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ABSTRACT 

 

A small, light weight, and efficient aerosol lidar receiver was constructed and 

tested.  Weight and space savings were realized by using rigid optic tubes and mounting 

cubes to package the steering optics and detectors in a compact assembly.  The receiver 

had a 1064nm channel using an APD detector.  The 532nm channel was split (90/10) into 

an analog channel (90%) and a photon counting channel (10%).  The efficiency of the 

1064nm channel with optical filter was 44.0%.  The efficiency of the analog 532nm 

channel was 61.4% with the optical filter, and the efficiency of the 532nm photon 

counting channel was 7.6% with the optical filter. 

The results of the atmospheric tests show that the detectors were able to 

consistently return accurate results.  The lidar receiver was able to detect distinct cloud 

layers, and the lidar returns also agreed across the different detectors.  The use of a light 

weight fiber-coupled telescope reduced weight and allowed great latitude in detector 

assembly positioning due to the flexibility enabled by the use of fiber optics.  The 

receiver is now ready to be deployed for aircraft or ground based aerosol lidar 

measurements. 

 

1.0  INTRODUCTION 

 

 In the past few decades, the issues related to anthropogenic global warming have 

caused great concern within the scientific community, as well as the general public.  One 

particular area of great interest is the effect of aerosols on climate and global warming.    

At present, there are a number of different instruments on ground-based, airborne, and 

satellite platforms, all designed to measure and track the influence of aerosols on climate 

change. 

Aerosols play an important role in climate, and behave in a manner similar to 

clouds, reflecting energy back into space thus cooling the atmosphere (1,2). Carbon 

aerosols can absorb sunlight, and thus they can heat the atmosphere. Aerosols play an 

indirect role as well, as they can act as condensation nuclei for cloud formation. The size 

and shapes of the aerosol particles are also a factor here, as they influence the properties 

of the clouds they help form.  Smaller aerosol particles can inhibit rainfall, because the 

water droplets that collect around them are smaller, so they take longer to condense into 

enough mass to fall as rain.  The types and sources of aerosols in the atmosphere vary 

greatly.  There are natural sources:  pollen from plants, salt from sea spray, dust from 

sand storms, and ash from volcanic eruptions.  There are also man-made sources:  ash, 

soot, and chemicals from industrial smokestacks and automobiles, fires from slash-and-

burn deforestation, dust from wind erosion.  The altitude of these aerosols is important, 

because particles at lower altitudes are likely to be washed out of the atmosphere by rain, 

and will not have a long term effect on the climate.  But those that achieve a higher 

altitude are likely to remain airborne much longer, and will travel greater distances, 

influencing global climate patterns far from the point of origin. 

Air pollution is a growing health concern as well, and aerosols can have an 

adverse effect on air quality and population health.  The concerns are myriad: aerosols 

are believed to contribute to pulmonary and cardiovascular complications; some 

chemicals are toxic, others are believed to be carcinogens.  Due to the small size of 
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aerosols, they can easily be inhaled and penetrate deep into the lungs, where they can 

accumulate and have the potential to cause problems similar to asbestos-related lung 

cancer or black lung disease caused by coal dust.   

Aerosol lidar systems are now being used routinely around the world to monitor 

aerosol concentrations near population centers. The basic lidar configuration consists of a 

laser transmitter, a receiver assembly, and data processing equipment.  A pulse of light is 

emitted from the laser, and as the beam travels through the atmosphere, it encounters 

particles (molecules, aerosols, water droplets, etc.) that scatter the light and reflect some 

of it back towards the ground.  A telescope aimed at the same atmospheric volume as the 

laser pulse will capture the backscattered photons and send them to an optical receiver 

(4).  Since light travels at 3x10
8
 m/sec, the aerosol or cloud distance or range can be 

calculated as range = 0.5tc where c is the speed of light and t is the time the cloud signal 

return was recorded at the receiver (3).  

Our goal was to design a highly compact, efficient lidar detection receiver system, 

using a fiber coupled telescope, that would be integrated into an existing airborne aerosol 

lidar system in order to provide a lower mass and volume alternative for obtaining 

measurements of aerosol distributions.  

 

2.0  LIDAR HARDWARE DESCRIPTION  

 

 An existing aerosol lidar at NASA Langley Research Center has been used to 

measure aerosols both from aircraft and ground locations (5).  For aircraft deployment, 

weight and size are important considerations and should be reduced as much as possible.  

