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> ,. k ‘S WAm FUNClii(iNi@“!I!EfE‘EIMPSOID 03’~?IJ~o& :, ._,.

By J. Meixner

L* XI?iROIYUCTION

Lam&’s wave functions reeult by eepsmrtion of the wave equation
in elliptic coordinates’and by integration of the ardinary clifferen-
tial equations thus orf+#nating. They are a generalization of Lem&!s
potential functions which originate in the some manner from tie
potential equation. Ian&’B wave functton~ we applied for boundary
value problems of ‘thewave equation for regions of Space boiandedbY
surfacep of a Syw@m of comfocal ellipsoids end hyperboloids.,., ., .,,

For general elliptic coordinate~ lkm~’s wave functions&ave not
been fully calculated so far. Except for a few genwral piopertles,
not much isknown about them. More consideration was given to Land’s
wave functions for the case of rotationally syum.etricalelliptic
coordinates (cdlledfor short, Lam6’s wave fumctfons of the ellipsoid
of revolution). However, even for the~e functions few results are in
existence coraparedwith those for the better known syecial functione
of mathe~tical ~hyaics, such as cylindrical and spherical,functions.

The first more detailed investiga-tionof Ikm&’s wave functions
of the ellipsoid of revolution was made by Niven (reference1) who
with tineiraid treated a heat-conductionproblem in the ellipsotd
of revolution. However, the numerical values OY the coeff’icienlm
of his eeries developments in terms of spherical &nd cylindrical
functions as they are g~ven,for the lowest indices contain several
errors which were taken over Into the report by Strutt (reference2) .
Amore extensive investigationwith a greater number of applications
was made by Maclaurfn (reference3); M&Uch (reference4)$ whoee
mathematical inve@igation 07 I&met’swave equation is ~ased,on
certain lineer,.homogeneoustntegral equatfons} obtained ~esults of a

.. .
*v’DieLsm&chen Wellenfunktio~en des I)rehellipsoids.”Zentrale

T* wissenschaftltchesBerichtswesefider Z@tfahrtforschung des
General@ftze~eisters (2WB)”Berlin-Adlershof,3’orechpngsb&icht
Nr. 1952$ Ju.w 1944. ‘
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character. S&utt (reference2) gives a survey of the
theory of Lem$’s wave functions in 1932; he also demon-
le.rgepumber of exemples from acoustics, electrodynamics,
mechanics,”&ridtheoryof wave filters, the manifold

possibilities of application for these functions.

Of the treatises published in the meantime, an investigationby
Hanson (reference .5),which contains sey=~ new details, should he
mentioned, as well as a treatise by Morse (reference 6) on addition
theorems, that is, on the development of the plane wave and the
spherical wave in terms of Lame’s wave fumctions, furthermore, a
numler of treatises on the wave-rnochanicaltreatment of the ion
of the hydrogen molecule (reference7). Koteni (reference8)
deals with integral equations for,Lam~rs wave functions. In
particular, a treatise by;~hu and Stmtton (reference9) should be
pointed out which settles exhaustively the problem (treated so far
only incompletely) of the continuation of the solutions of
equation (2.bg) for large and small argument and shows in detail
how the entire theory of Mathieu~s functions results as a special
and boundary case from the general tneory of L~am~lswave functibns.
Finally, a treatise by Bou.wkamp(rci’erence10) on the theoretical
and numerical treatment of diffraction on a ci:”cularape@ure is
to be mentioned whichj for the first time, contains more detailed
numerical material concernin~ Land’s wave f’ynctionsof the ellipsoid
of revolution.

The main task of’we preseritreport on Lam&ls wave functions
of the elli~soid of revolutiotiwill be to compile their most
important properties in such a manner that thes~ I%nctions take on
a fbrm which facilitates their application. In,this connection an
investigationof the solutions of the ordinary homogeneous linear
differential equations of the second order, ~ihichoriginate with
separation of the wave equation in rotationally symmetrical elliptic
coordinates, is of importance;further, it has to be determined whab
is to be understood in these solutions.byfunctions of the first
end second kind, their normalization as we”U.as the description of
the behavior of these solutions in different domains of the
independent variables, in particular, their asymptotic behaviorg
Here belongs also the indication of.a method of numerical calculation
of these functions and.the presentation of numertcal tablss.

For the purpose of clariti~it was necessta”yto Generalize
and supplement the existing material in some respects and to simplify
some of the calculations a??dyroofs. Tlmrewith the thecu’yof Lsngts
wave functions of the ellipsoid of revolution as a whole would seem
to have reached a development equivalent to the theory of Mathieu’s
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functions,and it probably even is somewhatsimpler;Mathieu’sfunctions,nemely, representnot ~ I
a regyilxa”buta singw,larspecial case of

/

In
between
adds fn

2.

2.1 Rotationally

Lam$’s wave functions. G
>

!i3113BASIC EQUATION
,

~
.

~~wetrical Elliptic Coordinates ~

dealingwith the rotationallysymmetricalellipticcoordinatesone must distingui~h
those with o%late and those with prolate ellipsoidsof revolution. Accordingly,one

respectively,where both
coordinates.“c is a,

the nwbers denoting the formvlasj the letter- a or g,

cases appear. X3 Y> z are the Cartesian; 5, q, ~ the ellipiic
positive

The
to ~?hich
elliptic

constant. Then it follows that:

X=c J(1- “ I+)(E2 -!-1) Cosq), y =c’\(l - ~*)(g2 + 1)

~<.~<m, -Isqsl, os@s21(

A

.—

X=c’, 1- r12)(g2 /- 1) Cosrp, y=c;! (1- l12)(E’2- 1)

lsg<wj -lsqsl, Os(p 5 2K

symbolsare the same as in the collection of fommlas by

--

Si.ncp, z=c~q 1’(2.la)

>

Magnus and O?m?hettinger(xeferenc~M.)
referenceis made also with respect to the transformationof the wave ecjuation,to
coordinatesand with respect to the separationof tie wave equation.

,-

W
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2.2 Separation of the Wave Equation

Solutions of the wave equation in three dhensions are to be
determined. (k = wave number.)

Au + k%l = O (2.2)

of the form

u =f~(t)fp(o)fs(q))

Then the ordinary differential equations

k and IJ.2are the separation
assluned.to be any-coi~plex nmb ers.
for a given %oundary value proble]~.

(2.)+~)

‘(2.5a)

(2,!$0

(~●5d

(2.6)

ymame ters. I’irst,they are
They cm only be determined.
in particul.w, p need.not
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be an integer; this can be reco&nized2 for instance,,in the treat-
ment of an inside space problem in a sector O

i
%psqo C)f’a

+-- ellipsoid of reyoluti.on. ,’.., ..’

/,
2.3 Reduction to a Differential Equation.-

The differential equation (2.hg) is designated as the basic
equation. (2●!%) is identical wi:dit~[~ .k;~ i~l~~nsformed” into
it when 6 ‘isreplaced by ti~ c . Therewith
the investigation of the differential equations (2..ka),(2.5a),
and (2.5g) is reduced to tlnatof the differentialeq~ation (2.4g).
The lasic domain, however, is nottthe same for all caaes; it
extends from -1 to 1 in the cases (2.5a) ant.(2.5c), from 1.to m
in the case (2.4g), whereas the basic dorlainof the differential
equation (2.4a) in the transformation to (2.4g) will be changed
to the domain froiiO to i~ (or sise -k). It proves, therefore,
to be necessary to investigate the differential equation (2.4g)
in the entire complex ~-plans.

2.4 Ti~msfo~abion~ of tho Basic Equation ,

The basic equation reyrescnts a special cme of the linear
homogeneous differential equation of tho second order with foum
extra essential singularities, two of which are made to Join to
one essential singularity. The latter is at infinity, the two
remainin~ extra essential sin~ularities are at 1 and -1. The
present i.nvesti~ationof the tasic equation will start with
connecting its solutions with the solutions of limiting c:asesof
the basic equation. For l#c2 = 0, the basic equation is transf-
ormed into the differential equation of the spherical functions
~d their associated f~ction~ or, as they vil~ be called here,
of the general spherical functiono. If one lets the two singu-
larities at 1 and -1 coubine into a single singularity at ~ = O,
there ori@nates, aside from an elementary transformation, the
differential equation of the cylindrical functions. This is
brought about by the sulstitu.tion

(2.7)

and the abbreviation

7 = kc (2.8)

1. ,-
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if one then performs the limiting Trocess y ->0. From (2.4g) there
originates with

(2.9)

the differential equation

( ,2 )drp,.p - @dL.#Jfv=o (m)(y .Y2)$+ 2E51-, J# e

-- 1

In.the transition from (2.4g) to (2.4a) ~ is transformed.into
itself and yp neefionly be reylaced by -Y*. For large distances,

that is, r2 = xz~i-y2 -1-22>> C2

(2.lla)

(2.llg)

+~~o!:~ey.-Inlport,ant.l~Lmi~in~ case of the basic eqlla+JiOllocclms
if’,of the two sin~ularitifis0+ the basic equation iOcateflat fhite
&~st~c@j one or both i~o~’eto infinity. Thenthe differential
equation of Laguerrets and Hermite’s orthogonal P1.mctions,respoc-
tivelyp is formed.. Thin lijjli.tingcase will yield th~ asyiiiptotics
of the ei.genvaluefland eiger]ft~nctionsfor large absolute value of y.

Mathieu’s functions are, in connection with Iam~’s wave functions,
obtained in two ways. They appear, as is well known, in the separa-
tion of the wave equation in the coordinate of the elliytic cylinder
and must, therefore, also ayyear in the limitin~ case of Iam&’s wave
functions for the ellipsoid with three axes when one axis becomes
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infinitely long. However, Mathieu’s differential equation is also
obtained, except for an elementary transformation, if w in (2.48)

b is set equal to tl/20 This also indicates that it is useful to
1, consider the basic equation’not-onlyfor M that are integers,,

lmt rather for arbitrary coefficients ~ and ~. The theOry of
Mathieu’s functions is, therefore, a syecial case of the theory of
Iimn&rswave functions of”the ellipsoid of revolution. Although
the ~resent reyort does not yield new results of Math5.eu’sfunctions,
it demonstrates how they fit into a more general yictwe. ,,

~. SPHERICAL AND CYLINDRICAL FUNCTIONS

3.1 A Few Formulas for Syherical Functions

The most important formulas and theorems for wph.ericaland
cylindric functions needed below are compiled end.a few estimates
for these flm.ctioneare given, whtch wfll be necessary for con-
siderations on uniform conver~ence of certain series in term of
such functions. Magnus and Oberhettinger (rofcrellceL2) io ago.in
re-femed to concernin~ th~ notation and additional for-mula~. The

general spherical.functions l~(?) and ~~(?) both satisfy the

differential equation

i-
&l

-1 ‘--”

~tp - 1%-$-r;(g) + V(V +1) .J4?L#-(g).0 (3.1)
1. 1 -:4-V.- ,...

and.both satisfy the recursion formula

from which by three times repeated application

JV +.IJ)( - Ipkt (~)
(2V - 1;(L”+. 1))-V-2 (3*3)



..

-

is obtained. Further, the series presentationwhich converges for ]ljl>1 is given:

Q;(g)= l/2 ~lllri
(?2 - iy+ $-fJ(2g)-v-lf

r(~-t-[~+2Pi-l

C..r(v + P + &(P + 1)
) (25)-2P

p=o .

to o“btaintineuniqueness of the general sphericalfunctions a branch cut
over -1 to 1.

3.2 AFew %timates for Sphortcal.l%nctions

For the general spherical.functions of the second.kind the integral

is put from ~

prfientation

co

(3.4)

In order
= -m

d

.,

is valid.



,.-“=?

F“Therein z = ~ + ~ 1, the sign of the root must be salectedso that zIJ 21
(one need hsrdlyte afraid that z could be mistaken for the Cartesiancoordj.natez). Zn 9

~
order to estimate $4-T(E) for r+fm one forms the absolutevalues of the individual - S4
factors ahead of and in the integral. ~ujr LI the inte~ral is replacedby its maximum value; ~

This latter can, by suitableselectionof the yath of integration,bema.de sm~er than (1+ b)r ~
for r> O, smallerWmn ~r for r < 0, where 5 is an arbitrarilysmallbut fixed positive ~
number independentof rj~ . Then cme obtains *

r r-llG$+r(o/#-’5) \lz,-i”QM(g)
forr=0,1,2, . . .

,!
1. J

vs ‘ forr=-l, -2,...

~~(~) is a restricted positive fmction of ? independentof r in each closed dotiin

excludin~the points ~ = il,~. Only the case of v + w being an integerrequiresspecial.
consideration. For v + p = O, 1, 2, . . . it can be demonstratedthat tineestimate (3.6)is

retained; for v + v = -1, -22 . . . the estimatea30ve is validfbr QV”_v+r(~)/r(v

instead of !$.r(~)” me case v = -~,

The general sphericalfwactionsof

—
2

..&

,-, J ● “ ‘ is not to be excluded,as can
c

the first kind azzeGiven by the integral

+r+-p+l)

be shown easily.

representation

I

I
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It is valid for -2Yr< axg ZZ.C 2n with the provisio
of integration for ti< arg 22 < an and

~that the path
-%< arg 2-< -n, respec-

tively, leads past the left of the point u = O and is also to he
ret~~d there: The estimate has t6 te made
of lu~r. is, If the yath of integration is
smaller than (Iz12 + b)r for positive rls
for negative r’s, where 3 is a number of
above, so that

as above. The maximvm
suitably selectedj

and smaller than &
the conditions indicated

=0,1,2, . . .

(3.8)

= -1, -’2,-3, ● ● ●

For the following it is more convenient to introduce not the
cylindrical functions t.hemselve~but ~atk.ei”the functions

They %oth satisfy the differentis.l”eqv.ation

(3.10)
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and the recursion formulas

-...—.

2V -+1 ~~ v 2V+1
—*V-2+ (QV.’1)(2V+ 3)

t d~ ‘2 V-1

2V+1V 2(2V + 1)
~ v=2v1-

1 *V-2 + @--- 1)(2V + 3)

Besides, the simpler recursion fcmmul.a

V-EL*’”Ifv. ————.
2V + 3 V+2 “:(3*11)

*v + J=- VV+2 (3.12)
2v+3

(3●13)

is to he noted for the cylindrical functions from which (3.12) is
obtained by repeated application. Finally, the consi~tently convergent
series development

(3.14)

is given with arg { = O if ~ ie real anci>O.
:.

3.4 An Estimate for Cylintiical l’unctions

For the cylindrical functions “Zv,~r(~) one obtainsby reyeattid’
,’ L:

application of (3.13)

.
..

.



.
grr(v+r) 1.0 -1 k)2~+r(~) =
.! r(v) (v+:- 1)●v .1!\2

_(qr-l r’-’.~ - r -2

+

—

(r -2)(r- 3)

0 1&+(V+r-l)(V +r - 2)V(V+’ 1)’2:2 “ “ “ ‘v(g)

~\c,/r(v +1)[ (v + l“,- 1.)(V+ 1)1!{2)
_(L\2

( 3)(1“ )

() ]
!?-4. ● :zv-l(~)

+ (V -1-r - Z){Vr+ r - 2)~~4+ 1)(v -i-2)2! 2

The number of’tinesum tenm in brackets to be included is
: + 1 ‘or ‘Ven and

odd positive rls. If Rev z 1, one obtains from (3.1’5)‘thefollowinC estimate

Therein ~+”=1,2, 3,.. . .A correspondingestimatemay
Since the singularpoints of the cylin&”icalfunctions lie at

be obtained for r =

(3.15)

~ for

(3x5).

~
-1, -2, -3, . . . . *

o and-co, the function - -
E

(3.17) ~
m
4=
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is in every closed domain, excluding the ointe O and m,
restricted (consideredas a function of ?) ● the upper limit does
not depend on r. If ReV <1, this relation is valid,at Lqast

‘ 2.; A correspondi.n~,,~et~.wtefor””such r’s for which Re-@+.T) =
is valid for negative r’s.

40 THE X-FUNCTIOITSOF THE FIRST AND S3?CONDKIND

J.l Definition of the X-Functions of the First and Second Kind

Since for 7 = O the }asic equation (2.J;g)is Joined to the
differential equation (3.1) of tho general spherical functions, it
suggests itself to develop the uolutions of the basic equation in
terms of spherical functions. One f’or?nulatesthe two at f~ret
formal series

r=-w

(4.1)

(4.2)

r--..~

and attempts to determine the coefficients
‘#

(7) and the index v
v,r

in such a manner that these two series formally satisfy the basic
equation and converge. The further problem will be to investigate
the convergence properties of the two series (4..1)and (4.2) in
order to determine thatt for the two serle~, one has to deal with
~lalytic functions whtch, in general, are linearly indepe~d-ent
~olutions of the basic equation.

For the coefficients a~,za(7) the indices v,!land the argument 7

will be omitted where there Is no danger of confusion; the same
applies to the coefficients to be introduced later for series
developments of’a similar kind. The summation index r assumes only
even values. The term with r = O in the two series (4.1) end (4.2)
is designated as the principal term of the series. In the solutions (4.1)
and (4.2) of the basic equation ~ artitrary constant factor remains
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is denoted as X-function of the ~ir~t kind and the series (4.2) as”
x-function of the second kind.Wjtll‘thearg~ent ?j and ~~iththe
in.clicesV,V vith the parameter y. It will be found that the index v
is determined ky the separation parameter X; more accura.tel.y,
there exists a functional relation between h, V, V, and y
~>hichis expressed by

x = ~“(7) (4.3)
v

The series (4.1) and (~L.2)are now inserted in the basic,,
equation, the differential quotieuts of the wpherical functions are
eliminated by rnearmof the differential equation of tinespherical

E2 of linesnherical functions isfvactions (3.1}, anclthe factor . ..
eliminated by application of (je~) . Then there a.ppearflan infinite
sum oi’syherical functions with coefficients independent of E which
is eqllal-tozero, The disappearance of ‘theindividual coefficient is
sufficient the conditional equations

(r=O, :2, t~l.,. . .) (4.4)

with the abbreviation

-

@ 92(V+~+l)(V’rr)- 21J2-1
r =-A+ (V+r+ l)(V+r) + 7-

(2V ->2r + ~)(2V + 21”- 1)
1

Pr =

9r = ( IJ)(v-l-r-y-l)(:V++2- 1)(2V -:-2r -,3)
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4.2 General Qualities of the Coefficients ar,—,, ,,., . . . ,,.

The recursion fo~a ~o~ tl,le-fioefficients-~is interpreted

as a difference equation. In order to avoid complications, the ‘case
0“ real fractiOna~ ~alue~ of One-ha~ fOr V i.scomylctoly excluded
and the case of real integers for v + p and ~ “ ~, refipectively,

is postponed. Concerning the behavior of the coeff’lcid.m ~ -at

infinity,a simple fozmnilationcan %e obtained according to
&euser (reference12). The equations

.—.—.
l:+s~ yua ::! (4,6)

(4.7)

are val~d.

