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NATTONAL ADVISORY COMMITTEE FOR AFERONAUTICS

- TECHNICAL MEMORANDUM NO. 122k

LAME'S VAVE FUNCTIONS OF THE FLLIPSOTD OF REVOLUTION'

By J. Meixner
'1. INTRODUCTION

Lame 's wave functions result by separation of the wave equation
In elliptic coordinates and by integration of the ordinary differen-
tial equations thus originating. They are a generalization of Temé's
potential functions which origina'be in the same manner from the
potential equation. ILemé's wave functions are applied for boundary
value problems of the wave equation for reglons of space bounded by
surfaces of a system of confocal ellipsolds and hyperboloids.

- For general ellipbic coordinates Lemd's wave functions AJeave not
been fully calculated so far. Except for a few general propertles s,
not much is known a&bout them. More consilderation was glven to Leme's
wave functions for the case of rota'bionally symetrical elliptic .
coordinates (celled for short, Lameé's wave functions of the ellipsoid
of revolution). However, even for these fumctions few results are in
existence compared with those for the better kmown special functions
of mathematical physics, such as cylindrical eand spherlcal functions.

The first more detailed investigation of Tamd's weve functions
of the ellipsold of revolution was made by Niven (reference 1) who
with their ald treated a heat-conduction problem in the ellipsoid
of revolution. However, the numericel values of the coefficients
of his geries developments in terms of spherical and cylindrical

 functions as they are glven for the lowest indices contain sevsral

errors which were taken over into the report by Strutt (reference 2).
A more extensive investigation wilth a greater number of appllcations
was mede by Macleurin (reference 3) MSglich (reference L), whose
mathematical invegtigation of Leame's wave equation is based on
cértain linear homogeneous integral equa.tions , obtained results of a

*"Die Lameschen Wellenfunktionen des Drehellipsoids " Zentrale

" flir wissenschaftliches Berichtewesen der Lu;f’tf‘ahrtforschtmg des

Generalluftzeugmelsters (ZWB) Berlin-Adlershof, Forechungs‘bericht .
Nr. 1952; June 194k,
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more genergl character. Sgrutt (reference 2) gives a survey of the
state of the theory of Leme's wave functions in 1932; he also demon-
strates on a large number of examples from acoustlcs, electrodynamics,
optics, wave mechanics, and theory of wave filters, the manifold
possibilities of application for these functions.

Of the treatises published in the meentime, en investigatlon by
Hanson (reference 5), vhich contains several new detalls, should be
mentioned, as well as a treatise by Horse (reference 6) on addition
theorems, that is, cn the development of the plane wave and the
spherical wave in terms of Lemé's wave functions, furthermore, a
number of treatises on the wave-mechanical treatment of the ion
of the hydrogen molecule (reference 7). Kotenl (reference 8)
deals with integral equations for Temé's wave functions. In
particular, a treatise by Shu and Stratton (reference 9) should be
pointed out which settles exhaustively the problem (treated so far
only incompletely) of the continuation of the solutions of
equation {2.hg) for large and small argument and showe in detail
how the entire theory of Mathisu's functions results as a special
and boundary case {rom the general theory of Lamé's wave functidms.
Finally, a treatise by Bouwkemp (reference 10) on the theoretical
end numerical treatment of diffraction on a circular aperture is
to be mentioned which, for the first time, contains more detailed
numerical materisl concerning Tamé's wave functions of the ellipsoid
of revolution. : '

The mein task of the present report on Lamé's wave functions
of the ellipsoid of revolution will be to complle thelr most
important properties in such a manmer that these functions take on
a form which facilitates their application. In this connection an
investigation of the solutions of the ordinary homogeneous linear
differential equations of the second order, which originate with
separation of the wave equation in rotationslly symmetrical elliptic
coordinates, is of importance; further, it has to be determined what
is to be understood in these solutions by functions of the first
and second kind, their normalization as well as the description of
the behavior of these solutions in different domains of the
independent variables, in particular, their asymptotic behavior.
Here belongs also the indication of a method of numerical calculation
of these functions and the presentation of numerical tables.

For the purpose of clarity it was necessary to generalize
end supplement the existing material In some respects and to simplify
gome of the calculations and proofs. Therewith the theory of Lamé's
wave functions of the ellipsoid of revolution as a whole would seem
to have reached a development equivalent to the theory of Mathieu's



functions, and it probably even is somewhat 51mpler, Mathieu's functions, nemely, represent not
a regular but a singular special case of Lamé's wave functions. !

;o 2. THE BASIC EQUATTON Y

2.1 Rotationally Symmetrical Elliptic Coordinates

WieeT "ON Wl VOVN

In dealing with the rotationally symmetrical elliptic coordinates one must distinguish
between those with oblate and those with prolate ellipsoids of revolution. Accordingly, one
adds in the numbers denoting the formulas, the letter a or g, respectively, where both
cases appear. X, y, z are the Cartesian, £, n, ¢ the elliptic coordinates. ¢ is a
positive constant. Then it follows that:

X=c kl - ng)(§2 +1) cos @, ¥ = C‘J(l - 7°) (2 + 1) sin P, z=ctn :
7 (2.1a)
0St<w, -15751, 050% 2r
S
x=c @ - 12) (2 - 1) cos ¢, ¥y = cX/(l - 1°)(t% - 1) sin @, z =ckq :
: > (2.1g)
l§§<oo, —1§.q§1, Ogcpf.-&r_

The symbols are the same as in the collection of formulas by Magnus and Oberhettingér {reference 11)
to vhich reference is made also with respect to the transformation of the wave equation. to
elliptic coordinates and with respect to the separation of the wave equation.
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2.2 Separation of the Wave Equation

Solutions of the wave equation in three dimensions are to be
determined. (k = wave number.) .

Au+ XPu =0 ‘ (2.2)
of the form

Then the ordinary differential equations

, ~\ 4 2 A o
4 ‘\/l + g‘)rfl- b e 4 K72 - Qfl = 0 (2.1a)
ag | at 1+ €@
alq o M2 (w222, L) ‘
in (i n >dn ! T ﬂ2 + k¢ + A )fn = 0 (2f5a)
d,r 2 dfl— ‘ gg e 22 |
s - T .:‘ - - .Lv‘ - + = 2!
m (1 §>c1§ T ek Afp =0 (2.4g)
216 - @BEe s (222 1 3)e, <o (2.5g)
an | M/ B Pt = =08
o}
af, o .
3. % (2.6)

ere vallid for f,, fp, and fa.

A and u2 are the geparation parameters. Tirst, they are
agsumed to be any complex nuubers. They can only be determined
for a given boundary value problem. In particular, K need not



T

L.

NACA T™ No. 1224 5

be an integer; this can be recognized, for instance, in the treat-
ment of an inside space problem in a sector O S P S Py of an

ellipsoid of revolution.

2.3 Reduction to a Differential Equation

The differentlal equation (2.l1g) is designated as the basic
equation. (2.5g) is identical with it; (2.ka) is tronsformed into
it vhen & ‘is replaced by *if and k°c° by ~k°c2. Therewith
the investigation of the differential equations (2.4a), (2.5a), /
and (2.5g) is reduced to that of the differential -equation (2.hg).
The basic domain, however, is not.the same for all cases; it
extends from -1 to 1 in the cases (2.5a) and (2.5g), from 1 to «
in the case (2.4g), vhereas the basic domain of the differential
squation (2.ha) in the trensformation to (2.hkg) will be changed
to the domain from O to ie (or srlse ~-iw). It proves, therefore,
to be necessary to investigate the differential equation (2.l4g)
in the entire complex &~plans.

2.4 Trensformations of the Basic Equation

The basic equation represcnte a special case of the linear
homogeneous differential equation of the second order with four
extra essentlal singularitics, two of which are made to Join to
one essentlal singularity. The latter is at infinity, the two
remalning extra essential singularities are at 1 and -1. The
Present investigation of the basic equation will stert with
comnecting its solutions with the solutlons of limiting cases of
the basic equation. For X“¢“ = 0, +the basic equation is trans-
formed into the differential equation of the spherical functions
and their associated functlons or, as they will be called here,
of the general spherical functions. If one lets the two singu-
larities at 1 and -1 combine into a single singularity at & = 0,
there originates, aside from an elementary transformation, the
differential equation of the cylindrical functions. This is
brought about by the substitution

(2.7)

ute
[}
~
woe
=

and the abbreviation

v = ke (2.8)
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if one then performs the limiting process vy ->0. From (2.hg) there
originates with -

0= (62 - 2P et ) )

the differential equation

-0 a%y LB 2\ a
(¢ ) +2€<*§?

w4“

[-x + 02 - P——(Eé—l)-ﬁ v =0 (2.10)

In the tr@nsition from (2.4g) to (2.ka) € 1s transformed into
itself and 7 ne€d‘only be replaced by =-y<. TFor large distances,
that is, ° = x5+ vd + 28 >> co

-~ N
24 422 /o
2 o 2p2ly o X + of & (2.11a)
" \
_ -~ oy D "l |
oo TR TR v 4 o T
§2 = Kore |1 + ~F n + 0 93) (2.11g)
: r \1

are valid.

Another important limiting case of the baslc equation occurs
if, of the two singularitiés of the baslc eguation located at finite
distance, one or both move Lo infinity. Thenthe differential
equation of Laguerre's and Hermite's orthoponal functions, respec-
tively, is formed. This limiting case will yield the asymptotics
of the elgenvalues and elgenfunctions for large absolute value of 7.

2.5 Comnection with Mathieu's Functions

Mathiev's functions are, in connection with Lamé's wave functions,
obtalned in two ways. They appear, as is well Imown, in the separa-
tion of the wave equation in the coordinates of the Olllpulc cyllnder
and must, therefore, ahoammm*ﬂrmolmuhnwcmeoflwms\wm
functions for the ellipscld with three axes when one axis becomes



NACA TM No. 1224 7

infinitely long. However, Mathieu's differential equation is also
obtained, except for an elementary transformation, if p in (2.h4g)
is set equal to ¥1/2. This also indicates that 1t 1 useful to
congider the basic equation not only for mu that are integers,.

but rather for arbitrary coefficients Vv and p. The theory of
Mathleu 8 functions is, therefore, a speclal case of the theory of
Temé 's vave functions of “‘the ellipsold of revolution. Although

the present report does not yleld new results of Mathieu's functions
it demonstrates how they £it into a more general pﬁcture.n

3+ SPHERICAL AND CYLINDRICAL FUNCTIONS

3.1 A Few Formulas for Spherical Functions

The most important formulas and theorems for spherical and
cylindric functions needed below are compiled and a few estimates
for these functlons are given, which will be necessary for con-
siderations on uniform convergence of certain series in terms of
such functions. Magnus and Oberhettinger (reference 1l) is again
referred to concerning the notation and additional formulas. The

general spherical functions Eﬁ(ﬁ) and gﬁ(&) both satisfy the
differential equation

- -
Sy L g2y dpbg / INRTCEN MY
ar |- EEE ) vl 1) - Epl(e) =0 (3.1)
I o . -
and both satisfy the recursion formula
(2v + 1)ED(E) = (v - p + 1)Pv+l(t> o ey (8) (3.2)

from which by threc times repeated application

vV - 2y (v - w2 4 oy - 0,2 -
R ) - ( e 1;E9v 5 Helo ) + qkevk— i)(zvu+ 3);9“(5)

s I 3



is obtained. Further, the series presentation which converges for &l > 1 is given:

\ r{v+p+2p+1) (2g)'2p (

i 1/2 pni o \#/2 , -u -v-1
QU(e) = /T L (32 L )/ H (g -
-V ) ) L@- ,P(v +p o+ S)r(p + 1)
p: \

where arg (&2 - 1) =0 vhen & is yeal and >1, argt =0 when ¢ 1is real and >0. In order

to obtain the uniqueness of the general spherical functions a branch cut is put from € = -
over -1 to 1.

3.2 A Few Egtimates for Stherical Functions

For the general spherical. functions of the second kind the integral prrientation

n(1+,0+,1-,0-
n . (u-v)ni 2"'r (\u ¥ %)P(%) ‘o Nu/2 -v-p-l !( ) Vi ~1/2-p
gv(g‘) = e b gin (Vv + u)x (E’ ) 1) -2 L/ v (1-2)
-1/2- . .
z/
ig valid.

34

f1oeT *ON WL VOVN



Therein =k +\/§E - 1; the sign of the root must be ssglected go that ! > 1
(one need hard_'l.y be afraid that 2z could be mistaken for the Cartesian coordinate z). In:

order to estimate ¢ +r(§) for r—>*w one forms the absolute values of the individual

factors ahead of and in the integral. 'u;r in the integral is replaced by its maximm value.
This latter camn, by suitable selectlon of the path of integration, be made smaller than (1+ S)r
for r> 0, mmaller than &% for r< 0, where & is an arbitrarily small but fixed positive
number mdependenu of r,E . Then one ob uains ‘

}—(1 + 5)1“} for r :
IQv+r(§)‘ glyt J?"IZI T ob(e) _ +(3-6)

for I‘='l, "2,..-

]
\.O

font

n
-

.

.

.

@u(g) is a restricted positive function of & independent of r 1in each closed domain
v

excluding the points § = ¥1,o. Only the case of Vv + p being an integer requires special.-
consideration. For v+ pu=0,1,2, « . . it can be demonstrated that the estimate (3.6) 1is

retained; for v + p = -1, -2, . . . the estimate above is valid fr g‘:+ (g)/I‘(V +r+u+1l)
. r
1 3

instead of Q’L;_ (g) « The cagse pu = -E’ -z—, » + + 1is not to be excluded, as can be shown eesily.
Vi : _

The general spherical functions of the first kind are given by the integral representation

. r , l P(l+322')
By(e) = 52" e ) A R A (R ) B R

(2) J

WoST °“ON WL VOVN

Ty
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Tt is valid for -2 < arg z= < 2¢ with the provision that the path
of integration for = < arg 22 < 2% and ~2x < arg 27 < -1, respec-
tively, leads past the left of the point uw =0 and is also to be
returned there. The estimate has to be made as above. The maximum
of 'u!r . is, if the path of integration is suitably selected,
smaller then (iz!2 + 8)¥ for positive r's and smaller than &Y
for negative r's, where & 1 a number of the conditions indicated
above, so that

o < R S =0 2 ; . o
E%+r(§) QZ,'+!Z‘> Wv(é) for r » 1, 2,
(3.8)

S—.— lzg'rﬁ\?(g) fOI" r= -1, _2: __3, .

respectively, where WS(E) end ﬁ%(ﬁ) cre positive, restiicted
functicns independent of r in each closed damein exeluding the
points & = fl,w.

2.3 A Few Formulas for Cylindrical Functions

For the following it is more convenient to introduce not the
cylindrical funcitions themselvesg bub rather the functions

;ﬂ

\l’v (g) = \\l'é-g Fv.;.l/g(g): nv(c) = \\/g%t NV*‘]./Q(C) (3 ‘9)

They both satisfy the differenﬁiallequation

d?w dw} - |
v, 2 v, |y . y_(l.g._;ﬂ% =0 (3.10)
at® ¢t at ¢=



Z,.
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and the recurslon formvlas

oy + 1 ¥, v V41

11

t  at = 2v - J_\V""‘2 TEv-1nEvE 3

v+ 1, _ 1 ' 2(2y + 1)

v

R

2V + 3 ‘]’v+2 (3-12)

1

gé V'Ev-1WV-2+(2v~1)(2v+3) V+2v.+

Bespides, the simpler vecursion formule

T 2y(8) = Ty () + 7, (0)

S Vy,p (3.12)

- (3.13)

is to be noted for the cylindrical functions from which (3.12) is
obtained by repeated application. Finally, the consistently convergent

series development

T 1£)2P
¥ (¢) = %"l/?(é)vz_ ()

p=0

is given with arg { =0 1if § 18 real and >0.

I'(p + l)F(V'+ P+ g)

“(3.11)

3.4 An Estimate for Cylindrical Funétions

For the cylindrical functions 27 Lr(§) one obtainsjby repeatad~
v , ) ; o

application of (3.13)



cT

T
(V+r

P(v+r)
3:® (5] 5

_/g_)r'lr‘(v o[, -2 /c_)g
X\C, riv + )7 (v +r-1)(v+1)1\2

1 (¢ (r-2)(r - 3) £\
1)+Ye1s \2> W +r-D@ -2y :ue:(fz) . ,]Z”(g

-}

L
+ (r -3 -1 t o J '
(V + r - ’!)/‘V + r - 2)(\) + 1, (‘V + 2\r\| (2) . sz-l(é) (3 ]__5)

The number of the sum terms in bracketz to be included is §+ 1 for even and L ; L for
odd positive r's. If Rew ?- 1, one obtains from (3.15) “the following estimate

| <l2gf | . 1 -
% 0] =T S 2, 00] 50180 + |5, 07 ieh (3.16)
Therein r =1, 2, 3, . . ..A corresponding estimate may be obtained for r = -1, -2, =3, . .. ..

Since the singular points of the cylindrical functions lie at O and w , the function

izv+r(§)t ‘%’ m (3.17)

#geT 'Ol WL VOVN
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is in every closed domain, excluding the points O and o,
restricted (considered as a function of }; the upper limit does
not depend on r. If Rev <1, this relation is valid at least
" for such r's for viich “Re- (v +r) 2. A corresponding estimate

is valid for negative r's.

L. THE X-FUNCTIONS OF THE FIRST AND SECOND KIND

4.1 Definition of the X-Functions of the First and Second Kind

Since for 7y = 0 the basic equation (2.hg) is Joined to the
differential equation (3.1) of the genersl spherical functions, it
suggests 1tself to develop the solutions of the basic equation in
terms of spherical functions. One formulates the two a} filrst
formal series ‘

17aH S )P\*j+ (&) (%.1)

M ¢ 59) =

{
: {\V/]a
1
cm
\0

XS(Q)(E,W) = (k.2)

1
[\”/18
e
m"f
<%
’-\
~
L]
<T:
/‘\
U
e

and attempts to determine the coefficients a" (y) and the index v
v,r
in such a manner that these two meries formally satisfy the bagic
equation and converge. The further problem will be to investigate
the convergence properties of the two series (4.1) and (4.2) in
order to determine thet, for the two series, one has to deal with
analytic functions which, in general, are linecarly 1n&ependent
solutions of the basic equation.

For the coefficiente a” (7) the indices V,u and the argument y
V¥

will be omitted where there 1is no danger of confusion; the same
applies to the coefficients to be introduced later for series
developmonts of a similar kind. The summation index r assumes only
even values. The term with r = 0 in the two series (4.1) and (4.2)
i1s designated as the principal term of the serles. In the solutions (k.1)
and (4.2) of the basic equation an arbitrary constant factor remains
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It may be determined in some way. Then the series (4.1)
W 1a denoted as X-function of the first kind -and the series (4.2) as

i X-function of the second kind with the argument & and with the
indices V,u with the parameter y. It will be found that the index V
is determined by the separation parameter \; more accurately,

there exists a functional relation between A\, v, i, and vy

vhich is expressed by

A= xfl(y) (&.3)

The series {(4.1) and (4.2) are now inserted in the basic
equation, the differential guotients of the spherical functions are
eliminated by means of the differential egquation of the spherical
functions (3.1), and the factor §2 of the spherical functions is
eliminated by application of (3.3). Then there appears an infinite
sum of spherical functions with coefficients independent of & vwhich
is equal to zero. The disappearance of the individual coefficient is
sufficient to this end. This leads to the conditional equations

1 ' o
——2-@1,‘6,1‘ oz qraT_,g b 1’)143.1«].2 (r = O’ _‘_2, .f.l[, ¢ a ‘) (Ll' 0)1’)

with the abbreviation

-

o 2(v + r+ (v ) - 2uf -1
O = =N+ (V+ r =+ Va4 or) + ye
r ( r o+ 1) v+ (v + 2r + 3)(2v + 2r ~ 1)
(v+rr+pu+2Y v +r+p+ 1)
= ’ L .
Pr (2v+ 2r + 5)(2v + 2r + 3) " (55)
g =y tr - uw(vitr - - 1)
Too(ev+or - 1)(2v + 2r - 3)
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4.2 General Gualitles of the Coefficlents ay

The recursion fofmﬁlé>fof'ﬁﬁe’éoéfficients~-arvwis interpreted

es a difference equation. In order to avold complicatlions, the case
of real fractional values of one-half for V is completely excluded
and the case of real integers for v + u and v - u, respectively,
is postponed. Concerning the behavior of the coefficlents a, at

Infinity, & simple formulation can be obtained according to
Kreuser (reference 12). The equations

lim sup r/la vl .2
rs>w NTF =[5 (&)
or
lim sup \\zgfa T oppd = val (&.7)
r~~}"~c0 ) Y . 2

are valid.