With this in mind, a design study was initiated to replace the current lidar receiver with a 

lighter, more compact efficient design.  The results of this investigation are reported here. 

 

2.1  OPTICS AND DETECTORS 

 

The lidar system used a Nd:YAG (Big Sky CRF-200) pulsed 20 Hz laser that 

emits at 1064 nm and also uses a frequency doubler to also provide 532 nm pulses.  The 

backscattered laser returns are captured by a telescope, consisting of a custom Stabilite 

Cellular 30.5cm diameter f/2 parabolic mirror mounted in a carbon epoxy tube.  A 

bracket was fabricated to mount the end of a 1mm diameter SMA optical fiber (Ceram-

Optec UV1000) at the focal point of the telescope mirror as shown in figure 1.  The 

output from the fiber optic is passed to the receiver box.  Here the beam is expanded and 

collimated (Thor Labs F810SMA), as shown in figure 2.  Then the light is sent through a 

beam splitter (HR @ 532nm, HT @ 1064nm) which splits the beam into two channels, 

one at 1064nm and the other at 532nm.  Each channel has a narrowband optical filter to 

isolate the desired wavelengths and reduce the background light level:  66.5%T 10nm 

FWHM 532nm filter and a 78.0%T 1nm FWHM 1064nm filter were used. 

The 1064nm beam passes through the filter and then is focused by an aspheric 

lens (30mm f.l.) onto a Perkin-Elmer 30955E avalanche photodiode (APD) detector.  An 

APD was chosen for the 1064nm detector because photomultiplier tubes have low 

quantum efficiency at 1µm wavelengths.  The APD is powered by a high voltage power 

supply (EMCO CA05P), and the output signal is amplified by an amplifier (Femto 
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DHPVA-100) then sampled at 5MHz by a 14-bit digitizer (Gage Applied Sciences 1450), 

as shown in figure 3. 

The 532nm beam is reflected off the first beam splitter, passes through the 532nm 

filter, and is split again.  One 532nm beam passes through (90%) the beam splitter and is 

focused by an aspheric lens (28mm f.l.) onto an analog photomultiplier (PMT) tube 

(Perkin-Elmer MH-943).  The second 532nm beam is reflected (10%) off the beam 

splitter and is focused by an aspheric lens (28mm f.l.) onto a photon counting tube 

(Perkin-Elmer MP-943).  A photomultiplier tube was used because they have good 

quantum efficiency at 532nm and have a large linear range of operation.  The photon 

counter was selected because it is very sensitive detecting single photon returns, below 

the threshold of the analog PMT.  Both detectors are powered by a 5V power supply. The 

analog PMT is sampled by the same Gage digitizer used with the APD.  The PC detector 

sends pulses to a multichannel scalar card (Perkin-Elmer Pci-MCS), where the lidar 

return signal built up over some integration time.  The sample bin was 100ns, and typical 

integration time was 20-30 seconds.  Both the digitizer and multichannel scalar cards are 

managed using a standard Intel Pentium 4 (2.66GHz) personal computer running 

Microsoft Windows 2000.  The sampled data is recorded by a custom application from 

within National Intruments’ LabVIEW program.  The PC detector data is captured by 

custom software provided by Perkin Elmer.   

 

2.2 MOUNTING HARDWARE 

 

To achieve a compact yet rigid receiver design, we selected the 50.8mm tubes and 

80 mm cube optic mount hardware (Thor Labs), as shown in figure 3.  The input into the 

system is a SMA-connected 0.94” optical collimator.  The collimator assembly 

(F810SMA) is mounted on a 60mm cube that houses the 532nm/1064nm beam splitter.  

A tube is mounted to the cube face opposite the input, and contains the 1064nm filter and 

a focus lens.   A custom plate was fabricated to mount the APD to the end of the tube, 

using threaded rods and an XY translation mount to locate the active area (1.5mm 

diameter) of the APD at the focal point of the lens.  The 532nm filter is mounted in a tube 

adjacent (clockwise from above) to the cube face housing the input.  Another 60mm cube 

housing the 532nm beam splitter is attached to the end of this tube.  Adjacent (clockwise 

from above) to the 532nm filter is a tube housing a focus lens, with the PC detector 

mounted on a custom plate.  On the opposite face of the cube is another tube with a focus 

lens, and then a mounting plate for the analog PMT.  This configuration is compact 

measuring 307mm by 278mm by 82mm, weighing 6 lbs. and structurally rigid, allowing 

precise alignment of the optical pathways. A photo of the fiber coupled telescope and the 

optical receiver is shown in Fig. 4. 