If the behavior of tilecoefficicm.ts al. et infinity is ~iven

by (4.6) at least for negative or.positive Y*lS,they increa~e too
strongly to make s convei-gence01’series (4.1) :.nd(4.2) possj.ble.
Therefore, a solution of the difference equat;-on(~.t.u.)is to be found
which shows the lehavtor (k.’7)for r—>w as well aflfo~ r--+-m,
Although there alvays exists m e:~actnol.ntionvhich behaves
for r--~-m as indicated in (4.7), thifioolution will in general
exhihit for r--+-~ the behavior (4.6). only for certain distinct
values of the parameter V (f’reeso far), the behavior (4.’7)
prevails for both r~~ and r->-co;
die?tinctvalues of’ X .are’coordinated
Y = O the conditions are partieul.qcly
all rls

1
X-(v+r-kl)(v+r)ar=
.-

iimemehj, in this m&ner
to each value of V: For
simyle. There lmcomes for

o (r = O, :2, t4, , . .)

!l!.hu.sh can, for a $jiven V, assume any of the values (v+,. .tl)~
(V+ r). It is determinedly the requirement that the series (4.1)
and (4.2) ~hould be reduced to the principal term for thi~ case}

L ,-,,,,.,-,-■-,,.,.,,-,..,,,,,-,-,,, .—
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leads to X = V(v -1-l). Now it is further required that

Xp(y) always the value should le understood which goes over
v

-to V(v + 1) for y—>o. The existence of such a distinct L-va].ue
to each ~iven V, V, and c and its uniqueness will not be proved.
here; it follows from the method of calculation given in section 6
for the determizmtion of X.

From here on, the coefficients a; ~(y) will always represent

that solution of the difference equatio: (4.4) uhich flhows
lehavi.or(4.7) for

the
r–-->i~, belon~s to the value ~x~(y), and

therefore has the bo~dai”y valJ.es

lim ar = O (r = i2, ~4, :6, . . .)
y=o

(J.+,8)

Furthermore, the constant faChiL”
cients ~ may be determined in

vhich is a.rtitrai”y
a given manner.

tn the coeff’i-

1~.~~onvergence of the Series Develo:?mentsof the X-Functions

of the I’irstand Second Kind

From the estj..matec(3.6) and (-:.8)as veil es from the boundary
Wil.u.es(l!..~)for r-.>:co there fol.lo~wi.mme~;iatelythat the
ceries (4..~) an(l.($.2) in each closed ?.oaainlwhich does not include
the yoints t = ~:l,m, I:i.11converge atisolutelyand unj.for.ml.y.One
may further conclude that tineseries (4.1) and (k/2) vill converge
as ~wll as tho expo~+entia.lsorieso Since t’heindividual terms of
these series are analytic functions in thifldomain> there f’oilmrs
from the uniform convergence that ~~.e~1.~~sof tileseries tlaemselves
vill a~ain le analj~ticfunctions, the singula.ritlesof lTh~.CYi can.
lie only at t = tl,m, i’u.rbhermorejtlla.tthe series can be di:;-
ferentiate~.tcrmuise, and thcre?~iththe fact that the functions
represented by these series are real solutions of ths basic equation.
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.

4.4 Further Solutions of ’theBasic Equation ail Their Relation

to the X-Functions of the Firet and Second Kind

differential equation there exist, in general, six linear relations
independent of each other, They can be generalized for the X-functions
of the first and second kind, To this end several relations for the

v ~(Y) Yiillbe derived.coefficients ap
? ,“

The system of equations ().I..4.)and the syotem of equa+,ions
originating from it by the substitution Q-+-v-l and r.~-r are
identical becau~e of

Due to the uniqueness of the solution there follows from it

?b”-V-1(7) = X:(7) (4*9)

Furthermore, the
be determined in

constant factor which is arhi.traryin the ar’s can
such a manner that

(4.10)

The system of equations (4.4.)and the system of equations
originating from it by the sutistitutionP-+-w %ecome identical

if one introduces in the latter instead of the a-~ 1s the values
V,r ,

(4.11)

—.— — .—
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They are determined.so mat ho = ao. Wen the equ~.tions,,

l)’
V r(7) ‘a~~r(Y)

(4.12)
)

and

X;%) =A;(y) (4.13)

are valid.

After these yreperations,at first a

~(l)
q (5;7),

and (4.12)

ia valid.

If one

by l~+v(g)

and.(4.ii))

~“w(l).
v (E;7)

relation between X-VQ}(5;7),
v

since according to (4.1)

co-— .-.

(4.14)
~-p(l) “\. #’bv

‘5;7)=<=; ~jr(7)2.;:J?)v

expresses in thj.sequation the spherical fwnction P;:r(5)

and ~~lr(~) (undwrconsidera.tionol?(4.1), (4.2),

the required relation

will .befound-at once.

In exactly the same way there result the f’omz71m3

dq~;y) v= #m(g;y)

-v-l



~-~(2)
(~;y)= e

-2p7rir(v - v + 1) #) (g;y)
v r(v+~i-1) v (4.17) ~

For the last two relationsthe u:pveror lower si~ is valid depenrIinCon whether the
imaginaryyazztof ~ i: yositi.veor negative.

The relations (4.15)to (4.2o)are identical:?ithcorrespondingrelationsfor the general
sphericalfunctions. This was obtainedby the determinationof the arbiti-aryconstantfactor
in the arfs. That determinationis not yet unique; it leaves a certainlatitude. It is
Coiipatible?.tith(4.10), (4.11),and.(4..12)if one sets the coefficientof the principalterm
equal to one; lmt then it -mayhe~~~enfor certain cornlinationsof values v, ~, ant y that
all ~rs ititllthe excel~tionof’ a. become infinitelylarge. Otlherdeterminationsstill

m~~.-
possille within this latitudewouldbe the requirementsthat ~, i~”ai.~ i%r = 1

—.
r--.m r=-

m

or “\— 2V + 1

22V+2r+~ar%r=l.



4.5 General Zelations between the X-Functions

The followin~ general relations are valid for the general syherical
case ~E/> 1

.,

& (Ee‘*i) =e -2(v+l)fii~y(~)
v v

8

functions in the

(4.a)

2 is therein azzinte~er, either positive or negative. The coefficientsin (4.21) and (4.22)
reinainwnchan~ed.if v is re@aCedL by v+r, r ‘beingany even number. TX one replaces v
in (4.21) ad (~1.22)by V + r, ml.ti~lies hy irar ariiforms the sum over all even r
from -w tocu, there is fo-rmeci3ecauseof (4.1) and (4:2)

K
ix)
3=
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These two General relations which
in thecase 2 = 1 tr~sformed not to

21

are valid for IE[>1, are
q~C+~ (4119)_and (4020);

~@i , nsmely, represents in (4.23) =d (4.24) an increase of the
ar~ent hy ‘;, ~~here’byunder certain conditions the %ranch cut
may be passed, whereae the argument of -~ in (4.19),and “(4.2o)is
obtained hy choosing such a yath from E to ‘g that the branch
cut extending from -Q to 1 will not le yassed.

5. ‘IHEZ-FUIVCTIONS01’‘THEFIRST TOFOURTHKIND

5.1 Definition of the Z-l?unctionsof the First to Fourth

If the two extra-essential singularities of the %asic equa-
tion (2.4g) are made to Join, as indicated in section 2, there
originates~ aside from an elementary transformation,Besselts
differential equation. It therefore suggests itself to attempt a
solution of the basic equation also by series developments in
terms of cylindrical ffictions. The f~ctions
(which are at first formal)

defin=d by the series

r(7) $V+r(g) (5.1)

cm

r- co--

are defined as Z-functions of tilefirst and second kind. In these

series lag, ~i < fi; ar~ C2 ’272 = o, if arg[2 = arg y2.
t

Substitution OF these eeries into.the lasic equation (2.4g) (it is
best to insert it into the transformed form (2.10) of the basic
equation), elimination of the first and second derivatives of the
indices $~+1? ~~-r by means of (3.10) and (3.11), andand n

2 by means of (3.12) leads finally,removal.of the denominator ~
exactly as in the X-ftictions or the first and second lcindjto a
three-te-zmrecursion system for the bw~ r(Y) ● It agrees with the

recursion system (4.1) for the a~ (7);- if the v there is
v,r
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replaced by -v. The solution of tie recursion system differs from

the indices bv (7) defined in (4.11) only by a constant factor;
v,r

this factor is selected to
formerly found between the
in (5.1) and (5.2) and the
assumed also in this case.

As Z-functions of the

equal one. Therefore the rel-ation(4.3)
index v of the generating functions
separation parameter h has to be

third and fourth kind one defines

(5.3)

They have
Z-functions of
functions.

d-fb+~;y) = ~~l-dq[;y) - iz~(2+~;y) (5.)+)

the same relation to Hankel*s functions as the
the first and second kind to Befisell~and Neumannfs

5.2 Convergence of the Series Developments of the Z-Functions

of the First and Second Kind

Itmwtnowle demonstrated that the series (5.1) and (5.2)
converfleuniformly in a certain domain. One staz-tsfrom the
estimate (3.17) and.from the boundary values (4.7) which are also

valid for the bv . There results
v ,r

fi

—.. ..-—
Mm Sup r afrzvfr S“Y..L
r–..>m c M

(5.5)

The convergence is uniform. Thus %he series (5.1) and (5.2) con-
verge uniformly and absolutely in the entire Gomain 1~1 >1 with
the exclusion of the inf’inttelydistant point; they represent
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therefore analyt$c fwctions} can be differentiated any number of
.tiqeqtermyise with reqy?qt,t? .~l,andsatisfy the basic e:uation.m.
Only in special cases these series converge also for g = 10

5.3 General Relations between the Z-Functions

The transition to,various function branches over the brsnch
cut from -W through to 1 is made poss~.bleby the genera}.relations.
They can be obtained corresponding to the case of the X-functions
from the general relatlons valid for the separate series terms,
thus for the cylindrical fvncti.on~. (CompareMagnus and Oterhettinger,
elsewhere.) They read for }Cl >ly~ that 1s, 1~1 R 1

(5.6)

)
L q(l) (g;7) (5.7)
2

sin 2(V+J)fiI&(3)(~ j~)
~:(~)(e2:igj7) s ~-zfli/2 e(v+l/2)fli

()1 ‘v ‘sin v -!-- n
2

)
sin(2-I-l)(v+*fi

+ e-2tii/2

()
1

C!I.W(<;7)

sin v + - m ‘iv
“2

(5*9)

—



5.4 AsymptoticDevelopments of the Z-Functions

In order to obtain asym@otic develqyaentsof the Z-functionsfor
itself to insert the asymptotic developmentsof the functions vv+r(~)

and (5.2) and tiiento interchangethe summations. Since

!!! >>1, it suggests
ad ~+r(c) mto (5.1)

1

+ o(lgl-M) (5.10)

(-Jc<arg~<2Yt and -23r<arg~<z for the
abbreviation

—

upper e..miloirersign, res~ecti~ely)where, for

(5●)

there results in this mamner

(-fl<wg$ <271 mil +A.eu~per siaa

for %p-(k)(~;y)).The coefficients
v

c(p)

(5.12}

C(p) are defined by the absolutely convergent”series

co

>(

—’
= V+r+2

)
*,P irb~,r(y) (5.13)

r---@

E!



I
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This derivation is not accurate since the asymptotic develop-
ments (5.10) are furtier dependent uyon the condition Igl>> IV + rl,
and this condition is not satisfied for all Qevies terms of equa-
tions (5.1) and.(5.2), ree~ectively, since the swnhas to be formed
over all rts from -~ to w . The fact that the O.eveloyments(5.12)
are valid nevertheless 5.sdue to the behavior at infinity of the brts
(compre equation (4..7))according to which thc3 series terms with
sufficiently large values of r do not contribute noticeably to *
the z-functions.

Equation (5.le)”isproved as follows. .

According to general theorems on the asymptotic behavior of
the solutions of homogeneous linear differential equations, the
coefficient of which are polynomials, one obtains asymptotic series
for the solutions by going into the differential equation (~.4g)
with a formulation of the fonu (5.12) and attempbs to satisfy it
fcrrmal~. ‘I’hisyields for the yresent ca~e for the coefficients C(p)
the four-term recursion system

1 1(p + l)c(p -1-1) + ‘(p+ l)p + 72 - (c(p) +472(V + p)c(p - 1)

+ 472(~+y)(v+p - l)c(p “ 2) =0

C(-1) =C(-2) =0$ p =0,1.,2, 3,B.o (5.14)

from which they can be calc~ated recursively. This recursion
system, however, is satisfied just then when the ~eries (5.13)
are rmbwtituted for the coefficients C(p), This substitution
leads after slight transformation to



a)

z irb:,r(7)
{

r~

[ 1(~+r+l)(~+r)+y2-X

r---~ ~(V-~i”-p+l)

r(v+ r+.

[ 1)‘J- l)47?p(v+ P) (v-1- +r+l)(v +r). +(~i-l) (p- 1) = o (5.15)
r(v+r -3? +3)

for p = G,1,2,3, . . . and these relations between the IIrts can be simply derived

by multiplytngequation (+.4)by irr(~ + r+ p+ 1)/F(v+ r - p+ 1), by fomng tie sum
# (y) by bv,r-~ to ~, and finally replacing IL by ‘V “andtherewith p (7)”over r from v,r

Thus ‘be asymptotic series (5.12}with the significanceof the coefficients C(p) given
in equation (5.13) are actually aww~otic so~~tio~ of the %a~i~ eq~tion (2.4g); it W now

+ asymptotically those solutionseasily understood that they re~resen.
#(3,4)

(!;7)●

v

In a special case the developments (5.12) are even converge%: then namely, when v is a
real integer = n= Them%he series (5.10)are broken off; the functions Vtir({) ~d nn+r[g)

are
can
the
One

the

elementaryfunctions. Since the series (5.1) end (5.2) converge uniformly, the suutnations
%e exchanged after substitutingequatton (7.10) in equations (~.1) and (5.Z); therefore
series (5.12) are ‘convergent.T.neirdomain of convergence is ~gl > lj that is> 1~1 ~ [71’

can also easily r&ierstandwitk the aid of equations (6.6) and (6.7) that, for y >n,

coefficients C(p) are of the order of magnitude 7a, with a being the smaller one ~
of the two even
and p+n+2.
series (5.1) of

numbe$s smong the four
For the case when v
the Z-functions of the

positive numbers p - n, y - n + lj P + n + ~Y
and N are ~08iti~e integers ~~d. v~~~(), the

first kind converge for all finite ~.
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!5.SFurther Solutions of the Basic Equation and Their R”elationto
–,. ‘.

tie Z-F&ctions’of the First’and Second Kind

It is i?mnediatelyclear that with the Z-functions ZvP(l)(g;y)

‘P(l)2)(g;y) alsow(l,@(~;7) ad %V‘(2)(~;y) the functions Z-v-land .ZV

are solutions of the lasic equation. Since there ex~.stonly two
linearily independent solutions of the lm.sicequation, it must be
possible to express all solutions linearily ‘bytwo of them. Because
of the two relations

E (5.16)

n-v-l(C) =“cos WrVv({) - sin V7rnv(f)

there follows ~~iththe aid of”equations (4.12) arid(4.1.0)from the
definitions (5.1) and (5.2)

#u(L;y) = -sin vnZV(l)(<;y) v(~) ~.y)
-’v-l ~ (,,“ Cos Vfiz (5.3.7)

v

~q;y) = Cos vy&Pm(*;7) - sin VJLZI-@)({;y)
-v-l . v

(5.18)
‘v

~-idl#~(g;y) by ZvIn order to express the functions v W(1)(L;7)

~(2)(E;7),and 2 it will be practical to use the asymptotic series;
v

it is sufficient to limit oneself to the first tei-mof the series.
Then there becomes

1
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‘V(3’4)(t;7)The only difference for the a~ymptotic seriee for $3V

is that here av (7) takes the place of bv (7). There follows
V,r V,r

immediately that

w

~-P(i)(g;7)x 1.d+g;7)irbp (y) = Zv
r

ira~ ~(y)
v Vtr

r=-& r- m-. >

(i = 1, 2) (5.20)

By combination of equations (5.17), (~”18)J and (50~0) f’inalQ’~

‘p(i)({;7) of the basic equation can be reducedalso the solutj.ons Z-v-l

.zl.@)
to the two solutions ~ (g;7)●

As f3pecialcases of equations (5.17)

and (5.18)

1

#(3)
-V.l(w} = iJ’fii+3) (E;?’)

1

(5.21)

#d4)(cj7) = -i@-Vfif+(4) (g;7)
-v-l v

should be noted.,

5.6 Laurent-Develo~mentsfor X- and Z-l?vnct.ions

The X- and %-functions were introduced wholly ind.e~endentof
each other. Since they all are, however} solutions of tile~~e
differential ecpation, it muet l)e}ossibl.eto expres~, for in~tance~
the Z-functions of the fj.rstto fourth kind in general linearily by
the X-functions OF the first and second.kind. It I?illappear that
in general the E-functions of the first and second.kind are not
~royor’tionalto the X-functions of the first and the second kind,
res~ectively, Thus, it is not possible to define simply functions
of the first and second kind for the solutions of the basic equation;
it must always %e added whether one is clealingwith X- or %-functi.one-



The problem to express the Z-functionshy the X-functionscan be solved yartly by +
comparisonof the generalrelationse.lreadyknown <or both kinds of functions (4.24),(4.25), e
(5.6), (5.7), (5.8),an~L(’5.9)*A completesolutionof this problem,however, is obtained Z’

in the followingmanner. The series (4.1)and (4.2)for the X-functionsand equations (5.1). E
and (5.2)for the Z-functionshave the comnon domain of convergence 1< 1$1 <m. They even $
convergeuniformlyin the domain bounded by the two circles {51 =1+5 and 1~] =1+19,: ●

where 5 is sn arbitrarilysmall ‘and ~9 an azzbitrarilylarge positivenwber. Since the P
series terms of these developmentsare analyticfunctionsregular in this domain, they can n)

be developedin Laurent-serieswhich converge in this entire domain. ‘Accordingto
~

Weierstrass’sdouble series theorem one may exchangethe summationo~ei” r and the
summationof these Laurent-seriesand thus obtain the X-functionsand the Z-functionsin a ‘
representationby Laurent-series- From the comparisonof these Laurent-seriesthen results
the representationof the-Z-functionsas lineaz.z.combinationsof the X-functionsof the
first and second kind.

The performanceof the transforuationaiiesc~ibedjust now yields, using equations (3.4)
and (3.lb),

m

I
w

x ira~,r(?’)
(2E)-sr(lJ-Fs+-P+q_@rv+s+r

s- m-. -- ( ~’ $x!+”+ “-22). ... . .



~“W-s(y’s~sy+,r - T“: r+ s)
SC-’--~ -—cm”,-- 2 2
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5.7 Connection between the X- and-Z-Functiond
,.—

Due to the equa~.ityof the characteri&tic”6&onen-be’V
ma -V - I, res~ectiv>ly, in eque.tione(5.23) &d. (7.24) or

l.1(1)#(2) CUid %-v-l onequations (5.22) and (5.25), respect~velyj ~

the one hand and

time %y a factor

.—
#2) ~~ I-&m on the other only differ every
-V-3. v

independent of ~ . Thus one may equate

*.1 (1)
(!.;7) =e

(~-f-l)fli&)@d*)(g;7)

“v-1 v v
(5.27)

The various factors, a~ sin (V - p m
!

and so forth, were
~(2)(7) there

p 1Y(7) and- ~v
introduced for convenience. Iktween ~

v
exists the connection

-(@’l)fli ~ p(l)(7)
K V(2)(7)=~~in (V - }L)fle
-v-l v

(5.28)

One further obtains with ‘~heaid of equations (h.18) and (5.17)

f(z) 1~ ($;7) (5.29)

vfiiKv(~)(7)x~(2)(g;7) (5.30)P.(l)(g;y) s e vV(2)(k;y) -I-sin Vfl-zvCos Vllz
v- V

-ff v, ~ are integers, theme relations are essentially
simplified; then the X-f’unctionsand the-%functj.onsof the first
end the second kind, respectively, are actually proyortionalo
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Now the calculation of

that end one may select the
equations (6.22) and.(5.25)
0%tains

p(l)
~v (7) = y“i(

Jdi)
~ (7) is left to

NACA TM No. 1224

be perfozmed. To

coefficient of any power of g in
and carry out.the comparison. One

L,

m—.

