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Abstract

System safety analysis techniques are well established and are used extensively during the design
of safety-critical systems. Despite this, most of the techniques are highly subjective and
dependent on the skill of the practitioner. Since these analyses are usually based on an informal
system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack
of precise models of the system architecture and its failure modes often forces the safety analysts
to devote much of their effort to gathering architectural details about the system behavior from
several sources and embedding this information in the safety artifacts such as the fault trees.

This report describes Model-Based Safety Analysis, an approach in which the system and safety
engineers share a common system model created using a model-based development process. By
extending the system model with a fault model as well as relevant portions of the physical
system to be controlled, automated support can be provided for much of the safety analysis. We
believe that by using a common model for both system and safety engineering and automating
parts of the safety analysis, we can both reduce the cost and improve the quality of the safety
analysis. Here we present our vision of model-based safety analysis and discuss the advantages
and challenges in making this approach practical.
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1 Introduction: Model-Based Safety Analysis

Safety engineers traditionally perform analysis, such ag fee¢ analysis [24], based on
information synthesized from several sources, including informal mlesigpdels and
requirements documents. Unfortunately, these analyses are hiiggtsre and dependent on
the skill of the engineer. Fault trees are one of the most contecbniques used by safety
engineers, yet different safety engineers will often prodaa# frees for the same system that
differ in substantive ways. The final fault tree is often produceg thnbugh a process of review
and consensus building between the system and safety engineers.aftevea consensus is
reached, it is unlikely that the analysis results will be gete, consistent, and error free due in
part to the informal models used as the basis of the analysfactiihe lack of precise models
of the system architecture and its failure modes often forces the saflgstat@devote much of
their effort to gathering information about the system architecne system behavior and
embedding this information in the safety artifacts such as the fault trees.

We hypothesize that this situation can be significantlyraowpd by performing the safety
analysis activities based on formal models of the system undetodenent. Inmodel-based
developmenvarious development activities such as simulation, verificatiotinggsand code-
generation are based on a formal model of the system under developregmopose to extend
model-based development to incorporate the safety analysis astivitieaddition to the
traditional development activities, an approach we Maltlel-BasedSafety AnalysisSince the
safety analysis requires knowledge of the different faultsddwa occur and the various ways in
which the system components can malfunction, nbeninal (non-failure) system behavior
captured in model-based development must be augmented widuthbehaviorof the system.
Model-based safety analysis operates on a formal model desdobihghe nominal system
behavior and the fault behavior. Our aim is to provide a precise obsidtem behavior and to
automate parts of the safety analysis process and, consequenilyredate the cost and
improve the quality of the safety analysis process.

Much of the benefit of model-based development is derived from drémoéwork that supports
formal specification of the system model [13], [15], [43], formalizreguirements [30], and
automated verification [14], [19]. To aid model-based safety amsalthis framework must be
extended to support (1) specification of the fault behaviors of thensy¢2) extension of the
nominal system behavior with these fault behaviors to yieldxéended system mogdahd (3)
automated analysis and generation of safety artifacts, liketfaes, from the extended system
model.

In this report, we describe the model-based safety analysigaabpand discuss various research
challenges that must be met to make this approach practical.

Report Organization

The remainder of the report is organized as follows. Section 2 briefly inesdue terminology
and summarizes the traditional safety analysis process dyrpatticed in the commercial
avionics industry. Section 3 discusses the model-based safetyisuaglysoach as an extension



to model-based development. We point out the important distinctions Ipetthese two
approaches and discuss changes that might be necessary to accemmumtid-based safety
approach in the traditional safety analysis process. We then illustratéInasedd safety analysis
with the help of awheel brake systeraxample derived from the ARP 4761 safety analysis
guidelines [2] in Section 4. This example was created usingjrexi®ols and techniques and
was designed to help identify future research directions involvitgnding existing tools for
model-based safety analysis. We discuss related work in autgrsafety analysis in Section 5.
Section 6 concludes the report and contains a discussion of our shoargiong-term goals
towards addressing the shortcomings in current modeling and analysis pracestess.



2 Background

This section first introduces definitions for the terminology thilltlve used in the remainder of
this report. Afterwards, we briefly describe the steps iradittonal safety analysis process, as
specified in ARP 4761 [2].

2.1 Terminology

In the related areas of reliability and safety, there isimo consensus on the terminology for
even some of the basic terms used [2], [23], [24], [25], [32]. J.d&pri& [23] promoted
dependabilityas a generic concept that included reliability, maintainabgitilability, safety,
with the view that all of the above are distinct perceptions ot#mee attribute of a system: its
dependability. There was an effort to come up with a consistent seticepts and terminology
with the formation of IEEE-CS Technical Committee on Fault-BrieComputing in 1970 and
of IFIP WG 10.4 Dependable Computing and Fault Tolerance in 1980 [32].eAtrpaper by
Avizienis, Laprie, Randell, and Landwehr [3] consolidates the basiceptsiand taxonomy in
dependability, and is paraphrased below.

2.1.1 Basic Definitions

Theservicedelivered by a system is its behavior as it is perceivetshysersCorrect servicas
delivered when the service implements the system function. Thefghe provider's boundary,
where service delivery takes place, is the providenrsice interfaceThe part of the provider's
total state that is perceivable at the service interfaite éxternal statethe remaining part is its
internal state The delivered service is a sequence of the provider's external state.