If the behavior of the coefficlents a,. at infinity is given
by (4.6) at least for negative or positive r's, they increase oo
strongly to make a convergence of series (4.1) znd (4.2) possible.
Therefore, & solution of the difference equation (4.4) is to be found
which shows the behavior (4.7) for r—>ow as well as for T—3-we.
Although there alvays sxists an exact solution vhich behaves
for r-2-w as indicated in (L4.7), this solution will in general
exhibit for r--»-o the behavior (4.6). Only for certain distinct
values of the parameter V (free so far) , the behavior (4.7)
prevails for both r—>o and »r—3-o inversely, in this manner
distinct values of N are coordinated to each valuve of V. For
vy =0 'the conditions are pearticularly .simple. There becomes for
all r's :

x-(v+r+1)(v+rﬂar=o (r=0,%, %, ...

Thus X can, for a given Vv, assume any of the values (V + r + 1) x
(v +r). It is determined by the requirement that the series (l.l)
and (4.2) should be reduced to the principal term for this case,




16 NWACA TM No. 1224

vhich leads to & = ¥(V + 1). Now 1t is further required that
wnder x%(y) alvays the value should be understood which goes over

to y(y + 1) for y->0. The existence of such a distinct h-value
to each given Vv, p, and ¢ and its uniqueness will not be proved
here; 1t follows from the method of calculation given in section 6
for the Cdetermination of A. '

From here on, the coefficients a: (y) will alweys represent
r

2
that solution of the difference equation (4.L) vhich shows the
behavior (4.7) for r—>%w, belongs to the value kt(y), and.

therefore has the boundary values

lim a, = 0 (r =*%2, T4, 6, . . ) (4.8)
7=0

Furthermore, the constant factor which is arbitrery in the coeffi-
cients a, may be determinec in a given manner.

4.3 Convergence of the Series Developments of the X-Functions
of the First and Second Kind

From the estimates (3.6) and (7.8) as well ez from the boundary
velves (L.7) for r->7w there follovs immediately that the
series (k.1) and (4.2) in each closed Comain, which does not include
the points £ = ¥1,e0, vill converge absolutely and uaiformly. One
mey further conclude that the serics (4.1) and (4.2) will converge
as vell as tho evponentisl scries. Since the individuval terms of
these scries are analytic functions in this domain, there follous
from the uniform convergence that the sums of the series themselves
wvill again be analytic functions, the singulerities of which can
lie only at ¢ = *l,w, furthermore, that the serice can be dir-
ferentiated tormwvise, and therevith the fact that the functions
renrcsented by thesc serics are real solutions of thz basic equation.
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L.t Further Solutions of the Basic Equation and Thelr Relation
40 the X-Functions of the First and Second Kind

Between the general spherical functions PH, P7H, pH !
) v Vv -y~
E-u ) QH, 9'“, Qu Q-u all of which satiefy the same
-v=1 v Y Ty~ l Tyl

differential equation there exist, in general, six linear relations
Independent of each other. They can be generalized for the X-functions
of the first and second kind. To this end several relations for the

coefficionts a: (y) will be derived.

ST

The system of equations (4.4) end the system of equations
origineting from it by the substitution V-->»-v-1 and r->-r

ars
identical because of
B =" , M =
“V-l,-1 v,r “V=1,~r V,r
Due to the uniqueness of the solution there follows from it
B H
A = .
v_1(7) M, (7) (4.9)
Furthermore, the constant factor which is arbitrary in the a,'s can
be determined in such a mammer that
M a*
a = L!'-lo
~y-1,- L) %, A7) (4.10)

The system of equations (k.t) and the system of equations
originating from it by the substitution p-—>-u become 1ldentical

1f one introduces in the latter instead of the a ™ !
v,

s the wvalues

L(v+r+p+3)DV - p+ )
p7) = FW+r-p+t1) TV +u+1) v,r(7) (4.11)
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They are determined so that by = ag. Then the equations

o =at o) ()
v,r v,r
and
X;P(y) = X$(7) , (4.13)

are valide.

After these preparations,at first a relation between X u(l)(g,y),

Xt(l)(g;y), and X”( ) is derived, since according to (4.1)
and (k.12)
-n(1) N ra L
’ = b 1 P !
X, (e57) N bv,r(y)lw_f(g) (b o1k)
r==00
is valid.

If one expresses in this equation the spherical function E”“ (&)
v+

o u |
7 d oley iderati - . o2
by £V+r<g) an gv+r(g) (under consideration of (k.1l), (4.2),

and (4.11)) the required relation

~urei ' (2
§57) - 2.7M gin Lt %

r
Py -
L - § Y i

2P - ﬁﬁlﬁii

will be found at once.

In exactly the same way there result the formulas

H(l)Cg i) = X:(l)(§§7) (4.16)



-u(2) “pni ply - o+ 1) Lu(2) 1 =
X (E57) = e X (€357) - (ka1 Q
v ’ r(v+p+1) Vv ! ( 7? S
=
=
(2) 2) ( @
2 u(? Ui 1 \ .
Xz (£57) sin (v + p)x - X, (¢57) sin (v - ) = e~ cos vx Xﬁ )(.&;7) (4.18) -
| R
=
(2) o tvri _u(2) ,
Xi (-&;7) = -e X, (g57) v {%.19)
(1) iy (1 2 . -urd o (2) ) '
th T(tr) =6 X‘“\,( )(§57) - —sin (v + p)we ™ }%ﬁl( )(5;7) (4.20)
For the last two relations the upper or lower sign is valid devending on whether the
imaginary part of & ig positive or negative.
The relations (4.15) to (4.20) ere identical with corresponding relations for the general
gspherical functions. This was obtained by the determination of the arbitrary constent factor
in the a,'s. That determination is not yet unique; it leaves a certain latitude. It is
compatible vith (%.10), (4.11), and (4.12) if one sets the coefficient of the principal term
equal to one; but then it may happen for certain combinations of values v ; K, and 7y that
all ar's with the exception of a, become infinitely large. Other determinations still
(o] o0
S ar < R
possible within this latitude would be the requirements that /\, it CVEDS b, =1
, reat e
= 9
or \ 2v + 1 b = 1. .
v+ 2p ] Y
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k.5 General Relations between the X-Functions

The following general relations are valid for the general spherical functions in the
cage £} > 1

di(se™™) = oTHVIIT gty | (4.22)
o ) o, Sin :tl.(v+é]=\‘,
f_u(ﬁeZﬂl) = elv:ﬂ:l ?u(g) ~ & - .'J gin (v 4 u)ﬁe-(!-“‘l/al)ﬂi Q(J.(g) (l{_‘ez)
v v n sin = ‘\V + }—’) v

1 is therein an integer, either positive or negative. The coefficients in (4.21) and (4.22)
remain unchanged if v is repvlaced by Vv + r, r being any even number. If one replaces v
in (B.21) and (4.22) by V + r, multiplies by i¥a,. and forms the sum over all even v
from -« to o, there is formed because of (4.1) and (k.2)

7 0 .
. . . sin #1lV + =) - 7Y
Xsm (ee'™;y) = V™ (1) (z57) - 2?* —=7 sin (v + p)ne (w1 /22) i X“(e)(& 57) (4.23)
v sin nfy + ) v

2

5

2

X (E) oty = o7 2lur)at @B (g i) (b 2h)z

i_.l

n

2
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These two general relations which are valid for |§l >1, are
_in the case 1 =1 transformed not to exactly (4.19) and (4.20),
Eenl, namely, represents in (4.23) and (4.24) an increase of the
argument by w, whereby under certain conditions the branch cut
may be passed, vwhereas the argument of -£ in (%.19) and (4.20) is
obtained by choosing such a path from € +to =& +that the branch
cut extending from -« +to 1 will not be passed.

5. THE Z~FUNCTIONS OF THE FIRST TO FOURTH KIND

5.1 Definition of the Z-Functions of the First to Fourth Kind

If the two extra-essential singularities of the basic equa-
tion (2.hg) are made to Join, as indicated in section 2, there
originates, aside from an elementary transformation, Beasel 8
differential equation. It therefore suggests itself to attempt a
golution of the basic equation also by series developments in
terms of cylindrical functions. The functions defined by the series
(which are at first formal)

-zs(l)((:n) =(C2 - \)u/ H i b“ MR N(S (5.1)

I“-" 0

V+r

o

.
#@ (5 = (12 A g > e ) (52)

. V,r v

r==

are defined as Z-functions of the first and second kind. In these

.2 2
series |arg q <n; arg é__:EZ_ =0, if arg §2 = arg y°.
' d
Subgtitution of these series into. the basic equation (E.Ag) (1t is
best to insert it into the transformed form (2.10) of the basic
equation), elimination of the first and second derivatives of the

indices wv+~ and n ., by means of (3.10) and (3.11), and

removal of the denominator ¢2 by means of (3.12) leads finally,
exactly as in the X-functions of the first end second kind, to a

three-term recursion system for the bv (y)« It agrees v1th the

recursion system (4.4) for the &% (7), if the B there is
Vv,r
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replaced by -p. The solution of the recursion system differs from

the indices b* (7) defined in (4.11) only by & constant factor;
v,r

this factor is selocted to oquael one. Therefore the relation (4.3)

formerly found between the index v of the generating functions

in (5.1) and (5.2) and the separation parameter A has to be

assumed also in this case.

As Z-functions of the third and fourth kind one defines

Z‘i,m(f; 57) =wZ$(l) (€57) + izﬁ(z)(é 57) (5.3)

Zl-’-v(h) (c 7) = th(l) (§ ) - 12}.&(2) (C i) (5.4)

They have the same relation to Hankel's functions as the
g-functions of the first and second kind to Bessel's and Neumann's
functions.

5.2 Convergence of the Series Developments of the Z-Functions
of the First and Second Kind

Tt must now be demonstrated that the series (5.1) and (5.2)
converge unlformly in a certain domain. One starts from the
estimate (3.17) and from the boundary values (4.7) which are also

valid for the b“ « There resulise
Vv,T

1
o> o tg t

1im sup %yq;;;é;;;T-E k-’: = (5.5)

The convergence is uniform. Thus the series (5.1) and (5.2) con~
verge uniformly and absolutely in the entire cdomain |[E] >1 with
the exclusion of the infinitely distant point; they represent
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therefore analytic functions, can be differentiated eny number of

times texrmwise with respect to §, and satisfy the basic equation.

<

Only in special cases these seriles converge also for f&! = 1o

5.3 General Relations between the Z-Functions

The transition to. various function branches over the branch
cut from -« through to 1 is wmade possible by the general relations.
They can be obtained corresponding to the case of the X-functions
from the general relations valid for the separate series berms,
thus for the cylindrical functions. (Compare Magnus and Oberhettinger,
olsevhere.) They read for |{| >>i7[ that is, |&] > 1

2 (D (o300 57) = P gt ) (5.6)
Z%(Q)(eZnigiy) = o~ L{vFl)ml 23(2)(§;7)

+ 210~ 10L/2 gin hr6%+%) cot 614'%QKZ%(1)(§}7) (5.7)

gin (1 - l)(V + %3“

. .1
sin (v 4 2>ﬁ

Z%(3)(e1“ig;7) = -g=In1/2 Z%(B)(§57)

an@-%gﬁ
: %ﬂz\%“"(c;w) (5.8)

o inif2 o~ (v+l/2)ni
sin O}+ 5

-

. 1)

+ =

sin 1 (v 2/} i ZH(3) ((‘ .
. 1 v > ’7)

sin (1 + L){v + & =
(1 : 2 (4 (¢ 57) (5.9)

sin (v +,-)

Zs(h)(ei#i§37) - e-ZT[i/E e(v+1/2)ﬂi

+ o lni/2

21’(




5.4 Asymptotic Developments of the Z-Functions

In order to obtain asymptotic developments of the Z-functions for €] > 1, it suggests
itself to insert the asymptotic developments of the functions ¥y (€)  and n, () into (5.1)

and (5.2) and then to interchange the sumuations. Since

11;V +r

» tefp VAL M-1 (V + r + l:p
(¢) Tin (Y = %e 1{@ 2 ﬂ) iT 3 2 ) + o(lg] M) (5.10)
i 5 Geit)? ~

(-7 < arg§ < 2 end -2n< arg { < for the upper and lower sign, respectively) where, for
abbreviation _

. 1 TV r+p+1) .
Q Tr+2’p) TpiP(V+r-p+ 1) (5-11)
there results in this menner
' M-1 s
b oy /2 =1l hifeVEL T
23D () - @2 - P et il 2 ) =Sl oil ) (5.12)
p=0 (32it)®? :

(-t < arg { < 2¢ =nd the upper sign for 25(3)@ 37), “2n< argl < x ‘and the lower sign

for Z\‘j‘(h) (€;7)) . The coefficients C(p) are defined by the absolutely convergent series

c(p) = Z @ +r o+ 2p)if) () (5.13)

r==oo

%2

- ®22T °‘ON WL VOVN



NACA TM No. 1224 25

This derivation 1s not accurate since the asymptotic develop-
ments (5.10) are further dependent upon the condition ycl P lV + rf,
tions (5.1) and (5.2), respectively, since the sum has to be formed
over all r's from -o %40 «. The fact thet the developments (5.12)
are valid nevertheless is due to the behavior at infinity of the by's
(compare equation (4&.7)) according to which the series terme with
sufficiently large values of r do not contribute noticeably to ¢
the Z-functions.

Equation (5.12) is proved as follows.

According to general theorems on the asympltotic behavior of
the solutions of homogeneous linear differential cquations, the
coefficients of which are polynomials, one obtains asymptotic series
for the solutions by going into the differential equation (2 .h4g)
with a formulation of the form (5.12) and attempts to satisfy it
formally. This yields for the present case for the coefficients c(p)
the four~term recursion system

(p+ 1)C(p + 1) + [}p + p + o~ - %]C(p) + %P (u + p)Clp - 1)

+ hyP(p+ p)(u+p - 1)C(p - 2) =0

C(-1) =¢(~2) =0, p=0,1,2,3, + » (5.14)

from which they can be calculated recursively. This recursion
system, howvever, is satisfled Just then when the series (5.13)
are subgtituted for the coefficients C(p). This substitution
leads after slight transformation %o




T W p(v+r+p+l)_ 5
i"b +r+ 1 +r) + -
r; NOES ey ( Yo + 1) + 7

* ;Ez: ; . ;; ;%472-901 + 1) _(v+ r+ 1) (v+r)+ (w+1)(p - 1ﬂ} =0 (5.15)

for p=0,1,2, 3, « « . and these relations between the b,'s can be simply derived

by multiplying equetion (4.4) by (v + r+p+ 1)/T(V+ r - p+ 1), by forming the sum

over r from -« to o, and finally replacing 4 by ~u ‘and therewith a‘; 'r(_')') by bz’ r(7)'
b4 H

Thus the asymptotic series (5.12) with the significance of the coefficients C(p) given
in equation (5.13) are actually asymptotic solutions of the basic equation (2.4g); it is now

¥
4
easily understood thet they represent asymptotically those solutions ZL-;(B’ )(g;'y) .

In a special case the developments (5.12) are even convergent: then nemely, vhen Vv is a
real integer = n. Then the series (5.10) are broken off; the functions \yrm‘({;) and nn+r( 4]

are elementary functions. Since the series (5.1) and (5.2) converge uniformly, the summations
cen be exchanged after substitubing equation (5.10) in equations (5.1) and (5.2); therefore

the series (5.12) are convergent. Their domain of convergence is ]g; > 1, that is, ;g‘ > l”.
One can also easily understend with the aid of equations (6.6) and (6.7) that, for p >n,

the coefficients C(p) are of the order of magnitude 7%, with o being the smaller one
of the two even numbers emong the fouvr positive mubers p -n, p-n+ 1, p+n+1l,
and p+ n + 2. For the case when v and p are positive integers amd V 2 u 20, the
series (5.1) of the Z-functions of the first kind converge for all finite t. '

9

#22T ‘O WI VOVN
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5«5 Further Solutions of the Basgic Equation and Their Relation to

 the Z-Functions of the Firet and Second Kind
It is immediately clear that with the Z-functions Zs(l)(g;y)

and 25 (£59) the functions zﬁi&ia)(t;y) and z;”(l’e)(Qiz) also

are solutions of the basic equation. Since there exigt only two
linearily independent solutions of the basic equation, it must be
possible to express all solutions linearily by two of them. Because
of the two relations

)

.~cog van () - sin vy (§) 7
v Vv

(¢)

Il{~v~l ‘
(5.16)

il

n_v_l(g) ‘cos vnwv(g) - gin Vnnv(ﬁ)

there follows with the aid of equations (4.12) and (4.10) from the
definitions (5.1) and (5.2)

Z”(l)(Ci7) = -gin VnZH(l)(Q}V) - cos VﬂZu(e)(CiV) (5.17)
~y-1 v v

Zu(z)(g;y) = co8 VnZ“(l)(§57) - sin va“(g)(§}7) (5.18)
-v-1 v v

In order to express the functions Z;M(l’e)(§§7) by Zs(l)(§i7)

and Zs(z)(g;y), it will be practicel to use theAasymptotic series;

it is sufficlent to limit oneself to the first term of the series.
Then there becomes

. 1 = '
£ 3 EB) S 5y e oy Yo

P==00
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' -u(3,4),, .
The only difference for the asymptotic sexies for Zv (t;7)

is that here a" (y) tekes the place of M (y). There follows

v,r v,
immediately that

4O () > o, L) = (i i i

Y=~c0 r=-o

(1=1,2) | (5.20)

By combination of equations (5.17), (5.18), and (5.20) finally,

also the solutions ZZ%Ei)(g;y) of the basic equation can be reduced
: n(1,2) .
to the two solutions %2, (¢37)+ As ocpecial cases of equations (5.17)
and (5.18)
u(3) il _u(3) |
z Tty = a6 2 (e Y)
v-1 v o
(5.21)
u(l) “vni Ju(l)
% - - - Z pr ®
-V'l(c’y) " (@,7) )

should be noted.

5.6 Laurent-Developments for Y- and Z~Functions

The X- and Z-functions were introduced wholly independent of
pach other. Since they all are, however, solutions of the same
differential equetion, i1t must be possible to express, for instance,
the Z-functions of the first to fourth kind in general linearily by
the X-functions of the first and second kind. It will appear that
in general the Z-functions of the first and second kind ere not
proportional to the X-functions of the first and the second kind,
respectively. Thug, it is not possible to define simply functions
of the first and second kind for the solutions of the basic equation;
it must always be added vhether one is dealing with X- or Z-functions.



The problem to express the Z-functions by the X-functions can be solved partly by
comparison of the general relations elready known for both kinds of functions (4.24), (4.25)
(5.6), (5.7}, (5.8), and (5.9). A complete solution of this problem, however, is obtained .
in the following menner. The series (4.1) and (4.2) for the X-functions and equatlons (5.1).
and (5.2) for the Z-functions have the common domain of convergence 1 < 8] < »- They even
converge vniformly in the domain bounded by the two circles [§| 1+3 and |E] =1+ 3,
vhere O 1is an arbitrarily small and 3 an arbitrarily large positive number. Since the
series terms of these developments are analytic functions regular in this domain, they cen.
be developed in Laurent-series which converge in this entire domain. According to
Vieierstrass's double series theorem one may exchange the summation over r and the _
sumation of these Laurent-series and thus obtain the X-functions and the Z-functions in a .
representation by Laurent-series. From the comparison of these Laurent-series then results
the repressrtation of the Z-functions as linear combinations of the X-functions of the '
first and second kind.

?

The performance of the transformations described Just now yields, using equations (3.&5
and (3.14),

X&;(Q)(gn) _ (ﬁgg i l)u/e g W bl ﬁl/z(eg)-v-%

© I‘!J.