. .
+f+f ~rav

L v,r(7)
z’--.&J

—

p(2) 1 -(v+fl+l)l’d~ -2V-2S-2
~ (7)=~ ()

is
K 2 r(v+u+s+l)

al

z
irb~,r(y)

Y’s-”m

(5*31)

(5032)

Any even nunher is to be substituted fur s in equations (5.31)

‘(i)(7) is independent of the selected~d (5*32)s The value of Rv
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special value of s. If one replqces in equation (5.32) v by -V
and s by ,.:s.and then inult~pliesby equation (~.sl),

-w(y) = e(w)Yfi7-1“ f.qy) ~v
‘v

is originated.

(5*33)

5.8 Wronski.’sDeterminant

Wroneki’s determinant of the-Z-functionsof the first and
second kind are defined by

From the baeic equation (2.kg) there follows in the known
way that Wronski ’s determinant of any two of its’eolutions is
proportional to (?2 - l)-l. The factor of proportionality is
determined by substituting their asymptotic series for the
+Z-fvnctioneof the first and second kind; it is sufficient to
limit oneself to the first term (5.19). There results

(5935)

Wronski’s detwmina~lt of the X-functions of the first and
second kind

resultm from ~ by using equation (5.30).
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w%= K;%) #2k)wx
.. .

is originated and.therefore

11w~. -—
7{2”1

(7●37)

(5,38)

Simplifications result for the important special case w = O.
First, one agrees upon omitting the index w whenit has the value

zero, NOT?there is valid b~,r(y) = av,r(y) and further, according

to equation (4.1),

!.

Thus, one can also

because of- &(l.) = i,

write for Wrondsi’s two determinants

x~l)(l;7)x:41;7)
v

(5*39)

(5.40)

5.9 other Series Developments of the Solutions

of the Basic Equation

Niven (reference 1) investigated series develo~ments of the
following form (the functions represented by them are called
~- and W-functions):

#(1) (w;7) = (IF + 72)1’2 W-l ~ irc~ r(7)*V+r(w) (5*41)
v

r---&.j >

—— —
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The relationof the variable w to ,g andg is:

(5.42)

(;.43)

For the coefficients Cr and ~ there results again a

three-term recursion system which can be transformed into
equation (4..4)..If the coefficient of liheprincipal term is set’
equal to ao, the equations

*IJ
ir -Jo)= —————— a; r(7)’

#(o) ‘

are valid.

‘“ (5.44)

(5.45)

I —
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The seriee (5.41) and (5.42) converge uniformly in each closed
or, e.xpremed in the ~-plane:

~~i~=~< 51 ~hrl~~ng ctuwe I~~11 =1 isa

Iemniscate. Equation (5.42) is, as will be shown later, a limiting
case of a general development, which still contains an arlitmx’y
yarameter and which yields as a further limiting case the
s’erie~(5.1) and (5,2) of the %-functions.

One can immediately give further serie~ developments of
V- and W-functions; to this end one has to reylace the
functions Wv+r in equations (5.41) and (5.42) by ~+r, or the

indices v + r by -V - r - 1, or v %Y -p, or one has to make
two or three of these substitution simultaneously. One thus
obtains a total of eight V-functions and eight W-fvnctions, Their
properties will not be Investigatedhere more closely; it should
only be mentioned that all of them also can be expressed linearily
by the -%-functiormof the firit and second kind which is done in
the simplestway with the aid of the asymptotic series.

Whereas the asymptotic series of the s-functions _progresswith

yowers of ~-1, ‘theasymptotic series of the V- and W-functions
one obtains from equation (5.41.),and so forth, by substitution of
the asymptotic series of the cylindrical functions, contain powers

of (~ )/2:72-12 that is, i@ -1)-@ -. According to a
suggestion by Wil&on (referenc&‘()one can now also set up asymptotic

series which progress with Towers of (~ t 1)-1. They have compared
with the series (5.12) a slight advantage intiofaras a three-term
recursion system results for their coefficients. Correspondingly,
for the solutions of the basic equation also developments in terms
of cylindrical functions with the argument ~ ~ 7 = Y(3 ~ 1) may
be given, of the form

where t runs through all integers, the odd as well as the even
ones. v can again be replaced by n

V4t v+t~
and so forth.

These developments will, however, not be followed up here.
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6. CALCXJLATIONOF TEN COEFFICIENTS OF TH8 SEKCES DEVELOIWIENTS

IN .TERMSOF SPHERICAL AND CYLINDRIC-ALFUNCTIONS
,,
..,.

.6.1 Continued Fraction,Developments

The eolution.of the recursion system (4.k) which for r- @
has the behavior at infinity (4.7), can be re~resented by the

,.,.,

convergent (reference13) continuedfraction.

.i=?w[.l>. 1:.. (601)7 prqr+211#r+21- ‘$&+2qrl-41tir42&l.4
ar-2 1 1 ..

The solutlon which
represented by the

has the behavior (4.7) for, ra -m can be
convergent continued fraction

==ww’w” “‘ ““’)
The subrmmerators of both continued fracttons are in each finite
closed.domain of y- and X-values for sufficiently large values
of r in the case (~.l)j of -r in the case (“6.2)smeller than
one-fourth; thus,

,.
according to a theorem on uniform convergence

of continued fractions, the com.-tinuedfrac-tions”’(6.l)and (6.2),
respectively, are in each domain of this kind for sufficiently
large r’s and -rls, respectively, uniformly convergent and
are therewith regular enalytic functions in, y ,and k, since the
individual approxifiationfractions are functions of thj.s kind. For

not sufficiently large r’s and -r’s, respectively, then follows,
that these continued fractions are also analytic functions which,
however, need not in every case ~,ereglflar, : ‘“

A solution of the :recur~ionsystem (4.4) has now to be fou.hd
which shows the behavior at infinity (1.7) for r+ aJ as well as
for r-+ -~. Then the value of ar/ar-p calculated fyom .,

equation (6.1) must equal the value of this ex--resaio~ca~cm”ated ~~ ‘. . .

..’ ,.
.,,

. ,.,.,..
4,,,.“

. ‘.
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from equation (6.2). An equation results wh~ch for given v and 1A
allows calculation of the separation” parametier h ak Q function

ofy. lfyand X- V(V + 1] both are sufficiently small, the

solution 2?(7) is a regular analytic function of 7 which

assumes for 7 =0 the value V(V + 1). Thus the A;(7) as well

as the ar/ao can be developed in power series in 7 with non-

vanishing radius of convergence the magnitude of which will not be
investigatedhere more closely.

6.2 Method for Numerical Calculation of the Sep.ratdon ‘

Parameter and the Development Coefficients

The representation of the coefficient ~ by continued

fractions is also for lar~er values of 7 still particularly
suitable for the numerical calculation of tie separation
parameter X and tine arfs. Mostly v, V, and 7 are given,

Then the values Pr} qr) and @r+x can be calculated

numerically from equation (4.5)0 One sterts from a value for X
which is assumed as close as possible to the actual value and
calculates for a selected fixed r the expression ~+z/~

from equation (6.1) as well as from equation (6.2). Then one
repeats this calculation with a slightly altered value of ?.,and
examines whether thereby the agreement of the two values ~+2/ar

is improved. By further variation of L one can finally obtain
an agreement of arbitrary accuracy. Therewith one can find the

value X~(7) with any desired accuracy.

One more investigation has to be made: whether the solution
thus found for 7 = O goes ovei continuous~dr into v(v + 1),

that is, into A;(O) and not perhaps into ApV+*(0); for X:+2(0)

also is a solution of the yresent problem as can be recognized
from the fact that equations (6.1) and (6.2) contain the values v
and r only in the combination V -f-r, This question cannot be
decided unless one has already a general picture of the

functions A;(7) as it is given in figure 1 for v = 0, V’S that
2!s0

are integers, and real 7
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~enumier of terms of the continuerifractions (6.1) and (6.2)
to W Included in the calculation corresponds to the desired

m—% -.

/, acckacy””, Y’orlarge ‘“lrl t~ep~tfalfrac*iOnS ‘74Prqr+Q/Pr@~i

assume the order of ma~i.tude y4/(16rJ); thus the index- r’ of
the last partial fraction to be included.will have to be selected
at ~ rate larger than 17}/2.

~ r(y)’s is made by taking the ,The calculation of the au
,

value found for 1~(7) as a base, and calculating ar+2/ar from

equation (6.1) and therefrom ~2fio~ ~“4/ao, s ● ●

6.3 Power Series for Separation yarmneter

and Development Coefficients

For the numerical calculation of the separation parameter and
the development coefficients one can for small values of 171 make
@ood use of the yower seriee developments in terms of 70 If one
limitm oneself in these to the first terms up to the fifth power

of 72, inclusiv~ one obtains, in general,still quite useful approxi-

mations up to about 172} = ~. Therefore, followin~the power

series for the X~(7) shall be calculated explicitly to 710,
Q

inclusive, for the ~/a. to 7“, inclv.sive. Therewith one more

series term is obtained than bJ Niven (reference1); compared with
Niven’s cumbersome treatment, the calculation is essentially
simplified.

For the limiting case 7 = O there follows from the recursion
system (4.4)

~~(7)+(v+r+l)(v+rj~=o (603)
1- r

The case where all

only to identically

Thus there becomes

.

ar disappear ~.snot of ~terest since it leads

disappearing solutions of the basic equatione ,.

k~(0)=v(v +“1), +=0 for rj140.
,“

—.
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.
For7=0 all

M.miting values.
the conclusion.

ar _
a
r-2

@r” with the.exceptionof @o have nontisappeari%

From the continued fraction (6.I.)one can draw

2
7qrl+o(74) (r=~,4,6, ...) (6.4)
-?-[r. 1

and from that-further
.,

a
r

q2q4*”q
—= 7X ‘F + 0(74il

(r = 2,4, 6,,..) (6.5)
a. fJ2f14. i . #r

If one
well, there

a
r—

a.

takes the next partial fraction into consideration as
results as the next ayproxirmtion

Accordingly, one o~tains

r
ar .r ~-2i~-4 ● ‘ ● Pr

(

q-21?-4 q.41’-6~
—=

7 fi$fi~”~ ,
-—

1 + ‘4 ~:~@~ * $-4$-6 “ “ ‘
a. L“

-, ,.

.) J

~rPr&2

+ ~l; + 0(78) ‘r = ‘2’-4’-6’ ‘ “ “)
(6.7)

One now substitutes ~/a. from equation (6.6)

from equation (6.’7)into the equation r = O of’the
system (4.4) and-obtains

k.nd a-2/a.

recumsion
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“%J+-*P4*I+”(78)-” ~“
This eqv.attonpermits the calculation of ~~(7) as power

series in terms of 7 up to the power 710, inclusive. At first

one can see, by havin~ 7 approach O, that 00 = 0(74) ● Therewith,

however, @r also is lmmwnfor any r with the exception of terms

of the second and of higher powers in 72. If one now inserts @r

in this approximation on the right side of equation (6.8), 00

becomes al.rea&~correct up to the third power in 72, inclusive.
If one repeats this procedure with the new values of the #r which

G inclusive, there results finally @o andare correct up to 7.,

therewith AP(7) exactly UP to 710, inclusive. The performance
v

of this calculation as well as the calculation of the ar’s is

not particularly difficult, therefore the results arc given
immediately.

In order to make the representation clearer, the following
abbreviations are introduced:

(6.9)

where

Dr =

ar =

r(2v+r+l)

,1

(6.10)

2(4v2 - 1)

(w + 3)(2V - I)(&V+ 2r + 3)(2v + *r - 1)

%% %2%+
l?p=—

P@* P..49.2

D2 ‘
r4 = —, P-2=— 2’-4=—

D4 D.2 ‘ D-4
(6.11)

,.

.,
..,.: .-
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i+p 5JAt = ~t$52 .2 -.

Pa 2-2
‘i = D~

~2i + —
D.2

6.21
-’

%2% ~ %%4——-
c=~ D.2

~ = 0,1)2,...

Then there becomes

2 2

~:(7) “V(v + 1) + 72 *V + ~~ - 2U - A074 + P,ly
6

(2v + 3)(2v - I.)

- 2AOB1 - BOO.l+

r-

(-I-AOBO - A2 -
1

C)78+ A3

p,”2~-425
+

( .2+ 5-4]7~o + ~(@2)
‘-2

(6.12)

Pf-$4

( )y- 252 + 84
d.

(6.13)

f=,’~:~-y’(%+f%)
( )]P4 - A. ~6 - A.

+7482%284+642+7+ —
D4

-I-0(710) (6.I~)

—--—.-.,—.-.. ....—.... .... .. ... . ... . .. ... # ,,, , .,
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& 1- [(%9J)%# ~ ~
.-, .... . ... 172 52 +,.~4+ 56) + ,O(YIO) (6.16)Q6 D2DiD6 . .

%3=q2q4q6g8,y8 +o(y101 ‘
.,, , a. (6.17)

D2%~6D8 -.
...

,’

a-6
[(

76 P-2P-42-6 ~ ~—= —-
D-2D.@.6 )1- Y ~+ + 5-4 + %,a. + O(ylo) (6.20)

~ . y~ ‘-2P-4p-6p-8

D-2D-4D.6D-8
+ 0(710)

ao
(6.21)

For the case excluded-above where V has fractional values of
one-half,the conver~e~ce radii of these sertes equal zero. It seems
therefore Trobable that the convergence radii are functions of v
~Thichcan be itiinitely large for special cases, but not in general.
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6,4pol?e~se~j.e~Developments

Since occasionally power series developments of the solutions
of the basic equation (2.4g) also can be useful, they will be
briefly discussed.below.

One can of course obtain them at once by substituting in the
8eries (h.1) and (4.2) for the X-t’unctionsof the first and second
kind.the known power series developments of the syherical functions
in terms of powers of ~; one thus obtains yower series for the
solutions of the basic equation which converge in the circle }~1 < 1.

The problem of the Laurent-series for 1< 1~1 < m need not be
discussed further since they are already calculated in equations (~ox)
to (5.%). However, one can obtain these developments directly?
Therewith a newrnethod for +&e calculation of these functions and

~articularly of X:(7) is found.

One starts from
written in terms of

the differential equation (2.10) which is
~ rather than of ~.

For the integration one tries the statement

(6.23)

Then there results for the gs (the indices P and v aS well as

the argument 7 in general are again omitted),the th.i-ee-term
recursion system

,,, ,.

!’.,,.’ ,.,’
.. ’.,. . .

.
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(v+s-
.,

~ -1-2).(V+ s’- ll+l)g~+2”’” ‘“’.”” ,,”
,, ,,

-. . ,

(S RO, t2ft4, ,.J, ,, (6.24)

,

There exists a solution vith,the behavior at infinity 2+2
#3e.~ #

&!~
f,o~.s + co and a solution with the behavior at infinity —.-+ 1

GB.2

for s+- co. The quotient of the two solutions i~ independent of s
only then when k asmmes certain distinct values. As one can see

by.comparing with equation (~.ps), these are just the values X~(7).

From the behavior at infinity of the coefficients g~ one can

conclude at once that the series (~,Es) converges in the
domain 1<” Itl <m.

If one substitutes W equation (6.24)for the coofficienim g~

the coefficients calculated alrea&j in equation (5.2.s))there results
after elementary trtisformations

:.

m

2 ~ra~,r(Y)

,( ){(2v + r,.
r-v-

)(
~+.$r2+r~

r=-m , 2

i-f3- l)(2+’r-
[ 1s~(v-tr+l)(v+r)-%

.1. “’”’

-#&-l-s-~-l )(v+sl- p) =0

,.

(s =0, :2,’t4, . . .) (6.25)

These relations can be

numerically calculated

used, lilceequation (~d~), for the control of

values of the av (7)0
v ,r



. ... .,,,

46 NACA TM ~~0.1224

The recursion system (6.24).is, except for the case of V,W

being integers with v~vl>o, proba%ly less suitable for the

numerical calculation of the ,x.:(7)ti~ymthe,continued fractions (6.1)

(6,2),

Ordinary power series with increminfl lowers of g result
the solutions of the basic eguation if one sets equal
=g-b=a. . . = O and requires go = O*

Then there results for V the determining equat~-on

(v-~) (v” p-1)=

Therefore v has here a meaning different
far. Zhe behavior at infinity OY the gs

o (6.26)

from the One it had so

for s--+-m is simple:

all of thew disav~ea~;. The behavior at infinity for s —+m is

&& ~2
given hy T-----+1 or —>%. The first case is the standard

&s+ .. d-
case; the power se~ios converges for }Et <’1.

for V and v
the ~~~~~~~

being integers ~~ith”
solution of the %asic equation, . - “
the power series then converges for all finite

The second case is,

o, realized for a
of +ke first kind;
5.

It will be best to make the numerical calculation of the
coefficients of these ~oyer series which are convergent in the

unit circle so that first X:(y) Trill be determined according

to the method given in section 6.1, or, for smaller values of 7,
from the series (6.13);the coefficients gs can then be calculated

from equation (6.24)forcach of the two v-values given by
equation (6.26). A special %ut simple problernwill then be left:
how the two calculated power series a~’econnected wi-ththe X-functions
of the first and second kind.
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70 EIGENFUNCTIONS OF THE BASIC EQUATION
.=

“-“Til Liiiitatfon’”to“ti;v ‘Being Integers; v~’[Pl~o
,..

The determining factors for the’”eigenval~?esof the separation .
~arameters h and M and, if occasion arises, of the wave Coef-
ficient k, are the domain of space which %7astaken as a basis..
and the boundary conditions on its boundary- This %roatZse is
limited to the most im~~rtant type of eigenvalue problems of this
kind.;for them the domain of space lies either within an ellipsoid
of revolution, or between two confocal ellipsoids of revel.utio~or
outside of an ellipsoid Ot revolution. The first two cases will be
called problems of inside space, the last case problem of outside

space. The entire domain -1.~ q S 1, 0 S p~ 2fi becomes then
effective for the two coordinates q and V. Boundary conditions
in q and ~ do not apyear then; they are replaced by the require-
ment that the wave function for n = ~1 remaine finite and that it
is ~inglevalued, that is, that it has the seinevalue,for ~ + 27(
that it has for ~. The latter requirement J.cadsto w’s that are

integers, the first one to VIS that are integers v ~ IV ~ 0.
That the X-functions of the first kind rematn finite at the points
n +1 follows directly from the series (4.1) by talsingthe=.

this case, as a basis,

Following$ n will always %e ~~itten for V and m for p
where v and v are real integers; for the present, nzm>O is
assm<ed. The case of negative r“ts,the absolute amount of which

= n, is then obtained at once from equations (4.1!5),(L.17),
~d (5020)0

The calc~ation of these special functions was practically
settled emongst other things in the last Sectic)nsj even the@ it
was assumed there that neither v + p nor V - B are integero,
almost all results can nevertheless be taken over as simple limiting
processes demonstrate. Only a few particularities result, compu?ed
with the general ca~e; they will be discussed below.
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7.2 13reakingOff of tb~ Series

If qrt = O for a positive rt 0?? prl = O for a negative rf,

the ~’s break off to the right or to the l..eftjthat is,

for qr, = 0; r’>o: ar, = art+2 =arl+4.= “,” ● =0

1

J

(7*1)

for yrt = O; r’ < 0: art =ar!-2 = art.4 = ● ● ● = Q

is valid which follows in the simplest way from the continued
fraction developments (6.1) and (6.2). These.cases occur when v -V
is a positive inte~er or ghen p +V is not a negative (Sicl) integer.