2.1.2 Faults, Errors, and Failures

A failure is an event that occurs when the delivered service deviatascbaect service. The
deviation from correct service may assume different formsatieatalled servic&ilure modes
Since a service is a sequence of the system's exteated, st service failure means that at least
one or more external states of the system deviates from tteetceervice state. The deviation is
called an error. The adjudged or hypothesized cause of an ecedleis afault. In most cases, a
fault first causes an error in the service state of a compdtmens a part of the internal state of
the system and the external state is not immediately effeGhe definition of arrror is the
part of the total state of the system that may lead teuibsequent service failure. Note that,
many errors do not reach the system's external state ase adailure. A fault iactivewhen it
causes an error, otherwise idsrmant

2.1.3 Relationship between Faults, Errors, and Failures

The creation and manifestation mechanisms of faults, errors, dne$as summarized in [42]
are as follows:



1. A fault is active when it produces an error; otherwise, it is dotmAn active fault is
caused by either 1) an internal fault that was previously dornrahtttaat has been
activated by the computation process or environmental conditions, orejeanal fault
that propagates from the environment. Fault activation is the ajpmticaitan input (the
activation pattern) to a component that causes a dormant fault améeaxctive. Most
internal faults cycle between their dormant and active states.

2. Error propagation within a given component (i.e., internal propagaiagused by the
computation process: An error is successively transformed into ethers. Error
propagation from component A to component B that receives service Ardire.,
external propagation) occurs when, through internal propagation, anreaches the
service interface of component A. At this time, service deld/drg A to B becomes
incorrect, and the ensuing service failure of A appears as temalxfault to B and
propagates the error into B via its use interface.

3. A service failure occurs when an error is propagated to theceanterface and causes
the service delivered by the system to deviate from coreseice. The failure of a
component causes a permanent or transient fault in the systénctotfiains the
component. Service failure of a system causes a permanent certtamdernal fault for
the other system(s) that receive service from the given system.

In the rest of the report, we adopt the above terminology. In additithe tabove terms, we also
use the ternpropagated faulindfault propagationto refer to activation of the external fault due
to error propagation from another component. We refer to the faaltsute dependent on other
faults asdependent faultée.g., a power failure causing the failure of a number of compoitents
supplies power to).

2.2 System Safety Assessment Process

This section describes the overall safety assessment prbegss fpracticed in the avionics
industry along the lines of the SAE standard ARP 4761 [2]. The gdésaos of the various
phases of the safety assessment process covered in this secegsentially excerpts from the
ARP 4761 document.

The safety assessment process is an inherent part of teensysvelopment process. Figure 1
shows an overview of the safety assessment process. The saesgraent process includes
safetyrequirements identificatiofon the left side of the “V” diagram) anakrification (on the
right side of the “V” diagram) supporting the aircraft developtretivities. An aircraft-level
Functional Hazard Analysis (FHA) is conducted at the beginnintpefaircraft development
cycle, which is then followed by system-level FHA for individuabsystems. The FHA is
followed by Preliminary System Safety Assessment (PS®AGh derives safety requirements
for the subsystems, primarily using Fault Tree Analysis (FTiAe PSSA process iterates with
the design evolution, with design changes necessitating changélet derived system
requirements (and also to the fault trees) and potential gafebfems identified through the
PSSA leading to design changes.



Once design and implementation are completed, the System Batdgsment (SSA) process
verifies whether the safety requirements are met in the mgsleed design. The system Failure
Modes and Effects Analysis (FMEA) is performed to computeatiteal failure probabilities on
the items. The verification is then achieved through quantitatidegaalitative analysis of the
fault trees created for the implemented design, first for the subsysteinisea for the integrated
aircratft.

System Requirements anq
Objectives Certificatior

Aircraft Integration Cross-check _

Aircraft FTA
System Integration Cross-check

System FTAs

System FMEAs /
Safety analysis performed as Verify that the implemented

an integral part of the iterative system satisfies the safety
system development process \ Design / requirements and develop
(Requirements, Architecture, certification documents
Design)

Figure 1: “V” Process for Traditional Safety Assessment

Aircraft FHA

System FHAs

System FTAs

Derived Safety
Requirements

/

2.2.1 Functional Hazard Analysis

Functional Hazard Analysis (FHA) is conducted at the beginningeofife cycle. Itidentifies
and classifiesthe failure conditions associated with aircraft functions (and awatibns of
aircraft functions) at the appropriate level, considering both logsnation and malfunctions.
The FHA identifies the failure conditions for each phase of flighere are two levels of FHA
for avionics systems; the Aircraft level FHA and the Systewel FHA. The FHA establishes
derived safety requirements needed to limit function failure &sffestich as design constraints,
annunciation of failure conditions, etc.

Starting from the high-level functions of the system, the faibaraditions associated with these
functions are considered. The effects of these failure conditiotisecaircraft are determined
and classified. These failure conditions can be further broken down thréidye &d Fault
Trees. The failure conditions associated with safety are defogether with their respective
safety objectives and the proposed means for demonstrating complibecardraft level FHA
specifies proposed methods for demonstrating compliance with felexr@l safety
requirements. For system-level requirements, methods for demowgst@mpliance are
presented in the Preliminary Systems Safety Analysis.



2.2.2 Preliminary System Safety Analysis

A Preliminary Systems Safety Analysis—PSSA—is used to camphe failure conditions list
and the corresponding safety requirements. It is also used to der@hstrathe system will
meet the qualitative and quantitative requirements for the varioasdsamlentified. The PSSA
process identifies protective strategies, taking into accourgafi® concepts and architectural
attributes which may be needed to meet the safety objectivesPSB&A is iterative and
continuous throughout the design process and identifies and captutee dkrived system
safety requirements.

The PSSA is a top-down approach to determine how failures carolelad functional hazards
identified by the FHA, and how the FHA requirements can be metaifbeft (system) FHA
process creates an initial set of safety requirement$idoaitcraft (systems). By combining this
initial set of safety requirements with the design/architectdecisions made in the PSSA, a
complete set of system requirements is generated. The diesigions are evaluated against the
generated safety requirements with the help of Fault TreeysiaglFTA). Since detailed item-
level studies are generally not available during this phaseabfiagion, PSSA failure-condition
evaluation must rely in part on engineering judgment and on in-sexpegience with similar
designs. Each design safety-requirement derived at the systehmlast then be allocated to the
items making up the system. Failure modes and associated prgbbbdigets identified in
PSSA Fault Tree Analysis should be used as requirements to deviewer-level detailed
studies.