> e “*’*S*“*”Zruu 3)r(1+ Exy (5.22)

g=- r=-w

tecT “ON WL VOVN
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v-1
S - c e (7)
N (28) 7 p(-v+ 8 4 p) i
i 5] r g+ r
g=~w P==co P(‘V+ 5 + '5)1"(1 + 5 )

A (N Rl Ay R AN

= g = v, ()
; (2¢) “@ 28 48 S v.r - -
A AN r -8, . L S
Som oo Yo I (‘V <+ --—-—.-..2 -+ 3.)1" l -—-——.—)

2 N2V mye
T2 IF A (I Al ¢ R N

i (y)

= (2@58 Z-Es .sr-°-°~ V,r '
2. IR AP ARFE )

g=m=-c I==c

the summation index s assumes only even values.

(5.21)

(5.25)

ot

#edT "ON WL VOVN
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5.7 Connection between the X~ and Z-Functions
Due to the équéiify of the bharactériéfié”éi@bhents"v
end -v - 1, respectively, in equetions (5.23) and (5.24) or

equations (5.22) and (5.25), respectively, Xz(z and 'Eué%i on

the one hand and Xpéei and 42:(1) on the other only differ every
time by a factor independent of & . Thus one may equate

205 Lot (v - wee WV BB G 526
v 7 v -v-1
2D (1) = I BB )2 ) (5.27)

The various factofs, as sin (v - uzgy and co forth, were
introduced for convenience. Between :cz (y) and n%(a)(y) there

exlste the connection

o (wrl)mt 5(1) (7) (5.28)

One further obtains with the aid of equations (4.18) end (5.17)

—zt(l)(é;v) = KL;(l)(ﬂ[e_Wi cos v }é:(l)(gm

) e-(u+v)ni gin (\;+ phm Xl“:fe)(g‘;y)“ (5.29)

cos vn Zﬁfz)(g;y) + gin vn7Z%fl)(§;7) = ev“i n%(e)(7)X%(2)(§§7) (5.30)

If v, p are integers, these relations are essentially
simplified; then the X~functions and the -Z-functions of the first
and the second kind, respectively, are actually proportional.
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o u(l .
Now the calculation of n%( )(7) 1s left to be performed. To

that end one mey select the coefficient of any power of & - in
equations (6.22) and (5.25) end carry out the comparison. One
obtains

2V-2s =&
1T(L+vy =p = 8)

w‘.—
4
E 1* ()
v,

)
I'="00

rfy + 2284 3 i1 - 8+ ]
IR,
Pl iav’r(ﬂ

Y=o

(v 2520 B 24

(1) i
AV - E)

u(2) 1 ~+pt+l)nd y\"2V-28-2 18
5, (r) = 3e (2) v+ u+ s+ 1)

00

Z i (9)
VT

Y=
(v - 252 Pr(a s 252
———— = (5.32)
Z iTaht (y)
T v,r

o0

—~

bz B 53]

Any even number is to be substituted for s in equations (5.31)
i
and (5.32)« The value of n% (y) is independent of the selected
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spécial value of g. If one replaces in equation (5.32) p Dby -u
-..end 8 by ~s_and then multiplies by equation (5.31),

BB () (BB ) o et o1 (5.33)

is originated.

5.8 Wronski's Determinant

Wronski's determinant of the -Z-functions of the first and
gecond kind are defined by :

W, =23 (45) gz“‘z)@,y) -2 L8N G

From the basic equation (2.4g) there follows in the Ynown
way that Wronski's determinant of any two of its solutions is
proportional to (g2 - l)'l. The factor of proportionality is
determined by substituting their asymptotic series for the
“4-functions of the flrest and second kind; it is sufficient to
limit oneself to the first term (5.19). There results

0 -2
1 1 i-\\ LT ‘
‘, - = i b .31‘
7. =5 . lL/{:-oo v,r(7l (5.35)

Wronski's determinant of the X-functions of the first and
gecond kind

u(l)(g’ ) % dg f-;( )

W

= () - % sm & “‘”(g,y) (5.36)

results from Wg by using equation (5.30).
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1 2
g =Wt @ong
is originated and therefore

e
1 P=- © 7
. (5.38)
@)
(r) K2

(7)

i
Yx = 7 g2 - 1 gh k(1)

v

Simplifications result for the important special case u = O.
First, one agress upon omitting the index p when 1t has the value
zero. Now there is valid b (7) av () end further, according

7

to equation (%.l), because of P nld) =

‘1)(1,7) - Fa  (y) (5.39)

Thus, one can also write for Wronski's two determinants

(1) (q .12 1)
Xy (17X {17)
vy = = 7l (5.10)

5.9 Other Series Developments of the Solutions
of the Baslic Equation
Niven (reference 1) investigated series developments of the

following form (the functions represented by them are called
V~ and ijunctions):

PPy = (e 2T S I w0 G

I==ca
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0

By 2 > T v ) (5.42)

‘r=-oo ) ’

The relation of the variable w %o & and ¢ is:
'Wz = CE - ')’2: = 79(§2 - 1) ‘ . . (5-’-!-3)

For the coefficients ¢, and d, there résults agalin a

three~term recursion system which can be transformed into
equation (4.4). If the coefficient of the principal term is set
equal to &a,, the equatlions

r(¥_* ; +*!-+:9I‘V - g f_l) .

c%)r(?’) = v +p - u + l v + L& ‘-"V,I-('Y)
T 2 )P‘ ) +:D
dgu (O) at .
- ir ....%I.'__._/__._ az r('y) ) : (5 -LI"-I-)
' (0)f ae
RPN o s L o S
@ (y) = : a  (7)
v,r vV+tr - N AV o+ D i
’ rlrzes, ety rd) v
T
2 (o) .
SIS AR SN a';‘ () : (5.15)
) VT

are valid.
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The series (5.41) and (5.42) converge uniformly in each closed
domain given by |y| < |wv| < wj or, expressed in the &-plane:

1< NE,‘? - l‘ < @. The bounding curve l\/‘g2 - l' =1 is a
lemniscate. Equation (5.42) is, as will be shown later, a limiting
case of a general develorment, which still contains en arbitrary
parameter and which yields as a further limiting case the

geries (5.1) and (5.2) of the %-functions.

One can immediately give further series developments of
V- and W-functions; to this end one has to replace the
functions V,,, in equations (5.41) anda (5.42) by Dy4yps O the

indices v +r by -V -r -1 or u by -y, or one has to make
tvo or three of these substitutions sgimultaneously.  One thus
obtains a total of eight V-functions and eight W-functions. Their
properties will not be Investigated here more closely; it should
only be mentioned that all of them also can be expressed linearily
by the &-functions of the firgt and second kind vhich is done in
the simplest way with the aid of the asymptotic series.

Whereas the agymptotlc series of the Z-~functions pfogress with

powers of C'l, the asymptotic series of the V- and W-functions
one obtains from equation (5.&1), and so forth, by substitution of
the asymptotic series of the cylindrical functions, contain powers

-1/2 -1/2
of <§2 - 72) / , that is, (Ee - l) 1/ « According to a
suggestion by Wilson (reference 7) one can now aleo set up asymptotic

series vwhich progress with powers of (& t 1)'1. They have compared
with the series (5.12) a slight advantage insofar as a three-term
recursion system results for their coefficients. Correspondingly,
for the solutions of the basic equation aleso developments in terms
of cylindrical functions with the argument ¢ ¥ y = y(& t 1) may

be given, of the form

T - (¢ - 1)H/2(g + 1)"»/2 Z_m ex:,t\ywt(g * ) (5.46)

wvhere t runs through all integers, the odd as well as the even

ones. ¢v+t can again be replaced by Dopgs and so forth.

These developments will, however, not be followed up here.



NACA T™ No. 122h : . 37

6. CALCULATION OF THE COEFTICIENT% OF THE SERIES DEVELOPMENTS
IN TERMS OF SPHERICAL AND CYLINDRICAL FUNCTIONS '
6.1 Continued Fraction Developments
The golution.of the recursion system (4.4) vhich for r—> «

has the behavior at infinity (4.7), can be represented by the
convergent (reference 13) continued fraction

%r 7291'@;[, yhprqr+2/ ¢r¢r+2.ll_ 7h1’r+2qz+h/ brsp r+1+| |
= T 7 T o (6.1)

)

The solution which has the behavior (4.7) for »r —> ~» can be
represented by the convergent continued fraction

2 - .
& = 7 Pr/¢r‘..7uqrpr-2 ¢r¢r~_j..7uqr'2pr'4/br'2¢r"u'.'- . (6.2)
P ) 1 . 1

The subnumerators of both continued fractions are in each finite
closed domain of - and A-values for sufficiently large values

of r in the case (6.1), of -r in the cass (6.2) smaller than
one~-fourth; thus, according to a theorem on uniform convergence

of continued fractlons, the continued fractions (6.1) and (6.2),
rpspectively, axre 1n each domain of this kind for sufficilently
large r's end -r's, respectively, uniformly convergent and

are therewith regular analytic functions in ¥  and A, since the
individual epproximation fractions are funcétions of this kind. For
not sufficiently large r's and -r's, respectively, then follows,
that these continued fractions are also analytic functions which,
however, need not in every case be regular.

A solution of the recursion system (L.4) has now to be found
vhich shows the behavior at infinity (4.7) for r--> « as well as
for r—> -®. Then the value of a,./a,..o calculated from

equation (6.1) must equal the value of this expression calculated
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from equation (6.2). An equation results vhich for given v and u
allows calculation of the seperation paremeter A as & funetion
of y. If 9 and A -v(v + 1) both are sufficiently smell, the

solution &5(7) ig & regular analytic function of ¢y which
assumes for ¥ = 0 +the value v(v + 1). Thue the XS(y) as well

as the ar/ao can be developed in powsr series in 7y with non-~

vanishing radius of convergence the magnitude of which will not be
investigated here more closely.

6.2 Method for Numerical Calculation of the Separation -
Parameter and the Developmént Coefficients

The representation of the coefficlent a,, by continued

fractions is also for larger values of  y still particularly
suitable for the numerical calculation of the separation
paremeter A end the a,'s. Mostly v, p, end 7y are given.
Then the values D,, dp, end @.+ A can be calculated

numerically from equation (4.5). One starts from a value for A
vhich is assumed as close as possible to the actval value and
calculates for a selected fixed r the expression ar.,_g/ar

from equation (6.1) as well as from equation (6.2). Then one
repeats this calculation with a slightly altered value of . A and
examines whether thereby the agreement of the two values ar+2/ar

ig improved. By further variation of A one can finally obtain
an agreement of arbitrary accuracy. Therewith one can find the

value x%(y) with any desired accuracy.

One more investigation has to be made: whether the solution
thus found for y = 0 goes over continuously into viv + 1),

. Hoay - K . B
that is, into X, (0) end not perhaps into X (0); for A (0)

also 1s a solution of the present problem as can be recognized
from the fact that equations (6.1) and (6.2) contain the values v
and r only in the combination V + r. This question cannot be
decided unless one has already a general picture of the

functions k:(y) as it 1s glven in figure 1 for p =0, v's that

are integers, and real 72'5.
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The number of terms of the continued fractions (6.1) and (6.2)

to be included in the calculation corresponds to the desired

accuracy. For lerge |r| the partial fractions '7hprqr¥2/¢r¢f+é

assume the order of magnitude 7”/(16rh); thus the index r' of
the last partiel fraction +to be included will have to be selected
at eny rate larger than |[y|/2. S

The celculation of the at r(7)'5 is made by teking the

>
value found for x:(y) as a base, and calculating ar+2/ar from

equation (6.1) and therefrom aypfa,, 8ypfay, » » o

6.3 Power Series for Separation Parameter
and Development Coefficients

For the numerical calculation of the separation parameter and
the development coefficients one can for small values of |7| make
good use of the power seriesg developmente in terms of y. If one
limits oneself in these to the first terms up to the fifth power

of 72, inclusive one cobtains, in general, still quite useful approxi-
mations up to about lyel = 5. Therefore, following, the power

series for the x:(y) shall be calculated explicitly to 710,

inclusive, for the a,fa, to 78, inclusive. Therewith one more

series term is obtained than by Niven (reference 1); compared with
Niven's cumbersome treatment, the calculation is essentially
simplified.

For the limiting case ¥ = 0 there follows from the recurslon
system (k.4)

b + v vz s D+ r)]ar =0 (6.3)

The case vhere all e, disappear is not of interest since it leads
only to identically disappearing solutions of the basic equation.
Thus there becomes XS(O) =v(v +1), a,=0 for r #0.
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For 7 =0 all ‘#,. with the exception of @, have nondisappearing
limiting values. From the continued fraction (6.1) one cen draw
the conclusion. ' ' 7 ‘ :

2 ' : , ,
2 779 . _
r _a_l[; + 0(y ﬂ (r =2, h,46, « . e) . (6.4)

8
r-2 r

and from that»further

q * u » q |
gz y ?52;2 7 [1+ o(yh)] =24 6, ... (65)
' . r )

If one takes the next partial fraction into consideration as
well, there results as the next approximstion

8 ' qqu,‘- c . g " °.1, P
B MO PR S iy J
ao y) sl a.v (S \(J,L \‘Eu':‘fl/'i' \/_.‘j.:i,)o
Pyl 1 . SR .
i 81'.'f-1‘.:-""" +,O(7'8)' (r = 2, h‘: -6J v o) (6.6)
Poidyp IR i : T

r
e SN u(q:EE; 9-4P-6
8o ¢ 2Py ﬁfll "7 §.2¢-h B Y T
L
q,.0,..0 I .
—£a£—i> + o(yS{J (r = -2,-4,-6, « . .) (6.7)
r-2 .

One nov substitutes apfa, from eguation (6.6) and a_g/aé

from equation (6.7) into the equation r = 0 of the recursion
system (4.4) and obtains
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¢o P h Pady, iP-2 L b 8
B TE S RN~ AEE S A o AR

This equation permifs’the calculation of x:(y) as power

series in terms of ¥ wup to the power 710, inclusive. At first
one can see, by having y approach O, that ¢, = 0(7“). Therewith,

however, ¢r also is known for any r» with the exception of terms

of the second and of higher povers in 72. If one now inserts &,
in this epproximation on the right side of equation (6.8), o,

becomes already correct up to the third power in 72, inclusive.
If one repeats this procedure with the new values of the ¢r which

are correct up to 76, inclusive, there results finally ¢b and
therewith xt(y) exactly up to 910, inclusive. The performence

of this calculation as well as the calculation of the a,'s is

not particularly difficult, therefore the resulie arec given
Immediately.

In order to make the representation clearer, the following
abbreviations are introduced:

oy = (1 + 2%8) + o, (6.9)
where
-
Dp=r(2v+ » + 1)
. (6.10)
5 - 2(hy” - 1)
7 (v + 3)(2v - 1)(2v + 2r + 3)(2v + 2r - 1)
DAQn Prq nd P9
pp =02 p o2 p P2l 0 Pado (6.11)

D’ M T Dy Do
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. (6.12)

1'=0,1,2,...

Then there becomss

2 2
D92y + 2V -2y - 1 6

B N st
X‘V(?) = V(V f l) + (2V o+ 3) (2V - l) Agy + A17

™

' PN
+ (AoBo - Ao - 0)78 + LA3 = 2ABq - BpM + "%EE(QSQ + Eu)

P_oP Y
-2 ‘
~ 10 12 ,

R G S-OJ? + 0(712) (6.13)
-2 .

P2 _ 2 2 w2, By Ao

a, "7 B\t TR YT
Phopy + Ay P N

* 76[%;—-& - %(262 + 5y - 623J + 0y (6.11)

a
Sy w9 o
a, =7 DDy, [1 14 (62 * 6’+)

PL[.-AO P6""A

+ y”(age + BBy * 5f * e ey °> + 0(y0)  (6.15)
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a 9-9),9
,a6,,=.D—--——§Di';D§ 7.6[1, AT 65)] + 0(20) (6.16)
o .

EQ - qQth6q8‘78
8o DpDyDghg

+0(y10) (6.17)

[ - |
a Do ! , P, - AS
et = S =25 DI - N ¥ (Y - Bt M)
ay 4 D.o i? 7oty <§-2 ‘ D.p

DA S |+ P_ X
. 76{ e o D“g(%_e +5.) - 6_23” + 019 (6.18)

8-h _ b PPk o
o =7 S T (e v auy)
P, -A P -4
* 7@(%_22 " Bpby + 5,7 ”hD - =+ ~§D_u %)l + 0(»10)  (6.19)
a 7 v -
26 _ 6 BePuPof 2 . 10 |
ag D_pD_ D¢ -y (?-2 oyt °-q> + 0{y™") (6.20)

a_ a P oP )P P,

—
=

aq 7 D"QD‘)-J-D'6D"8

For the case excluded above where VvV has fractional values of
one-half, the convergence radil of these series equal zero. It peems
therefore probable that the convergence radii are functions of Vv
vhich can be infinitely large for special cases, but not in general.
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6.4 Power Series Developments

Since occasionally power éeriés developments df the éolutions
of the basic equation (2.kg) also cen be useful, they will be
briefly discuesed below.

One can of course obtain them at once by substituting in the
series (4.1) and (4.2) for the X-functions of the first and second
kind the lmown power series developments of the svherical functions
in terms of powers of £&; one thus obtalns powver series for the
solutions of the basic equation which converge in the circle }gj < 1.

The problem of the Laurent-series for 1 < |&| < » need not be
discussed further since they are already calculated in equations (5.22)
to (5.25). However, one can obtain these developmenis directly.
Therewith a new method for the celculation of these functions and

particularly of &5(7) is fount.

One sterts from the differential equation (2.10) vhich is
written in terms of £ rather than of {.

, .
(§2-l)g—%+2(§ +§-)§-%+[—x+72g2-ﬁm;g—l—qv=o (6.22)
ag ° -

For the integration one tries the statement

v = i SN COLRE M (6.23)

ey v,8

Then there results for the g (the indices p and v as well as

the argument ¥ in general are again'oﬁitted).the three-term
recursion system C :
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(v+e~p- 2)(v te-ud l)g‘s,,e' -

[(v+=3+l)(v '-s)-k.!g'—u;

8'2
(8 = 0, te, i‘h, . ) ' (6.214')
: ' ' _ 2
There exists a solution with the behavior at Infinit Es )
‘ ' ’ ‘ 8 -0 8

8-2
for 8—>-wo. The quotient of the two solutions is independent of =
only then when X\ assumes certain dlstinet values. As one can see

By.comparing with equation (5.23), these are Just the values xi(y).
From the behavior at infinlty of the coefficlents g, one cen

conclude at once that the series (6.23) converges in the
domain 1 < |&] < =,

If one substitutes in equation (6.2L4) for the coefficients g

.the coefficients calculated already in equation (5.23), there results
after elementary transformations

o0

5_1'&“ .
T

r—- 0

+ 8 - 1)(2 + - S)[}V'+ T+ l)(v:+ r) - %}

-72(v.+s'-ujl)(v+s-u)} =0
(=0, %, %, . ..) © (6.25)

These re}ations can be used, lilke equation (5-15), for the control of

numerically calculated values of the a- (7).
v,r
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The recursion system (6.24).1s, except for the case of v,u
being integers with V E'Iui £ 0, probably lese sultable for the

numerical calculation of the .X%(y) than the. continued fractions (6.1)
an.(.L (6 02)

Ordinary power series vath increasing powers of & result
for the solutions of the basic equation 1f one sets equal
Bp=8) =+ = 0 end requires g, = O.

Then there results for ¥ the determining equation

v -p)v -p-1)=0 (6.26)

Therefore - v has here a meaning different from the one it hed so
far. The behavior at infinity of the g, for s> -« 1is simple:

all of them disaenpear. The behavior at infinity for & —> o« is

& ¥e
given by —=—-—>1 or — 2 The first case is the standard
8-2
case; the power series converges for fel < 1. The second cese is,
for VvV and u Dbeing integers with v - }u) Z 0, realized for a

solution of the basic equation, the X-function of the first kind;
the power series then converges for all finite £.