Since it was preswaed O = m ~n the first possibility does not occur,
but the second one does a].yaysoccur, that j.e,for all admissible m,ni
Here again two cases must be distinguishedwhich are both originated
from Prt = 0:

n+ D+ 2 = -r’> O orn+m+l= -r’> O (7.2)

In the first case m“: n is an even number,,in the second~an odd
numler; ar,+2 is the first notiv.anishinga.r. For the br’s there

follows from equation (4.12) that.they disappear for all r $ r’ + 2m.

Further, all &’m (~) disai>pearfor n+r =-m, -m+l, . . .m - 1.
n+r ,.,

The developments of the X- and-%fvnctions of the fi~st kind begin,
therefore, for n - m = even with “’
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end fern-m= odd

... .—., ,, ,..

~m(l)
~ (E;7)..=

W%th

m m-n+l ~m
a i ‘
n,rn-n+l ~+l(E)’

+ am
n,m-n+s i.m-n+3g&3(6) + ● ● ●

m(1)The series for *Zn (g;7) converges for all finite

49

\

(7*4)

$. The

corresponding formulas for the +Z-finictionsof the second kind result
if the functions ~~ +r({) are rePlaced ~Y nv.~r(~)s Tiledevelopments

for the X-functions of the second kind show a special %ehavior. The
spherical functions of the second kind belon~ing to “thevanishing
coefficients arI) arl-2, . . . become infinitely large in such a

manner that their products have finite ltiiting values. The

~ ~(y) are defined bycoefficients a

-----
J .

for m = 0, 1, 2, , ● , and V+r+m--+ -l, -2,... (7*5)

Then there becomes

a~,r(7) = Mm (-l)m+n+lr (1+ v + m)l’(-v-m)a~,r(7)

for m = 0, 1, 2, . ● , SndV+r+m~-1, -2,... (7.6)

IL–..—– .-. -. –
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and the series (4.2) reads

The series (5.41) for fl(z)(w;y) breaks off only when n - m&l
is an even number; for odd values of n.- m the coeffic3.ents c: r(7)

w.O If rsr’
Y

have the indefinite value with finite lirn$,t,ing

value. me series (7.42) for l~(1)(v;7), on”the other hand; breaks

off only when n - m is an odd number; for even values of n - m

n r(7) hive the indefinite value @.0 withthe coefficients dm

Similcw conditions exist forfinite limiting valu~ if r ~r’.
the other V- and W-functions.

‘. 7.3 AFew

From the series (5.1)
for c=O

Special 11’unction’Val.ues

one obte.inswhen arfl“(C2- 1) =Y’t

f
-.

11

‘!~~im(y/2)m@ .1n,m-n(7) @ + m) for n - m eien
#1 (1)
- (O;y)= L“ (7.8)11

for n - m odd

J

{

o for n
d#%;7) =

1

- m even

(7.9)
d~

I
~~ im(7/2)m %: m-n+l 7) r ~ + m for n - m “odd

) ((2)

,,, ,
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,The X- and%-functions of the first kind exe for the
Index values n end m considered here either even or
Oda functions of 6 or .g} respc~iveW} accord% to*-
whether n - m is an even or Oaa value. Furthermore, because

of C#eos e + i*o) = (-i)%g(cos e) -’gz:b Q + i“o) there ‘8

1 +%0;7) for n - m evenfl(2)(oj7) =-~

n

dxy2b;7)-h,dxpkw)—=
2

for n - m odd
d~ dg

(7.10)

(7.11)

‘M =-[&’:).j2‘Orn-meven(7m
dzm(2+o;y)

dU(o;7)7%n

.,,, ,,
.

n “ =IY’%.il’&m(l) 0.7)
for n - m odd (7.13)~m(2) (0;7) ~

n

with

. .

Therefrom the -Z-function”of the second lcindand its derivative
respect to tJ for ~ = O can be calculated at once.

7.4 Connection between the X- and -~-J?unctio~

If V,V are integers, considerable simplificationsoccur in
the relations (4.15) to (4020), (4*2h), (4Q25), (5~6) to.(5;9)>
&:;;;&l;J:d(::~ ● They are so obvious that they need not be

Equations (5.29) and (5.30)now ass~e me
simple form

l—
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~m(i)
‘%)$(i!(5;7)~ (g;7) =J$n . (i = 1, 2) (7.14)

,’

‘(1)(7) stmplw expressions can he obtained if sFor the Km
AA

in equations (5D31) and (5.32) is selected in a suitable manner.
The same expressions, however, result in an even s~mpler way if
one substitutes in equation (7.lh) and in the derivative of this

,, eauation with respect to ~, r~spectlvely, tie ~lecial value ~ = 00. —

‘(i)(o;7)/dE,
m(i)(o;7) w.d %

If one expresses -%n respectively,

according to equations (T-e), (?.9}, (“(~lz)j (TDM)~ using
equation-(5.13),there origina~@~.’forn - m = even

-1

~m(l) 1 1/2 im ~ b;m.n(7)
~ (Y)=~

)
~2r .fl(l)-(0;Y)r(” + m

11

.:. .;., . ,,

..

~m(z)
n (?’) ‘-fi

-1/2i-m Zm-1
()2

., . .
and for n-m=odd

m(1)
Kn (Y) =&l’2 im@)m+l

,.,. . .
,,~.

,:. .

-m(1)
% (O;y)r(? - m)

m
a (7)
n,-n-m

..”.

. . . . .

7

I

(7.15)

b (7.16)
I

-m(l’(O’+’r(?-‘)an
~m(2)~ (Y) ‘-fi-1’2‘-m@)m-2m

an,-n-til(7) -
I
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BY #1)(o;7) ~a ~~l~(o;~)/a~ the value,sof these
. . functions are mnderstood,whiph,~pptit’~hen ~ goes towards zero

from the positive imaginary half’plfiei “:

The d&binction between even end odd n - m can be’‘avoided.

53

if one sets} for instance,
*lU(i)

s equal zero in calculating the ~ (7)

from equations (5.31) smd @.32); the formulad (7.15) and (7.I-6T,
on the other hand} have the advantage of greater simplicity.

7.5 Normallzatlon andl%opertim of Orthogonality of the

X-Functions of the First Kind .,

The eigenvalues of the basic equation X:(7) are almys real..

PrOOf of it is given in the known manner. Equally Bkply it can be
m(1)

shown”that the functions ~ (E;7) =e or~ogo~~ to each o~er,
that isj

(7.17)

is valid for n + n’.

By fntiertingthe series (4.1) into (7.17) one can also express
this property of orthogonality for even differences n - n’ thus:

OQ

“z a~,j(7)b~;,r+n.nt(7) $jri+ & * ~ = O ‘“for n + n’

r=-.x

(7.18)

For the normalization integral one obtains

J
1

‘:(1)’;’)%(1)’;7)“ =84+2‘a~,r(y)b~,r{y) (7.19)

-1 y=-w

m,,m.mmmm --- ,,...—-—.,.,.,., ——---- ... . ..—
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7.6 Generalization

In the case u = O

equation (2.4g) which is

the inte@?al

NACA TM No.

.:; ,,’, ........
“i”of F, ~~,~~pq s Integral Relat~on

,,,,,

1224

.—h. .-

. .
one obtains a second solution of the basic

(ll(tj;y] in the form ofindependent Of .X
n

(7.20)

u-l ‘

The fact that this integral actually represents a solution
of equation (2.~4g)is confirmed by substitution* The calculation

is reproduced in detazl inBou7~~p (reference 10)” For l~ge ~~
t and ? in the denominator of the integr~d c~cel- in first
approximation and.one can see then at once that J(g) is proportional
to the%-f%nction of the fourth kind. The integral over t can then
be evaluated according to equations (~.20) and there originates,
because of equation (5.12),

According to equations (’i’.8)and.(S.ss) the -Z-fvnctionsare now
converted to X-functions. Becauseof equation (5.39) there results
finally

Therefrom results for
between syherical functions

Y = O F. E. Neumann’s integral relation
@ the first and.second kind.
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7.7 Zeros of the 131genfunctions
k-- ,-----—--—-

For m> O the zeros of the’basic equation are situated
at g = 21, respectively, since they there have the

behavior (.)/62 lm2. If one divides the eigenfvnctionsby this
expression, the quotient does not have”zeros at ~ = ~1. In order
to understand this, one need only enter the basic equation f2.4g)

with the expression (6 ~ l)m/2 mu).t@ied.by a power series

in ($ tl). The zeros of (,2 . I)-m/’ fl(l)(~;y) are all .impl~;
n

if”they were not simple, all higher derivatives of the eigenfunctions
would have to disappear there also. Since it is, however, a non-
identically vanishing analytic function, this case can never occur.
Further properties of the zeros of the eigenfunctions fol~ow from a
simple consideration of continuity: namely, that in a nonsingular
point of the %asic equation a zero cannot be newly originated for a
change of . . .% and an already existing one cannot vanish. There -
with the probl~m of the number of the zeros is essenlxlallyreduced
to the problem of the number of zeros of L&endrers and their
associated polynomials and of Besselts functions with an index of a
fractional value of one-half.

One deale first with the ~(1) (E;7) with real ~ and y,

that is, with the eigenfunctions of the prolate ellipsoid of
revolution, All zeros are real; for this is valid for y = O.
If, namely, for a change of y a complex zero would originate, the
conjugate-complexwould originate along with it; but it contradicts
the simplicity of the zeros, that a real zero spli-bsinto two
complex zeros. The number of the zeros in the interval -1 < ~ <+ 1

equals n - m, that is, the number of zeros of l?~(~) in this

interval. The zeros outside of this interval go over into the

‘e?os ‘f ‘n+l/2(7~) for 7+ O; the asymptotic distribution of

the zeros for ~arge G is the

for arbitrary 7.

For the eigenfunctions of

lution ~(?;i7) with real !l

situated in the interval -1 <

same as the distribution of Jn+-1/2(73)

the oblate ellipsoid of revo-

~a 7 also n - m zeros are

5 <1; but now the remiining zeros

*~anslatorts note: . . s missing in the original*



lie on the positive and negative imaginary semiaxis of the complex
asymptoticallyas well as for y = O with those of Jn+l/2(iyg).

7.8 .lntegralEquatimmfor the Migenfunctions
.
The most ~importaatintegral equation

derived from the known rwlation

,,.

E-plsne; they agree

for ‘theX-functions of the first kind is

If one writes 7~ for z, replaces n by n+ r, multiplies by ira~,t(y) ~d
,,

forms tilesum over all even” i, “thereresults
.. ..

Equation (7.24)’is a homo~eneou.slinear internal equation of the Fredholm type
for the X- and-%-functionsof ~he first kind, res~ectively,with.the s)pnmetric

kernel ei7gn(l - v’)(1 - ~2). If one reglaces in e.ccord.antewith emmtfon (7.141the
-Z-functionof the ffrst k~nd’by the X-fun~tion of the first kind, on; can see’that

nl(l.),
the connecting coefficient ~n (7) in this integral equation plays essentia~y

the role of the eigenvalueparameter.

“(7.23)

. .

(?.24)
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The inte@&l’&juation (7.24).can.be generalized. By eelecting
another path of integration one can, for.indanc”e, iilso”e~rees the
Z-function of the second kind (that is, abo the X-function of the
second kind) by en integral over the X-function W the first kind;
furthermore, equation (7’.24)can be generalized to-the case of
arbitrary v >1.l,y● However, the respective recn.il.tsshallnot be
discussed here. ,Koteni (reference8) indicated a general principle
for obtaining more general integral equations for the X- and
Z-functions,respectively. ...

Integral representationsfor the X- and+functions have not
become known so far. It seeme that the integr&i equationaof the
type (7.24) or of another kind also can be substituted for them and
replace them; thus equation (7.24),for instemce, repre~ents a
very useful starting point for the investigation of the !l.-asymptotics
of the X-functione of the first kind. The integral equation (7.24)
can perhaps also be applied when the valuee of the X-function of the
first kind are known only in the interval -1< ~ < 1 and are to be
calculated for arbitrary real and complex ~. (Co~are the discussion
on the ~-asymptotics of the eigenfunctions in the following section,)
As Mbglich (referenceA) has shown, the integral equation (7.24) cm
also be used for obtaining developments of the X-functions of the
first kind in terms of powers of y.

8. ASYMFTOTICS OF TKE EIGEIWALTJESAND EIGEjlFIJIYCTIONS

8.1 Asymptotic Behavior of the Eigenvalues

and Eigenfunctions for llargev

The continued fractions (6.1) and (6.2) do no% only have the

property to yield a development of X:(7) in ‘termsof powetisof 7

but in addition one can obtain from them a development in terms of

powers of v-l. It is more favorable to set up a development in

tf313W3 of powers of (!2v + 1)-1, because men me Odd powers
of (2v+1) are eliminatedbecause of equation (4.9). The cal-
culation itself is relatively simple so that the result can be
given hmediately



[p=
,,.

58 NACA TMNo. 1224

x;(y) = [
1 ‘;”

1
v(l)+ 1) + ;72 +- (4 * l&2)72”+ #

8(2v + ~)~. “’

-1- 1

[’
(2 -@q+ o~py +’1)-q’ ,8.~)(4 - 16v2)72 + ~

2(2V + 1)4

2resumabky this series is no-tconvergent %ut has asymptotic
character.

In order to form a judgment on the usefulness of the series (8.1)
for numerical pvrposes, one gives for several cases the numerical

value of the remainder term denoted.tiy 0[(2V + 1)-6] in comparison
with the value of the separationyarameter X itself.

n I 2 I 4 I 6 I 8

~: (i-q 11.7904 25.2513 47.10958 77.06246

Remainder term -0?134
I

0.0132 / 0.00095 j 0.00017

In a similar way one obtaj.nsthe followlng expressions for the
development coefficients of the eigenfvnctionsfor large values
of V*

%
‘=8(2vC+ 1) - ~(2v~ 1)2

v

% [ 1
+ o (2V+ 1)-3

a-2 2
PY2

a. = ‘8(2I + 1) - ‘— ‘:-2(2V-:-1)* ‘[(’v+ 1’-1

(8.2)

(8.3)

a4 ).p
—=
a. [

H

+ o (2V+ 1)-3
32(2V+- &

(8.4)
a-4
.=A—
a. [

JJ

i-o (2V+ 1)-3
‘32(2v+ 1)2
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8.2~ymptotic Behavior,of “tl@l!ligen~~luesfor Large Real y.,. ... ,,,

One limits oneself here to n and m“ which are integers

(n ~ m ~ 0) and to real large T which may be assumed.to-be positive
without essential restriction. Thus one obtains the asymptotic of
the eigenvalues and eigenfunctionsfor the wave equation in the
coordinates of the’prolate ellipsoid of revolution.

An approximate picture of the eigenvalues and eigenfunctions
is obtained if one puts the basic equation into the Liouville
standard form

q = E.J.(E’)(1- P)1’4
1r (8.5)

E’= Cos e J
and interpret it as a Schr~dinger wave equation in.the
interval O S e S m of the potential ener~ (in suitable units)

y* COS2 e +
I.q ~ “
—- .
sin2 f3 4

(8.6)

It has for large y at (3= ~ a very narrow minimum and can there

very well be a~yroximated by a parable. Then, however, there results
just Schr&lingerls wave equation of the harmonic oscillator, for
which eigenvalues and eigenfunctionsare known.

In order to obtain also higher approximations it suggests itself
to attempt a similar fomnula%ion as in equations (4.1) and (5.1).
One sets

E = (~2 - 9m’2 (8.7)
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equal, where the Dn are Hermitels orthogonal functions and the

functions of the yarabolic cylinder, respectively BY substitution
of equation (8.7) into equation (2.4g) there results, if one utilizes
also tinerecursion formulas and the differentitd.equation of Hermitels
orthogonal functions (see Magnm and (lberhettinger(reference 11)), ~
the five-term recursion system

an

- 2(N+r)2 -

+ 8y(N +

2(N+ r) -13~rfiL4~(N+ r+2)(N+r+l)Ofi2

(8.8)

+(N+r+h)(N+r+3)(N+ r+2)(N+r+l)2r+4=0

(r=o, t2, ~h, .**)

The ~eries (8.7) is yrolxiblynot convergent; it rather represents

dr
asymptotic development in tilesense that l-imits ~ = O for all

‘o
even r + O, or, as one concludes from that and from equation (8.8)

79
t(2&2) o(y-l”r/2)=
190

‘y . 0(7-1-r/2)
o

1
/

(8.9)

(r= 0,2, 4,..0) J
By a method of successive approximation the Or and X canbe

represented as power series in 7-1. The calculation is elementary;
thus only the result is Given. It j.s
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X.:(7)= (2N + 1)7 = ~f2# + ?)’i.:~S -,4P2) ... : ,

The connection
zeros. For 7
term with the
the X-function
exactly n - m
follows N = n

1 (2N+l)(#+ N”+ 3-8u2)
-F

61

[
-1-&- 48m2[23J2+ 2N + 1)
6472

. 5[N~U2N3+8N2+’7N+ 3)]+ 0(7-3) (8.10)

x

between N, n, and m is given by counting the
‘9 8) is reduced to the principal-.+rn the develoymmt ,..

N real zeros of lkm.~tt?’v ITth polynornial,whereas
with the indice~ n LWJ m to be approximatedhas
real zeros in the ir.t~~?:i.al‘1< 5 C 1. Therefrom
- m. For negative m me inserte instead N = n + m.

8.3 Asymptotic Behavior of the E3genfunction6 for Large Real 7

The asymptotic represel.tst?.onof
calculation of the coefficie:t+,~.s:r.

of the order Y-3J

!nlc>X’.??&,aside from the terms

.,.

:,
! ,. ; .,“,
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According to the type of derivation, however, the eigenfunctions
are approximated by these series only in the interval -1< E < 1,
In order to obtain an asymptotic series also for other ~ one starts
from the integral equation (7.24) end substitutes for the X-functions
in the integrsmd the series (8.8). Therewith the asymptotic develop-
ment of the eigenfunctions for all ~ is known; in particular, their
behavior cenbe investigatedwhere, besides y, 3 also is very
large. Since now the eigenfunction for all ~ is asymptotically
known,one obtains the solutions of the second kindby calculating the
integral in equation (7.24) with
function andby means of another

the asymptotic series of the eigen-
appropriate path of integration.
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. -The zerof3-,.of the eigenfunctions

63

l&ated in the interval -1< ~ < 1 ~
crowd for large 7 ‘moie-aiid’moibd’~~a ~’= O; -in order to @qra.@d
thie, one has only to divide we zercM of Hermitets Nti polynomial

by ~ and therewith to conve~ %awq t-~cale.