Some of the important documents coming out of PSSA are planned corapimeticods with
FHA requirements, updated FHAs, lower-level safety requiremenislitative FTAs, and
operational requirements. The outputs of the PSSA are used as inputs to the SSA process

2.2.3 System Safety Assessment

A System Safety Assessment (SSA) is a systematic, ebrapsive evaluation of the

implemented system, along with its architecture and instailato show that the relevant safety
requirements are met. The difference between the PSSA aB& e that a PSSA is a method
to evaluate proposed architectures and derive system/item safatsements, whereas the SSA
is a verification that the implemented design meets both the ajuaditand quantitative safety

requirements as defined in the FHA and PSSA.

The SSA process is a bottom-up approach for verifying that thgndsafety requirements and
objectives have been met. Through these upward hierarchical wesifidavels, hardware
reliability requirements, architectural requirements and haelwad software Development
Assurance Levels (DO-178B [33] procedures for software) are egriigainst the safety
requirements delineated in the PSSA process. An item-level &allades and Effects Analysis
(FMEA) is performed and is summarized into the Failure ModesEdfects Summary (FMES)
to support the failure rates of the failure modes considered itetheFTA. The system FMEA
is summarized into the system FMES to support the failure oatbe failure modes considered
in the system FTA. The system is reviewed via FTA to identife failure modes and
probabilities used in the aircraft FTA. The aircraft FTA isduso establish compliance with the



aircraft-level failure conditions and probabilities describedth®y aircraft FHA. As items are
integrated into systems and systems into aircraft, the faffeets are compared with the failure
conditions identified in the FHA. This comparison is callednéagration cross-check



3 Model-Based Safety Analysis Process

In the safety-critical systems domaimodel-based developmerst an increasingly popular
approach for development of digital control systems. In this approacious development
activities such as simulation, verification, testing and code-geaerare based on a formal
model of the system expressed in a notation such as Simulink [BSJADE [15]. Inmodel-
based safety analysisye propose to extend existing model-based development activities and
tools to support safety analysis. In this section, we firstlprgscuss model-based development
and illustrate our model-based safety analysis approach. We therssdisow model-based
safety analysis can be integrated into the traditional safety assegsotass.

3.1 Model-Based Development

In model-based development, the development effort is centered formal specification
(model) of the digital control system. This model can be stdajeto various types of analysis,
for example, completeness and consistency analysis, model chexkihtheorem proving [30].
Model-based development tools often include automatic code generhadrscan derive
implementations directly from models. There are currently several canangnd research tools
that support model-based development. Examples of commercial tools irSiladénk [13],
Esterel and SCADE from Esterel Technologies [15], StatemateifLogix [17], and SpecTRM
from Safeware Engineering [26].

3.2 Model-Based Safety Analysis

Model-based development focuses primarily on modeling the softwarganents of the
system. To perform system-level safety analysis, we muaet Gonsider the environment in
which the system runs, which usually involves mechanical componentsn&ety, model-
based tools and techniques can also be used to model physical commdnettsest. By
combining models containing the digital components (software and hardware) witts robihed
mechanical components (pumps, valves, etc.), we create a model obriieal system
behavior. This model can then be augmented with fault models fatighal and mechanical
systems to create thextended System Modf3]. This model can be used to describe the
behavior of the system in the presence of one or more faults.
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Figure 2: Automated Model-based Safety Analysis

The extended system model can be used for a variety of simulatidnanalyses (Figure 2).
First, it allows trivial exploration of “what-if” scenariosvolving combinations of faults through
simulations. For more rigorous analyses, we can use staticsan&bpls, such as model
checkers and theorem provers, to automatically prove (or disprove) whiathsystem meets
specific safety requirements. Furthermore, these tools can basextended to generate
traditional safety analysis artifacts such as fault trees.

To support model-based safety analysis, the traditional “V” process is ndodfgure 3) so that
the safety analysis activities are centered on formalrayatel fault models. These models are
used both for systems design and safety analysis, and arentinal eetifact of the systems
development process.
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Figure 3: Modified “V” Process for Model-Based Safety Analysis

Given extended system models, the safety analysis processtcafsigfining a set of formal
properties to represent the (informal) safety requirementseoystem and then using formal
analysis techniques to determine whether the proposed systentedcitehki satisfies the safety
properties. Artifacts such as fault trees and FMEAs caradiematically generated as a
byproduct of the formal analyses.

The main advantage of this approach is that the system angl esad@teers work off a common,
unambiguous model of the system leading to a tighter integratioe®etive systems and safety
engineering processes. The common model ensures that safgsisaredults are relevant and
up-to-date as the system architecture evolves, and allows saggsment early in the system
design process. Additionally, it supports exploration of different &ctures and design choices
by automatically determining which choices will satisfy critisalety properties.

Ideally, the use of computational tools such as model checkers camadeit many safety
analysis activities, and the safety engineer's task wvalstst primarily of reviewing the
generated safety artifacts and confirming the assumptiode mahe system and fault models.
In this way, model-based safety analysis can lead te mozurate and complete safety analyses
while reducing manual effort.

In the following sections, we describe the various model-based safety sralygities in detail.
3.2.1 Nominal System Modeling

The primary step in model-based development (and model-based aaddygis) is creating a
formal specification of the system under development. The behavidieosyistem can be
specified in formal specification languages supporting graplicdior textual representation;
e.g., synchronous (textual) languages like Lustre [16], and grapbidsllike Simulink [13] and
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SCADE [15]. The logical and physical architecture of the systan also be specified in these
notations or with an architecture description language such as AADL [34].

