperature was determined by a
thermocouple attached to the front side of a "witness" cell (non operational cell of similar
characteristics). The witness cell temperature was measured at the beginning and end of each
current-voltage (I-V) curve. Solar cell I-V data were measured using Kelvin probes and 4-wire
connection to Fluke 8505 and Fluke 8520 digital multimeters. The uncertainty in measured solar
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cell current was +£0.1 percent while that of solar cell voltage was +0.01 percent. Ambient panel
test current and voltage measurement were made using a 4-wire technique with a £0.015 percent
uncertainty.

3.8 Test Procedures

A. LILT Tests

A summary of LILT test procedures using the X-25 or VCL light sources are provided below:

(1)
)
3)
4

)
(6)

(7)
®)

)
(10)

Mount ISS solar cell and calibration cells to cold plate; install sensors/probes
Establish 1-sun illumination light source and cell room temperature thermal equilibrium
Measure and record cell I-V curve and temperature

Mount flux reduction screen(s), measure/record cell [-V curve and temperature after
stabilizing

Repeat step (4) for all screens

Adjust LN, heater power to establish next lower test temperature. Repeat steps (2)
to (5).

Repeat steps (2) to (6) for all decreasing test temperatures points

Repeat steps (2) to (7) for all increasing test temperatures points back to room
temperature

Mount next test solar cell and repeat steps (2) to (8).

Repeat steps (1) to (9) for all test solar cells

B. Panel Full Moon Test

A summary of solar cell panel (80-cells) ambient full moon illumination test procedures are
provided below:

(1
)

3)
4

)
(6)
(7

®)

Select grade 7 panel PPM #1083 to test; place out-of-doors to stabilize temperature with
the ambient temperature for a 1-hour period

Set up test support equipment: Keithley 2420 Sourcemeter to sweep the I-V curve and
NEC Versa S/50 Laptop PC to control and collect data

Connect 4-wire current-voltage probes to panel electrical leads

With moon within ~2-hours of lunar transit (highest elevation angle), manually point
panel front side normal to the moon vector; monitor panel Isc and when maximized, hold
panel in place. Panel backside is directed toward the ground to minimize backside
illumination

Measure panel I-V curve data (includes data and time stamp) and verify data file on PC
Measure panel I-V curve data again and check for consistency

Manually shadow panel from direct moon light and measure panel I-V curve data set
(used to correct data for spurious ambient lighting)

Record ambient temperature (assumed panel temperature)

See Table 1 for more full moon panel testing conditions and information.
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C. Panel VCL Test

A summary of solar cell panel (80-cells) ambient VCL illumination test procedures are
provided below:

(1)
)

3)
4

()
(6)

(7
®)
)
(10)
(1)
(12)
(13)
(14)
(15)

(16)
(17)

Select grade 7 panel (PPM #1083) used in full moon testing

Position VCL at the end of the laboratory building hallway at midpoint of hallway
height and width

Connect Sorensen DCS150-7E power supply

Activate VCL (120-volt DC, 1.57-amps); operate for >30-minutes prior to collecting
first panel I-V data set to allow light source to stabilize

Minimize non-VCL lighting in laboratory hallway (turn off lights, block light sources)
Using tape measure, mark off distance increments from VCL position (~3 to ~18-m in
~1.5-m increments; ~+0.025-m accuracy)

Set up test support equipment: Keithley 2420 Sourcemeter to sweep the I-V curve and
NEC Versa S/50 Laptop PC to control and collect data

Manually position panel at nearest distance increment from VCL and on the VCL light
source centerline (horizontally and vertically). Panel backside is directed away from
light source to minimize backside illumination

Position test support equipment by panel

Position black draping on floor centered midway between VCL and panel (minimize
floor reflected light)

Connect 4-wire current-voltage probes to panel electrical leads

Measured panel I-V curve data and verify data file on PC

Measure panel I-V curve data again and check for consistency

Manually shadow panel from direct VCL lighting and measure panel I-V curve data set
twice (used to correct data for VCL reflected light and spurious ambient lighting);
confirm data consistency

Reposition panel and test support equipment to next furthest distance increment;
reposition floor black draping

Repeat steps (11) to (15) for all distance increments

Estimate ambient temperature at 27 °C (assumed panel temperature)—ambient
temperature was not directly measured.

4.0 Test Results

4.1 Full Moon/Ambient Panel

The current-voltage curve of the 80-cell panel was measured while illuminated with
terrestrial full moon light (Fig. 13). These uncorrected data indicate a solar cell Isc of about
4 microamps and a Voc per cell of 1/80th volt.
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Figure 13.—Panel current-voltage capacity with full moon illumination.

4.2 X-25/Solar Cell LILT

For reference, Figure 14a shows the current-voltage response of grade 5 (#2574) and grade 8
(#3055) ISS silicon solar cells at room temperature (25 °C) under 1-Sun, air mass 0 (AMO)
illumination closely approximated by the X-25 solar simulator.

Figure 14b to f shows a series measured current-voltage curves for a grade 8 solar cell
(#3060) with either temperature or effective X-25 illumination intensity as a parameter. Plots
have either a linear current axis or a logarithmic current axis (for clarity).

It is clear from Figures 14d and 14f that at the low effective intensity of 0.00047-suns, the
solar cell has lost its photodiode characteristic: that is, it exhibits an extended flat current leg and
it lacks a meaningful Voc value (greater than 0.5-volts).

Since Isc and Voc are the solar cell data of most interest, these values are displayed in the
following plots. Figure 15a shows the response of a grade 5 solar cell (#2532) Isc versus
temperature from approximately —100 to 20 °C and with illumination intensity as a parameter.
The illumination level varied from 1-Sun to 0.0005-Suns. Further reductions in flux level, while
maintaining good illumination uniformity, was not attainable using the screens. At 0.0005-Suns,
the flux level is about 2.5 times higher than the best-case (VCL, ISS-15A case) eclipse light level
calculated. Typical coldest sun-tracking solar array temperatures are in the range of —80 °C and
occur near the eclipse exit of a zero solar beta angle orbit (orbit with the maximum eclipse
period).

The solar cell Isc response is generally well behaved: that is, the magnitude of Isc is
proportional to the illumination intensity and Isc increases monotonically with increasing
temperature. The only exception to this is for the lowest flux intensity of 0.0005 Suns, where Isc
actually decreased ~33 percent over the temperature range from —100 to 20 °C (Fig. 15b).
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Solar Cell I-V Curve Measured at 1-Sun
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Figure 14a.—ISS solar cell current-voltage curve—I1-Sun X-25 illumination (25 °C).

ISS Grade 8 Solar Cell #3060: 1-Sun Performance v. Temperature
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Figure 14b.—ISS solar cell current-voltage curve 1-Sun X-25 illumination
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ISS Grade 8 Solar Cell #3060: 23 C Perfformance v. Intensity
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Figure 14¢c.—ISS solar cell current-voltage curve room temperature
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Figure 14d.—ISS solar cell current-voltage curve (log axis) room temperature
(various illumination intensities).
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g 1SS Grade 8 Solar Cell #3080 -74 C Performance v. Intensity
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Figure 14e.—ISS solar cell current-voltage curve —74 °C temperature
(various illumination intensities).
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(various illumination intensities).

NASA/TM—2005-213988 21



Isc vs Temperature
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Figure 15a.—ISS solar cell Isc — X-25 LILT conditions.
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