The domain of validity for equation (8.10) and (8.11) extends over

the indicated domain; thus orl@nates, for instemce, for m = t$ from

equation (8.1o) the aqymptobic rwpresenta%ion of the eigenvalues of
Mathieu’s differential equedxton,fovndbyInce (reference14). However,
the limits for this domain of validity shall notbe submitted to closer
investigationhere.

8.4 Asymptotic Behavior

Large l?urdy

cxfthe Eigenvalues for

Imaginary y

One limits oneself again to n end m that are integers

(nZmaO) andtop~ely .imaginary ,7 ,of large absolute value.
This procedure yields the asy?iptoticsof the eigenvalue~ end eigen-
functions for the coordinates of the oblate ellipsoid of revolution
(reference10) and for the so-called inner equation for the separation
of the wave equation of the ion of the hydrogen molecule (reference7).

The method applied in equation (8.2)F:ailshere; y~2 na.uely

‘would become purely imaginemy and the Dnf~@~) would, for large ~,

no longer decrease exponentially,hut increase exponentially; they .
would, therefore, be no longer appropriate for the develo~ment cxf
the eigenfunctions. The wave mechanical picture of the differential
equation (8.5) shows that in the case of purely imaginary y two .
domains with low potential ener~ are prtisentat e = O and (3= 2YC;“’”

which are separated by a high potontial peak with the maximum at 8 = ~.

One may, therefore, expect beforehand that the eigenvalues will
degenerate in first approximation; their sylit-up is exponentially
smd.1 in 171; it is the larger, the higher the eigenvalue. For each

eigenvalue there is an eigenfunction symmetric with respect to O “=~,
2

that is, ~ = O ~~ asymmetric eigenfunction.
,.

The mathematical treatiaentis as follows. A Si
Y

arity Is made
to move to infinity. Then one obtains from equation 2.4g), aside
frcm an elementary transfomation,:.thedifferential equation of
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‘.

,.,”... ‘,’,.” Laguerrets orthogonal polynotiials. This ‘suggestsfor the solution
of eq~tion (2.4g) tlie.formulation of Svartholm (reference 7)

wherein iy was set equal to p;,. . again it does not mean an essential
restriction if p > 0 is assumed. By substitution of equation (8.12) “
into the differential equation 2.4g), a!?plicationof Laguerrets
differential equation, and the recursioiiformulas for Laguerre’s
polynomials (compare Mmgnus and Oberhettinger (reference 11)),-there
ori~inates in the knowrway for the at a three-term recursion
system. With the abbreviations

?M-A-2TP? ~(T2+b 1312) +,A,

.!. ,. ,,,

. .
.,.

“’T

. . .

.:

the recursion system reads

‘t+l -At+l + ~~-1 A* =(A+

Therefrom follows for

.. .. . ,.
.’.

.,,...... . ..,.- ;:, .,‘, ,“, ,,
,., . .. ,, ..,, . . $.

1)2- & ““Pt =2+(T’- 2p+t)

P-~)at (t = -N, -N+l, -I!T+2,. . ●

A the transcendent equation

,. A22

‘+

A= A~-—A. ..~+—~- ‘-12 -.. .
A+P.1 + P.2P1 1A -I-P2

from which A
Therefrom then

ce.nbe obtained as series in terms of lowers of
resuits

(8.13)

(8.i4)

(8.i5)

,(8.16)

(8.17) ‘

p-l.
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8.5 Asymptotic Behavior of’the Eigenfunctione

for Large Purely M@@ary 7

For the coefficients of the development (8.l.2)

q

[
‘f=-&(T+l)2-
UO

,+ *)+ 0(171-3)#l (
,-

CQ
— = ~~T + 1)2 - U2] ET + 3)2
Iso

-’&]+ 0(,7]-3)

..

‘-2

[

1“-—c— 1)2 - 111.?127T’ - 3)2
U(-J

2(T- - m?] + o(~yt-s)
512p -,

is valid.
.’,

(8.19)

The slqif icence”of T and N resmts again from counting the

zeros. The ,principalterm ~)~-2iY(l - ~)] h= N .eros which ‘.,
for’large ~7 ~ Me all.closely to g ,= 1. The real eigenfuncticm
haq again N zeros in the neighborhood of’ ~ = -1. For odd n - m ,,,:“
another zero at ~ = O is added. The sm total of the zeros n - m
equals, thereTore, 2N for even n -m and 2N+1 for.odd n-m;

thus

,!

,.

....

,+
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-r=n+l=2N, +,,m+l for n - m = even
1
/ (8.20)

T =n =2N+m+l for n-m= odd J
is valid.

Baber and Hass& (reference7) calculated the seried (8.18) with
the exceytion of the last two terms; only for the special case N = O
they give also the last two terms; Bouwkemp (reference10) calculated
the series (8.18) with the exception of the last term for the special
case m=O. The asymptotic series (8.18) can still be used

for m = ~~; it then goes over, exactly like equation (8.1o), into

the asymptotic series for the eigenvalues of Mathieuts functions
(reference14).

,,
For large values of }y I the e~genvalues move closer and closer

together in pairs so that the asymptotic series (8.18) for the eigen-
values of each p,airare tie sane (see equations (8.20)); that is,
the difference of the two eigenvalues has a stronger tendency to
vanish with increasing ly~ than any power of l/~7{s
(Compare table 11.)

The series (8.12)’for the eigenfunction is useless in the
interval .l~ggo, There an app~oxi.mationmust %e attempted
starting from the,po@t g = -1. Since the eigenfunctionsbecome
exponentially small in the neighborhood of g = O, one can build
up the eigenfunction in the entire interval -1< 5 < 1 by combi-
nation of the two approximations starting from -1 and 1 and one
obtains ,., . .

(8.21) -

For”even n - m :the positive, for odd n - m the negative sign i.s
to be selected; in the one case the eigenfbction is symmetric, in
the other antisymmetric with respect to the point ~ = O.



NAcATMNo.” 1224

“*What”was said’in sect~on 8.3 38 valid for the asymptotic-–.,. ..
celcul.ation”ofthe-eig6rjfu’tjti@j@d” the’-fiux3tl-ons”6fthe’””~econd”‘

I kind for any ccmplex ~ as well qs for the limits of the domain
of validity In the variables ,w..J&%7of’tie asymptotic representations.

In order to show the uoe M %lw”astiptotic series for numerical ‘
purposes one compares for m = O @i?ew eigenvalue~ with the values
resulting from equations (8.1.0)ad (6.18] by giving the value of tie

remainder te~ 0(7-3) and O@”~], respectively.

*

I

-,. ...
n o 0“ o 2

# 10 -25 -100 -1oo

~~(7) 2.305 -16.07904
I

-81.02~94 -b5.48967

Remainder term -0.025 -0001616 -0.00008 -0.01528
—

9* EIGENFUNCTIONS OF TWEWAVEEQU&l?ION IN I?O’I’ATIONAILY

SYMMETRICALELLIPTTC COORDINATES

901 IJEU&’swave Functions of the.l?rolateElltpsoid of Revolution

By separation of the wave equation in the coordinates of the
prolate ellipsoid of revolution one obtains the following @olutions
of the wave equation

(9*1)
. .. ,

A, B, C, D,,El,F qre arbitrary constants, v and w arbitrary
real.or complex parameters; the si~ificance of 7 is given by
eqtition (2.8), thus 7 is real, The coordinates ~ and g =75,
respectively, ‘1$2)(~;y) oneq end Q are real as well. Under 2&’V

. ..-.

—
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#L2) (q -+i X“O;7) ●understands ~ According to the kind’of ‘the

boundary value problem presented,We arbitrariness c&cerning tie
constants end parameters is limited; then such solutions of the wave
function have to be determined which remair finite for the entire
domain of the eigenfunctions.

Following, as before, three-dimensionaldomains only are dealt
with which lie inside or oLrLEIi@.eof an ;I.lipsoidof revolution or
between two confocal ellipsoids of revolution, Then the domain of
the coordinates ~ ‘and Q j.s~ivma by -1 ~ ~ S 1, 0 $ g S 27c.
The requirement of single-val’uedness&d finiteness of the eigen-
functions then leads t? v =n, v =m, n> lml ~ 0, and 11= OD
The eigenfunctions

u:(~j%v;k) =

(n= O,l,

are written in the form : c

The domain of variables in E is denoted by !~~ ( ~ E2

and ~1 ~ ~ ~ C2, respectively, For the prolate ellipsoid of

revolution there is always lsj gl. For inside space

problems ~2 = finite, for’outside syace problems infinite. For

inside space problems boundary conditions for El ~d ~2 are to

be prescribed. This results in two linear homogeneous determining”
equations for A and B; they can be satisfied only for certain
distinct values of 7, that is, for certain eigenfrequencies;in
that case they fix the ratio A:B. In case El = 1 a boundary

condition can be prescribed only for ~~ > 1; the boundary condition

for 51 = 1 is then &eplaced by the requirement of finj.tenessof the

eigenfunction at the singular point El =lj it leads to B = 0.

For outside space problems the “boundarycondition for ~a=w

is eliminated; the function~ (9.2)

and
the

the

B an oscillating bebavior.
asymptotic series (5.12). The

ratio &B. For El + 1 this

have for ~2~m for arbitrary A

One can see that immediately from
boundary condition at ~ = ~1 gives

boundary condition in turn is
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h elhninated - B becomes B = 0., A
d08i’nOt exitit;all”wave coefficients
‘iscontinuous end extends from k = O

4,

69

condition for the frequence
are adndmeible, the spectrum
tok=~.

9.2 Lam~~s Wave Functions of the Oblate Ellipsoid of Revolution

The solutions of the wave eqtiationoriginatingly separation of
the wave equation in the coordinates of the o’blateellipsoid of
revolution are obtained.from equation (9.1),by replacing 7 there
by ~iy. Here also only the three-dhnenstorialdomain~ characterized
in section 9.1 are dealt with and the eigenfunctionscan, therefore,
te written in the form

(n = 0,1, 2,...; m=O, tl, ~2, . . ..~n) (9.3)

The domain of variables in q and v is the same aa in the coordinates
of the prolate ellipsoid of revolution. The domain of variables in ~
is again denotedby ~1-~ L ~ ~2. For the oblate ellip~oid of

revolution there is O s gl. What was said in section 9.1

for gl >1 is valid for inside snd outside space problems

with cl >0. However, whereas there ~1 = 1 was a singular point

of the -$Z-functionof the second kind, here ~ = O is a regular
point for all %-functions. Thus, for determination of the eigenvalue
problem for ~1 = O in this case$ also a %oundary condition must be

given. The area ~1 = O M a circular disc~ If such a circular
disc actually exists as a physical o%ject, for instance, a circular
screen for problems of diffraction or a circular membrane, the
%omdary condition on the disc results from tie physical.problem
taken as a basis. If, however, this circular disc has geometrical
significance only as singular surface of the coordinate system
taken as a basis~ for instance, for tie determination of the acousti,c
or electrical natural oscillations inside an oblate ellipsoid of
revolution~the eigenfunction together with its derivative must be
required to be continuous at this circular disc which leads
to B=zO.

. .. ..- ----.————. -— —



9.3 Normalizationof Lam&*s Wave Functions for Outside Space Problems

One limits oneself at first to Lsm~ts wave functions of the prolate ellipsoid
revolution. In the normalizationof the eigenfunctions(9.2) one cannot normalize
coordinate separatelyalthough the eigenfunctionscontain only factors which every
dependent on one coordinateonly; in the element of volume

.

aT = c3(~2 . 72) d? a? @

of
in each
time are

(9.4)

namely, the coordinatesare not separated. The condition of no~alization for outside
space problems with continuous spectrum reads

,.

The asterisk (w) signifies the formation of the conjugate-complexexpression. %(7) is

called the factor of normalization. If the indices n and m of the two eigenfunctionsin.’
the integrsnd (g.>)would not both agree, the integral would equal zero; the same would be
valid if the interval of integrationfor ~ would not contain the point k. However, a F
delay by proof of these properties of orthogonalityis unnecessary; that proof iEIelementary. ~,

From the

(#’ -

wave equation in elliptic

[“(l?)c2a% = ~ (P - 1)F
—

coordinatesone obtains the identity

*- Ug)] +~~. -,2$**- @

‘2
g!
●

(9.6) ~



For
The
sum

abbreviationthe wave function concerningthe parametervalues ~,njm is designatedby
~-integrationof equation (9.6)gives. 2n. The q-integrationof the second term of the
on the right sidefiofequation (9.6)gives tiways zero since at tie ends of the interv~

of integration 1 - q= = O. APter carryingout the ~-integrationthe ~-integrationof –
equation (9.6)restits fin- in

The boundaryconditionis assumed u =finite for ~ .1 in case El = 1,
%

~ O inc~e ~1>1,or au+~—= where a and ~ shall both be”real - indepexx%~t

of k. Then the contentof the brackets on the right side of equation (9.7)at the ~
point ~1 vanishes;for large ~ the asymptoticseries of the %-fnmctionsmaybe
substituted. Note the fact that, for real boundary conditions, A/13 is alwaysreal.
After divisionby ~ - #, performanceof the &nte~ationandt~itionti ~ = m
there results the integral-in-equation(9.5];thus one-obtainsas the-factorof n&malization



The normalizedwave functions

~Y $(7)”

Several changes occur forthe

are, therefore, obtained by @tipl.ying u~(3,T,P;k)

coordinatesof the oblate ellipsoid of revolution. The
eigenfunctions (9.3)have to be substitutedin equation (9.5);ins~ead of ~2 - V* in

equations (9.4), (9.5), and (9.6) one has to write ~2 + 72; 52 - 1 in equations (9.6) ‘
and (9.7) is to be replacedby ~2 + 1. Finally one obtains as the factor of

normalization h!(iy) instead of ~(y) in equation (9.8).

g.h Development of Lam&’8Wave 17.&ctionsin Terms of Spherical and CylindricalFunctions

By the followtng considerationone obtains a remarkable developmentwhich includes ~
nwnber of the developmentsof X- and %-function”sgiven “sofar as special cases. AV Lame
wave function can be developed in terms of such wave functions as originateby ,sepration,
for instance, in polar coordinates. The eigenfunctionof the continuous spectrum, in
particular, which results from eqtiation(9.2) for B = O csrbe developea ‘interms of the

eigenfunctionsinpolsr coordinates ~w(kr)~(~~e@. One obtains the ilevelopment

coefficientsby making, for instance, x ma Y-SO, that is, f +1 and comparing

the thus originatingiievelopmentwiti equation (5.1). Thus there results, if one

expresses,moreover, x,Y,z bY ~,v,~ and equates the coefficientswith ei~,
E

-...
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where r in the argument.is given by # = x? + # +-
not be confused with the index r which As through

‘ 73

~2 and must
all even

numbers. The development (9.9) is given already by-Morfie(reference 6).
One can interpret equation (9.10) as a development of the-%-functions
which contains still an srbltrary parameter q, For ~~1 there

originates, if one div~dea before by (1”- ~2)m/2, the series (5.1);
for v*O one obtains the series (7.42) for the W-functions of the
first kind. If one differentiates e~uation (9.10)“withrespect to q
and sets then ~ = O, there results the swies (5.41)of the
V-functions of the first kind.. For ~--oD there originate from
equation (9.10)the series (4.1) of the X-functions of the first kind.

At this point one cti recognize why the formulations (4.1), (4.2),
(5J), (5.2), (5●41), ad (5.42) that is, tie series developments

~considered by Niven (reference1 all had to lead to the same
development coefficients ~.

Whereas equation (9.9) represents a development in terms of
eigenfunctions in polar coordinates which have their origin at the
point x=y=z=c), Lami5!swave functions cenbe developed also
in terms of eigenfunctions in polar coordinates with the
origin x=y=O, Z=C. This development reads. as shown by a
simple calcuiatioi,

#(l)(g;7)~
n

(%;,) = ~ e: J7)*n+t~($ -

t=”ta ‘

.

( 2~”m/2 and then EIetsIf one multiplies by 1 - n T 1.,= equation (9.11)
is transform~d into-th~ development (5.46). For ~~~ one obtains
a development in terms of spherical functions mulfipliedby sin (y?)
and cos (7q), respectively; the special case of this development m = O
is already given by Hanson (reference ~).

If one finally develops Lem&fs wave functions in terms of the
eigenfunctions originatingby separation of the wave equation in
cylindric coordinates, there results, with the aidof equation (7.24),

.:



.

This integral equation which was.derived in another way also by Kotani (reference) contains, ‘
equation (7.24)as special case for q--+l. ,.

,,

It is obvious that the developments (9.10), (9.11),-and(9.X2) are capable of generalization;
one can consider complex V,V,7 ,~d one can”replaceone or both functions of the first kind on the
left and right side of equations (9.10), (9.11),or (9.12)by functions of the “secondkind; howeverj
reproductionof the thus originatingformulas and establishmentof their domain of validi~ will be
omitted. . .

.,....,...
:,

10. TEE METEOl!lOF GREENtS FUNCTION FOR THE SOLU!MONOFBOUNMRY ,. ,,... .

VALUEPROBIJIMS,PARI’ICUIARLYOF RADIATION PROBLEMS
...,”...

.

I

10.1 Green’s Function of the Wave Equation in Radiation Fro’blems I

For developmentof the plane wave or more generally of the sphericalwave in terms of Lam&t#J
wave functions of the ellipsoid of revolution one uses the method of Greents function thou@t up
by So?mnerfeld(reference1~).’ According to this method the sphericalwave is a solution of the ““9 s
inhomogeneouswave equation ~

,.

~u(P,Q) +#u(P,Q)=5(~,Q) ‘“

E:
~..

(10.1) .
.,,.

G“
N
*
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b>-. .,.tharight.side of_which is
It was introduced first by
by him as prong function.
point Q in such a manner

/G

I

9 (rqCe9@Y qo~aued) Dirac’s a function.
Sotirfeld (referdllce”l~)”and dbgignated
It has a si~arity at the source
that

5(P,Q) d~p=l

for each domain G which contains the source
the integral has the value zero if the domain
the source -point. One can interpret 5(P,Q)

(10.2)

point Q, whereas
G does not contain
as limiting case

of a function which has for points of i~luence P in the neighbor-
hood of the source point Q a very steep prong whereas it decreases
toward the outside very rapidly to zero.

The solution of equation (10.1) is for outside space problems
uniquely determined only when besides the boundary conditions on
the bounding areas which are at a finite d.ista,ncean,additional
boundary condition at infinity is required.,namely, the outgoi~
radiation condition (or else the incoming radiation condition)
introduced by Somtnerfeld(reference 15). According to this
condition, u(P,Q) for points P at very large distance fron the
source point Q should behave like an outgoing (or incoming) wave.
One designates this solution because of its special properties as
Green?s function G(3?,Q;k) of the wave equation pertaining to the
outgoing (or incoming) radiation condition. For physical reasons
the case of the incoming radiation condition will not be considered
below.