3.2.2 Formalizing Derived Safety Requirements

The derived safety requirements are determined in the saageasv in the traditional “V”
process. To support automated analysis, the safety propertiebeneigbressed in some formal
notation. There are several candidate notations, including tempored logi CTL/LTL [11] or
higher order predicate logics. It is also possible to speegyirements directly in the modeling
language asynchronous observef$6] that are composed with the system model.

3.2.3 Fault Modeling

System level faults can occur due to failures of components, iotaotdgputs, corrupted
messages, or improper functioning of software in the absencewkfilAfault modelcaptures
information about the various ways in which the components of the sybtam the digital
controller and the mechanical system) can malfunction. It detimesbehavior of common
failure modes, such ason-deterministicinverted stuck-at etc. The fault model also specifies
the fault triggers that activate the component failures anddbeation. We distinguish between
transient faults(those that last for a short period of time) gedmanent fault§those that last
forever). The fault model can also specify more complex fault befsavsuch adault
propagations dependent faulfsetc. (refer to Section 2.1 for terminology). It can also specify
fault hierarchies in which the user can define the failure mode of a componentuastzon of
its subcomponents or as an abstraction of the underlying fault behavior.

Depending on the system model, we can chose to model different dfpaigital faults,
mechanical faults, timing faults, etc. The digital faults #vese that relate to the digital
component of the system — both hardware and software. For examptgtabfdult could be
inverting an output on a hardware chip. We would also like to bet@aldescribe situations in
which software fails to perform as expected @@ftware faultsput it is still unclear how such
faults can be described and modeled. Some software faults camddatsdl by introducing
failure modes on outputs, such as an inverted or non-deterministic, etthebeitfailure modes
do not closely match our intuitive notion of software faults and additi@salarch is necessary
to further explore this issue.

Mechanical faults are those that occur in the mechanical comgooietiie system outside the
digital controller. These are entirely dependent on the environment of teengpsquestion, and
could include electrical or hydraulic problems, network upsets, comntiomsdailures, and a
variety of other kinds of problems.

3.2.4 Model Extension

To enable model-based safety analysis, the fault model is compatkethe nominal system
model to describe the behavior of the system in the presenceltsf #&e call this thé&xtended
System Mode{similar to the FSAP/NuSMV-SA documentation). There are twocsgbhes to
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adding fault information to the system model. First, it is posdiblembed the fault behavior
directly into the system model. The second option is to develop thenfadkl as a separate
entity from the system model and automatically merge thesenwetels for analysis. We will
investigate both these approaches later in the report.

3.2.5 Safety Analysis

Once we have the extended system model, the safety analysigemverifying whether safety
requirements hold in the presence of the faults defined in thenfaalel. The safety or system
engineer can perform exploratory analysis by simulatingtaph specific components and
observing the behavior of the system. For more rigorous anailysegossible to use formal
verification tools to determine whether safety properties of interest hold.

3.2.5.1 Simulation

Having a formal model of the system extended with the fault mot®kdiately enables the
engineer to simulate different failure scenarios. This isrgrortant facility as the engineers can
visualize the effect of faults on system functionality as tb@ytrol their activation through a
graphical user interface. This capability can be used to quidktgct safety problems in
common scenarios before performing more rigorous static analysis.

3.2.5.2 Proofs of Safety Properties

Formal verification tools, such as model checkers and theorem groaerbe used to prove that
a safety property holds over the extended system model. To provestinggrgroperties, an
engineer will typically have to rule out certainlikely combinations of failures. These can be
encoded as assumptionsaxiomsthat will be used in the proof process. If a property is proved,
then the responsibility of the safety engineer is to revievassumptions that were used in the
proof and check if they are realistic. If so, the engineers havao&that the system satisfies the
safety property with respect to the fault model. In cageoperty is not proved, it may be
necessary to rearchitect the system or to relax the origgfety property to accommodate delay
or other acceptable constraints to allow system recovery.

This capability can also perform exploratory analysis to ingatgi the fault tolerance of a
system; e.g., what is the largessuch that the particular safety requirement holds in face of
faults? It could also be specialized to a specific combinatioawfsf say, those combinations
whose likelihood is above some reliability threshold (say, fHlures / flight hour) rather than
random combinations. The safety engineer may also want to intedtga the system behaves
in presence of different durations of faults, e.g., permanent and transient faults.

3.2.5.3 Fault Trees
With adequate tool support, the formal verification results could fresented in the form of
familiar safety artifacts like fault trees. There igraat deal of interest in this area, but none of

the existing tools generate fault trees in a format that is intuitive aedadie for manual review
(see Section 5.2).
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4 Case Example: The Wheel Brake System

We illustrate the various activities involved in model-based patealysis with the help of an
example of a Wheel Brake System, as described in ARP 4761 — Appef]iXWe chose this
example primarily because the majority of the safety emgsin the avionics community use
the ARP 4761 document as their main reference for safety assasdBy using this familiar
example, we hope to make it reasonably easy for engineers totandett®e model-based safety
analysis approach, and to evaluate the performance of MBSA agaamstal safety analysis
techniques. For illustration of the safety analysis activitgc(i®n 4.2), we use a safety
requirement described by ARP 4761. The discussion of the whéel $yatem below consists
largely of excerpts of the informal requirements from the ARP 4761 document.

The informal wheel brake system diagram taken from the ARP 4761 datusishown in
Figure 4. The Wheel Brake System is installed on the two raanling gears. Braking on the
main gear wheels is used to provide safe retardation of thrafaidciring the taxi and landing
phases, and also in the event of a rejected take-off. A secondarpiiuatithe wheel brake
system is to stop main gear wheel rotation upon gear retraction.