 

3.0  EFFICIENCY RESULTS 

 

 An experiment was set up to measure the optical efficiency of the receiver.  A 

6mW CW Nd:YAG laser (Shanghai Uniwave Technology Company DPGL-3005) 

emitted a beam at both 532 and 1064nm.  These beams were separated by a prism into 

two separate beams and then sent individually into the receiver input.  An optical power 

meter (Newport 840-C) was used to measure the optical power at the receiver input and 
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at each of the detectors.  The 532nm beam was measured to be 3.768mW at the receiver 

input, and resulted in 2.965mW (78.7% efficient) at the analog PMT and 0.371mW 

(9.7%) at the PC detector, close to the 90/10% ideal beam splitter expected values.  This 

efficiency was measured without the 532nm filter (78%T) in place, which would drop the 

efficiencies to 61.4% at the analog PMT detector and 7.6% at the PC detector.  The 

1064nm beam was measured to be 1.28mW at the receiver input, and gave 0.563mW at 

the APD, or 44.0% efficient, which is the total efficiency including the 66.5%T 1064nm 

filter.  Some optical losses are due to the collimator assembly, as those lenses are anti-

reflection coated for the 420nm to 650nm wavelength region, and not 1064nm. 

 

4.0  ATMOSPHERIC LIDAR RESULTS 

 

 Atmospheric lidar tests, from NASA Langley Research Center, were conducted 

on November 10, 2005, for 12 minutes.  Skies were clear to slightly foggy when lidar 

data began, and soon after a distinct cloud layer (low and thin, with intermittent gaps) 

became visible at about 2.5km altitude as shown in figures 5, 6 and 7.  In these figures, 

the lidar return signal (2-sec. profiles) has been background subtracted then range 

squared.  The resulting relative signal intensity is plotted in the right panel on a color 

scale.  Large backscattered signals such as clouds can easily be seen in the panel as a 

function of time.  The left panel is a single 2-second lidar profile (30-m vertical 

resolution) taken at the red line in the right panel.  In this panel the telescope field-of-

view and the laser beam fully overlap at about 200m, and then the lidar return from the 

atmospheric molecular density is seen.  At 2.5km a large backscatter signal is seen, 

indicating a cloud at the top of the boundary layer.  In the right panel, after about 90 

seconds of lidar data, a cloud layer moves into the lidar field-of-view, and is visible at an 

altitude of about 2.5km in figures 4 and 5.  The APD is less sensitive than the analog 

532nm detector, so signal levels in figure 5 are lower than levels in figure 6.  In figure 6 

the cloud is opaque to the 532nm laser, thus only noise is seen above the cloud. 

 The photon counting data was taken using a 20 second integration time with a 

vertical resolution of 15 m.  Thirty six lidar returns (20-seconds each) were captured for a 

total data time of 36 x 20 seconds or 12 minutes as shown in figure 7.  The right panel 

shows the lidar return on a color scale, and in the left panel a single 20 second profile is 

shown corresponding to the red line in the right panel.  The data agree with the analog 

lidar data of figure 6; at the beginning of the data run, the boundary layer had a diffuse 

fog, but when the cloud formed the boundary layer cleared and only a cloud return is 

visible at the top of the boundary layer. 

In figure 8, 9, and 10, individual lidar files (each background subtracted and then 

range squared) from each detector are compared to the 1976 U.S. Standard Atmospheric 

Density.  As the lidar beam starts to overlap the field-of-view of the receiver telescope, 

the signal of each detector increases until there is complete overlap.  At this point, the 

range squared lidar return follows the standard atmospheric density until the signal is lost 

in the noise.  A cloud return is seen at 2.5km in figures 8 and 9, but for the photon 

counting return of figure 10 only clear atmosphere was sampled.  The 1064nm APD 

detector is much less sensitive than the 532nm detector, since the altitude at which the 

1064nm return follows the atmospheric density is limited compared to the 532 detector. 
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 We also compared the 532nm PMT return to the 1064nm APD return, as seen in 

figure 11, and to the 532nm PC return, as seen in figure 12.  The PMT return and APD 

return both show strong peaks at identical altitudes of 2.5km and 3km, corresponding to 

the presence of clouds.  The PMT and APD detectors were sampled by the same digitizer 

and at the same rate, so the files compared were captured at the exact same time.  When 

comparing the 532nm PMT and the 532nm PC returns, the photon counting return is 

missing a strong signal at 3km.  This is because the PMT and PC detectors were sampled 

at different rates (two seconds compared to 20 seconds), and so the PMT and PC 

comparisons are from different sampling times. 