All developments of this section are performed for
of the prolate ellipsoid of revolution; one obtains the
formulas for the coordinates of the oblate ellipsoid of
by replacing 7 everywhere by iy,

Green*s function
of the eigetiumctions

can be developed in the following
of the continuous spectrum

the coordinates
corresponding
revolution

way in terms

The integration over ~ goes from O to ~, the path of inte~ation
deviating at the point ~ = k in the case of the outgoing radiation

I -.
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condition into the negative-imaginaryhalf plane. The integrationover tC can be performed
according to Somaerfeld and yields for ~p > ~Q

1 (1)+B~%m(2)( ~Q;Y)-~(l)(qP;T)~ (7Q;Y)
nn (lo.4)

In order to characterizethe dependence of ‘theconstants A and B on n end m, the
indices n and m were appended. For &~<(Q the arguments ~p anti {Q in

equation (10.4) are to be exchenged since Greents function is symmetric iii P end Q.
One can recognize that there actually result outgoing waves by substitutingfor the
%-functions of the third kind in equation (lQ.4) their asymptoticrepresentation,since
an outgoing wave is given by the behavior elb for large r if the time depenaepcy
as is customary in wave physics is fixed by e-iut.

10.2 Development of the SphericalWave end of the Plane

Wave in Terms of I&m&ts Wave Functions

If the space does not have any bounkries within a finite region, B = O in the
eigenfunctionsfor the coordinatesof the prolate as well as of the oblate elJ.ipsoidof
revq,w.tion.A may thembe set equal to 1. On the other hand, it is known that Greenls
function for the entire space without boundaries within a finite region is given by the
sphericalwave

4
m

I

s!
g
.
P
Iv
W
4=



iki-pQ

G(P,Q;3r)== (10..5) g
PQ ‘~

Therefromone obtains immediatelythedevelopmentof the s~hericalwave in terms of Lam&ts ~ve
~
g’

functionsfor ~Q> ~p .

and correspondingly for ~Q < Cp. Morse (reference 6) discoveredtiis iievelopmentin terms of

anothermethod..
from this if one

The devel~pmentof the plane wave in terms of Lam&ts wave functionsoriginates
moves the source poiat Q ta iniifitity.‘or gQ>>~p, ~Q>> 1

ikrQ

@,Q;Ir)aj &
‘Q

is valid where r
Q

is the distanceof the source

(10.7)

point from the origin of the coordinates,

up the radius vector of the iiifluencepoint Pana Q a unit vector in the direction

of Q toward the origim of the coordinates,thereforein the directionof the direction
of propagationof the plsne wave. For equation (10.6)this l~ting process is p“formed

*
~ is used in place of German script“4

+
-1

~ is used in place of German script ~



by introducingfor the
according to equations

the plane wave running

%-function of the third.kind the asymptotic series (5.M) and setting
-J
02

(p.llg) and (z.lla), respectively, gQ a krQo Then there results for

in direction QQ

~ +. .

Y
r=-ra

The direction in which -theBource point is situated can he characterizedinstead of
vector

‘SQ
by the coordinates IIQ

is valid.

and~.
Q

According to equations (2.18)and (2.la)

/
Ccs QQ + yp\@ - ~Q2 sin QQ + !?#p~Q

[(

.——

\,, I -

,
&’~(1 - nf$ Cos (TQ - @ + c~~~~~Q

by the

‘.”. :

.:

(10.9)

.

,,

10.3 Diffraction of a Scalar SphericalWave or Plane Wave

on the Elliysoid of Revolution

The method of Green’s functions can also be used for treatment of problems of diffraction. E

au o is .In the scoye of a scalar diffractiontheory a homogeneousboundary condition au + j3~ =
xo

prescribed on the diffractingbody; at firs~ the problem of the determinationof the eigenfunctions ~
is solved. With these eigenfunctions,Green’s functions (10.3) and (10.~),respectively,are N

%,
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formed @d the’contention made”that it’solves the problem of dif-
. .. ‘ fraction. -.Actuallyit.rep~sentyjay~ve I?hichcorn~sas spherical

wave from the source point Q, satisfies on the diffracting surface
the given boundary condition (as daes each single term of the sum),
and which behaves at infinity like an,outgoing spherical wave. If :
the source point Q, in ‘particular,lies at infinity, Greenrs
functions represent the superposition of a plane wave and of an
outgoing spherical wave origtiatingfrom the diffracting body with
an amplitude which, in general, is dependent on direction. !I&eat-
ment of the diffraction problem for a source ~o$nt within a finite
region 3s omitted. One starts immediately from equation (10.8) and
contends that the solution of tie diffraction problem of a plane wave
at the ellipsoid of revolution i= given by

cm

‘(l) (~Q;y)e ‘i(~Q-W) @(y)2 i-n>—j-rl)~--(y) (lo*l-”)x xmwn~;7)xn
n

in the case of the boundary

one understands therein the

~x + B& = 1. In the case

L1 ~ 11, L-

r=-m

condition u = O for ~ =~l. Under %(7),

factor of normalization (9.8) with

‘f ‘he bomdmy condition % = 0
for ( = ~1 one has to replace the two-Z-functionswith-tlm

argument cl in equation (10.10)by their derivatives with respect

to ~p at the point ~1. The first term of the sum in the brackets

of equation (10.10) yields,when the sum over n,m ,is formed,exactly
the plane wave (10.8); the second term of the sum gives outgoing
spherical waves; furthermore, the wave equation and the boundary
(surface) condition are satisfiedby each se~arate term of the swn;
the contention is therefore proved.

For the diffraction a% the infinitely thin wire of finite length,

one has to set Cl = lC @(3)(~~;Y) then becomes infinitely large

and, in equation (1OJO), there remains only the plane wave. ThUS
an infinitely thin wire does not present an obstacle for a plane wave.

.- .-
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For we diffraction at the inftn~tely win circular disk, ,7 is to
b.~,~~placedin the formulas by i7 aid ~1 is tobe”eet equal.t~ zero.

~~2)(o;i7) has a finite value so that the o~ltgoingspherical ~~aves%

do
an

not disappear; that is, even en infinitely thin disk represents
essential disturbance for a plane wave striking it. .,

11. WI?3ms

11.1 Comnents to the Tal)les

The talles in section 11.2 contain power series development

J; JY )
Y

to

—
po, inclusive, for the eigenvaluo h~(y) according to

.
inclusive, for the coefficientsequation (6.13) and to Ybj

and. 3~ r(y) according to equations (6.I-4)to (6.21) and

equatio~ (4.11). Further’more,to y6, inclusive, the coef-

/3 (7),ficients a: ~ ~ o accor~.ingto equation. (7.6),are given

for all thos~ cas~s vhere a-2/ao, a-~+/ao, and a.G/ao disapyearo

As far as the values of the coefficients ar/ao and. br/130 are

not given in the tables, they di~a-ppear;then one must use for the
X-function~ of the second kind the series (7.7) and the table for
the ~/ao.

The region of the n- and m-values in the tables extendti
from m=0,1,2, ...,9 andfrom n=m,m+l).~.,g. Foi*
negative m, %~hichare integers, reference is made to the
rela-tion(4.12).

The last given digit is, in general, yrobably certain; only where
the following digit after rounding up or off, res~ectively, 5-sa 5,
the last given.digit would have to he changed in a few cases by unity.
In the cases of the end digits ...5. ..s0, ●500, and so forth, it
is mostly indicated by a line over or under, respectively, the last
digit whether the respective decimal fraction ha~.been originated by
rounding up or off.

The given broken off series developments in terms of powers

of 72 are the more useful, the smaller 72 and the larger n.
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For n = O the serief3
larger n they can be

8X

begtn to be useless only at Y2 = 10;.for

used up to far.larger values of 72. Below,
- a few cdthe first.eigenvaluei.for # = 16 are given e.tithey

follow from the exact n~ericaJ. calculation and from the power, ,
series development to “71O, “’inclusive.“,,

.

[

——, ..

n o 2 4

k: (Vfi) 2.305040 3J.*790395 25,2,51313

($--)x: 10 approximateon 2.215 u .880 25.25147

.. .— .

l?igure1 gives a survey on
eigenvalues on 7.

The tables in section 11.3
Bouwkmp (reference10). They

a number of pairs of values n,

the dependence of the lowest

are taken from the thesis of
contain the ej.genvaluesX:(7) for

72,
n,~’)

and ‘thecoefficients” am

of the pertinent X-fum.ction80 These latter are fixed so that

co

2—. 2n+ 1 [1a“ (7)2=12n i-2r + 1 n,l.
r- w--

(11.1)

The integral.of normalization
the value

then (compare equation (7.19))has

(11.2)

(1) (*;7) ,,(u (~;7) and XnThese tables contain further the values .n

(1)(0;7)/dg for odd.for even and ~n n. The signs of the ar are

different from those of Bouwksmp since the pre8ent series (4.1)
and (4..2)contain in the coefficients a factor i~ vhich is missing
in reference 10 by Bouwkcunp.
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Since the 72 assume inthese tables only negative values,
these functions are appropriate for the treatment of ~roblems
concerning the o%late elliysoid of revolution or for the investi-
gation of the eigenvalues of the ion of the ~yitrogen molecule,
whereas, the tables in section “11.2where 7 cam be positive as
well as negative, may be v.sedfor problems of the oblate as well
as of the prolate ellipsoid of revolution.

. Translated by Mary L. Mahl.er
National Advisory Comnittee
for Aeronautics

.
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Il. 2 – Eigenvaluee;(7) and

., .-.,,

m. O,n. O
n.1
n=p
n.3
n.4
n=?
n.6
n=’7
n.e
n=g

m.l. n=l

m

n.2
n=j
n=b
n.5
n.6
n=7
n.e
n.p

2,n.2
n.j
n=h
n=>
n.6
n=~
n.8
n=p

ni.j,n=j
n=l+
n=?
n.6
n.7
n.f3
n=~

m. b,n.4
n=p
n.6
n=7
n.8
n=9

m.5, n=5
n.6
n=7
n.8
n=9

m.6, n.6
n=~
n.8
n=9

m.7, n=7
n.8
n=9

m.8, n=8
n.9

m.9, n=9

Represented.by

Development coefrIclents#,~(T),b~,~(y);

~oken-orfPowerSeriesin 7’

1WLE 1.- lk~7)- d.+ 1) .1010 As PWER mum IN 7... -- . -,
. ...

+33333333337’2
+6000000000
+723809>238
+’5111111111
+506493506~
+T042T350LJ
+5030303030
+5022624434
+50175L3860
+501boo5602

+’2000~000072
+k285_@!286
+4666666661
+4805194805
+~71794872
+4909090909
+4932126697
+L947368421
+h957983193

+142857142972
+3333333333
+4025974026
+~358974359
+4545h5k545
+l16606334&_
+4736Ew21o5
+4789915966

+111111111172
+2727272727
+350b2’73504
+3939393939
+4208144796
+4385964912
+45@03922

+ 90909090972
+2307692308
+3090909091
+357466ti33
+389L736842
+4u7647059

+ 76923076972
+200000W3m_
+276018995
+3263157895
+3613445378

+ 66666666772
+1764705882
+249122&170
+2997198980

+ 5&323529672
+15789L7368
+2268907563

+ 52631578972
+14285714s

+ 47619047672

-148148UL874
-68571429
+101500918
+ 32W763
+ 17750507
+ 11298966
+ 7874434
+ -19124
+ 44826>1
+ 3562440

- 457U$286Y4
– 38872692
+ 13647587
+ 11902417
+ 8894604
+ 6698782
+ 5174730
+ 4099403
+ 3320032

-1943634674
- 221+46689
- 2139874
+ 2584894
+ 3476672
+ 3364211
+ 3005596
+ 2620834

- 997630674
– 13870427
- k920040

877352
+ 75556!2
+ 1369050
+ 1548920

- 57793WYL
- 9103323
- 4839057
- 2037903

530540
+ 244418

364132974
- 6274510
- 4157529
- 2301599
- 1096492

2b4008774
b4~93kl

- 3440673
- 2221592

- 171403574
- 333243A
– 2822595

1249662#
2535176

- 93895474

+’595989
+ 53147
+ 11653
+ 3655
+ 1413
+ 628
+ 310

+M!@3~Y6

+ 144240
-1182504
-131503
- 31..l6fj
- 10150

4008
– 1.807

899.

+ 36060076
+ 127901
-309653
-104857
- 39401

16771

%

+ 13263876
+ 76421
- 92311
– %468

27781
14434

- m3

+ 5731676
+ 4436a

2e&~
26567

– 171p
10467

+ 2788376
+ 26419
- 831J
- 12785
- 10175

+ 1484076
+ 16310

1336
- 6054

+ 847376
+ 10435
+ 967

+ 511776
+ 6898

+ 323676

+470311676
[

+135868$ -24280.96710
-609524 + 25896 + 872.80
4760812 -141089

- 26542
+ 5040

..+
577

+ 15Q
+ 53
+ 22

+ 11

+
+
+

+
+

+
+

—
+
+
+

+
+
+

+
+

+

-2103478
+ 5682
+ 21357

5669
3::

6

;

582278
607

6053
532
209

67
22

8

169878
83

175Q
119

32
27
14

::P

570
129

17
4

21&

205
79
22

;778

a
44

4678
29
32

2J7fJ

13$3

——. ..... ... . . .

+244i2. 17

+
+
+
+
+

+
+

+

+

+

+
+

+

+
+
+

+

+
+

+
+

+
+

+
+

+

887.76
132.19

14.80
0.94
OOIQ
0.03
0.01

205.71710
76.28

229.72
78. 3“
23.6z

1.93
0.34
0.08
0.02

57.71710
22.60
56.26
23.27

1.22
o.y3
0.30
0.07

17. ED71O
4.51

18. 2X
4.55
0.53
0.01
0.04

5.24710
0.79
5.53
0.73
o.&l
0.06

1.70710
0.07
1.82
0.03
0.10

0.62710
O.oh
0.65
0.07

0 .2~710
0.

70.2

0.1171”
0.03

0.02710

‘,., .—
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a: ,47)
TABLE 2.. x 1010AsPwm smzmsm 7

a:,o(7)

m.= O,n=O
n.1
n.2
n.3
n.4
n=5
n.6
n.7
n.8
n.9

+111111111172
+ 4ocwowo
+ 244897959
+ 176366843
+ 137741047
+ 1.w63959
+ 95726496
+ 83044983
+ 73325729
+ 6$40291

-35?7336974
+ 3555556
+ 3029Q4
+ 66996
+ 21683
+ 8738
+ 11o71
+ 2105
+ lln
+ 700

-101900876
- 151062
+ 2cM18
+ 46~@
+ 18710
+ ;;;;
+
+ 3b39
+ 2306
+ 1622

+ 13333333372
+ 122448980
+ 10%20106
+ 91827365
+ 806E?$542

-35555567L
- 4~3>6

+

+
+
+
+
+
+
+

– 120593
- 43366

18723
.- 9160

4912
2826
1719

98T3
5930
3767
2524
1768
1285

1222776
1430
23%
2541
2057
1579
3.207
931

+ 71794672
+ 6459Q542
+ 58660583
+ 53705693

+ b0816327Y2
+ 52910073
+ 5*419
+ 53792361
+ 51282051
+ 48442907
+ 45624898
+ 4364554

75726074
- 301482
- 130098
- 62411

32TL6
18420
l~o
6877

rn.2, n.2
n.3
n.4

+

+
+
+
+
+
+

n=p.
n.6
n.7
n.a
n.9

- 23W36Y4

- 151781
- 87376
– W&l

30700
19232
12481

300376
162
621

+ 17636681!72
+ 27548209
+ 32275417
+ 34M!034
+ 3k6020ti
+ 34218674
+ 33416876

m.3, n=3
n=4
n=5
n.6
n=7
n.a
n=g

+
+
+
.+
+
+-
+

828
812
718
609

+ 91876
+ 210
+ 242
+ 329
+ 361
+ 353

+ 918273672
+ 16137708
+ 20512821
+ 23068051
+ 24441910
+ 25062657

- 91CM5874
- m:

36E!ko
2L727
16849

m= b,n.4
n=5
n.6
n.7
n.t3
n.g

+ 537923672
+ 102%410
+ 13840830
+ 16294606
+ 1m01@8

4119274

4~18~
31L735
2590~
18912

+ 33276
+ 131
+ 118
+ 152
+ 178

m.5, n=5
n.6
n=7
n.8
n.g

+ 1Z676

+

+ E

+ 79

+ 62Y6
+ ,.., .
+ ~<

+ 3076

+ 25

+ 341.EW372
+ g7::~
+
+ 1193h598

2079374
25086
22k51
18212

+ 2306&3~72
+ 4888382
+ 7160E9

llllo3TJ
15307
14900

m.7, n.7
n.8
n=9

+ 1629b6172
+ 3580380

66727~
97&3

ra.8, n=8
n=$l

+ ~676
.-—— —.. .—

+’ U9346072 411474m.9, n=9

—.—. ——
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.

qJao x lo~o 116/~x 1010

m=o, m.o +1904761974 ~ ;7.g696 +13742976
n=l + 4535147 + 2467
n92 + 2061431 + 3740 + 8970
n.3 + lln274 + 684 + 4262
n.4 + 76070!2 + M9 + 2355
n=5 + 531592 + 67 + 1437
n.6 + 392- + 28 + 940
n.~

5?
+ 30124 + 13 + 649

n.8 +2383 + 7 + 466
n.9 -+ 193571 + 4 + 31+6

m.l, n.1 + 9fm974 - 3;~076
n.2

+ 352b76
+ 687144

n.3
+ 2242

+ 50454g 879 + 1421
n.4 + 380350 284
n=p + W33A 111

: g:

n=6 + 235350 5Q + h70
n.7 + 191701 2k + 349
n.8 + 159042 13 + 266
n=g + 134010 7 + 208

m=2, n.2 + 13742974 374076 + 3m&76
n.3 + 1681.82 1466 + 355
n.4 + 163001 608 + 314
n.~ + 147662 277 + 261
n.6 + 130mo 138 + 214
n.7 + 115021 73 + 1~
n=8 + 101209 )!2 + 143
n.g + 89340 2.5 + 119

n=39n=3 + 3363674 6 + 5176
n.4 $ +
n=5 : %;: 277 + ;
n.6 + 65375 16A + ~
n=7 + 639% 95 + 79
n=8 58 +
n.9 : %; 37 + E

rn.4,n=4 + lo86#$ 17076 + 1176
n=5 + 21095 ti6 + 22
n.6 + 28014 124 + 28
n.7 + 31950 86 + 32
n.8 + 33736 58 +
n=9 + 34112 40 + ;2 ,

m.5*n=5 + 421974 6 +
$

376
n.6 + 9339 + 7
n.7 + 13693 + 11
n.8 46 13

: $?
+

n.9 32 + v?.

v=6.n=6 + le68’# 1976 + 176
n=7 + 4564 28 + ●

n.8 + 72= 28 + :
n.9 + 9475 25 + 6

== 7,n =7 + 91374 ~6 + y6
n=8 + 2410 13 +
n.9 + 4061 lQ + 2

rn.8,n=8 + 443*4 376 + *6
n=9 + 1354 6

_L

+ o

rn=93n=9 + 27174 %6 + 076
——..-.—

87
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m.o*n.2
n.3
n.k
n=5
n=6
n=T
n.8
n=g

n. 1, n . 1
n.2
n=3
n=k
n.5
n.6
n=~
n=8
n.9

n. 2, n . 2
n.3
n.k
n.5
n.6
n.7
n=8
n.9

n=3,n=3
n=4
n.5
n.6
n.”/
n.8
n=g

m=k,n=h
n.5
n.6
n.7
n=8
n.9

== 5, n . 5
n.6
n=7
n.8
n.g

m=6,n=6
n.7
n.8
n-g

m=7,n.7
n=8
n.g

m=8,n.8
n.9

m.$l, n=g

a; J7)
TAMS 4.- X101OASIWUERS2RI3EJIE 7

a&(7)