Braking on the ground is either commanded manually, via brake pedalsitarnagically
(autobrake) without the need for pedal application. The autobrake furatkovs the pilot to
pre-arm the deceleration rate prior to takeoff or landing. Wthenwheels have traction, the
autobrake function will control brake pressure to provide a smooth and constant decelerati

The eight main gear wheels have multi-disc carbon brakes. Badkd meguirement that loss of
all wheel braking is less probable than 5*1er flight, a design decision was made that each
wheel has a brake assembly operated by two independent sewratflitypistons. One set is
operated from th&reen hydraulic supply and is used in theORMAL braking mode. The
Alternate system is on standby and is selected automatically wheNdheal system fails. It

is supplied by @8lue hydraulic power supply and akccumulator, both of which can be used
to drive the brake. Théccumulator is a simple device with built up pressure that can be
reliably released if both of the two primary pumps (Blee and Green pumps) fail. The
Accumulator supplies thellternate system in th&MERGENCY braking mode.

Switchover between the hydraulic pistons and the different hydisadices is automatic under
various failure conditions, and can also be manually selected. RedoftiheGreen pressure
below a threshold value, either from loss of theen supply itself or from its removal by the
BSCU due to the presence of faults, causes an automatic switchaverBlue supply and the
Alternate brake system. If th&lue pump fails, then theAccumulator is used to supply
hydraulic pressure.

An anti-skid facility is available in both tidORMAL andALTERNATE modes, and operates
at all speeds greater than 2 meters per second. The anti-skidruscsimilar to the anti-lock
brakes common on passenger vehicles and operates largely in themsamer. In the
NORMAL mode, the brake pedal position is electrically fed to a bralongpater. This in turn
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produces corresponding control signals to the brakes. In addition, thedocaknputer monitors
various signals that denote certain critical aircraft argtesy states to provide correct brake
functions and improve system fault tolerance, and generates warnimgications and
maintenance information to other systems. This computer is acglyrdiamed the Braking
System Control UnitRSCU).

Pedal  Pwar Pedal Green Blue
Pos. 1 Pos. 2 Purmp Pump
l l i Shut OFF
"
i ~ Selector .
BSCLI Valve Isolation
:| Ea Walve
A
1
. 1
Brake System o o
Annunciaticn :ll n
" Selector A
1
1 Valve E
< > ]
Shut OFF
Anti Skid Valve :|
ChALY Mleter
Anti Skad Walve
e - o[ [ Mech. Pedal Position ==
|
Valve

Wheel

Figure 4: Wheel Brake System Diagram (from SAE ARP 4761)

4.1  Nominal System Modeling

The first step in automating safety analysis is a forrpakisication of the nominal system
model. A formal model typically consists of components (both mechaanchigital) and the
interconnections between them.

Figure 5 illustrates how we can model the Wheel BrakingeByqWBS) in Simulink. The
model captures both the digital and the mechanical components of tem sysd reflects the
informal structure of the system as given in the ARP documentveAsnplemented a formal
model of the system, we realized that the informal requiremehtshe WBS were
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underspecified, and we had to make several assumptions about the thydtstill need to be
confirmed with the authors of ARP 4761. It is worth noting that evemexbecise of building a
formal model reveals details that are missing in the infomadel of Figure 4. We will point
out where (and why) any assumptions about the system are macke describe the formal
model.

WS (the highest level component/system) consists of a digitalatamtiit, theBSCU, and two
hydraulic pressure line®ormal (pressured by th&€reen Pump) andAlternate (pressured by
the Blue Pump and theAccumulator Pump) line. The system takes the following inputs from
the environment PedalPosl, AutoBrake, DecRate, AC_Speed, andSkid. All of the above
inputs are forwarded to tH&CSU for computing the brake commands. There are also a number
of mechanical components along the two hydraulic lines, for exadiffdéeent types of valves.
We have defined a library of common components such abl#terValve, IsolationValve,
Pump, etc., which are then instantiated at various locations iWtB8. The outputs of th&/BS
areNormal_Pressure (hydraulic pressure at the end of tiermal line), Alternate_Pressure
(hydraulic pressure at the end of tAdternate line) andSystem_Mode (computed by the
BSCU).
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Figure 5 : Simulink model of the Wheel Brake System
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4.1.1 Braking System Control Unit (BSCU)

The Braking System Control Un{BSCU) is the only digital component of the system (Figure
6). Most of theBSCU inputs come from the higher leVIBS. It also takes some feedback from
different locations along th&ormal and Alternate lines, and has two power inputs from
separate power sources. The BSCU is composed of two reduidanhand and Monitor
units. The two subsystems (each containin@ammand and Monitor unit) are powered
independently by the two power supplidSecRate (Deceleration Rate) anchC_Speed
(Aircraft Speed) are used whehutoBrake is true. In the current modelutoBrake is
implemented by a stub component to which the actual control lawsatesirbé added. Since this
functionality is not specified in the informal requirements, wadenthe simplification that
AutoBrake applies constant pressure on the brakes. The pedal position inputsrecdy th
some pressure value required at the output. When skidding occurs, thé &8@natically

decreases the pressure applied to the brakes.
:\ OR BSCU_Valid

GreenP Nor_shuf D
Green_Pressure Sel_Alt

BlueP
Blue_Pressure

ccp

Acc_Pressure

ys_)
ys_Val

Monitorl| Monitor2)

Output_Nor_Pressure

[Pre_Nor_Cmd] Nor_Cmd  Sys_Mode q
Froml SystemMode
Out_NorP 1
ut_Nor SystemModeSelCmd [Pre_Mode_Tag
z