It will be best to make the numerical calculation of the
coefficients of these power series vhich are convergent in the

unit circle so that first x”(y) vill be determined according

to the method given in sectlon 6.1, or, for smaller values of 7,
from the series (6.13); the coefficnents 8y cam then be calculated

From equation (6.24) for cach of the two v -values given by

equation (6.26). A special but simple problem will then be left:

how the two calculated power series are connected with the X-functlons
of the first and second kind.
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T. EIGENFUNCTIONS OF THE BASIC EQUATION

>

©7 7.1 Limitation o “Vi ~Belng Integers; v Z el 2o

The determining factors for the eigenvaluss of the separation
paremeters M\ and p and, if occasion arises, of the wave coef~-
ficient X, are the domain of space which wes taken ag a basis.
and the boundary conditions on its boundary. This treatise is
limited to the most important type of eigenvalue problems of this
kind; for them the domain of space lies either within an ellipsoid
of revolution, or between two confocsal ellipsoids of revolution or
outgide of an ellipsold of revolution. The first two cases will be
called problems of inside space, the last case problem of outside

apace. The entire domain -1 s n S l, © S o S 2r becomes then
effective for the two coordinates 1m and ¢. Boundary conditions
in n and ¢ do not appear then; they are replaced by the require-

ment that the wave function for n = Tl remains finite and that it

is single valued, that is, that it has the same value for Qo+ 2n
that 1t has for ¢. The latter requirement leads to u 's that are

integers, the first one to +v's that are integers v & Iul 2 o.
That the X-functions of the first kind remain finite at the points
n = t1 follows directly from the series (4.1) by taking the

- ! 2
estimate lg“(g)l SO T2 7 1f%, sntoh 15 varta for
v L]

this case, as a basis.

Following, n will always be written for VvV and m for )
vhere V and pu are real integers, for the present, n 2m20 1is
assumed. The case of negative m's, the absolute amount of which
16 = n, is then obtained at once from equations (L.15), (4.17),
and (5 .20)

The calculation of these special functions was practically
settled amongst other things in the last sectionsj; even though it
wvas assumed there that neither v + p nor v - p are integers,
almost all results can nevertheless be taken over as simple limiting
procesges demonstrate. Only a few perticularities result, compared
with the general casej they will be discussed below.
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7.2 Breaking Off of the Series

If q.1 =0 fora positive »' or pr' = Q0 for a negative r',
the a,'s break off to the right or to the left, that is,

L

= 0; ! O = = = o.0 s =0
for g, =0j r' > Bt T e T T .
- - (7.1)
= H ! H = = = e e 0 =
for Pr’ =0; r <« 0@ ar, = ar,_a = ar'-h 0 J |

is valid which follows in the simplest woy from the continued

fraction developments (6.1) and (6.2). These cases occur vhen p =~y
is a positive integer or vhen © + v 18 not a negative (sicl) integer.
Since it was presumed O s n Sn the first possibility does not cccur,
but the second one does always occur, that is, for all admissible m,n.
Here again two cases must be dis tlrguished. vhich are both originated

from Dt = 0:

n+m+2=-r'>0 or n+m+l=~r'>0 (7'2)

Tn the firet case m T n 1is an even number, in the second, an odd
number; 8,10 is the first nonvanishing 8, For the br's theres

follows i’rom equation (4.12) thet they disappear for all r g r' + 2m.

Further, all Pm (¢) QAisappear for n+ v = -m, -m+1, .. .m=- 1.
Tntr

The developmente of the X- and- Z-functions of the first kind begin,

therefore, for n - m = even witn

2O (g 5p) =l | ARG ®n momeol m'n+2Pm+2(g) R

n ,m- =m

mf2 _
e - 72> ¢ m[n el D+ Vh pon () + - ]
3 ]

.
(1) (7.3)
z (&57)

i
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and for n - m = odd with

xn(l) (657) = af:,m_n;l LR
aﬁ,m;mz e BT, 4(8) + .
F o (T.h)
. Zﬁ(l) (€57) = ( V 2>m/2 -m ;lm~n+l mel(C)
+bﬂmnﬁ3wm3@)+ -..]
; ‘ |

The meries for 7m(l)(§,7) converges for all finite . The

corresponding formulas for the Z-functions of the second kind result
if the functions \yv+r(§) are replaced by n (Q) The developments

for the X-functions of the second kind show a spe01al behavior. The
spherical functions of the second kind belonging to the vanishing
coefficients 8.1, 8,10, « » « become infinitely large in such a

manner that their products have finite limiting values. The
coefficients 02 Y.(7) are defined by -

m
v r gv+r = n r 2n+ (&)

for m=O, 1, 2, * o and V + »r + m—> "l, "2,-.- (7.5)

Then there becomes

2

(7) lim (- l) P(l +v + m)P(-ﬂhm)&i r(y)

for m=0,l,2,-.- and V+r+m“‘é‘/"l,"‘2,o-o (7.6)
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and the series (L4.2) reads

r' w
e IR - O N O RO R 0
o= 00 r=r'+2 C

The series (5.41) for Vﬁ(l) (w;y) breaks off only vhen n - m
ig an even number; for odd values of n - m the coefficients cl:; r('y)
have the indefinite value w0 1f r S ' with finite limiting ’
value. The series (5.42) for Wf}l(l) (v;y), on the other h‘aﬁd;"breaks
off only when n - m is an odd ﬁum’ber ; for even values of n - m
the coefficients d.f: I.(7) have the indefinite value .0 with

2
finite limiting valuve if r Sr'. Similar conditions exist for

the other V- and W-functions.

7.3 A Feow Special Function Values

From the series (5.1) one obtains vhen arg '(Cg - 1) =x
for £ =0 : Lo

m(1) r%ﬁim(7/2)m b?ll,m-n('y)/r(% + m) for n-m even
= (Gy) = , . (7.8)
0 for n-m odd

0 ’ for n-m evén
m(l
a2 (057)

at l%\ﬁ 1Py 2)" bﬁ’m_ml(-y)/l"(g + m) for n-m odd

r (7.9)
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The X- and £-functions of the first kind ere for the
index values n and m considered here elther even or

o0dd functions of & or §, respectively, according to =~ —

vhether n - m is an even or odd valus. Furthermore, because

of _Q;‘(cos 6 + 1.0) = (-i)mqfl‘(cos 9) ~»%’-"— zg(coe 6 + 1.0) there is

]{E(Q)(oiy) =~%—ni 3{::(1) (0;7) for n ~m even (7.10)
(@), (1),
M = =i M for n~m odd (7.11)
e 2 ag