-22222222272
- 171b2&71
-136054422
-112233446
- 95359186
- 82840237
- 73202614
- 6556X328

-333333333372
-666666667
- 34285T143
-226757370
- lEa350168
- ljj~2%l
- 1104536h9
- 941.17647
- 81952286

–133333333372
- 5T1428571
-340136054
-235690236
-178003814
-142011834
- l176&7059
- lool.639~

- 857142857Y2
-476190476
-314253648
- 228%20L7
- 1775s+793
- 143m85Q
-120196685

- 63492063~72
-404040404
-286077559
-21696253
- 1725@020
-142050628

- 5050505*72
- 34965035Q
- 26035~3i)
-203921569
-165725733

- 4195e042072
-307692308
- 2379Q&97
-191222000

-35897435972
- 274~804
- 2M1539428

-31372549072
- 24767&19

- 27863~Y2

+ 700:;:4

168280
42634
15011
6408
311.3
1662

-133333333374
- 63492063
+ 9~142g
+
+ 191852
+ 63047
+ 25630
+ 12009
+ 6232

-63492063574
+ 76190476
+ 6310502
+ 1342964
+ 420316
+ 164766
+ 75054
+ 3@87

+ 26666M6774
+ 20614306
+ 4178111
+ 1260948
+ 480Y58
+ 214043
+ 106642

+ 4947433574
+ 9669343
+ 2837133
+ 1057249
+ 462332
+ 226858

+ 1899335274
+ s449cP6
+ 1993669
+ 85%11
+ 415905

+ !2:2;;0$4
+
+ 1446929
+ 693176

+ 541439 4
+ T227663
+ 1080274

+ 340244674
+ I.601O21

+ 228145674

+ 15197176
+ k2927

2611:

4452
2790
1889
1346

-54095238176
- 6478782

197018
+ 16156

7170
5138
33BI
2295
1621

- &)552890y6
+ 8@%22

122277
42@
435
3369
2449
1778

+ 8838009576
- 2451288

64139
7m
35?2
2b75
1829

-1295164876
38004

6853
2950
19o8

136583176
123724
19430
5180
2347

3;p&

11529
3762

1238787f5
VW
7154

53720’76
1402Q

650376
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$4(7) ~lolo
TABLE q.-

*; 4(7)
m XIPASPC UXR2ERIX21XY

#J7) ;,.(2)

,., .

wao x1010 ~/a. x 10M

m.O, n=4
+ %34+ 673176

n.5 + 2610
n.6 + 5045M + 371
n.’f

pyh
+ 3m350 + lo6

n=8 + 2J;:!5$ +
n=9 + + :; 20

.,
M.l, n.3 + 190476194 6

n=k + 4535147 N&J
n.5 + 2061431 - 4581076
n.6 + 1.177274 259

3
11212

n.~ + 7’607W 63 k830
n.8 + 531592 213 2557
n.9 + 392250 86 1524

m=2, n.2 a&6667.4 ;lz@~84776
n=3 + 95238@~
n.4 + 136@k42 + 1514520 + 15u~676
n=5

2 : ‘gd$ I 3RR;
+ 481OOO

n.6 + 235h54
n=7 + 13@?60 571.9 14490
n.8 + 885992 1776 6392
n=9 + 616393 677 3353

m.3, n=3 +28571428674 + 593925976 -3174.603276
n.b + 31746032 + &45723
n=5

+10582011
+ 9620010 - 1279014 -234668

n.6 + 4238186 108971
n.7

- 134546
+ 2282100 22241 - 36224

n=8 + 1392273 6514 14063
n.9 + 92k590 2370 6705

m.k, n.k + 6349206374 + 2968460176 +4232804276
n’.5 + 17316017 - 4144004 -3848004
n=6 + 7063643 326912
n.7 + 35e6157 62911

336364

n.8
79692

+ 2088409 1:~:
n.9

28u7
+ 1335519 12452

n=5, n.5 + 2886Q02974 -1085334476 -962001076
n.6 + 11.I.00011 - m7274 - 740001
n.7 + 5379236 - 148*
n.8

- 1~
+ 3o16591 39912 ?- 5223

n.9 + 1869726 13555 21792

m.6, n.6 + 1665001774 - 174909376 : M&xx&h”
n=7 + 7770008 309394
n.fl + 4223228 8072Z - 91412
n.9 + 2549627 !2@o0 - 3699

m.7, n.7 + 1087801174
n.8

- W%&# 51800176
+ 5758947 - 152353

n.9 + 3399502 48546 - 58111

n.8, n=8 + n10238y1’ 262&T76 244~9y6
n.9 + 4445503 83016 - &3808

m=9, n.9 + 571564774 13519776 - 134~2Y6

—.
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TAME 6.- /NUMERICAL VALUES OF TEE COEFP’lCllIIWS a& a&O

APPEARl?JG IIVTHE SERIES DEVEUWMRWE3 (7.7)

/
a_2 a. x 1010 I

m= O,n=O +500000000072 -66666666774 I+66137566Y6
n= 1 -1666666667 “ +222222222 -16825397

I /
a~ a. x 1010 I

m=O,n=O +16666666774 -2469135876
n.1 -277777778 +31746032
n=2 + 55555356 - 705467
n= 3 + 476190~ - 28219

m= l,n=l +27777777&4 +9’j23~y6
n= 2 -166666667 -6349206

a-6/a. x 1010

m.o, n.o
n= 1
n.e

n.j

n= 4
n= 5

m= l,n=l

n= 2
n= 3
n=4

m= 2,n=2
n= 3

+176366876
-5291005
+3703704
-529101
- 50391
- 7632

+265957476
-3703704
+1058201
+ 251953

+740740776
+291OCY5
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e-.

b:~(Y)
xlolo As FoulmslEqSIlr7TABLE 7.-

b~ ~(7)
*

[For m = O, thereiB br = 4; comparethereforetable21

m.l, n.1
n=2
n=j
n=k
n=?
n=6
n= 7
n=8
n.9

m=2, n=2
n=~
n.4
n.’j
n.6
n=7
n=8
n =9

m=3, n=3
n=k
n.5
n=6
n=7
n.8
n=9

m=k, n=k
n=?
n=6
n.7
n.8
n=9

m=5, n=5
n.6
n.7
n.8
n =.9

m=6, n=6
n.7
n.8
n=g

m=7, n=7
n=8
n=g

m.8, n=8
n=~

m.9, n=9

+mm-?Y2
+4.08163W
+264550265
+192837466
+15061%12
+123076923
+103806228
+ 89620336
+ 78768349

+61224489872
+370370370
+257116621
+193652501
+153846154
+1268742T)
+107544403
+ 93089868

+49382716072
+330578512
+242065627
+188034188
+1522491s~

+127097931
+108604847

+41322314072
+39357988
+225641026
+179930796
+148280919
+125313283

+35502958672
+266666667
+209919262
+171093368
+143215181

+3uiub2
+242214533
+195535278
+162310538

+2786166U9Y2
+221606648
+,182599356

+249307k79y2
+204081633

+22675737072

-2133333374
-1514520
- 3oM82
- W&

15704
7894
4357
2522

-1135890374
-2110372
- 607123

224681
- 9814;

::~~

- 6W0#

- 655319
- 279902
- 135080
- W&

-409808174
-1441703
- 604588
- 287353
- 150013
- ~244

- 271863*4
-1122807
- 526814
- 272002

151296

-189213874
- 878o23
- 449019
- 247677

-136834774
- 693939
- 379959

-102089174
- 555324

78156774

+36808976
; 599

‘+20727
+ 11069
+.6458
+ 4057
+ 2702
+ 1885

+18340476
-10012
+ 11136
+ 9149
+ 6171
+ 4135
+ 2844
+ 2017

+ 8407176
+ 1978
+ 4654
+ 4553
+ 3574
+ 2666
+ 1980

+ 4129376
+ 3851
+ 2666
+ 2567
+ 2193
+ 1766

+ 2188076
+ 3410
+ 1790
+ 1601
+ 1422

+ 1238576
+ 2623
+ 1285
+ 1072

+ 741076
+ 1939
+ 952

+ 464376
+ 1422

+ 302~76
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b: 4(7) (7)
TABLE 8.- x 1010 m bk. x 1010 &i FtwlMSE?= In 7

b:,o( 7) b:,o( 7 )

c 1?orm. 0, there la > . ar; COmWIWthrefon table 3

Ib4 bO X Lolo b6/bo X 1010

m.l, n.1 +1360~h2Yk -%&# +9866776
n=2 + L81ooo5 +26909
n=3 + 235&548 - blok +10654
n=h + 1369260 - 1021 + 5181
n.> + 885992 333 + 28714
n=6 + 616393 130 + 17b6
n.7 + k51.867 58 + 1137
n=8 + 3kh592 28 +777
n.9 + 270999 12 + 55k

m.2, n=2 + 962031074 -26176976 +6727376
n=3 + 1+238186 - 3693~ +23k?9
n=b + 2282100 - 8508 +10362
n=5 + 1392273 - 2615 + 5337
n=6 + 92LY90 - :9 + 3056
n.T + 652697 + 1%2
n-8 + 482428 198
n=9 + 3695u

+ 1243
102 + 856

m.s,n.j + 706@j7& -M 36J3Y6 +ti8787G
n=~ + 3586157 - j1198 +192b~
n=p + 20@@ - 915L + 9339
n.6 + 1335519 - 32

?
+ 509L

n=~ + 91:776 -132 + ~~7
n.8 + 6?7857 630 + 1921
n.9 + b927~ 317 + 128b

m= 4, n . b + 53792367L -8423376 +3367&6
n.? + 3016591 - 23800 +15565
n.6 + 1869726 - 8277 + 8150
n=7 + 1246058 – 33L3
n.8 + 8771L2

+ L673
- 1512 + 2891

n.g + 6u333 7117 + 1876

m= 5,n . 5 + k223228Y” -523>976 +21J90#

n.6 + 2w9627 -17737 +125~~
n=7 + M61bil - mo~ + 7017
n=8 + 1147032 - 310-f + ILzll
n.y + 828428 - 1509 + ?680

m=6,n-6 + 339950274 - 3b15976 +l@& 6
n=T + 217261& - 13231 +10256
n.B + llb7L756 - 57m + 6016
n=9 + 10b9sL2 2761 + 3752

rn=T,n.T + 2q3361Y” - 23197?6 +lhG517b
n.8 + u%802b - 9966 + 8b23
n.9 + 1311678 4706 + 5160

m= 8,n = 8 + 233~30Yh – 1629076 +1158176
n.9 + 1620308 - 7602 + 6981

m=9,n=9 + 19803767& - 1176976 + 930876
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~ _(Y)bm
TABLE 9.- x 1010 As PWER SERIES IN y

b;,o(7)
B. .,,. .,

[For m = O, there is br 1=ar; compare therefore table 4

—

m= l,n=s -57M2857Y2 +152381074 -3283676
n=4 -68027211 + 252420 + 4847
n=5 -67340067 + 76741 -2868
n= 6 -63572791 + 30022 -2447
n=7 –59171598 + 13730 -1811
n= 8 -54901961 + 7005 -1339
n.9 –50992534 + 3878 – 1009

m= 2, n = 4 -2267573772 + 42070074 - 815276
n ‘5 -33670034 + 191852 - 610
n=6 -38143674 + 90068 - 920
n =7 -39447732 + 45768 - 936
n.B -392156% + 25018 - 816
n.$) -38244400 + 14542 - 679

m= j,n=3 –1122@~y2 + 14921874 - 229&
n=6 –19071837 + 105079 - 655
n= 7 -23668639 + 64076 - 476
n.B -26143793.. + 38917 - 456
n=g -27317428 + 2k23T 416

m= 4,n=6 -635727972 + 6304774 - 7676
n=y -11834320 + 57668 - 374
n=8 -15686272 + 42030 - 268
n=$l -18213.619 + 290EM - 242

m= 5, n = 7 : WW72 + j020Ty4 -- 2g4#
n=8 + 33024 - 199
n =9 -1092697I. + 27422 - 152

m=6,n.8 - 26x437972 + 1590074 - 12776
n= 9 -5463486 + 1980~ - 107

m= T,n=.g - 1821162Y2 + 900’274 - 6076
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I@(’) ~bm
TABLE 10.-

b: $7)
3

P(XWR

[For m = O, there is br

m= l,n=5
n= 6
n.T
n. 8
n ‘9

m=2, n=6
n=7
n=8
n.y

m= 3,:::

n=9

m= 4,n=8
n=9

m=5, n=9

As

b:,o( Y )

SERIES IN 7

1
= +; compare therefore table 5

b~lbo X 1010

+13742974
+168182
+163007
+147665
+13075?5

+ 3363674
+ 54336
+ 63282
+ 65375

+ 1086774
+ 2109~
+ 28018

+ k219y4
+ 9339

+ 186874

-156676
-371
- 136
- 59
–29

-37176
-227
-127
-72

-10676
-99
-72

-3676
-43

-1476

b~lbo X 1010

-17276
-213
–203

-3076
-51

- 776

For n =m, n=m+l, n =m~2,n=m+j,

J

~--kpo disappears.

For n =m,n.m+l,n=m+ 2,n.m+3,n.m+ 4,
n=m+5, b-6Po disappears.
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11.3-NumericalMagnitudeof the Eigenvaluesand the Development

Coefficients for Different n,7 and m = O
,. –.,. ,.-,.- . .,

1

#

:

5
6

i
9
10
15
20
25
50
100

-72

4
5
10
15
20
25
50
100

TABLE 11.-EEENVALUIB X:(7)

Ao

-1.144334
-1.594507
- 2.0W939
-2.599717
– 3.151917
-3.734090
-4.343439
-4.976896
-8.42084
42.16294
-16.0w04
-36.90015
-81.02794

+17.511596
+15.11342
+12.81726
+10.64634
+ 8.63040
+ .94568
-16.06556

+ o.140119
- .505244
-1.162422
-1.831051
-2.510421
-3.200050
-3.899400
-4.607952
-8 .27M0
-12.09943
-16.05041
-36.89912
-81.02794

+28.00092

+25.06949
+22.68771
+20.36028
+18.08457
+ 7e250n
-15.32812

+ 4.530790
+ 4.091201
+ 34577958
+ 3.288927
+ 2.923314
+ 2.578205
+ 2.250704
+ 1.938379
+ .49949

.91127
2.44860

:13.56548
-45.4&67

——

X6

+39.504499
+37.04822
+34.63123
+32.25386
+29.91689
+18.92267
+ 2.57368

+10.494513
+10.003864
+ 9.517981
+ 9.036338
+ 8.558395
+ 8.083615
+ 7.611465
+ 7.141428
+ 4.8061-6
+ 2.45867
+ .06093
-13.21675
-45.48391

+1.I.4556L

92 LB L9 ~lo
I

x12

25 +59.736M0 +97.652659 +143.606898
100 +26.56408 +43.49374 +62.82728

i
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TABLE 12.- NUMERICAL VALUES OF’THE COEFFICIENTS a~,r(y), AND

TEE FUNCTION VALUE X:l)(l;Y) JWD X~l)(O;y)

‘r I -yp. 3
I 4

0
2

2
8
10

+0.987210
- .356220
+ 18683

408
+ 5

+0.976788
- .478334
+ 33565

979
+ 16

%(l)
I

+1● 362526 I +1.489682
XJo) + .815979 + .749906

I XJl)

Xo(o)

-7’=7 8

+0.930429 +0.911986
- .816037 - .912632
+ .100273 + .127817

5114 - 7440
+ 144 + 238

3 - 5

+1.852000 +1.960118
+ .558452 + .501339

5

+0.963507
- ●597277
+ 52k82

1914
+ 38

+1.615218
+ .683961

9

+0.892960
- .999698
+ .156894

10250
+ 369

8

+2.060379
+ .448846

6 I

+0.947840
- .710545
+ 74937

3279
+ 79

1

+1.736681
+ .619666

I

10,
I

+0.874035
-1.077418
+ .186943

13535
+ 5;;

f

+2.152486
+ .401345

r -72 = 15 20 25 50 100

0 +0.78915 +0.72576 +0.67909 +0.55601 +0.46036
2 -1.34978 -1.49587 -1.57800 -1.68750 -1.64674

+ .33881
2 -

+ .47816 + .60025 +1.01470 +1.38U2
3608 - 6622 - .10110 - .29658 i - .63255

8 + 260 + 5;~ + 965 + 5161 + .18483
10 - 10 - 59 - 595 - 3745
12 + i- 1 + 3 + 48 + 555
14 3 - 63
16 +. 1

~(l) +2.51654 +2.77142 +2.96871 +3.61286
Xo(o)

+4.35229
+ .23073 + .13779 + .08609 + .01284 + .00081
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~M 13.Y~~ICALVAL~S.9F TEE COEFFICIENTS a: ~(y), AND
s

TKE FUNCTION VALUES X~)(l;7) AND dX~)(O;y)/d~
. . .......

r 72=3 4 5 6

0 +0.997105 +0.994984 +0.992380
- .116098 - .152711 - .188048

: + 39% + 6812 + 9;~;
6 - 150 -
8 + 1 + 2+ 4

+0.989330
- .222236
+ UL717

Jq3
+ 9

+1.226765
+ .682337

I r I -72=7 I 8
1

0 i-O.98591o +0.982170
2 - .255039 - ,286470

19595 + 25008
: : 753 1066
8 + 16 : 27
10

[ # ,

IIX1(1) +1.261293 +1.294741

xl(o)~ + .638528 + .597088

r I -72 = 15

0
2

:
8
10
12
14
16

+0.95067
- .47019
+ 7352

572
+ 27

1

X1(1)

I

+1.50038

X1(O)* + .37136

20

+0.92654
- .56735
+ .11408

1160
+ 71

3

+1.62031
+ .26571

9 I
10

+0.978150
- .316613
+ 30907

1477
+ 42

1

+0.973908
- .345385
+ 37211

1969
+ 62

1

25 50 I 100
+0.90339 +0.81333 +0.71269
- .64300 - .84443 - .95736
+ .15571 + .34108 + .57527

1935 - 7563 - .20752
+ 146 + 1060 + 5010

7, - 102 - 863
+ 7+ 111

U
+ 1

+1..72298‘ +2.08616 +2.51279
+ .19192 + .04430 + .00421
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TABLE 14.- NUMERICALVALUES OF TEE COEFFICIEIVTSa“~,r(7),~

TEE FUNCTIONV_ X~1)(l;7) MD X~1)(O;7)

E
r

-2
0
2

:
8

LZ-Jl)
X2(O)

-72 = 3

+0.071289
+ .98572~

72766
+ 1840

24
+ 1

+0.989062
- .537431

+0.095777 +0.u9671 +0.142474
+ .974148 + .959391 + .941924
- 96430 - .u9654 - .142393
+ 3258 + 55067 + 7260

57 - In - 190
+ 1 + 1 + 3

+0.978117 +0.964533 +0.949296
- .547702

I
- .556050 I - .562257

I r -72=7 \ 8 9 10
L i I I 1 I

I
-2
0
2
4
6
8

Xp(l)

Xp(o)

+0.163772
+ .922384
- .164669
+ 9837

30:
+

+0.183325
+ .901424
- .186536
+ 1.2798
. 450
+ 10

+0.201034
+ .879642
- .208085
+ 16148

640
+ 16

+o.216893
+ .857549
- .229432
+ 19901

880
+ 24

+0.933426 +0.917893I +0.903497 +0.890893
- .566205 - .567935 -.567698 - .565615

r I -72 = 15 I 20, I 25 I 50

A
-2
0
2

:
8
10
12
14
16

+0.27303 +0.30282
+ .75076 + .65357
- .33636 - .44827
+ k532 + 8373

306 - 768
+ 13 + 43

1 - 2

+0,31712
+ .55985
- .56362
+ .13671

1596
+ 112

5

+0.28828
+ .13410
- .91568
+ .50022
- .12202
+ 1745

166
+ 11

1

X2(1)

I

+0.86260 +0;89086 +0.96019 +1.40297

Xp(o) - .53563 - .48567 – .42431 - .13884

100

+0,22335
– .20363
- .79124
+ .89250
- .41949
+ .11556

2129
+ 240

21
+ 2

+1.81574
- .01312
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TABLE l~.- IW’MUIICALVAUJIE3OF THE COEFFIC& a: .(7), AND
JSA

ITHE FUNCTIOI?VA.LUES X$)(1;7) AND C$)(o;y) d~

-2 +0.049768
0 + .996217
2 - >2769

1057
: : 12
8

X3(1) +1.000287

x~(o)~ –1.447434

EsE=
-2 +0 .109432

0 + .98m9L
2 - .122202
4 + 5725
6 - 145
8 + 2

X3(1) +0●999733
x3(o)~ -I.364111

4
I

3
I

6

+0.065474 +0.080671 +0.095329
+ .993384 + .989910 + .985786

70252 - 87661 - .104980
+ 1877 + 2929 + 4212

27 - 53 - 92
+ 1 + 1

+1.000066 +0.999883 +0.999742

–1.b2@@ +1.407450 -1.386162

8
I

9
I

10

+0.122969
+ .975879
- .139316
+ 7466

217
+ 4

+0.135938 +0.148343
+ .970201 + .964106
– .156318 - .173200
+ 9433 + 11626

308 - 422
+ 7 + 10

+0.9999,?3 +1.000329 +1.001021

-1.341380 -1.318040 -1.294172

15 20 25 x 100
r

-2 +0.20229 +0.24438 +0.27699 +0.35635 +0.37464
0 + .92878 + .WW03 + .84416 + .61460 + .27353
2 - .25562 - .33423 - .40827 - .68495 - .82807

+ 2590 + 4548 + 6992 + .23918 + .56017
2 - 141 - 332 - 641 - 4395 - .19704
8 + 5 + 15 + 3~ + 508 + 4388
10 41 - 681
12 + 2 + 78
14 7

X3(1) +1.00947 +1.02683 +1.05216 +1.23184 +1.53571

x3(o)~ -1.16949 -1.04147 - .91584 - .42163 - .07382
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m xp?o;7), ~)(l;7) ~ I#)(O;7) /d!