 Nor_Cmd  SubS)
, Alt_Cmd
Alt_Cmd

r_Nor_Cmd SubS)

r_Alt_Cmd

> Nor_cmd
r_Al_Cmd
Nor_Cmd

wwwwwwwwwwww

Pwi
This
Othi
Thi
Oth
Pwi
This
Othi
Thi
Oth

1
- [Pre_Nor_Cmd|
z
Pwrl Pwr2 Closex
ValveClosed
=] [
| > Nor_Cmd

L» .
RN .T;

: L

YYY YYY

Open|

ValveOpen

NorCi
AltCi
NorCi
AltCi

Command} Command2

Pedal_Posl
Pedal_Pos2
AutoOn
DecRate
AC_Speed
Skid
NorPressure
Mode

Pedal_Posl
Pedal_Pos2
AutoOn
DecRate
AC_Speed
Skid
NorPressure
Mode

=3

o
NS
5

bl
I
2
=
N}

G

Aul

=1

Bral

=
]

on

G

o}
@
3
2
2
@©

0

>
9]
(%)
kel
@
@
-

G

%)
2
a

[Pre_M odeja#]

G

Nor_Pressure

Figure 6 : Braking System Control Unit (BSCU)

17



The Command unit regulates the pressure to the brakes in the normal line thtio&igiormal
brake commandNor_Cmd). The computation of this command takes into account both the
requested brake power as well as the skid information. Jdv@mand unit regulates the
pressure in the alternate line only to prevent skidding; it doeshitdagh the (Alt_Cmd). The
Monitor unit monitors whether its correspondi@@mmand unit output is valid. When both
Command units are valid, th8SCU forwards the commands of the default u@idmmand1.
BSCU forwards the commands of the valid unit when only one o€th@mand units is giving
valid braking commands. THESCU is not valid when both of th®onitor units indicate that

the correspondin@ommand outputs are not valid.

The BSCU switches to theAlternate hydraulic systemSel_Alt = true) under the following
conditions:

* The BSCU is not valid, or
* The Green Pump is below threshold, or

* The system was previously in thMORMAL mode and th8SCU had commanded some
pressure but the pressure at Mermal line output (feedbackor_Out) is below the
threshold.

Once the system has switched to Kléernate hydraulic system, it will not switch back to the
normal hydraulic system.

TheSystemMode is considered to be in one of:

*  EMERGENCY mode (2), if the Blue Pump or theAccumulator Pump are below the
threshold andSel_Alt = true,

* ALTERNATE mode (1), ifSel_Alt = trug or in

* NORMAL mode (0) otherwise.
4.1.2 Hydraulic Pressure Pumps

There are three instances of the hydraulic pressure pump igstieens— theGreen Pump, the
Blue Pump and theAccumulator Pump. Each pump provides a constdwydraulic pressure
(modeled as an integer).

4.1.3 Isolation Valves

There are two instances of the isolation valve -Ghgn Pump IsolationValve and theBlue
Pump IsolationValve. Each isolation valve takes two inputs — tRéePressure and
ValveShut. If ValveShut is true, then there is no pressure at the output; otherwise tlseigres
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at the output is the same as the input pressure. In Figure 4jgherenput shown for shutting
the isolation valve on thalternate line (theBlue Pump IsolationValve in our case). We have
modeled theGreen Pump IsolationValve and theBlue Pump IsolationValve in the same
manner, withBlue Pump IsolationValve always getting a constant false value for the
ValveShut input (i.e., theBlue Pump is never isolated).

4.1.4 Selector Valve

The SelectorValve is situated across téormal and theAlternate hydraulic lines. This valve
is used to select only one of the two redundant hydraulic systertitee wheel braking system,
we want to prevent a situation where both the Blue and Green spsbeide pressure to the
brakes. The isolation valves in combination with the SelectorVab/eesigned to prevent this
from happening. The SelectorValve takes the two pipe pressumgsuasnd outputs a pressure
above the threshold on only one of the two pipes. In the nominal situatiomraniyf the two
input pipe pressures should be above threshold (assured through the twanisalaes). In this
case, it would simply select the system with adequate pesasdrblock the system with no (or
low) pressure; functionality that could be achieved through sombaneal implementation of
the SelectorValve. From the informal requirement it is unclearthevbelectorValve operates if
the pressure on both the incoming pipes is above threshold. We have mbdebedettorValve
such that the default is tidormal system if its pressure is above the threshold. This is another
assumption that needs to be confirmed with the authors of ARP 4761.

4.1.5 Accumulator Valve

The AccumulatorValve is a component that we added to the formal model that is not found in
the informal diagram and many assumptions about its operation needcmnfiened. The
Alternate system is pressurized by tAecumulator Pump when theBlue Pump fails and the
system is in theALTERNATE mode of operation. There must be some mechanism to regulate
the pressure provided by thelternate system through the SelectorValve and the pressure
provided through the Accumulator Pump. To accomplish this selection wertieaduced the
AccumulatorValve. The AccumulatorValve connects the pipes coming from the
SelectorValve and the Accumulator Pump, and regulates which onéewdll pressure to the
downstream system. In addition to the two pipe pressureg,chenulatorValve also takes the
Sel_Alt output of BSCU (renamed aslt_Active) as input. This signal is used to determine
which pressure source to use. ThecumulatorValve will open and select one of the pressure
sourceonly when the system is not in tEORMAL mode of operation. When the system is in
NORMAL mode of operation, th&electorValve blocks the pressure on tAdternate pipe.

4.1.6 Meter Valves

There are three instances of the meter valve -AWED/AS MeterValve on the Normal
hydraulic line and théS MeterValve and theManual MeterValve on the Alternate hydraulic
line. The meter valve implementation takes two inputs — the incomingppgssure and the
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valve position command. The meter valve will adjust the valve posdmmording to the
command and the required amount of pressure will be transferred dattheé. For example, if
the incoming pressure is 100 and the valve position commaidlissHalfOpen, then the
pressure at the output will be 50.