From Wroneki's determinant (5.35) follows

2

a72(2) (0;9) g 2

e o _(7) for n -m even (7.12)
n,r

R
]
B
~~~
[
A
-
o
=
S
ta]
1
i

Y= o0

1

’
rs= o

ﬂm(e)(O;y) 5 7 E 1¥pt (7)J for n-m odd (7.13)
n at n,r

Therefrom the Z~function of the second kind and 1ts derivative
with respect to § for { = 0 can be calculated at once.

7.4 Connection between the X- and Z-Functlons

A If v, are integers, considerable simplifications occur in
the relations (4.15) to (4.20), (4.24), (4.25), (5.6) to (5.9),
(5.17), end (5.18). They are so obvious that they need not be
discussed further. Equations (5.29) and (5.30) now assume the
simple form
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AT R Lt (T B CE N B 1

For the nﬁ(i) (y) simpler expressions can be obtained if s

in equations (5.31) end (5.32) is selected in a suiteble manner.
The same expressions, however, result in an even simpler vay if
one substitutes in eguation (7.14) and in the derivative of this
. equation with respect to &, respectively, the special value ¢ = 0.

m(i il
If one expresses %h( )(0;7) and d;Zn( )(057)/6._, respectively,

according to equations (7.8), (7.9), (7.12), (7.13), using
equation (5.13), there originates for n - m = even . -

Kl;l(l) (y) = 11/2 .m(z'_ bﬁ,m~n(7)

!
"y

< -m(1) . A 3
(2) 1oy T (0303 - m)
SB gy = (B .
a ()
n,-n-m B
and for n - m = odd -
Rm(l) (7) = ;L_ﬂl/e im<z- m+1 bf‘ll.m-n-l;l(.)')
n ) | 2 | Xm:;(l) (0;7)/(1& F(_g_ R m)
‘ » (7.16)
n(2) (. _
- m(2) -1/2 - N2 G*Xnm (0:7)/d§ P(g m>
fn (y) = -x i (2> — -
| an,-n-m+l(7)
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By Xm(l) (0;7) and axm(l) (0 1)/d§ the values of these

functions e:r'e understood. whigh result vhen § goes towards Zero
from the positive imaginary half plane. .

The distinction between even emd 0dd - - m can be ‘avolided .
. m{l,
if one sets, for instance, 8 equal zero in calculating the & n 62

from equations (5.31) end (5.32); the formulas (7.15) and (T7.16),
on -bhe other hand, have the adventage of greater simplicity.

T+5 Normalization and Properitles of Orthogonality of the

X-Functions of the First Kind

The eigenvalues of the basic equation xm(-y) are always real.
Proof of it is glven in the lmown manner . Equally simply it can be-

shown that the functions Xn )( t;¥) ere orthogonal to each other,
that is,

1
220 (g )220 (g 59) a8 = 0 | (7.17)
-1 ' : )

is valid for n #n'.

By inserting the series (L. 1) into (7.17) one cen also express
thle property of orthogonality for even differences n - n' +thus:

o O ) Err B0 for nén'  (1.8)

==

B"br the normalization integral one o‘bta;ins

xm(l)(g 0 6 ) a %‘;"——ﬁ}—,z TR o, () (7.19)

r.--w
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7.6 Generalization of,Ffiﬁ}zypumang's Integrai Relation

In the cage m =0 one db%éins 8 second solution of the basic
equation (2.4g) which is independent of ,Xél)(ﬁ;y) in the form of

the integral

F(t) = -Ql-f 9—%—-—??— X](al) (t57) at (7.20)
-1, . v

The fact that this integral actually represents a solution
of equation (2.1g) is confirmed by substitution. The calculation
is reproduced in detail in Bouwkamp (reference 10). For large ¢,
t and & in the denominator of the integrand cancel in Tirst
approximation end one can see then at once that J(¢) 1is proportional
to ‘the €£+function of the fourth kind. The integral over % can then
be evaluated according to equations (8.20) and there originates,
because of equation (5.12),

() = -ivl?fll) (re5e) - iz(f)(vg;e%%g” (7;7)/2 iraﬁ,r(y) (7.21)

o0

According to equations (7.8) and (5.33) the Z-functions are now
converted to X-functions. Because of equation (5.39) there results
finally : ,

2 1 gy (t-8)
2P (e57) - 1 H}’(ﬂ] £ e59) = %f M) v (7.22)
-1 ’ ’

Therefrom results for ¥ =0 F. E. Neumann's integral relation
between spherical functions of the first and second Xkind.
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T+T Zeros of the Eigenfunctions

For m> 0 ‘the zeros of the basic egquation are situated
at & = *1, respectively, since they there have the

behavior (%2 - i)m/e. If one divides the eigenfunctions by this
expression, the quotient does not have zeros at & = fl. In order
to understend this, one need only enter the basic eguation (2.hg)

with the expression (¢ % l)m/2 multplied by a power series
in (¢ t¥1). The zeros of (§2 - 1)-m/2 Xi(l)(gjy) are all simple;

if they were not simple, all higher derivatives of the eigenfunctions
would have to disappear there also. Since it is, however, a non-
ldentically vanishing enalytic function, this case can never occur.
Further properties of the zeros of the eigenfunctions follow from a
simple consideration of continuity: namely, that in a nonsingular
point of the basic sgquation a zero cannot be newly originated for a
change of . « .* and an already exlsting one cannot vanish. There-
with the problem of the number of the zeros 1ls esscentially reduced
to the problem of the number of zeros of Légendre's and their
asgociated polynomials and of Bessel's functions with an index of a
fractional value of one-half.

One deals first with the Xﬁ(l)(ﬁ;y) with real & and vy,

that 1s, with the eigenfunctions of the prolate ellipsoid of
revolution. All zeros are real; for this is valid for y = O.

If, nemely, for a change of ¥ a complex zero would originate, the
conjugate-complex would originate along with it; but it contradicts
the simplicity of the zeros, that a real zero splits into two

complex zeros. The number of the zeros in the inbervel -1 <& <+ 1

equals n - m, +that is, the number of zeros of Pﬁ(g) in this
interval. The zeros outside of thils interval go over into the

zeros of Jh*l/2(7§) for 7y —> 0; the asymptotic distribution of
the zeros for large ¢ io the same as the distribution of 'Jh+l/2(7§)
for arbitrary v.

For the elgenfunctlons of the oblate elliovsold of revo-
lution Xﬁ(&;iy) with real € and 9 also n -~ m zeros are

sltuated in the intervel -1 < & < 1; but now the remaining zeros

*
Translator's notet . . . missing in the original.




lie on the positive and negative imaginary semiaxis of the complex £-plane; they agree
asymptotically as well as for y =0 with those of J,q /2(1';'&,)

7.8 Integral Equations for the Eigeni‘unctions

" The most important integral equetion for the X-functions of the firet kind is
derived from the known relation -

R P ~
e AR ORI NG IR ) R (7.2

U=y

Jf one writes :7§ for =, | ‘replaces n- by n + r, mul‘brolies by 1¥ a (7) and

forms the sum over all even r, “there results

o (b_i_nz)_:(_g 1)'m/ e, m(l) (vesp) = | o0 xf;(l)(n;'/)(l - n2)m/ “an (7.24)

n -~ mj.
-1

Equation (7.2k) is a homogeneous linear integral equation of the Fredholm type
for the X- and %-functions of the first kind, respectively, with. the symmetric

kernel e 75" (1 - 72) {1 - 52)_. If one renlaces in accordance with equation (7.1h4) the
Z-function of the first kind by the X-function of the first kind, one can see that .

m{1.

n ,) () 1in this integral equation plays essentially
the role of the sigenvalue parameter.

the connecting coefficient k

9%

ficeT “ON WL YOUN
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The integral equation (7.24k) cen be. generalized. By selecting
enother path of integration one can, for instance, also express the
-Z-functlion of the second kind (that is, also the X-function of the
second kind) by en integral over the X-function of the first kind;
furthermore, equation (7.24) can be generalized to-the case of
arbitrery v,n,y. However, the respective results shall not be
discussed here. Kotani (reference 8) indicated a general principle
for obtaining more general integral equations for the X~ end
Z-functlons, respectively. "

Integral representations for the X~ and -Z-functions have not
become known so far. It seems that the integral equations of the
type (T.24) or of another kind also cen be substituted for them and
replace them; thus equation (7.24), for instence, represents a
very useful starting point for the investigation of the € -asymptotics
of the X-functions of the first kind. The integral equation (T.24)
can perhaps also be epplied when the values of the X-function of the
first kind are known only in the interval -1 < &£ < 1 and are to be
calculated for arbitrery reel end complex &. (Compare the discussion
on the y-asymptotics of the eigenfunctions in the following section.)
As Mdglich (reference 4) has shown, the integrasl equation (T7.24) can
also be used for obtaining developments of the X-functions of the
first kind in terms of powers of v.

8. ASYMPTOTICS OF THE EIGENVALUES AND EIGENFUNCTIONS
8.1 Asymptotic Behavior of the Eigenvalues

and Eigenfunctions for Large V

The continued fractions (6.1) and (6.2) do not only have the
property to yield a development of. xt(y) in ‘terms of powers of 7y

but in addition one cen obtain from them a development in texms of
powers of v~l. Tt is more favorable to set vp & development in
terms of powers of (2v + l)'l, because then the odd powers

of (2v+ 1) are eliminated because of equation (4.9). The cal-

‘culation itself is relatively simple so that the result can be
glven immedlately
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W) = v+ 1) - 27,+8(2v . 1) [‘* 165%)52 + 7] |
—L - 16252 _'2'1; [ £l
+ 2(2\;]; l)hEh 1647 )y +<g . 6u>7] + 0 (2v +'1) J (8.1)

Presumebly this series is nolt convergent but has asymptotic
character. .

In order to form a judgment on the usefulness of the series (8.1)
for mwerical pvrposes, one gives for several cases the mwmerical

value of the remainder bterm denoted by O[}QV -+ l)'6J in comparison
with the value of the separation parsmeter A itself.

n 2 L 6 | 8

S (\ﬁ5> 11.790% | 25.2513 | 47.20958 | 77.06246

Remainder term | ~0.13k 0.0132 0.00095 | 0.00017

In a similar way one obtains the following expressions for the
development coefficients of the eigenfinctions for large velues
of V.

E.?; — € - e _3

50 BV o4 12 O[(EV + 1) :[ (8.2)
& 2 o

2 y 1y2 | _
ao = -8(2\) + l) - 2(2\) ;:_ 1)2 o O[(EV + l) 3] (8 .3)

a
T [OTR]
ap  32(2Vv+ 1

- 4 -
b 2+o‘:(2v+1)3]
% "32(2v+ 1)

- (8 .4)
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8.2 Asymptotic Behavior of theé E;gqnfélﬁes for Large Real ¥y

One limits oneself here to n and m vhich are integers

(n Znm2 0) .and to real large 7 which may be assumed to be positive -
wlthout essential restriction. Thus one obtains the asymptotice of

the eigenvalues and eigenfunctions for the wave equation in the
coordinates of the prolate ellipsoid of revolution.

An approximate picture of the eigenvalues and eigenfundtions
is obtained if one puts the basic equation into the Liouville
standard form

2 u2 - L
a9, A - 72 cos® 6 - —~—§-ﬂ»+ % =0
a6° sin® 6
1/h ~ (8.5)
q = El(ﬁ)(i - §2> /
E = cog @

and interprets it as a Schrddinger wave equation in the
interval 0 26 S g of the potential energy (in suitable units)

- 1
i (8.6)

It has for large ¥y at @ = g & very nerrow minimum and can there
very well be approximated by a parable. Then, however, there results
Just Schrddinger's wave equation of the harmonic oscillator, for
vhich eigenvalues and eigenfunctions are known.

In ordér to obtain also higher approximations it suggeste itself

to attempt a similar formulation as in equations (4.1) and (5.1).
One sets

= (%)Y D 0o, (V) ®.7)

==
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equal, vhere the D, are Hormite's orthogonal functions end the

functions of the parabolic cylinder respectively. By substitution

of equation (8.7) into equation (2 hg) there resulls, if one utlllzes
also the recursion formulas and the differential equation of Hermite 's
orthogonal functions (see Magnuo and Oberhettinger (reference 11)), .
the Tive-term recursion system

-} b+ 1Y+ nm?
ar_h WO, ot [m 87<I\T + o+ 2)-1- 1

-2 + r)2 -2(N+ ) - gjar +hp(N+r+2)(W+ v+ 1)191‘+2

+ (W + r o+ @+ r+3)(W+r+2)(N+ o+ 1)y =0

(I‘ = O, -.!.”2’ -i:ll-) « e ) (8;8)

The series (8.7) is probably not convergent; it rather represents
3
an asymptotic development in the sense that limits 53 =0 for all
0
even r # 0, or, as one concludes from tha®t and from equation (8.8)

Oy rn 7

L) o, 1rf)
[¢]

V1 on

=il | o(prrr /) - 69
0

(I‘:O,E,’-{-,.-.)

By a method of successive approximation the 9,
represented as powsr series in 7'1. The calculation is elementary;
thus only the result is given. It is

and A can be
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My(7) = (2N + 1)y - %(21‘1_2 + 2N+ 3 - hoP

-%;(2N+ 1)@ + N+ 3 - 8°)
+ -1 |4Bm2 (2N + oN + 1
61&72[ ( )

- 5(wt + 2n83 + 8N + TN + 3)] + 0(y~3) (8.10)

The connection between N, n, and m is given by counting the

zeros. For 7 —> w» the development {8.8) is reduced to the principal
term with the N real zeros of Hermite's KB polynomial, vhereas

the X~function with the indices n &ni m to be approximated has
exactly n -~ m vreal zeros in the interial -~L< & < L. Thersfrom
follows N =n - m. For negative m one inserts instead N =n + m.

8.3 Asymptotic Behavior of the Eigenfunctions for Large Real ¥
The asymptotic representstion of thc sigenfunctions resulis by

calculation of the coefficients §... They real, aside from the terms
] ’
of ‘the order vy 2,
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-

3, . .
= Bl - (1 - 250 - 36)| -
3 )"‘7_. 32y o
0
9 o N _ ,
=iy + L (82 + 29 ~ 10) (N - 1)
S 1"7__ 32y )
~o
o I 5 . Y
PRI S By S SR |\ - 21!1)'
S, 3,2')’.[ 27( 2 J
0 :
, L (e
3y, _ - |
= _1--[1 + —1—<N -3+ 2m2>:IN(N - 1)(W - 2)(W - 3)
34 Ryl 2y 2 .
3 X
6 om ., 6 _.m N
= s = » 1
£ '12872 I5 12872 (w-6)
3 s
8 I 8 I ( 1\‘[!8 :
= 27 = 2 (v - 8)!
'80 20’#87 ,30 20)-1—8')’ B

According to the type of derivation, however, the eigenfunctions
ere approximated by these series only in the interval -l <t < 1.
In order to obtain an asymptotic series also for other ¢ one starts
from the integral equation (7.24) and substitutes for the X-functiomns
in the integrand the series (8.8). Therewith the asymptotic develop-
ment of the elgenfunctions for all ¢ i1s known; in particular, their
behavior can be investigated where, besides vy, £ also is very
large. Since now the elgenfunction for all ¢ is asymptotically
known,one obtains the solutions of the second kind by calculating the
integral in equation (7.24) with the asymptotic series of the eigen-
function and by means of another appropriate path of integration.
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' The .zeros_of the eigenfunctions located in the intervel -1< & < 1
crowd for large 7 more and more around & = O; *in order to understand
this, one has only to divide the zeros of Hormite's Nth polynomial

by \2y end therewith to convert %o the ¢&-scale.

The domain of validity for equation (8.10) and (8.11) extends over
the indicated domain; thus originates, for instance, for m = '.% from
equation (8.10) the asymptotic representation of the eigenvalues of

Mathieu's differential equation found by Ince (reference 1ll4). However,
the limits for this domain of validity shall not he submitted to closer

Anvestigation here.

8.4 Asymptotic Behavior of the Eigenvalues for
Large Purely Imaginary vy

One limits oneself again to n and m that are integers

(n 2 m 2 0) and to purely . imaginary vy of large absolute value.

This procedure yields the asydiptotics of the eigenvalues and eigen-
functions for the coordinates of the oblate ellipsoid of revolution
(reference 10) and for the so-called inner ‘equation for the separation
of the wave equation of the ion of the hydrogen molecule (reference T).

The method applied in equation (8.2) fails here H ng namely

“would become purely imeginary and the Dn(§\[ 2y ) would, for lerge ¢,

no longer decrease exponentially, but increase exponentially; they
would, therefore, be no longer appropriate for the development of

the eigenfunctions. The wave mechanical picture of the differential
equation (8.5) shows that in the case of purely imaginary 7y two -
domeins with low potential energy are present at 6 =0 and 6 = 2x,"

vhich are separated by a high potential peak with the maximum at 6 = !2‘-

One may, therefore, expect beforehend that the eigenvalues will
degenerate I1n first approximation; their split-up 1s exponentially
small in |y|; it is the larger, the higher the eigenvalue. For each

eigenvalue there is an eigenfunction symmetric with respect to 6 = g.,

that 18, € = 0 anian asymmetric eigenfunction.

The mathematical treatment is as follows. A si arity is mede
to move to infinity. Then one obtains from equation (2.4tg), aside
from an elementary transformetion,:the differential equation of
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Laguerre's orthogonal polynomials. This suggests for the solution
of equation (2.kg) the formulation of Svertholm (reference 7T)

F(e) = (1= gg)m/eé,pg Z U.bl.éﬁ [ee(1 - €]) v(8.ié‘)

= =00 .

wherein i7 was set equal to p;. again it does not mean an essential
restriction if p > 0 is assumed. By substitution of equation (8.12)
into the differential equation 2.4g), application of Laguerre's
differential equation, and the recursion formulas for Laguerre's
polynomials (compare Magnus and Oberhettinger (reference 11}),.there
originates in the kmown way for the o a three~term recursion

system. With the abbreviations

A= -pe + 27p = %’-(72 + 1 - 2) + A . (8~l3)
R o R (8.14)
Wy = (r + 2t - 1) - m"; P, =2t{v - 2p + t) (8.15)

t

the recursion system.reads

Oppy Aiyq * Oooq Ay = (A + Pgloy (b = -N, -V+1, N+2, oo (8.16)

Therefrom follows for A the transcendent equation

mA | EP]

) | a?]
TA+ P A+ P

A+P_l‘}A+P_2

e o +

- ... (8.17)

from which A cen be obtained as series in Lterms of powers of p'l.

Therefrom then results
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7\-;1(7) - -52 + 2rp ,-‘ vé]=(1-'2 +1 =~ m2) - I—-(’ra + 1 . 2)

6 5T1|'+10r2+1 233?(31‘Q+1)+mﬂ

u 3[337‘* + 1he? + 3;j_7,1;._2m2(e3¢2+_25)+ 13mﬂ + o(M'LB' (8.18)

8.5 Asymptotic Behavior of the Eigenfunctions
for Large Purely Imaginary 'x.

For the coefficlents of the development (8.12)

%s Tep (r +1)° - me‘](l + I >+ O(l7|_3) ]

. oA 9 -] o)

oo | - (8.19)
aj]‘= llp (r - 1)° - mﬂ(l + I—é-];—]:>+ OQ71'3)‘
| :0 o 2 - B m‘} L(T R m2] woll” 3)

is valid.
The significance of T and. N results again :t‘rom counting the
zeros. The principal term [217(1 - 5)1 has N zeros which

for large |y} 1lie all closely to & = 1. The real eigenfunction
has again N zeros in the neighborhood of & = -1. For odd n - m-
another zero at & = 0 is added. The sum total of the zeros n - m
equals, therefore, 2N for even n -m and 20+ 1 for odd n ~ m;
thus
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T=n+1=20+m+ 1 for n-~m=even

(8 .20)

1

T=n=28+m+ 1 for n ~m= odd

is valid.

Baber and Hassd (reference 7) calculated the series (8.18) with
the exception of the last two terms; only for the special case N =0
they give also the last two terms; Bouwkemp (reference 10) calculated
the series (8.18) with the exception of the last term for the special
case m = 0. The asymptotic series (8.18) can etill be used
for m = f%; it then goes over, exactly like equation (8.10), into
the asymptotic series for the eigenvalues of Mathisu's functions
(reference 14).

For large values of |}y| +the eigenvalues move closer and closer
together in pairs so that the asymptotic series (8.18) for the eigen-
values of each pair are the same (see eguations (8.20)); that is,