Il=b

“=.72 I 5 I 10
‘\
A
-2

0
2
4
6
8
10-—

X4( 1)

x4( o)

: 62~4~

+0 .994218
- 68652
+ l&37

29

+ 9906
+o.13p45
+ .975942
- .13W0
+ -@4

234

+

1

15
I

20’
I

25

+ 2240 + 404a + 6318
+0.19972 +0.26279 +0.32153
+ .94636 + .90051 + .84069
- .20117 - .26269 - .31828
+ + 2956 + 4535

79 185 357
+ 2 + 8 : 18

1

+0.98827

+ .41853

+0.97338 +0.94971

+ .43549 + .45131

n.4

x.b-
-4
-2

0
2

:
8
10
12
14
16 I

+0 .17284
+ .4$62
+ .40843
- .50209
+ .16360
+ 2753
+ 291

21
+ 1

X4(1)
x4(o)

+0.82102

+ .43598

100

+0.19417
+ .25147
- .2337
- .60518
+ .59941
- .23640
+ 345;

+ 96
8

+ 1

+1.16944

+ .14245

\

-72

r

4
-2
0
2

;
8
10

X$1)

~(o)’

n.p

10
I

15

m
+0.998734 I +0 .99668

+1.788369 +1.73792

4
-2
0
2
4
6
8

10
12
lk

+ 2434
+0.21549
+ .94291

.22006
+ 2093

114
+ 4

n.5

I
25

I
w I 100

+ 3632 +0. 10628 +0.19798
+0 .26342 + .43712 + .49281
+ .91191 + .68994 + .18816
- .27117 – .48639 - .68181
+ 3245 + .12243 + .39752

221 1710 - .11798
+ 10 + 160 + 2220

10 293
+ s

2

X5(1) I +0.99393 I +0.99074 I +0 .98672 I +1.116c9

X5(0)* +1.68269 +1.62227 +1.25100 + .51419
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TASLE 17.-NUMERICAL VAD.IIS OF ‘IKE CO~IC= &(7) J= WEIJJ As oF

TKE I-3’IIHCTIORS OF ‘lMl! FIRSTKXUIIlWl~ ARGUMIESlANDO,

WXIM n .6, ~, 8, 9, 10, 12

n.6

r

+ 20 + 165
5

+ 57 + 136 + 268
+ 1257 + 5001 + 1123

-2 + 47578 + 94694 4.14139 ,LUE% >.22$
0 +0.997k85 +0.989966 + .98042
2 47797

.+ .*O1l + .93789
- 9E268 - .lk252 ?18796 - .23256

+ 9843 + 3910 +
:

879 + 1552 + 2410
12 94 32

8
75 145

+ 1 + 3 + 1 + 2 + 6

X6(l) +0 .999935 +0 .999383 +1.00132 +0.99675 +0 .99460
X6(o) - .317374 - .322430 - .32872 - .33331 - .33s2k

11.6

1
I n.7 n.8

\

-72

r XbE50
I

100 25
I

l(x)

4
-4

-2

0

2

4
6
8

10
12
14

+ 2977

+0. IJ872
+ .4097L
+ .75313
- .42313
+ 912L

1122
+ 92

5

+o.12226
+ .32925
+ A1829
+ .12L34
- .51561
+ .2817J+

7755
+ 1354

166
+ 15
+ 1

2 6383
-4 L .25861
-2 + .52093

0 + .38995
2 - .58698

+ .2W63
: - .05770
8 +

10 96
12 + 8
14 1

+ 7 + 1719
+ 7722
+0 .23556
+ .51621
+ .49454
- .55330
+ .20286

V203
+ 581

59
+ 5

+ 131
+ 1816
+0. 17929
+ .96481
- .18035
+ 1476

72
+ 2

X6(l) I +0.95890 I +0.@0329
X6(o) – .38254 - .39599

Xn(1)
Xn(o)
xn(o)~

+0.96695

-1.36551

+0.99830
+ .28617

+0.95851
+ .34251

I
—

n=g

r

n=10 I n. 3.2

+2

\r

-lo
-8
-6
-4
-2

0

2

k

8

25 I 100 25

+
+ 2
+
+ 8:
+0.3.2367
+ .98408
- .12390
+ 715

26
+ 1

-j + 879 -lo
+ 5205

4 +0. 195h2 2
-2 + .50325 -4

0 + .59410 -2
2 - .52913 0

+ .17076 2
: 3192
8 + ko4 :

10 37 8
12 + 3 10

12

%(1) +0 .97926 Xlo( 1)

X9(o)’ +~ .99652 x~o(o)

+
+
+ $+ ll&)
+0.14651
+ .97729
- .M96
+ 995

41
+ 1

+ 107
+ 769

4037
:0.16730
; :$72

- .5cJl!15
+ . ?&~599

2492
+ 291

25
+ 2

+0.w644
- .28280

+0 .99937
+ .25343

X12(1)
X12(0)

+0.99965
+ .23024
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11.4.- Course ‘ofthe Curves h = An(7) for Low Values of

the Index n

T2 n=O n= 1 ?7”2

I80 i

60
!

40

/

20 I

-40

f



ADDENDUM

>.... .,~.,,,, .NACA TK1224-
/

til S WAVE FUNCTIONS OF THE ELLIPSOID OF REVOLUTION

It has recently
Miss Gertrude Blanch
that errors exist in

By J. Meixner

April 1949

been brought to the attention of the NACA by
of the Bureau of Standards, Deprtment of Commerce
the tabulated values appearing in tables 11 to 17

of TM 1224. Miss Blanch notes that C. J. Bouwkamp~ from whau Meixner”
obtained the values presented, subsequently corrected them in tables.
appearing in the Journal of Mathematics and Physics, vol. XXVI, no. 2,
JUIY 1947, pp. 88-91.

In spite of the difference in symbols and notation in the two
papers, reprints of tables I to IX included in the July 1947 issue of
the Journal of Mathematics and Physics are attached for the use of those
interested in receiving them. The NACA wishes to express its appreci-
ation to the Journal of Mathematics and Physics for permitting these
tables to be reproduced for this purpose.
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TABLE 1

–lo
-9
-8
–7
–6
–5
-4
–3
–2 “
–1
o
1
2
3
4
5
6
7
8
9
10

kZ

o
1
2
3
4
5
6
7
8
9
10

AD

2.30i040
2.136732
1.959207
1.771184
1.571156
1.357357
1.127734
0.879934
0.611314
0.319000
0

–0.348602
–O.729392
–1.144328
–1.594493
–2.079!)34
–2.599668
–3.151841
–3.733982
–4.343293
–4.!)76896

A,

12
11.492121
10.990438
10.494.513
10.003804
9.517!)81
9.036338
8.558395
8.083615
7.611465
7.141428

Al

7.285254
6.820888
.6.342739
5.850492
5.343904
4.822809
4.287129
3.736870
3.172128
2.593085
2
1.393206
0.773098
0.140119

–O.505244
–1.l(i’’478
–1.831051
–2.510421
–3.200049
–3.899400
–4.607952

TA131.1:II

A,

20
1~.4~5277
18.994079
18.496395
18.002228
17.511597
17.024541
16.541109
16.061383
15.585448
15.113424

A%

11.790394
11.192939
10.594773
9.997253
9.401958
8.810735
8.225713
7.649318
7.084258
6.533473
6
5.486800
4.996484
4.531027
4.091509
3.677958
3.289357
2.923796
2.578732
2.251269
1.93’%120

30
29”.496855
28.995964
28.497321
2x.ooo923
27.506763
27.014846
26.525161
26.037710
25.552488
25.069492

A,

42
41.497757
40.997089
40.497988
40.000458
39.504497
39.010106
38.517282
38.0XXE7
37.530339
37.0482M

,,, ,. ,,, ,, .,. , .. .. .. . . . .. . . .—..-..--.-..--——————



I

–lo
–9
-8
-7
-6
–5
–4
–3
–2
–1
o
1
2
3
4
5
6
7
8
9
10

—.

&

–lo
–9
–8
–7
–6
r

::

–3
–2
–1
o
1
2
3
4
5
6
7
8
9
10

bo

0.944709
0.951472
0.958380
0.965363
0.972311
0.979071
0.985428
0.991099
0.995716
0.998846
1.000000
0.998691
0.99450!)
0.987210
0.976790
0.96,+507
0.947848
0.930440
0.911948
0.892980
0.874065

Addendumto NACA TM 1224

TABLE III
m

-. . .. . . ----- .-
;ttaraclerzst%cJunctzon &(~) = ~ ~ Elm(f)

o.
h

–0.728578
–O.684479
–O.635639
-0.581441
–0.521212
–O.454254
-0.379882
–O.297493
–O.206682
–o.107374

0.114368
0.233!)27
0.356205
0.478301
0.597278
0.710493
0.815971
0.912502
0.999612
1.077435

b,

0.110455
0.094690
0.079247
0.064298
0.050067
0.036840
0.024!)58
0.014835
0.006949.
0.001824

0.001976
0.008138
0.018683
0.033563
0.052483
0.074931
0.100266
0.127799
0.156881
0.186946

b

–0.007498
–O.005827
–O.004365
–0.003120
–O.002097
-0.001294
–0.000706
–0.00U316
–0.0001oo
–0.000013

o.oo0014
0.000118
0.000408
0.000979
0.001914+
0.003279
0.005114
0.007438
0.010250
0.013533

h

0.000288
0.000203
0.000136
0.000085
0.000049
0.000025
0.000011
0.m4
0.000oo1

0.00ooo1
0.000005
0.000016
0.000039
0.000079
0.000143
0.000238
0.000369
0.0005-40

TABLE IV
.

C’haraclrristic fur&clion.Y1(E) = ~ b2. Hp2.+l(f)

o

b,

O.9fM429
0.970923
0.976877
0.982232
0.9S6936
o.yJOQ.~~
0.994236
0.996784
0.998586
().gg~6.51
1.ooOOOo
0.999664
0.998683
0.997105
0.994984
0.992373
0.989330
0.985910
0.982167
0.978150
0.973!)08

–0.402104
–0.364436
–0.325710
–O.28W82
–O.245730
–0.204851
–O.163656
–0..122359
–0.081179
–0.0KW2G

0.039616
0.078362
0.116098
0.152711
0.18S112
O.22%236
0.255039
0.2s(;500
0.316612
0.3453s6

b,

0.046184
0.037696
0.029054
0.023016
0.016934
0.011752
0.007499
0.004197
0.001852
0.000159

0.000$47
0.001764
0.003902
0.006812
0.010436
0.014716
0.0195!)5
0.025011
0.030!)0s
o.0372W

h

–O.002528
–0.001858
–0.001312
–O.000882
–0.000556
–0.000322
–0.000164
–0.000069
–0.000020
–o.000002

0.000002
0.000019
0.000063
0.000147
0.000281
0.000473
0.000733
0.001066
0.001477
0.001969”

(%

0.000081
0.000054
0.000034
0.00W20
0.000o11
0.000005
0.000002
0.000001

o.ml
0.000002
0.000004
0.000009
0.0000IG’
0.000027
0.000042
0.000062

blo

–o.000007
–o,m5
-0.000003
–o.ml
–o.00oool

o.ml
0.000003
0.000005
O.ms
0.000014

bu

–o.m2
–o.00oool
–o.00oool

o.ml
o.00ooo1
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TABLE V

Characteristic function X,(E) = ~ &&m(:)
o

----

hh b,k, b, bm

0
1
2
3
4
5
6
7
8
9
10

kl

1.000000
0.998525
0.993846
0.985722
0.974150
0.959391
0.941931
0.922394
0.901438
0.879661
0.857550

0.000206
0.000821
0.001840
0.003258
0.005067
0.007260
0.(X19W7
0.012799
0.016150
0.019902

-0.022875
–0.046799
–0.071286
–O.095772
–O.119671
-0.142464
–O.163759
–0.183310
-0.201017
–O.216892

0.024445
0.048736
0.072766
0.096431
0.119654
0.142398
0.164677
0.186545
0.208Q98
0.229438

o.ml
o.oo0007
0.000024
0.000057
0.00011o
0.0001(90
o.OOCB02
0.000450
0.000640
0.000wo

0.000001
0.000001
0.000002
0.00004)3
o.mo
o.Ooooln
0.000016
0.000024

TA131,1,;VI

charac~cristicju~tctio~t .Ys($) = ~ 6X.+lT’2.+l(E)
o

bb

1.000000
0. YM135
o. 99g2s7
0.990217
0.993406
O.98W1O
0.9857s6
0.981091
0.975879
0.970201
0.!)64106

a, b

0.017626 0.000118
0.0352’”! 0.000470
0.052770 0.001057
0.070263 0.001877
O.087(;61 o.00!!929
0.104!)7!)0.004212
0.122202 0.00.5725
0.139316 0.007465
0.156318 0.009433
0.173200 0.011626

b,

–0.016979
–0.033587
–0.049768
–O.065475
–0.080671
–O.095328
–O.109432
–o.122970
–o.135!339
–0.148343

bu

o
1
2
3
4
5
6
7
8
9
10

0.000003
0.000012
0.000027
0.000053
0.OWO!M
0.000145
0.000217
0.00030s
0.000422

0.00ooo1
o.000G02
o.000C04
o.oo0006
0.000o1o

o

b,

0.000076
0.000304
0.000(;84
0.001215
0.001897
(J.002729
0.003712
0.001839
0.006122
().007WX)

— —.
b,o

0.000002
o.0oUoo6
0.000015
0.Ooowl
o.0UO051
o.OooWo
().00012fj
0.000171
0.00W34

bs b, ha

o
1
2
3
4
5
6
7
8
!)
10

1.000000
0.9!)!)76s
o 09(907./
o.f)~i!)]~
o .W6300
o.~9~218
o.9916ti9
O.WMW
o .!)84408
0.9811W
o. 97fww

0.000091
0.00036S
0.000834
0.001493
0.002348
0.003404
0.004663
0.006125
0.0078Q6
0.009695

–0.013588
–0.027140
-o.01O(M
-0.054128
–o.067563
–o.otso957
–().094312
-0.107546
-0.120W
–0.134130

0.013773
0.027528
0.0412(M
0.054977
0.06s651
().0S2279
0.095855
0.10W86
().122811
0.13617:1

0.00ooo1
0.00ooo1
o.oo00m2
o.000003
0.000005

Ill ■l I mmlmmlmn II m Imm,mnm 1 mm mmm mm.. . . . n ., , ,., , , , ,,.,, ,,,, ,.- . . . . . .------------- , ,, . . . . . . .. . . ... —-. ---- . ...-. -—-_—.—



Addendum tO NACA TM 1224

,

o
1
2
3
4
5
6
7
8
9
10

TABLE VIII

o

0.000068
0.000273
0.000611
0.001080
0.001681
0.002408
0.003262
0.004236
0.005331
0.006543

b,

-0.011218
–O.022423
–O.033609
–0.044772
–0.055906
–O.067006
–O.078066
–O.0890W
–o.100043
–0.110949

b,

1.000000
0.999854
0.999418
0.998690
0.997673
0.996367
0.994772
0.992888
0.!)90719
0.988263
0.985522

h

0.011294
0.022584
0.033863
0.045127
0.056373
0.067596
0.078793
0.089958
0.101088
0.112180

b,

0.000046
0.000213
0.000478
0.000850
0.001327
0.001910
0.002598
0.003391
0.004200
0.005292

TABLE IX
.—

Characlcrislic junclion Xe(~) = ~b,~pzti(f)
o

baa

0.000oo1
0.000004
0.000009
0.000018
0.000031
0.000050
0.000073
0.OOO1O5
0.000143

h

o.00ooo1
0.00ooo1
0.000002
0.000003

k9 h ba bd h b, h, bo bn
. ——

0 1.000000
1 0.000050–o.0095350.0998660.00!)5710.000039
2 –o.Ooooo10.000202–0.0160610.9995970.0191400.000157o.ml
3 –o.0000040.000454–0.0285800.9990940.0287020.0003530.000003
4 -O.OOOO1O0.000805–O.0380870.9983900.0382570.000627o.m6
5 –o OOOWO0.001256–O.0475780.9974860.0478020.OoOwo0.000012
6 –0.0000350.001807–0.0570500.9963810.0573310.0014100.000020
7 –0.0000560.002458–0.0665010.9950760.0668450.0019190.000032
8 –0.0000840.00:3207–O.075!W8O.9!)35720.0763410,0025050.0000480.000oo1
9 –o.0001200.004055–0.0853260.9918670.0858160.0031690.0000680.00ooo1
10 –0.0001650.005001–0.0946940.9899660.0952680.0039100.0000940.000002
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