The CMD/ AS MeterValve and theAS MeterValve take their valve position commands from
theNor_Cmd and Alt_Cmd outputs of the BSCU respectively. Mignual MeterValve takes
its valve position command directly from tMeechanicalPedal.

4.2 Formalizing the Derived Safety Requirements

After creating the system model, we would like to verify #@nhe basic safety properties hold
in this nominal system (i.e., an idealized system containing nsYaak a first step we need to
formalize the derived safety requirements as safety propeftesderived safety requirements
are determined in the same way as in the traditional “dtess. System hazards are identified
through functional hazard analysis. Manual fault tree analydiv&ipotentially used to derive
the initial set of safety requirements. The derived requiresmaaly be at a higher (system) level
or lower (component) level as considered appropriate.

We will illustrate the current activity by formalizing araenple safety requirement in temporal
logic, CTL. An example safety requirement for the wheel bikstem as described in ARP
4761 is

Loss of all wheel braking (unannunciated or annunciated) during landing or RTO shall
be less than 5*I0per flight.

Since we are not considering annunciations in this model and we amomgtering any
guantitative analysis at this stage, let us simplify this safety ergaint as simply,

Loss of all wheel braking during landing or RTO shall not occur.

To achieve effective braking, the hydraulic pressure at the lrakieers must be above a
minimum threshold. The braking pressure can be commanded either ttineughtoBrake or
the brake pedal. ThAutoBrake function only works in theNORMAL mode of operation
whereas the brake pedal is capable of commanding pressure in any mode mfroperat

Note here that when the wheels are skidding, brake pressurepsregily reduced or removed
to stop the skidding. Based on the observations above, we can derietygosaperty suitable
for formalization,

When the brake pedal is pressed in the absence of skidding, then eitmenrried
pressure or the alternate pressure must be above the threshold.

To state this formally in CTL, we first define two intermedi@ariables in SMV to represent
whether the pedal is pressed while we are not skiddPeglR NoSki d) and whether any
pressure is being provided to the brakasnieP).
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PedP_NoSki d := (1sPressed(Pedal Posl) & ! Skid)

SomeP := ((Normal Pressure > threshold) | (Alternate_ Pressure > threshol d))

| sPressed is a predicate that returns true when the pedal is preBseld?_NoSki d and
SomeP are then used in a CTL property as:

SPEC AG( PedP_NoSki d -> SoneP)

This property states that it is always globally true (Attwhen the pedal is pressed in the
absence of skidding we will get brake pressure. This propertyoegoroven to hold in our
nominal system (where no failures occur) in seconds using NuSMWddé¢ interest in this
report is the behavior in the face of failures discussed in the next section.

It should be noted that this property only checks whether the systeafieisn the absence of
skidding; if the skid input is incorrectly set to ‘true’, then thetegn will incorrectly lower the

brake pressure until braking is no longer effective. To determinsattety of the system, it
would be necessary to ensure that this signal is correctly gehefiies determination would be
the responsibility of the safety analyst.

4.3 Fault Modeling and Extension

We now introduce the activities that are specific to the propometl-based analysis approach.
We discuss the fault modeling and extending the system modwed aaine time as the way one
specifies the fault model directly affects the extension. tRerWBS, we used Simulink to
manually extend the nominal model but found the process slow anepsrre. Based on our
experience, in Section 4.3 we suggest how additional tools could improve these steps.

4.3.1 Fault Modeling

We would like to specify different component failure modes, i.e., the(aaform) in which a
particular component might fail. This component failure will be &rgd by some internal or
propagated fault. In order to trigger these faults, we add additignas to the extended model
for each fault that can occur within a component in the nominal Inddeus, our simple fault
model will contain:

1. component failure mode behavior specifications,
2. additional inputs for activating faults
a. intrinsic faultsactivated through system level inputs, and
b. propagated faultsctivated by the error propagating component

In the WBS example, we consider a simple fault model for theadigihd mechanical
components of the WBS. The fault model is implemented by subsygtemsomponents) with
additional inputs that can be used to control whether or not the fadtivated. In our initial
example, for simplicity, we will not consider propagated faults.
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4.3.1.1 Digital Fault Modeling

Let us consider two sampthgital failure modes for thBSCU component—thénvertedfailure
mode for the twdMonitor subsystems and tiséuck(at previous value) failure mode for the two
Command subsystems. Thavertedfailure mode for a Boolean output of tMonitor unit of
the BSCU is defined as simply the negation of the input when triggered ré=igu In this
example, theFail_Flag triggers the inverted failure. Note that this component can sitygply
dropped onto the Boolean output line of Menitor component of th8SCU.

—p{NOT

L »
O
Fail_Flag——pL o Out

«»,

In

Figure 7: Inverted Failure Simulink Model

Thesstuckfailure mode latches the previous value of the output when the Failinlat triggers
the failure.

The Stuck-at(a particular value) failure mode can be modeled as shown ineRsguAlthough
we have not included many digital faults in our prototype model, rwesien most, if not all,
digital faults to be some form of corruption of the output from thé&aligomponent; outputs
that are either stuck at some constant value or take on completely random values.

Stuck _Val

—>.
O (D
Fail_Flag ———Pp——- Out

Nominal_In

Figure 8: Stuck_at Simulink Model

4.3.1.2 Mechanical Fault Modeling

For the mechanical components, we consider basic failure modesssastuek atfailure mode
for valves,failure of the pumpgo provide adequate pressure, and fédakure of the power
supplies

Consider thestuck_atfailure mode for a valve where it can be stuck either opereed! This
failure model is more complex than a digital failure sincedbtput pressure from the valve
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when failed open cannot be determined without knowing what the input préssheevalve is.
To model the failure mode suitable for the valves, consider theyBigauck at Simulink model
in Figure 9. In this model the component can be stuck at one of twoediffvalues. This model
allows us to easily model valves where the valve can eithéuble gpen or closed; if it is stuck
open we output whatever the input pressure to the valve is, iftitdk slosed we output zero
pressure.