the difference of the two eigenvalues has a stronger tendency to
vanish with increasing |y| than any power of 1/ly{s
(Compare table 11.)

The series (8.12) for the eigenfunction 1s useless in the
interval -1 = & 0. There an epproximation must be attempted
starting from the point & = -1. Since the eigenfunctions become
exponentially small in the neighborhood of & = 0, one cen build
up the eigenfunction in the entire interval -1 < € <1 by combi-
nation of the two epproximations starting from -1 and 1 and one
obtains , .

X’:(l) (¢;7) = Constant (l - §2)m/2 i Ut{epg ngf-ll[zp(l B gﬂ
o

¥ ‘e_Pg_. ngf_)l_'[-c?p(l . g)]} (8.21)

For even n - m :the posiﬁive, for odd n - m <the negative sign'is
to be selected; in the one case the eigenfunction is symmetric, in
the other antisymmetric with respect to the point & = O.
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“What was said in section 8.3 is valid for the asymptotic

- calculation of the eigenfunctidns end the Pimctions of the second

kind for any complex & as well as for the limits of the domain
of validity in the variables V,i,y of the asymptotic representations.

In crder to show the use nf the asymptotic series for mumerical
purposes one compares for m = 0 a few sigenvalues with the values
resulting from equations (8.10} and (8.18) by giving the value of the

remainder term O(y~3) and 0{p~%), respectively.

n "0 o 0 2
y2 10 -25 | -100 -100
A (7) 2.305 | =16.0790k -81.02794 -145.48967
Remainder term { -0.025 -0.01616 -0.00008 -0.01528

9. EIGENFUNCTIONS OF THE WAVE EQUATION IN ROTATIONALLY
SYMMETRICAL ELLTIPTIC COORDINATES

9.1 Tamé's Wave Functions of the Prolate Ellipsoild of Revolution

By separation of the wave equation in the coordinates of the
prolate ellipsoid of revolution one obtains the following solutions
of the wave equation _ -

u = [Az‘;(l)(g 57) + sz;l(e)(g ;‘)’):{ E)X‘;(l) (n;7)

. DX;;(e) (n”’il @gyp N Fe—ip-% .

A, B, C, D, E, F are arbitrary constents, y end p arbitrary
real or complex paremecters; the significemce of 7y is given by

" equation (2.8), thus y 1s real. The coordinates ¢ and ¢ =7t,

respectively, n and ¢ are real as well. Under }%1,2) (n;7) one
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' 1,2 ‘ )
understands X%( ? )(n + 1 ng;7)- According to the kind of ‘the

boundary velue problem presented,the arbitrariness concerning the
constants and paremeters is limited; then such solutions of the wave
function have to be determined which remain finite for the éntire
domain of the eigenfunciions.

Following, as before, three-aimensional domeins only are dealt
with which 1lie inside or outeide of an ellipsoid of revolution or

between two confocal ellipsolds of revolutiono Then the domain of

the coordinates 17 and @ is given by -1 8 n = ES i, 0E Q= < ox.

The requirement of single-valuedness and Piniteness of the eigen-

functions then leads t9 v =n, w=m, n2|m| 20, and D =0.
The eigenfunctions are written in the form

up(€,0,95k) = [A?afll(l) (s ;7) + 2228 (¢ 7)) Km(l)(n j7)e™™®

(n=0,l’2,ooo; m'-"-O,',*:l,-,.o-,»-n) (9'2)

The domain of variables in ¢ is denoted by §1'§ t s €o
and &4 st s {>, respectively. For the prolate ellipsoid of
revolution there is always 1 = gl. For inside space

problems Ep = finite, for outside space probiems infinite. For
inside space problems boundary conditions for £; and 52 are to

be prescribed. This results in two linear homogeneous determining’
equations for A and B; they can be satisfied only for certain
distinct valvues of 1y, that is, for certain eigenfrequencies; in
that case they fix the ratio A:B. In case £, =1 a boundary

condition can be prescribed only for €r > 1; the boundary condition
for &9 =1 1is then replaced by the requirement of finiteness of the
elgenfunction at the singular point €5 ='1; it leads to B =

For outside space problems the boundary condition for &, =
is eliminated; the functions (9.2) have for to—> o for arbitrary A

end B an oscillating behavior. One can gee that immedlately from
the asymptotic series (5.12). The boundary condition at £ = €, aives

the ratio AiB. For gl 1 this boundery condition in twrn is
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eiiminated end B becomes B = 0. A condition for the frequence
does not exist; all wave coefficlents are admissible, the spectrum
is continuous and extends from k=0 to k = ®.

9.2 Lame g Wave Functiong of the Oblate Ellipsold of Revolution

"The solutions of the wave equation originating by separation of
the wave equation in the coordinatea of the oblate ellipsold of
revolution are obtained from equation (9.1), by replacing ¥ ‘there
by tiy. Here also only the three-dimensional domeins characterized
in section 9.1 are dealt with and the eigenfunctions can, therefore,
be written in the form

o(E,n,05) = [Azﬁ‘lhc;m + mﬁ(tmﬂ 22 (1)

(n=0,1,2, « « . ; m=0, t1, ¥2, . . . ,%n) (9.3)

The domain of variables in 7 and ¢ is the same as in the coordinates
of the prolate ellipsold of revolution. The domein of variables in ¢

is agaln denoted by € 3 ¢ s o+ 'For the oblate ellipsoid of
revolution there is 0 = {1+ What was sald in section 9.1
for §l > 1 1s valid for inside and outslde space problems

with t1 > 0. However, whereas there gl =1 waB a singular point

of the &-functlon of the second kind, here § =0 18 a regular
point for all #-functions. Thus, for determination of the elgenvalue
problem for gl = 0 Iin this case also a boundary condition must be

given. The area {1 = ig a circular disc. If such a circular

disc actually exists as a physical object, for instance, a circular
screen for problemes of diffraction or a circuler membrane, the
boundary condition on the disc results from the physical problem
teken as a basis. If, however, this circular disc has geometrical
significance only as singular surface of the coordinate system

taken as a basis, for instance, for the determination of the acoustic
or electrical natural oscillations inside an oblate ellipsoid of
revolution, the eigenfunction together with its derivative must be
required to be continuous at this circular disc which leads

to B = 0.
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9.3 Normalization of Lemé's Weve Functions for Outside Space Problems

One limits oneself at first to Leamé's wave functions of the prolate ellipsoid of
revolution. In the normalization of the eigenfunctions (9.2) one cannot normalize in each

coordinate separately although the eigenfunctions contain only factors which every time are
dependent on one coordinate only; in the element of volume

at = ¢3(82 - 42) & an do (9.1)

namely, the coordinates are not separated. The condition of normalization for outside
space problems with continuous spectrum reads

ktAk  pé 1 2n ' ' _ B
ak f at f an | dp 3 - nP)dl(e,n, 05 % (E,5,05%) = mm(l 5 (9-5)
- | - {(7) -
k-Ak 33 -1 Yo ' a ‘

lim
£ —>w

The asterisk (*) signifies the formation of the coﬁ,jugate—complex expression. Nﬁ(y) is

called the factor of normalization. If the indices n and m of the two eigenfunctions in =
the integrand (9.5) would not both agree s the integral would equal zero; the same would be
valld if the interval of integration for k would not contain the point k. However , 8 .
delay by proof of these properties of orthogonality is unnecessary; that proof is elementary.

From the wave equation in elliptic coordinates one obtaing the identity

(€2 - 1¥)c%F*u = %—EE@ - l)(ﬁ*%% -u g’—?] + %El - n2)<ﬁ*%‘]— - u g—%f—)] (?-5)

oL
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For abbreviation the wave fimction concerning the parsmeter values k-,n,m is ﬁesignated by

e
The @-integration of equation (9.6) gives. 2n. The n-integration of the second term of the
sum on the right side of equation (9.6) gives always zero since at the ends of the interval
of integration 1 - 1= = 0. After carrying out the n-integration the € -integration of
equation (9.6) results finally in
: 3 1 2x 1 [ 3 -\ &
; -y Su u \
RE - | at| (2 -7 . Tudp =2r | dn L(g2 - 1)<u* 6~ U5t (9.7)
g J1 0 -1 &

The boundary condition is assumed u = finite for £ =1 in cage ¢ 1=13,
or acu+t+ B g& =0 in case 51 >1, where a and B shall both be real and independent
of - k. Then the content of the brackets on the right side of equation (9.7) at the
point §; vanishes; for large & the asymptotic series of the Z-functions may be

gubstituted. Note the fact that, for real boundary conditions, A/B is always real.
After division by - x° » performance of the k-integration and transition to & =w =
there results the integral in equation (9.5); thus one obtains as the Pactor of normalization -

X o 2 @

1 _ 2 N .r.nm 1 n+m)! T 2 o n
g A ) LZ.- t Pax) CEr e e RO LA CO S )
n\’)’) X == 00 _ I'=~

1L
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The normalized wave functions are, therefore, obtained by multiplying u (§ ,M,P;5Xk)
vy N(7).

Several changes occur for the coordinates of the oblate ellipsoid of revolution. The
eigenfunctions (9.3) have to be stubstituted in equation (9 5), instead of § 2 in
equations (9.4), (9.5), and (9.6) one has to write 2 + .2 -1 in equatlons (9.6)
and (9.7) is to be replaced by gE + 1. TFinally one obtalns as the factor of

normalization Nﬁ(iy) instead of 1\1’2(7) in equation (9.8).

9.k Develqpment of Lamé ‘§ Wave Functions in Terms of Spherical and Cylindrical Functions

By the following consideration one obtains a remarkable development which includes a
number of the developments of X- and Z-functions given so far as special cases. Any Lamé
wave function can be developed in terms of such wave functions as originate by separation,
for instance, in polar coordinates. The eigenfunction of the continuous spectrum, in :
particular, which results from equation (9.2) for B = 0 can be developed in terms of the

eigenfunctions in polar coordinates \!fw(lct')!in<;>'em¢, One obtains the development

coefficients by meking, for instance, x and y-> 0, that is, -Zl ~>1 and comparing

the thus originating development with equation (5.1). Thus there results , if one
expresses, moreover, X,y,z by ¢,1,0 and equates the coefficients with eimcp

Zir bx; (7) 2‘ 2 (7)»4; (lcr)P (r) (9.9)

T=-c T==c0

Z 20) Z m r(y)qu(y\/g + 02 - 1)__n+r< \fg?iw—"?'ﬁ 1)

r=- r—-

%:(1) (¢ ;7)X2(1) (n;7)

]
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vhere r in the argument is given by r2 = x?v+ ¥° + 72 end must

not be confused with the index r which ruhs through all even

numbers. The development (9.9) is given already by Morse (reference 6).
One can interpret equation (9.10) as a development of the Z-functions
vhich contains still an arbitrary paremeter n. For n—>1 there

originates, if one divides before by '(l - ne)m 2, the series (5.1);
for n—30 one obtaine the series (5.42) for the W-functions of the
firet kind. If one differentiates equation (9.10) with reepect to 1
and sets then N = 0, there results the sories (5.:t1) of the
V-functions of the first kind. For &-—> ® there originates from
equation (9.10) the series (k.l) of the X-functions of the first kind.

At this point one can recognize why the formulations (L.1), (4.2),
(5.1), (5.2), (5.41), and (5.42), that 18, the series developments
congidered by Niven (reference 15 all had to lead to the same
development coefficients a.

Whereas equation (9.9) represents a development in terms of
elgenfunctions in polar coordinates which have their origin at the
point X =y =2 =0, Lemé's wave functions can be developed also
in terms of elgenfunctions in polar coordinates with the '
origln x =y =0, 2z =c. This development reads, as shown by a
simple calculation,

%’2(1)(;;7)}{;1(1) (j7) = Z eﬂ,t(ﬂvmt[’(g i “?]Eit(%%%) (9.21)

e

If one miltiplies by (l - na) m/2 and then sets 17 = 1, equation (9.11)
is transformed into the development (5.h6)- For ¢ —> = one obtains

a development in terms of spherical functions multiplied by sin (yq)

and cos (), reepectively; the special case of this development m = 0
is already given by Henson (reference 5).

If one finally develops Lame's wave functions in terms of the
elgenfunctione originating by separation of the wave equation in
cylindric coordinates, there results, with the aid of equation (7.24),



_q -
=

~ 1N B 1
etV am == > o o) f

Tr=- 0 -1

ot X;l(l) (a057)F [\](ge - 72)f1 - 7?) (1 - ci‘?):] da (9-12)'

This intégral equation which was derived in another way also 'by Koteni (reference8) contai'ns.
equation (7.24k) as special case for n—>1. ' A

It is obvious that the developments (9.10), (9.11), ‘and (9.12) are capable of generalization;
one can consider complex V,u,y and one can replace one or both functions of the first kind on the
left and right side of equations (9.10), (9.11), or (9.12) by functions of the second kind; however,
reproduction of the thus originating formulas and establishment of their domain of validity will be
omitted. ' IS

10. THE METHCD OF GREEN'S FUNCTION FOR THE SOLUTTON oF BOUNDARY
VALUE PROBLEMS, PARTTCULARLY OF RADIATION PROBLEMS
10.1 Green's Function of the Wave Equation in Radiation Problems
For development of the plane wave or more generally of the spherical wave in terms of Lamé's
wave functions of the ellipsoid of revolution one uses the method of Green's function thought up

by Sommerfeld (reference 15). According to this method the spherical wave 1s a solution of the
inhomogeneous wave equation '

Au(P,Q) + Pu@,Q) =580, | (20.1) |

HSST "ON WL VOVN
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-..the. right slde of which is g (recently so*called) Dirac 8o function.

by him as prong function. It has a singularity at the source
point Q in such a manner that

f 8(P,Q) drp = 1  (10.2)
G :

for esach domain G which conteins the source point @, whereas

the integral has the value zero if the domain G does not contain
the source point. One cen interpret &(P,Q) as limiting case

of a function which has for points of influence P in the neighbor-
hood of the source point @ a very steep vrong whereas it decreases
toward the outside very rapidly to zero.

The solution of equation (10.1) is for outside space problems
uniquely determined only when besides the boundary conditions on
the bounding areas which are at a finite distance an additional
boundary condition at infinity is required, namely, the outgoing
radiation condition (or else the incoming radistion condition)
introduced by Sommerfeld (reference 15). According to this
condition, u(P,Q) for points P at very large distance from the
source point Q should behave like an outgoing (or incoming) wave.
One designates this solution because of its special properties as
Green's function G(P,Q;k) of the wave equation pertaining to the
outgoing (or 1ncom1ng) radiation condition. For physical reasons
the case of the incoming radiation condition will not be considered
below.

All developments of this section are performed for the coordinates
of the prolate ellipsoid of revolution; one obtains the corresponding
formulas for the coordinates of the oblate ellipsoid of revolution
by replacing 7 everywhere by i7.

Green's function can be developed in the following wey in terms
of the eigenfunctions of the continuous spectrum

2]

d N *me a2
G(P,Q;k) = . m Z-uﬁ’(EP, Np>Pps K) up ({‘,Q, NgsPg3 K) Na(?) (10.3)
. n,m ‘

The integration over k goes from O to o, the path of integration
deviating at the point & = k 1in the case of the outgoing radiation




- =
condition into the negative-imaginary half plane. The integration over kK can be performed o

according to Sommerfeld and yields for &p > QQ

G(p,q5%) = g%z (- iBfDZﬁB)(gpiﬂ en(%p-9Q) 1(y)2 Eﬂf‘-%g(l)(igm

2

o sz—’;(z) (q57) Xﬁ(l) (HPD')XE(I) (ngi7)

In order to characterize the dependence of the constants A and B on n and m, the
indices n and m were appended. For {p < {, the arguments {p and {',Q in

equation (10.4) are to be exchanged since Green's function is symmetric in P and Q.
One can recognize that there actually result outgoing waves by substituting for the
Z-functions of the third kind in equation (10.4) their asymptotic representation, since
an outgoing wave is given by the behavior eX*F for large xr 1if the time dependency
as is customary in wave physics is fixed by e 19U, '

10.2 Development of the Spherical Wave and of the Plane
Wave in Terms of Lemé's Wave Functions

If the space does not have any boundaries within a finite region, B = 0 in the
elgenfunctions for the coordinates of the prolate as well as of the oblate ellipsoid of
revo'ution. A may then be set equal to 1. On the other hand, it is known that Green's
function for the entire space without boundaries within a finite region is given by the
spherical wave

(10.4)
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lmrP Q

a(P,Q;k) =

(10,;5)

Therefrom one obtaine immediately the dsvelopment of the spherical wave in terms of Lamé's wave
functions for §Q > 6

e 1 N (3 (1) 1), - .m(1) in(q-vp) o
?mm”’é% Z&’;‘ )“Q”*‘Eﬁ (i g D apime NP (10.6)
n ‘

and correspondingly for §Q < 8p. Morse (reference 6) discovered this development in terms of

another method. The development of the plane wave in terms of Lamé's wave functions origim'bes
from this if one moves the source pecint Q +to infinity. For Ea>tp, fg>1

ikry

q 11e( ‘ ) * ‘
e .
G(P,q;k) = %‘—“5"5 i : (10.7)

is valid vhere Ta is the distance of the source point from the origin of the coordinates ,

rp the radius vector of the influence pcint P and €q 2 unit vector in the direction

of Q toward the origin of the coordinates, therefore in the dirsction of the direction
of propagation of the plane wave. For equation (10.6) thie limiting process is performed

LL

is used in place of German script z/

r
¢ 18 used in place of German script 4-
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by introducing for the #-function of the third kind the asymptotic series (5.12) and setting
according to equations (2.1lg) and (2.11a), respectively, §Q & lcrq. Then there results for

the plane wave running in direction 2q

o Plegitp) ;;‘Ez_i"n -Zri(l) (%57)}(?11(1) (ngiy)fﬁ(l) (ng;7) o (0a"%) () Z it bfl‘,r(ﬂ (10.8)
n Y==c0

o}

The direction in which the source point is situated can be characterized instead of by the

vector -_e_Q by the coordinates nQ and (pq. According to equations (2.lg) and (2-la)

-(e Tp) = XP\‘\;]‘ - 'qu cos Qg + yP\',}l - T]Q2 sin Qg * Zpig

C\[E,PQ Fl \f (l - np2>(1 - ng?) cos (g - Pp) + ckphipng (10.9)

1}

is valid.

10.3 Diffraction of a Scalar Spherical Wave or Plane Vave
on the Ellipsoid of Revolution

The method of Green's functions can also be used for treatment of problems of diffraction.
In the scope of & scalar diffraction theory a homogeneous boundary condition ou + B du =0 is

on
prescribed on the diffracting body; at first the problem of the determination of the eigenfunctions

is solved. With these eigenfunctions, Green's functions (10.3) and (10.4), respectively, are

3L
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formed and the contention made that it solves the problem of aif-

" fraction. -Actually it represents a wave which comes as spherical
wave from the source point @, satisfies on the diffracting surface
the given boundary condition (as doces each single term of the sum)
and which behaves at infinity like an. outgoing spherical wave. If i
the source point Q, in particular, lies at infinity, Green's