 The receiver operated as expected giving reliable lidar returns from both the 

atmospheric molecules and clouds. It will now be incorporated into the airborne aerosol 

lidar system. 

 

5.0  CONCLUSIONS 

 

A small, light weight, and efficient aerosol lidar receiver was constructed and 

tested.  Weight and space savings were realized by using rigid optic tubes and mounting 

cubes to package the steering optics and detectors in a compact assembly.  The receiver 

had a 1064nm channel using an APD detector.  The 532nm channel was split (90/10) into 

an analog channel (90%) and a photon counting channel (10%).  The efficiency of the 

1064nm channel with optical filter was 44.0%.  The efficiency of the analog 532nm 

channel was 61.4% with the optical filter, and the efficiency of the 532nm photon 

counting channel was 7.6% with the optical filter. 

The results of the atmospheric tests show that the detectors were able to 

consistently return accurate results.  The lidar receiver was able to detect distinct cloud 

layers, and the lidar returns also agreed across the different detectors.  The use of a light 

weight fiber-coupled telescope reduced weight and allowed great latitude in detector 

assembly positioning due to the flexibility enabled by the use of fiber optics.  The 

receiver is now ready to be deployed for aircraft or ground based aerosol lidar 

measurements.
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Fig. 1  Fiber-coupled telescope. 

 

 

 

 
Fig. 2  Layout of optics within rigid mounting structure. 
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Fig. 3 Layout of optics mounting system and detector electrical components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4 Photo of fiber coupled telescope and lidar receiver. 

Fiber Coupled 

Telescope

Lidar 

Receiver

Optical Fiber 

Input

1064 nm 

APD

532 nm 

Analog 
Detector

532 nm 

Photon 
Counting 

Detector

Optical Fiber

 

7



 

Fig. 5  1064nm lidar return detected by the avalanche photodiode.  The 

total time was 12 minutes.  The color panel shows the intensity of the back 

scattered signal in a color scale (0-12).  A thin cloud is seen at about 

2.5km.  The left panel shows an individual 2-second profile located at the 

red line in the right panel.  The signal has been background subtracted and 

range squared. 

 

 

 

 

 

 
Fig. 6  532nm lidar return detected by the analog photomultiplier tube. 

The right panel shows the lidar backscatter signal on a color scale (0-12).  

A thin cloud is seen at about 2.5km as shown in fig. 4.  The right panel is a 

2-second profile taken at the red line of the right panel.  The signal has 

been background subtracted and range squared. 
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Fig. 7  532nm lidar return detected by the photon counter channel.  The 

signal is plotted using a color scale (0-12) in the right panel.  Again a thin 

cloud layer is seen at 2.5km as shown in fig. 5.  The left panel is a 20-

second profile taken at the red line in the right panel.  The signal has been 

background subtracted and range squared.  With 15-meter vertical 

resolution, more of the cloud structure can be seen. 

 
Fig. 8  1064nm APD lidar return (two-second) vs. standard atmospheric 

density.  The atmospheric density has been scaled to match the lidar 

return.  A strong cloud return is seen at about 2.5km.  Vertical resolution 

is 30 meters. 
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Fig. 9  532nm PMT lidar return (two-second) vs. standard atmospheric 

density.  The atmospheric density has been scaled to match the lidar 

return.  A strong cloud return is seen at about 2.5km.  Vertical resolution 

is 30 meters. 
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Fig. 10  532nm photon counting lidar return (20-second) vs. standard 

atmospheric density.  The atmospheric density has been scaled to match 

the lidar return.  This profile was taken in clear (no cloud) atmospheric 

conditions.  Vertical resolution is 15 meters. 
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Fig. 11  1064nm APD lidar return compared to analog 532nm lidar return.  

Both have been background subtracted and range squared. 
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Fig. 12  Analog 532nm lidar return compared to 532nm photon 

counting lidar return.  Both have been background subtracted and 

range squared. 
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