functions represent the superposition of a plene wave and of an
outgoing spherical wave originating from the diffracting body with
an amplitude which, in general, is dependent on direction. Treat-
ment of the diffraction Problem for a source point within a finite
region is omitted. One starts immediately from equation (10.8) and
contends that the solution of the diffraction problem of a plane wave
at the ellipsoid of revolution is given by

(1) |
e (€13 n(3),, |
Fo [ - ey P

n,m (8157)

X Xz(l)(nPiy)Xﬁ(l)(nQ;y)eim(¢Q—QP) Nln;(y)2 i ZEE: iF bﬁ,r(y) (10.10)

Yr==~co

in the case of the boundary condition u =0 for ¢ = Cl' Under Nﬁ(y),
one understands therein the factor of normalization (9.8) with

AR* + BB* = 1. In the case of the boundary condition gz =0

for § =4 one has to replace the two Z-functions with the
argument §, in equation (10.10) by their derivatives with respect
to {p at the point £;. The first term of the sum in the brackets

of equation (10.10) yields,when the sum over n,m is formed,exactly
the plane wave (10.8); the second term of the sum gives outg01ng
gspherical waves; furthermore, the wave equation and the boundery
(surface) condltlon are satisfied by each separate term of the sum;
the contention is therefore proved.

For the diffraction at the infinitely thin wire of finite length,
one has to set §1_~ 1. -Zm(3)(§l v) then becomes infinitely large

and, in equation (10. 10) there remains only the plane wave. Thus
an infinitely thin wire does not present an obstacle for a plane wave.
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For the diffraction at the Infinitely thin circular disk, .y 1s to
be replaced in the formulas by 1y end- Ql is to bPe eet equal to zero.

~Z§(3)(O;iy) has a finite value so that the outgoing spherical waves

do not disappear; that 1s, even an infinitely thin disk represcnts
an essential disturbance for a plane wave striking it. :

11. TABLES

' 11.1 Comments to the Tebles

The tables in section 1l1l.2 contain power series developments
to 710, inclusive, for the eigenvalue hﬁ(y) according to

equation (6.13) and to 76, inclusive, for the coefficients ai r(7)
,T
and. bﬁ r(7) according to equations (6.14) to (6.21) and

6

2
equation (4.11). Furthermore, to ¥°, inclusive, the coef-
ficients ag r/#g 0(7), according to equation (7.6), are given
J 2
for all those cases vhere a.p/ag, a.y/ag, and a.gf/a; disappear.

As far as the values of the coefficlents a,/a, and b,./b, are

" not given in the tables, they disappear; then one must use for the
X-functione of the second Iind the series (7.7) and the table for

the ayn/a,:

The region of the n~ and m-velues in the tables extends
from m=0,1,2, « « ¢, 9 and from n=m, mn+ 1, «. . ., 9. For
negative m, vhich are integers, reference is made to the
relation (4.12).

The last given digit 1s, in general, probably certain; only vhere
the following digit after rounding up or off, respectively, is a 3,
the last given digit would have to be changed in a few cases by unity.
In the cases of the end digits ...5, ..50, .500, and so forth, it
ig mostly indicated by & line over or under, respeclively, the last
digit whether the respective fecimal fraction had been originated by
rounding up or off.

The given broken off series developments in terms of powvers

of ¥° are the more useful, the smaller y° and the larger n.
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For n =0 the series begin to be useless only at 72 = 10; . for

' larger n they can be used up to far larger velues of 7y“. Below,

— a few of the first elgenvalues for ¥~ = 10 eare given as they

“ follow from the exact numerical calculation and. from the power.
series development to 710, “inclusive. :

n 0 2 4
Xz (\li)—) 2.305040 11..790395 25_.%51313
Xg_ (\ﬁ?&) approximation 2.215 11.880 25.25147
|

Figure 1 gives a survey on the dependence of the lowest
eigenvalues on 7.

The tables in section 1l1.3 are teken from the thesis of
Bouwkemp (reference 10). They contain the eigenvalues X;('y) for

a number of pairs of values n, 72, and the coefficients aﬁ r(7‘)
bl

of the pertinent X-functions. These latter are fixed so thatb

—~-entl [o 2 _
on + o1 + lEn,1~(7)] =1 (11.1)

e=~0c0

The integral of normalization then (compare equation (7.19)) has

the value
. a —2 o
j Lxg ')(E;'r)! & = 37T (11.2)

These tebles contain further the values X(l) (1;9) and X(l) (037)
for even and dX(l)(O,y) /dg for odd n. The sugns of the a, are
different from those of Bouwkamp since the present series (4.1)
end (4.2) conbtain in the coefficients a factor i¥ vhich is missing
in refersnce 10 by Bouwkamp.
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Since the 72 assume in these tables only negative values,
these functions are appropriate for the treatment of problems
concerning the oblate ellipsoid of revolution or for the investi-
gation of the eigenvalues of the ion of the hydrogen molecule,
vhereas, the tables in section 11.2 where ¢ can be positive asg
well as negative, may be vsed for problems of the oblate as well
as of the prolate ellipsoid of revolution.

Trenslated by Mary L. Mahler
National Advisory Committee
for Aeronautics



S

NACA TM No, 122h 83

10.,

11.

12.

REFERENCES .
Niven, C.: Philos. Trans. Roy, Soc. (London), vol. 171, 1880,
pp. 117-151.
Strutt, M. J. 0.: Lame'sche, Mathieusche und verwandte Funktionen
in Physik und Technik, Ergebnisse der Mathematik und ihrer
Grenzgeblete, vol. 1, 1932, pp. 195-323.

Maclaurin, R.: Trans. Cambridge Philos. Soc., vol. 17, 1898,
Pp. 41-108.

Msglich, F.: Amn. Physik (&), vol. 83, 1927, pp. 60973k,

. Henson, E. T.: Philos. Trans. Roy. Soc. (London), A, vol. 212,

1933, pp. 223-283.

Morse, P. M.: Proc. Nat. Acad. Sciences, vol. 21, 1935,
pp. S56-62.

Wilson, A. H.: Proc. Roy. Soc. (London), A, vol. 118, 1928,
pp. 617-635, 635-647.

Jaffé, G.: Z. Physik, vol. 87, 1934, pp. 53554k,

Beber, W. G., and Hassé, H. R.: Proc. Cambridge Philos. Soc.,
vol. 31, 1935, pp. 564-581.

Svartholm, N.: Z. Physik, vol. 111, 1930, pp. 186-19k.

Koteni, M.: Proc. Phys.-Math. Soc. Japan, III, vol. 15, 1933,
pp- 30-57.

Chu, L., and Stratton, J. A.: Journ. Math. Physics, vol. 20,
1941, pp. 259-309. See elso Stratton, J. A.: Proc. Nat.
Acad. Sciences, vol. 21, 1935, pp. 51-56, 316-321.

Bouwkemp, Ch. J.: Theoretische en numerieke behandeling van de
buiging door en ronde opening. Dies. (Groningen).
Groningen~Batavia 1941.

Magnus, W., and Oberhettinger, F.: Formeln und Sdtze fir die
speziellen Funktionen der mathematischen Physik. Berlin 1943.

Kreuser, P.: Uber das Verhalten der Integrale homogener linearer
Differenzengleichungen im Unendlichen. Diss. (Tubingen),
Borna-Leipzig 191k4.




-84 NACA TM No. 122L

13. Perron, O.: Die Lehre von den Kettenbruchen, 2. Aufl.,
Leipzig und Berlin 1929.

14. Ince, E. L.t Proc. Edinburgh Royal Soc., vol. L7, 1927,
po. 294-301.

15. Sommerfeld, A.: Jahresber. d. Deutschen Math.-Ver., vol. 21, 1913.
pp- 309-353. See also Meixner, J.: Math. Zeitschr., vol. 36,

1933, pp- 677-707.



s

NACA TM No. 122k

m m m
11.2 — Eigenvalues xn(’l) and Development Coefficients a'n,r(7) s bn,r(7)5
Represented by Broken—Off Power Series in 7
TABLE 1.- l;.ﬁy) —n(e + 1) x 1010 AS POWER SERIES IN ¥

m=0,n=0 +333333333322 ~1LBINBILG Y 1470311690 +135868/8  —24280.9671°
n=1 +6000000000 — 68571429 - 609524 + 25896 + 872.80
n=2 +5238095238 +101500918 4760812 -141089 +24412.17
n=3 +5111111111 + 32941763 + 595989 — 26542 - 887.76
n=4h +5064935065 + 17750507 + 53147 + 5040 - 132.19
n=>5 +50427350L3 + 11298966 + 11653 o+ 5TT +  14.80
n==6 +5030303030 +  T8Thh3hL + 3653 + 150 + 0.94
n=7 +50226241 34 + 581912k + 1h13 + 53 + 0.15
n=28 +501754 3860 + LW82651 . + 628 + 22 + 0.03
n=9 +5014005602 + 3562440 + 310 + 11 + 0.01
m=1,n=1 +200000000072 - 4571L2867* +1219048y5 — 210348 ~ 205,770
n=2 +b285714286 — 38872692 + 1hh2ko + 5682 - 76.28
n=3 +4666666667 + 13647587 —-1182504 + 21357 + 229.72
n=2=4 +1805194805 + 11902417 — 131503 - 5669 + 78.30
n=>5 +4871794872 + 88gh6ok - 31166 - 337 - 23.65
n==6 +4909090909 + 6698782 — 10150 - 26 - 1.93
n=7 +4932126697 + SL74T730 - 4oo8 + 6 - 0.34
n=28 +L4gLk 7368421 + 4099403 - 1807 + T - 0.08
n=9 +4957983193 + 3320032 . - 899. + 5 - 0.02
m=2,n=2 +1L28571k29y2 - 19u363h67“ + 36060076 - 582278 +  57.71910
n=3 +3333333333 ~ 22146689 + 127901 + 607 - 22,60
n==" +4025974026 ~ 213987k - 309653 + 6053 - 56.26
n=5" +4358974359 + 258489h — 104857 - 532 + 23.27
n=6 +hishs5h5hsLs + 3476672 — 39401 - 205 - 1.22
n=7 +466063348) + 3364211 - 16771 - 67 - 0.58
n=28 +4736842105 + 3005596 - 1 - 22 - 0.30
n=9 +4789915966 + 2620834 —-  Lose - 8 - 0.07
m=3,n=3  +11111111115% —  99763067" + 132638/ ~ 1698,8 + 17.80y1°
n=41t Lor27272727 — 13870427 + 76421 - 83 - 4,51
n=5 +350427350} — k920040 — 92311 + 1750 - 18.27
n=6 +3939393939 - 871352 — 54468 + 119 + k55
n=7 +4208141L796 + 755560 - 27781 - 32 + 0.53
n=-28 +438596L912 + 1369050 —  1hh3h - 27 - 0.01
n=29 +4500803922 + 1548920 - 7843 - 1 - 0.04
m=l,n=b | 409090909092 - sTWH® o+ 5T36° -~ 588 4+ 52010
n=5 +2307692308 — 9103323 + 4h360 - 118 - 0.79
n=6 +3090909091 - 4839057 - 28865 + 570 - 5.53
n=7 +3574660633 -~ 2037903 — 26567 + 129 + 0.73
n=28 +3894 736842 - 530540 - 17172 + 17 + 0.29
n=9 +14117647059 +  24hh18 — 10467 - N + 0.06
m=5,n0=5 + 7692307697° - 36h13297% + 27883,° - 2u8 +  1.70710
n==6 +2000000000 - 6274510 + 26419 - 8 - 0.07
n=7 +2760180995 - 4157529 - 8311 + 205 - 1.82
n=28 43263157895 — 2301599 - 12785 + bl + 0.03
n=91 43613445378 -~ 1096495 - 10178 + 22 + 0.10
m=6,n=61] + 66666666772 - 2hh00877h + lh8h076 - 97‘78 * 0.62710
n=17 +1764705882 — Lhgg3hl + 16310 - kg + 0.04
n=28 +2491228070 ~  34k0673 - 1336 + 80 - 0.65
n=9 +2997198880 —~ 2221592 - 6054 + inn - 0.07
m=7,n=7 + 58823529672 - 1714033" + 847;76 - 468 + 0,290
n=28 +157854 7368 - 3332431 + 10435 - 29 + 0,0%
n=9 +2268507563 — 2822595 + 967 + 32 - 0,2
m=8,n=81 5263157872 ~  1olg66ay™ +  5117° - 23,8 + 0,110
n=9: +1h28571k2g - 2535176 + 6808 - 18 + 0.03
m=9,n=9 + 4T61904 767> — 93895y + 32365 - 13® +  0.02910
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NACA TM No, 1224

m
a o(7) 10
TABIE 2, ——doe— X 10 AS POWER SERIES IN 7
a2 (1)
b
me=0,n =0 +11111111119° —352733697 --101900876
n=1 + 400000000 + 3555556 — 151062
n=2 + 24k8g7959 + 202904 + 208818
n=3 + 176366843 + 66936 + L6389
n=2=, + 1377H1047 + 21683 + 18710
n=>5 + 112963959 + 8738 + 967
n==6 + 95726496 + 4OTL + 5462
n=7 + 83044983 + 210% + 3439
n=28 + 73325729 + 1177 + 2306
n=9 + 65640291 + 700 + 1622
m=1,n=1 + 13333333%° —355555671* + 6131»876
n=2 + 122448980 — L54356 - 17898
n=3 + 105820106 — 120593 + 16210
n=h + 91827365 - 143366 + 9870
n=5 + 80688542 - 18723 + 5930
n==6 + TL794872 - 9160 + 3767
n="7 + 64590542 - kole + 2524
n=28 + 58660583 - 2826 + 1768
n=9 + 53705693 - 1719 + 1285
m=2,n=2 + 10B163277° - 7572607" + 12227/8
n=3 + 52910053 — 301482 - 1430
n -k + 55096419 - 130098 + 2386
n=5. + 53792361 - 62h11 + 2541
n==6 + 51282051 - 32716 + 2057
n=7 + L84ho907 - 18k20 + 1579
n=28 + 45624808 - 10990 + 1207
n=9 +  4296455h - 6877 + 931
m=3,n=3 + 1763668ky° - 23u86" +  3003)°
n=»5 + 27548209 - 151781 + 165
n=>5 + 32275h17 - 87376 + 621
n==6 + 34188034 — 50891 + 828
n=7 + 34602076 - 30700 + 812
n=28 + 34218674 - 19232 + 718
n=9 + 33416876 —~ 12481 + 609
m=>4, n=4 + 91827362 - 91068y% + 9188
n=>5 + 16137708 - 78638 + 210
n==6 + 20512821 ~ 54963 + 2L2
n=717 + 23068051 - 36840 + 329
n=28 + 244431910 —~  2h7o7 + 361
n=9 + 25062657 - 16849 + 353
m=5,n=5 + 531923677 - 92yt + 3320
- n=6 + 10256410 - 43185 * 131
n=7 + 13840830 - 34733 + 118
n=28 + 16294606 - 25905 + 152
n=9 + 17901808 - 18912 + 178
m=6,n=6 + 3141880372 - 20'(9371* + 13676
n=7 + 6920415 - 25086 + ™
n=28 +  9T7676h - 22i51 + 6L
n=9 + 11934598 - 18212 + 79
m=7,n=7 + 230680572 - l1k03* + 6276
n=28 + 1888382 - 15307 + L3
n=9 + T160759 -~ 1k900 + 37
m=8,n-=8 + 162046172 R . 3090
n=9 + 3580380 - 97h3 + 25
m=9,n=9 + 119346072 - nit + 1640




NACA TM No. 122h

n m
,(7) (7)
TABLZ 3. ‘—E'u—(— x 1039 f:_l._ﬁ___ x 1019 AS POWER SERIES
%n,0 7) an’o(r)
RS
ay fa, X 1010 ) 8g /a5 X 10%°
m=0, n =0 +1904 76197+ - =7.696017° +137429y6
n=1 + 4535147 + 55817 + 24667
ne?2 + 2061431 + 3740 + 870
i3 150 I ) it
= +
:-2 + 533;592 + gg + 11»33
= + +
n=17 + 3012y + 13 : 21&9
n=8 + 238%63 + T + 466
ns=9 + 193571 + % + 346
m=1,n=1 + 9070297 - 33150,° + 35245
n=2 + 687144 - 3740 + 2242
n = 2 + gg:g;_g_ - gg + 11;51
na= + - + 9h2
n="5 + 29533} - 111 + 653
na=6 + 235350 - 5Q + 470
n=7 + 191701 - 24 + 349
n=8 + 159042 - 13 + 266
n=9 + 138010 - 7 + 208
n = + - +
n=h + 163007 - 608 + ?32
n=>5 + 147665 - 277 + 261
n==6 + 130750 - 138 + 214
neT + 115021 - 73 + 173
n=8 + 101209 - W2 + 143
na=9 + 89340 - 25 + 119
m=3,1=3 + 336367 - et s 516
n =k + 54336 - b73 + T
n="5 + 63283 - 277 + 87
na=6 + 65375 - 16!._ + 85
na=7 + 63900 - 95 + 19
n=28 + 60725 - 58 + 72
R=9 + 56853 - 3 + 6
m=h4 n-= 151- + ;ggg;svl‘ - :Jlggrs + ;176
n = + - + 2
n=6 + 28018 - 124 + 28
n=17 + 31950 - 86 + 32
n=28 + 33736 - 58 + 33
n=9 + 34112 - Lo + 32
m=5n=5 + 21yt - 52,6 + 36
n=6 + 9339 - 6= + 7
na=7 + 13693 - 58 + 11
na=28 + 16868 - 46 + 13
n=9 + 18951 - 35 + 13
m=6,n= g . t;agg,’* - 39576 + 16
n = + - + 3
n=28 + 1229 - 28 + 'S
a=9 + 9475 - 25 + 6
m=T,0=7. + o1t - 85 + 0
n=8 + 210 - 13 + 1
n=9 +  kOBL - 15 + 2
m=8 n=28 + 182y - 376 + ol
n=9 + 1354 - 6 + 0
m=9,n=9 + 2t - 26 + 0
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NACA TM No. 1224

-1
s’ (7) _
TABLE k.- 22 x 10'0 A POWER SERTES IN 7
a (7)
n,0
m=0,n =2 — 222022022y° +  T05u6THt + 1519715
ali 156000z - e M4
n="5 — 112233446 - L2634 - 8241
al7 ~ Raser - G i eC
n = — — -
n=8 — 7320261k - 3113 - 1889
n=9 — 65561828 - 1662 - 1346
m=1,n=1 ~3333333333° -1333333333"* -540952381y0
n=2 ~ 666666667 - 63492063 ~ 6478782
n=3 — 342857143 +  91L2857 - 197018
n=h - 226757370 + 841k00 + 16156
alé T 1k M T il
n = - + 7 - 3
| TR @ Do
= - + -
n=9 - 81952086 + 6232 - 1621
m=2,n=2 -133333333372 — 6349206357 - 8055280075
n=3 - 571428571 + 76190476 + 8760622
na=bh —~ 350136054 + 6310502 - 122277
alé = e D T s
n = - + - 295
na=7 - 142011834 + 164766 - 3369
n=28 — 117647059 + TS5054 - 2kk9
n=9 — 100163905 + 38087 - 1778
m=3,n=3 - 85’{1&285772 + 26666666'(7h + 88380095_76
n=4h - 476190476 + 20614306 ~ 2451288
n=>5 — 314253648 + h178111 - 64139
n=6 ~ 228862047 + 1260948 - 7860
na="7 - 177514793 + 180568 - 3572
n=28 — 143790850 + 21404 3 - 2475
n=9 — 120196685 + 106642 - 1829
m=b,n=1h - 63492063572 + bohTh3HHM — 129516486
n=5 — LOLOUOUOL + 9669343 — 38010k
n==6 —~ 286077559 + 2837133 - 34h29
n=7 — 216962525 + 1057249 - 6853
n=8 - 172549020 + 462332 - 2950
n=9 — 112050628 + 226858 - 1908
=5 10=5 - 50505050572 + 18993352/ - 1365831,°
n=6 - 349650350 + 5449096 - 123724
als a0t T e Tk
n = -— + -
n=9 ~ 165725733 + u159o';[ - 23h7
m=6,n=6 - 141958042092 + 9&1451007" - 3u701176
n=17 —~ 307692308 + 3403334 - 52456
n=8 — 237908497 + 1446929 - 11529
n=9 — 191222000 + 693176 - 3762
m=T,n= g - gmﬁ# + 51»%29 b - 12333875
n = - + 22 3 - 25
n=9 - 218539428 + 108027k - T154
m=8,n-8 — 31372549072 +  3hozkuey - 5372098
n=9 - 247678019 + 1601021 - 1ho2s
m=9,n=9 - 2718637TTLr2 +  228Li56y"* - 265030




10

2, /8, x 10 g /a, x 1010
=0,n=1 + 907029y - 6pwt .
n=>5% + 6871k + 2610. 6
i D32 D2 - 5
n = + + - 7
n=28 + 295331 + 39 - 852
n=9 + 235350 + 17 - 610
=1, n=3 + 190476197 + 3386240
n=5% + 1535147 + 100968 €
n=5 + 2061431 - 23492 - 45810y
2 L - % -
n = + - - 3
n=28 + 531595 - 213 - 2557
n=9 + 392250 - 86 - 1524
-=2,n=2 666666667 ~126984127,%
n=3 + 9523809% + 846 6
n = z; + 133%2 + 15—1’::(5,23 + 1511716y
n = + - 27hoTh ~ 320667
n=6 + 23545h, - 25945 ~  hk8ig
asd T e I D e
n = + - -
n=9 + 616393 - 677 - 3353
=3, n=3 +285711t2861v1+ + 5925925976 —317%03276
n=15 + 31746032 + 82u5723 +10582011
n=>5 + 9620010 — 127901k — 1234668
D e - o 5
ns= + — -—
n=38 + 1392273 - 6511 - 14063
n=9 + 924590 - 2370 - 6705
=4, na= ; + g%%yh + 22?&38’1;76 +u23280u§~y6
n = + T - -
n=6 + TO636L43 - 326912 ~ 336364
ald + Saeeeon D e e
n = + - 17587 - T
n=9 + 1335519 - 6162 - 12452
R ;e e s
n = + - 7. -
n =7 + 5379236 - 148289 - 159
n=8 + 3016591 - 39919 - 5223
n=9 + 1869726 - 13555 - 21792
=6, n = g + 1%5001;7“ - 1-3125309276 - 11%76'
n = + 777000 - 39 - :
n=28 + k223228 ~- 80725 - 91h1p
n=9 + 2549627 - 26700 - 36319
=T, n=7 + 10878011y% - 590661,° - 51800175
n=28 + ST58047 - 150108 - 152353
n=9 + 3399502 - 48546 - 58111
=8,n=28 + T710238" - 26280576 - 2&&76976
n=9 + h4u5503 - 83016 - &808
=9,n=9 + 5TI56NTy - 137 - 13728




NACA TM No. 122k

m m
TABLE 6 .- NUMERICAL VALUES OF THE COEFFICIENTS "‘"n,r/an,o

APPEARING IN THE SERIES DEVELOPMENTS (7.7)

G_a / a.o X 1010

4500000000072 —66666666T7" +661375667%
~1666666667 T 4222222222 -16825397

[}

= O

oy /ao x 1010

+1666666677" —24691358y°
-2TTTTTT18 +3L746032
+ 55555556  — 705467
+ k761905 - 28219

spby

Wk WwWMPOKHO

2TTTTITIS +9523809%°
~166666667 — 6349206

=]
"
-
-
8B
o

°‘—6/ao x 1010

+17636687°
5291005
+3703704
- 529101
-~ 50391
- 71635

+26595Thy
~3T03704
+1058201
+ 251953

SPobbbs

W nounonu

6

Fiw - N FwmN O

SN - I~

+THOTROTy®

~5291005

H
]
o
-
= -
"
w




NACA TM No. 122k

n-Ln:l il iyt
n = -+ -
n =3 +264550265 - 301482
n=5 +192837466 - 91068
n=>5 +150618612 - 34950
n==6 +123076923 - 15704
n=7 +103806228 - 7854
n=28 + 89620336 - 4357
n=9 + 78768349 - 2522
m=2,n=2 +612241898y° -11358903y*
n=3 +370370370 : - 2110372
n=h +25T7116621 - 607123
n=>5 +193652501 — 224681
n==6 +15384615L - 98147
n=7 +126874279 —  h82u3
n=28 +107544403 - 25905
n=9 + 93089868 — 14900
m=3,10-=3 +49382716072 - 65656037"
n=». +330578512 — 1821369
n=>5 +242065627 -~ 655319
n=6 +188034188 - 279902
n=7 +1522L9135 - 135080
n=28 +127097931 -  Tik3s
n=9 +1086048475 ~ 40862
m=4 n=14 +41322314072 — 40980817%
n=5 +295857988 ~ 1441703
n=6 +2256141026 —~ 604588
n=7 +175930796 - 287353
n=28 +148280919 - 150013
n=9 +125313283 - 8y2hh
m=5n=5 +35502958672 - 27186397"
n==6 +26666666T — 1122807
n=7 +209919262 - 526814
na=28 +171093368 —~ 272002
n =9 +143215181 — 151296
m=6,n=6 +3111111115° — 1892138y
n="7 +242214533 - 878023
n=28 +195535278 - 449019
n=9 +162310538 - 247677
m=T,0=7 +27861660972 - 13683u7"
n=28 +221606648 - 693939
n=9 +182599356 - 379959
m=8 n=28 +24930747972 - 10208917h
n=9 +20L4081633 - 55532k
m=9,n =9 +20675737072 - 1867t

R E TR X I e

++++ o+

+ 4+ o+

+

+
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TABLE 8.~

b: h(7)

b:,o(r)

NACA TM No. 1224

3
b 7)
x 101° AmD P, 6(7) x 1010 AS POWER SIRIES IN +

b:,o(r)

Esr m = 0, there 18 b, = ay; compare therefore table i]

bu/bo x 1010

vg b, x 1030

=5,

BN -

SpBbBELDB

BosbbBpop

pBdBB [ I~ I < I~ I~
"

SsbBp

ww n N

<2~ B8b
L ST}

-]

H N0 8 U NHKN

Hoe %N
VO ®NIANFWN NOO®IAN Fwn

LTI IS T O I H

0 V®» VO Ao lNe - BN B NENRVo I ¢ - 0N B¢ N0 ] W OINANFE OO Fw

+13605uk42y%
4810005
2354548
1369260
885992
616393
451867
3hl592
270995

96200107
4238186
2282100
1392273
925590
652697
482428
369544

706364 37"
3586157
2088L09
1335519
912776
657857
492725

53792367
3016591
1869726
1246058
8771L2
644333

P S R S

b

T

T E

L

R

u2232287h
2549627
1661611
1147032
82828

+ 4+ 4+ ++

33995027

217261k
1L7hT756
1089342

+ 4+ 4+

27933617"

186802L
1311678

+ 4+

+ 23350307"
+ 1620308

+ 19803767"

{2 I I | [ S I Y A

[ ] [ I |

842336
23800
8277
3343
1512
Ts7

5235576
17737
7005
3107
1509

341597

13231
STT0
2761

23197/°
9966
4706

6

1629076
7602

1176976

+9866776
+26909
+10654
+ 5181
+ 2874
+ 1746
+ 113%
+ T7
+ 55L
+6727376
+23439
+10362
+ 5337
+ 3056
1892
1243
856

+46878y®
+192L5
+ G339
+ 5094
+ 3027
+ 1921
+ 1284

+33678y6
+1556%5
+ 8150
+ 1678
+ 2881
+ 1876

+ 44+

+2b90§76
+12595
+ TO17
+ L2211
+ 2680

+1889276
+10256
+ 6016
+ 37952
+lh65176
+ 823
+ 5160

+ll58176
+ 6981

+ 93085




NACA TM No. 1224

bﬁ _o(7) -
TABLE §,— 25— x 1010 AS POWER SERIES IN 7

m
bn’o(7)

EE‘or m = 0, there is b, = a,; compare therefore table h]

r

m=1,n =3 5714285772 +15238107% —328367°
nia | BnnE M e
n=>5 73 7 + 76741 -
n==6 -63572791 + 30022 - 2Lh7
n= g —5zlgi32§ + 13g3g - 1811
n = -549 + 700 - 1339
n=9 50992534 + 3878 — 1009
m=2,n-=54 —2267573772 + u207007u - 815276
nIz | 3Ees t 0028 ~ 5%
n = - T + -
n=7 ~39Lh4 7732 + 45768 - 936
n=28 ~39215686 + 25018 - 816
n=9 —~38244400 + 1lhsho - 679
m=3,n=5 1122334572 + 1h9218y* — 209150
RISl 2Rk > 6ot e
n = ~23 + T - k7
n=28 —26143791 + 3817 -~ us0
n=9 ~27317428 + 2h237 - 416
nohon-6 | cepmEmt . cmpt - et
n=7 —110343 + 57 - 37
n=2_8 -15686275 + k2030 - 268
n=9 -18211619 + 29084 - 2hs
m=5 -1 - 3311:&;(_'31372 + 3038;[7“ - §9h76
n = - 7843 + 33 - 199
n=9 —10926971 . + 27422 - 155
m=6,n=8 — 261437972 + 159007% -~ 1275
n=9 — 5463486 + 19805 -~ 107
m="T,1n =09 — 18211622 +  9002y% - 60y0

2

For n=m n=md+1, b_g/bo disappears.
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NACA TM No, 1224

a7 30 ®n,607) 10
TABLE 10.— 2= __ % 10 AND B0 x 10 AS

m m

bn’o(7) bn,o(7)

[ror

POWNER SERIES IN vy

= 0, there is b, = a,; compare therefore table 5_]

n
b_b’/bo x 1010 b_6/bo x 1010
- - L : 6
m=1l,n=5 +137429y ~1566y
n==6 +168182 - 371
n=7 +163007 - 136 —17296
n=28 +1L 7665 - 59 -213
n=9 +130750 - 29 —203
m=2,n=6 + 336367LL —37176
n=717 + 5L336 227 6
n=28 + 63285 -127 — 307
n=9 + 65375 -T2 - 51
m=3,n=7 + 108677h —1067'6
n-:8 + 21095 - 99 6
n=9 + 28018 - 72 - T
m=4, n=28 + h2197h - 3676
n=9 + 9339 - 43
m=5 n=29 + 18687'LL - llL76

For n=myn=m+1l,n=m+ 2, n

m+ 3,

b_y, /'bo disappears.,

For n=mn=m+l,n=m+ 2, n

m+ 3, n =m+ k4,

n=mnm+5, bg/o, disappears.



NACA TM No. 122k

11.3 — Numerical Magnitude of the Eigenvalues and the Development

Coefficients for Different n,y and m =0

TABLE 11.— EIGENVALUES xz(y)

—72 Ao A Ao A3
3 - 1.14433% + 0.140119 + 4.530790 +10 4914513
h - 1.594507 -  .50524L + 4.091201 +10.00386L
5 - 2.079939 -~ 1.162422 + 3.677958 + 9.517981
6 - 2.599717 - 1.831051 + 3.288927 + 9.036338
T — 3.151917 — 2.510421 + 2.92331k + 8.558395
8 — 3.734090 - 3.200050 + 2.578205 + 8.083615
9 — 4 ,343439 ~ 3.899400 + 2.250704 + 7.611465
10 - 4 976806 -~ 4 ,607952 + 1.938379 + T.141428
15 - 8.42084 - 8.27180 + 49949 + 4.80616
20 ~12,1629k4 —12.09943 - 91127 + 2.45867
25 —16.0790k -16 .05041 -~ 2.44860 + 06093
50 -36.90015 -36.89912 ~13.56548 -13.21675
100 -81.02794 -81.02794 -5 48367 -h5 48391
2
-y N s rg Ao
h +28.00092
5 +17.511596 +39.50Lkk99
10 +15.11342 +25 ,06949 +37.04822
15 +12.81726 +22.68771 +34.63123
20 +10.6L463k +20.36028 +32.25386
25 + 8.63040 +18.08457 +29.91680
50 + 94568 + T7.25075 +18.92267
100 —16 .06556 -15.32812 + 2.57368 +11.4556L
o
- rg Ag 20 L3P
25 +59 .736180 +97.652659 | +143.606898
100 +26 56408 +43.4937h +62.82728

95
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NACA TM No., 1224

TABLE 12.~ NUMERICAL VALUES OF THE COEFFICIENTS ag r(7), AND
2

THE FUNCTION VALUES Xgl)(l;7) AND xgl)(o;y)

r 2% =3 b 5 6
o} +0.987210 +0.976788 +0.963507 +0.9478k40
2 - 356220 - 178334 - S59T2TT - 710545
b + 18683 + 33565 | + 52u82 + 74937
6 - 408 - 979 - 1914 - 3279
8 + 5 + 16 + 38 + 9
10 - 1
Xo(1) +1.362526 +1.480682 | +1.615218 | +1.736681
Xo(0) | + .815979 | + .Th9906 | + .683961 | + .619666
r -2 =7 8 9 10
0 +0.930429 +0.911986 +0.892960 +0.874035
2 - .816037 - 912632 - 999698 -1.077418
b + .100273 + 127817 + 156894 + 186943
6 - 511k - Thh0 - 10250 - 13535
8 + 1hh + 238 + 369 + 5h1
10 - 3 - 5 - 8 - 1k
Xo(1) +1.852000 +1.960118 +2.060379 +2.152486
x,(0) + 558452 + .501339 + 448846 + 101345
r % =15 20 25 50 100
0 +0.78915 +0.72576 +0.67909 +0.55601 +0.46036
2 -1.34978 -1.49587 -1.57800 -1.68750 -1.64674
b + .33881 + 47816 + 60025 +1.01470 +1.38412
6 - 3608 - 6622 - .10110 - .29658 - 63255
8 + 260 + 515 + 965 + 5161 + .18483
10 - 10 - 26 - 59 - 595 - 3745
12 + + 1 + 3 + 48 + 555
1k - 3 - 63
16 + 1
X,(1) +2.5165k +2.7T71k2 +2.96871 | +3.61286 +l 35229
X,(0) + .23073 + 13779 + 08609 + 0128k + .00081
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NACA TM No. 1224

1

TABLE 13.~ NUMERICAL VALUES OF THE COEFFICIENTS a° I,(7), AND
. . 2

THE FUNCTION VALUES X(ll)(l;'y) ARD dx(ll)(o;y)/dg

r —72 =3 i 5 6

0 +0.997105 +0.994984 +0.992380 +0.989330

2 - .116098 - 152711 - .188048 — 222236

4 + 3902 + 6812 + 9751 + 14717

6 - 63 - 150 - 262 - %73

8 + 1 + 2 + b + 9

X1(1) +1.117169 +1.154659 +1.190445 +1.226765

X,(0)* | + .830138 + 778367 | + .728028 + 682557

r -2 =7 8 9 10

0 +0.985910 +0.982170 +0.978150 +0.973908

2 - .255039 —~ 286470 ~ .316613 — .345385

N + 19595 + 25008 + 30907 + 37211

6 - 753 - 1066 - k77 - 1969

8 + 16 + 27 + 42 + 62

10 - 1 - 1

Xy(1) +1.261293 +1.294741 +1,327190 +1.358536

Xy(0)* | + .638528 + .597088 | + .558051 + .521hLh

r | =2 =15 20 25 50 100
0 +0.95067 +0.92654 +0.90339 +0.81333 +0.71269
2 - k7019 - 56735 - 64300 - 84hk3 - 95736
I + 7352 + 11408 + 15571 + .34108 + 57527
6 - 572 - 1160 - 1935 - 7563 - 20752
8 + 27 + 71 + 146 + 1060 + 5010
10 - 1 - 3 - 7 - 102 - 863
12 o+ 7 + 111
1k - 11
16 + 1
X(1) | +1.50038 | +1.62031 | +1.72298 | +2.08616 | +2.51279
X3(0)*{ + .37136 + 26571 + .19192 + 04430 + .00Lk21

A
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TABLE 14 .- NUMERICAL VALUES OF THE COEFFICIENTS ag r(‘7), ARD
14

THE FUNCTION VALUES Xo'X(1;7) AW X(zl)(();'y)

r -2 =3 b 5 6

-2 +0.071289 +0.095777 +0.119671 +0 . 14247

0 + 985721 + 97h148 + .959391 + .9k192k4

2 - 72766 - 96430 - 119654 - 142393

L + 1840 + 3258 + 55067 + T260

6 - 2k - 57 - 111 - 190

8 + 1 + 1 + 1 + 3

X5(1) +0.989062 +0.978117 | +0.964533 +0.949296

X,(0) - 537431 -~ .5hkTT702 -~ .556050 - 562257

r -2 = 7 8 9 10

-2 +0.163772 +0.183325 +0.201034 +0.216893

0 + .922384 + .901L2L + 8796k2 + 857549

2 - 164669 - .186536 - 208085 — 220432

b + 9837 + 12798 + 16148 + 19901

6 - 302 - 450 - 640 - 880

8 + 6 + 10 + 16 + 24

X5(1) +0.933426 +0.917893 +0.903497 +0.890893

Xo(0) - 566205 | - 567935 | — .567698 | - .565615

r -2 = 15 20 25 50 100
-2 +0.27303 +0.30282 +0,31712 +0.28828 +0.22335
0 + .T5076 + 65357 + .55985 + .13410 - .20363
2 - .33636 - JL4h827 - 56362 - .91568 - .79124
b + U532 + 83713 + 13671 + 50022 + 89250
6 - 306 - 768 - 1596 - 12202 — .419kg
8 + 13 + 43 + 112 + 175 + .11556
10 - 1 - 2 - 5 - 166 - 2129
12 + 11 + 240
1k - 1 - 21
16 + 2
X(1) | +0.86260 | +0:89086 | +0.96019 | +1.40297 | +1.8157k
X5(0) - 53563 - 18567 — 42k3l ~ .13884 - 01312
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TABLE 15.— NUMERICAL VALUES OF THE COEFFICIERTS a.g r('}') » AND
’

THE FUNCTION VALUES x(31)(1;7) AND dx(31)(o;7) /d!

2
_7
r 3 4 5 6
-2 +0,0k9 768 +0,065LTh +0,080671 +0.095329
0 + 996217 + 993384 + 989910 + .985786
2 - 52769 -~ 70252 - 87661 | - .104980
L + 1057 + 1877 + 2929 + hoi2
6 - 12 - 27 - 53 - 92
8 + 1 + 1
x3(1) +1,000287 +1.000066 +0.999883 +0.999742
X 3( 0)% —1.kh7h3k —1.k27867 +1.407450 ~1.386162
2
—7
r T 8 9 10
-2 +0.109432 +0.122969 +0.135938 +0,148343
0 + 981001 + 975879 + 970201 + 964106
2 — 122202 - .139316 — .156318 — .173200
i + 5725 + T466 + 9k33 + 11626
6 - 145 - 217 - 308 - ho2
8 + 2 + L + 7 + 10
x3( 1) +0.999733 +0.999913 +1.000329 +1.001021
x3( 0)! -1.364111 —1.341380 -1.3180L0 ~1.294172
2
. U 15 20 25 50 100
-2 +0.20229 +0.24438 +0.,27699 +0.35635 +0,37464
o] + .92878 + .88803 + 84h16 + 61460 + .27353
2 - 25562 - .33423 -~ L0827 - 68495 - .82807
N + 2590 + L4548 + 6992 + .23918 + .56017
6 - 11 - 332 - 641 - 4395 - 19704
8 + 5 + 15 + 37 + 508 + 4388
10 - 2 - L1 - 681
12 + 2 + 78
1k - 7
x3( 1) +1.00947 +1.02683 +1.05216 +1.23184 +1.53571
x3(03' -1.16949 ~1.04147 - .9158k - 142163 - 07382

99
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TABLE 16 .~ NUMERICAL VALUES OF TWE CORFFICIENTS a (7), AND THE FUNCTION VALUES If‘l)(].;'r)
»

o x(Pos),

15

(

1)(1;7) AND dlgl)(on)/d!

n=bh
22
5 10 15 20 25
r
. + 2349 + 9906 + 2240 + Loh8 + 6318
-2 + 67563 +0.,1370L45 +0.199%2 +0.26279 +0.32153
0 +0.994218 + 970942 + 94636 + 90051 + 81069
2 - 68652 - .136070 - .20137 - 26269 - .31828
L + 1897 + 54k + 1684 +  29% + b535
6 - 29 - 234 - 9 - 185 - 357
8 + + 5 + 2 + 8 + 18
10 - 1
(1) +0.999582 40.992656 +0.98827 +0.97338 +0.94971
x,(0) + .388021 + 403891 + 11853 + 43549 + 5131
n =k n=>5
—?2 )
50 100 10 15
r r
-4 L 40.17284 +0.19417 -4 + 6543 + 1h2h
-2 + 45662 + 25147 -2 +0.110949 +0,16441
0 + 40843 - .27937 0 + 985522 + 96761
2 - .50209 - 60518 2 - .112180 - 16690
b + .16360 + J599k1 4 + 5292 + 1185
6 \ + 2753 — .236k0 6 - 143 - 58
8 + 291 + 5458 8 + 3 + 1
10 - 21 - 849 10
12 + 1 + 96
1k - 8 (1) +0.998734 +0.99668
16 + 1 15(0)* +1.788369 +1.73792
x,(1) +0.82102 +1.1694k
x,(0) + 43598 + 1245
n=5
2
—
20 25 50 100
r
-4 + 243k + 3632 +0,10628 +0.19798
-2 +0.21549 +0.26342 + 43712 + .h9281
0 + .9h291 + 91191 + 6899k + .18816
2 - 22006 - 27117 - .18639 — .68181
h + 2093 + 3245 + 12243 + .39752
6 - 11k - 221 - 1710 - .11798
8 + b + 10 + 160 + 2220
10 - 10 - 293
12 + 29
1k - 2
xj( 1) +0.99393 +0.9907h +0.98672 +1.11609
15(0)' +1.68269 +1.62227 +1.25100 + 51419




J‘j
!

NACA TM No. 1224

THE X-FUNCTIONS OF THE FIRST KIND FOR THE ARGUMENTS 1 AND O,

WI™® n=6,17, 8,9, 10, 12

TABLE 17.— NUMERICAL VALUES OF THE COEFFICIENTS ag r(‘y) AS WELL AS OF
L4

n = 6
—2 ) -
5 10 15 20 25
b o
-6 + 20 + 165 + 57 + 136 + 268
-4 + 1257 + 5001 + 1123 + 1979 + 307k
-2 +  W7578 +  9h6gh 40,14139 +0,18603 40.,22952
o} 40.597485 +0.989966 + .980k2 & .96011 + 9378
2 - k7797 - 95268 - 14252 - ,187196 - .23256
I + 980 + 3910 + 8719 + 1552 + 2410
6 - 12 - 9k - 32 - T - 145
8 + 1 + 3 + 1 + 2 + 6
Xg{1) +0.999935 +0.999383 +1.00132 +0.99675 +0.59460
Xg(0) - .31737h - .322430 - .32872 - .33331 - 233924
n==6 n=7 n=28
-2
50 100 100 25 100
r
-6 + 2977 +0.12226 -8 N . 179
-4 +0.11872 + .32925 -£ + 6383 + 131 + 1722
-2 + 4097k + 11829 -4 +0.25861 + 1816 +0,23556
o} + .T5313 + .12L3h -2 + 52093 +0.17929 + .51621
2 - 42313 - 51561 o] + .38995 + 96481 + hghsh
N +  glak + 2817k 2 - 58698 - .18035 - .55330
6 -~ 1122 - T755 L + .2k863 + 1476 + ,20286
8 + 92 + 1354 6 - .05770 - 72 — 4203
10 - 5 - 166 8 + + 2 + 581
12 + 15 10 - 96 - 59
1k + 1 12 + 8 + 5
14 - 1
Xg(1) +0.95890 +0.80329 Xn(1) 40.96695 +0.99830 +0.95851
Xg(0) — 38254 — +39599 Xna(0) + .28617 + 34251
Xn(0)* -1.36551
n=9 n = 10 n=12
—2 —2 -2
100 25 100 25
r r r
-8 + 8719 -10 + + 107 -10 +
-6 + 5205 -8 + 6 + 769 -8 + 2
-4 +0.,19542 -6 + 69 + L4037 'S + %0
-2 + .50325 -4 + 1189 +0.16730 -b + 832
o] + .59410 -2 +0.,14651 + L8617 -2 +0,12367
2 - 52913 o] + 97729 + 67076 [¢] + .98408
L + 17076 2 - 14696 - .50L415 2 - .12390
[ - 3192 b + 995 + 14599 'S + 715
8 + Lok 6 - 41 ~  2ho2 6 - 26
10 - 37 8 + 1 + 291 8 + 1
12 + 3 10 - 25
12 ) + 2
Xg(1) +0.97926 X10(1) +0.99937 +0.9964kL Xy5(1) +0.99965
Xg(0)* +1.99652 X10(0) + .25343 - .28280 X;(0) + .2302%
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NACA TM 122k .

'LAMﬁ'S WAVE FUNCTIONS OF THE ELLIPSOID OF REVOLUTION
By J. Meixner

April 1949

It has recently been brought to the attention of the NACA by
Miss Gertrude Blanch of the Bureau of Standards, Department of Commerce
that errors exist in the tabulated values appearing in tables 11 to 17
of TM 1224. Miss Blanch notes that C. J. Bouwkamp, from whom Meixner
obtained the values presented, subsequently corrected them in tables.
appearing in the Journal of Mathematics and Physics, vol. XXVI, no. 2,
July 1947, pp. 88-91.

In spite of the difference in symbols and notation in the two
rapers, reprints of tables I to IX Included in the July 1947 issue of
the Journal of Mathematics and Physics are attached for the use of those
interested in receiving them. The NACA wishes to express its appreci-
ation to the Journal of Mathematics and Physics for permitting these
tables to be reproduced for this purpose.
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TABLE I
k2 Ao A As
-10 2.305040 7.285254 11.790394
-9 2.136732 6.820888 11.192939
—8 1.959207 - 6.342739 10.594773
-7 1.771184 5.850492 9.997253
—6 1.571156 5.343904 9.401958
—b 1.357357 4.822809 8.810735
—4 1.127734 4.287129 8.225713
-3 0.879934 3.736870 7.649318
-2 0.611314 3.172128 7.084258
-1 0.319000 2.593085 6.533473
0 0 2 6
1 —0.348602 1.3932006 5.486800
2 —0.729392 0.773098 4.996484
3 —1.144328 0.140119 4.531027
4 —1.594493 —0.505244 4.091509
5 —2.079934 —1.162478 3.677958
6 —2.599668 —1.831051 3.289357
7 —3.151841 —2.510421 2.923796
8 —~3.733982 —3.200049 2.578732
9 —4.343293 —3.899400 2.251269
10 —4.976896 —4.607952 1.938120
TABLL II
k2 A A As A
0 12 20 30 42
1 11.492121 19.495277 20.496855 41.497757
2 10.990438 18.994079 28.9959641 40.997089
3 10.494513 18.496395 28.497321 40.497988
4 10.003864 18.002228 28.000923 40.000-458
5 9.517981 17.511597 27.506763 39.504497
6 9.036338 17.024541 27.014846 39.010106
7 8.558395 16.541109 26.525161 38.517282
8 8.083615 16.061383 26.037710 38.026027
9 7.611465 15.585448 265.562188 37.536339
10 7.141428 15.113424 25.069492 37.048221
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. TABLE IIL
o0

Characteristic function Xo(£) = 3, ba P1a(£)
. 0

B bo by i b b b bio
—10 | 0.944709 —0.728578 0.110455 —0.007498 0.000288 —0.000007
—9 | 0.951472 —0.684479 0.094690 -0.005827 0.000203 —0.000005
—8 | 0.958380 —0.635639 0.079247 —0.004365 0.000136 —0.000003
~7 | 0.965363 —0.581441 0.064298 —0.003120 0.000085 —0.000001
-6 | 0.972311 -0.521212 0.050067 —0.002097 0.000049 —0.000001
-5 | 0.979071 —0.454254 0.036840 —0.001294 0.000025
—4 | 0.985428 | —0.379882 | 0.024958 | —0.000706 | 0.000011
—3 | 0.991099 —0.297493 0.014835 —0.000316 0.000004
—2 | 0.995716 —0.206682 0.006949- —0.000100 0.000001
—1 | 0.998846 -0.107374 0.001824 —0.000013
0| 1.000000
1| 0.998691 0.114368 0.001976 0.000014
2 | 0.994509 0.233927 0.008138 0.000118 0.000001
3| 0.987210 0.356205 0.018683 0.000408 0.000005
4 | 0.976790 0.478301 0.033563 0.000979 0.000016
5| 0.963507 0.597278 0.052483 0.001914° | 0.000039
6| 0.947848 0.710493 0.074931 0.003279 0.000079 0.000001
7 | 0.930440 0.815971 0.100266 0.005114 0.000143 0.000003
8| 0.911948 0.912502 0.127799 0.007438 0.000238 0.000005
9 | 0.892980 0.999612 | 0.156881 0.010250 | 0.000369 0.000008
10 | 0.874065 1.077435 0.186946 0.013533 0.000540 0.000014
TABLE IV

. o0
Characteristic function X (§) = Z ban1Panpi (£)
0

B2 b b b 14 b b
—10 | 0.964429 —0.402104 0.046184 ~0.002528 0.000081 —0.000002
-9 0.970923 —0.364436 0.037696 —0.001858 0.000054 —0.000001
-8 0.976877 —0.325710 0.029954 —0.001312 0.000034 —0.000001
-7 0.982232 —0.286082 0.023016 —0.000882 0.000020
—6 0.986936 —0.245730 0.016934 —0.000556 0.000011
-5 0.990948 —0.204851 0.011752 —0.000322 0.000005
—4 0.994236 -0.163656 0.007499 —0.000164 0.000002
—3 | 0.996784 -0.122359 0.004197 —0.000069 0.000001
—2 1 0.998586 -0.081179 0.001852 —0.000020
-1 0.999651 ~0.010326 0.000159 -0.000002
0| 1.000000
1 0.999664 0.039616 0.000447 0.000002
2 0.998683 0.078362 0.001764 0.000019
3 0.997105 0.116098 0.003902 0.000063 0.000001
4 0.994984 0.152711 0.006812 0.000147 0.000002
5 0.992373 0.188112 0.010436 0.000281 0.000004
6| 0.98330 0.222236 0.014716 0.000473 0.000009
7 0.985910 0.255039 0.019595 0.000733 0.000016°
8| 0.982167 0.286500 0.025011 0.001066 0.000027
9 0.978150 0.316612 0.030908 0.001477 0.000042 0.000001
10 0.973008 0.345386 0.037230 0.001969 0.000062 0.000001
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TABLE V

Characteristic function Xa(£) = D, banPaa($)
o

A2 B b be be b b
0 1.000000
1 —0.022875 0.998525 0.024445 0.000206 0.000001
2 —0.046799 0.993846 0.048736 0.000821 0.000007
3 —0.071286 0.985722 0.072766 0.001840 0.000024 0.000001
4 —0.095772 0.974150 0.096431 '0.003258 0.000057 0.000001
5 —0.119671 0.959391 0.119654 0.005067 0.000110 0.000002
6 —0.142464 0.941931 0.142398 0.007260 0.000190 0.000003
7 -0.163759 0.92239%4 0.164677 0.009837 0.000302 0.000006
8 —0.183310 0.901438 0.186545 0.012799 0.000450 0.000010
9 —0.201017 0.879661 0.208098 0.016150 0.000640 0.000016
10 —0.216892 0.857550 0.229438 0.019902 0.000880 0.000024
TABLI VI
o
Characteristic function Xs(t) = Z b2ar1Pong (£)
0
k2 Iy b bs 5 b bu
0 1.000000
1 —0.016979 0.999565 0.017626 0.000118
2 —0.033587 0.998287 0.035224 0.000470 0.000003
3 —0.049768 0.996217 0.052770 0.001057 0.000012
4 —0.065475 0.993406 0.070263 0.001877 0.000027
5 —0.080671 0.989910 0.087661 0.002929 0.000053
6 —0.095328 0.985786 0.104979 0.004212 0.000092 0.000001
7 —0.109432 0.981091 0.122202 0.005725 0.000145 0.000002
8 —0.122970 0.975879 0.139316 0.007465 0.000217 0.000004
9 —0.135939 0.970201 0.156318 0.009433 0.000308 0.000006
10 —0.148343 0.964106 0.173200 0.011626 - 0.000422 0.000010
TABLE VII
Characteristic function X (§) = Z b2 P2 (8)
o
&t be b b be bre b
0 1.000000
1 0.000091 | —0.013588 | 0.999768 | 0.013773 | 0.000076
2 0.000368 | —0.027140 | 0.99907 | 0.027528 | 0.000304 | 0.000002
3 0.000834 | —0.010653 | 0.997918 | 0.041266 | 0.000684 | 0.000006
4 0.001493 | —0.054128 | 0.996300 | 0.054977 | 0.001215 | 0.000015
5 0.002348 | —0.067563 | 0.994218 | 0.068651 | 0.001897 | 0.000020
6 0.003404 { —0.080957 | 0.991669 | (0.082279 | 0.002729 | 0.000051 0.000001
7 0.004663 | —0.094312 | 0.988648 | 0.095855 | 0.003712 | 0.0000%0 0.000001
8 0.006125 } —0.107546 | 0.984408 | 0.109286 | 0.001839 | 0.000120 0.000002
9 0.007806 | —0.120900 | 0.981162 | 0.122811 | 0.006122 | 0.000171 0.000003
10 0.009695 | —0.134130 1 0.976680 | 0.136173 | 0.007550 | 0.000234 0.000005
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TABLE VIII

o0
Characleristic function X(£) Z banst Prnsr (8)
0

k3 by by b b by b bus

0 1.000000

1 0.000068 | —0.011218 | 0.999854 | 0.011294 | 0.000046

2 0.000273 | —0.022423 | 0.999418 | 0.022584 | 0.000213 | 0.000001

3 0.000611 | —0.033609 | 0.998690 | 0.033863 | 0.000478 | 0.000004

4 0.001080 | —0.044772 | 0.997673 | 0.045127 | 0.000850 | 0.000009

5 0.001681 | —0.055906 | 0.996367 | 0.056373 | 0.001327 | 0.000018

6 0.002408 | —0.067006 | 0.994772 | 0.067596 | 0.001910 | 0.000031

7 0.003262 | —0.078066 | 0.99288R | 0.078793 | 0.002598 | 0.000050 0.000001

8 0.004236 | —0.080080 | 0.990719 | 0.089958 | 0.003391 | 0.000073 0.000001

9 0.005331 | —0.100043 | 0.988263 | 0.101088 | 0.004290 | 0.000105 | 0.000002
10 0.006543 | —0.110949 | 0.985522 | 0.112180 0.005292 | 0.000143 | 0.000003

TABLE IX
Characterislic funclion Xe(t) = Z ban Pan(£)
0
kt b b b be b byy 178 be
0 1.000000
1 0.000050, —0.009535| 0.999899( 0.009571] 0.000039
2 —0.000001] 0.000202| —0.019061} 0.999597} 0.019140} 0.000157,0.000001
3 —0.000004] 0.000454] —0.028580| 0.999094| 0.028702| 0.000353(0.000003
4 -0.000010{ 0.000805] —0.038087| (0.998390| 0.038257| 0.000627,0.000006
5 —0.000020; 0.001256] —0.047578; 0.997486| 0.047802| 0.000980,0.000012
6 —0.000035! 0.001807] —0.057050; 0.996381] 0.057331{ 0.001410]0.000020
7 —0.000056| 0.002458| —0.066501| 0.995076| 0.066845| 0.001919(0.000032
8 —0.000084| 0.003207| —0.075928| 0.993572| 0.076341] 0.002505|0.000048(0.000001
9 —0.000120) 0.004055] —0.085326] 0.991867 0.085816| 0.0031690.000068|0.000001
10 —0.000165] 0.005001] —0.094694| 0.989966| 0.095268| 0.003910/0.000094(0.000002
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