Stuck _Val_1
|
G >
Stuck_Choice o
Stuck Val_0 L P
> >
Fail_Flag —p——o Out
Nominal_In

Figure 9: Binary_Stuck_at Simulink Model

4.3.2 Model Extension

In order to analyze the system behavior in presence of faultsyout like to extend the
nominal system model with the fault model.

The method for model extension will differ based on the failure nnoder consideration. We
observe that the Binary Stuck at failure mode needs to accesspilts of the original
component (Stuck at open assigns the original input PipePressine @aatput pressure). This
necessitates the failure mode extension in the formwobpperaround the original component,
as it needs to access the original input. The extension of the\\kte component with the
Binary_Stuck_at failure mode is shown in Figure 10. In the figure Mk&rValve is the
nominal component implementing the meter valves as describbd previous section and the
Stuck_at component is the Binary Stuck at discussed above. B¢hek Choice is 1 we
model a valve that is stuck open and the input pressure is forwardedtasthe output
irrespective of th€ md, and wherbtuck_Choice is 0 we model a valve that is stuck closed and
the output pressure is set to 0.
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Figure 10: MeterValve_Stuck Simulink Model

Alternatively, a simple failure mode, likeverted outpufor a component generating a boolean
output, can be simply added at the output signal of the affected compbher&.is no need to
wrap the failure mode behavior around the original component sinceiltive faode behavior
does not depend on the inputs to the original component. Another failure modmekanot
need wrapping is power failure (as shown in Figure 11) that cartlgioperate on the output of
the affected component, i.e., the PowerSupply.

zero
ZERO
Stuck_Val

Fail_Flag out—p( 1)
Pwr_Fail Nominal_In PwrOut
Stuck_at
ValidPower:
PowerSupply

Figure 11: Power_Fail Simulink Model

Once the failure modes are manually inserted in the nominal moelelegd to add new inputs
and new connections to activate the faults which may consequenty thea extended
components to fail. For the activation of independent and transiemtéomittent) faults, new
inputs are added to the system model (at the topmost level). Forplexaall the valve
components, extended by the Binary Stuck at failure mode, have two additipogs:
Stuck_Flag and Stuck Val. The rest of the failure modes requsiegée input signaling the
occurrence of a fault. For the activation of permanent fault$)ddtmputs (permanently active
once activated) are added to the system model. In the case gbrfapdigation and dependent
faults, there will be addition of more data paths to propagatésféohckward propagation,
simultaneous propagation, delayed propagation, etc.).

After extension, the model is considerably larger and more ddttuwe to the additional inputs
needed to activate the possible faults, as shown in Figure 12aqmrd E3. Figure 12 shows the

24



fault inputs (shaded) added to the system to control when the fgtltsiggered. To reduce
clutter, “goto” Simulink tags are used to route the fault triggeithe corresponding component
without actually drawing signal lines. Figure 13 shows the oésthe system. The shaded
components are the mechanical components extended with failure mbdeSinfulink “from”
tags supply the fault inputs to the components from Figure 12.
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Figure 12 : Fault Trigger Inputs of the Extended Wheel Brake System
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4.3.3 Fault Modeling and Extension Issues

In the previous sections we used Simulink to illustrate how one coaottelnthe behavior of
failure modes using existing modeling constructs. Our fault mods|guite simple, consisting
of only the definitions of component failures. Also, we only considered independest Eagdh
so, we can identify several issues and shortcomings with ubk&gxisting tools for these
activities.

Clutter: As noted in the previous paragraphs, even for simple fault modelsstéreled model
is cluttered with considerable fault information, making it diffidol keep track of the original
system functionality in presence of these faults. For more coatgdi fault models, say with
fault propagations and dependent faults, additional data paths would be remtlag, even
more clutter.

Manual Extension: Even for simple fault models, manually extending the nominal behavior
with the fault behavior isrror-prone The manual model extension also leadsitalel evolution
issues. If changes to the system model are required, systgmsess will have to make these
changes in the context of a cluttered model including faults osafety engineers will have to
redo their fault modeling in the updated model produced by the systemseasg both highly
undesirable overhead.

Lack of Flexibility: Here we discuss some of the flexibility issues in the existing tools:

Composite Failure Modes:To add more flexibility to the fault model, one might want to
specify all possibly ways in which a component could fail. Thisns¢hat there could
be a number of different failure modes associated with a componedt this with the
existing tools, an engineer has to manually compose all applichleefmodes for a
given component to createcamposite failure modehich takes into account conflicting
behaviors, priorities, etc. This composite failure mode can then bposewh with the
nominal behavior of the component. Since this composite failure modbendifferent
for different types of components, an engineer would have to construgt sueh
composite failure modes.

Duration of the Fault: Not only does a fault have a behavior, but it also has a duration.
Broadly, we distinguish betwegrermanentand transientfaults. Permanent faults are
straightforward to model, but féransientfaults, we also have to consider the duration of
the fault. For some classes of faults, this duration is paramegtedepending on the
component that the fault is applied to and the model of time used feystem model.
Using existing techniques, it is difficult to create genéaigdlts whose duration can be
parameterized appropriately.

Fault Hierarchies and DependenciesOne might also want to specify fault hierarchies
for the system. For example, we might want to define the éilbode on the BSCU
based on the failure modes of the underlying Monitor and Command units.

We would also like to express fault propagation and other kinds ohdepe faults
flexibly. For example, if a pipe bursts in the WBS, this dffdbe pressure of both the
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downstream pipes and upstream pipes. Due to the dataflow in the 3y&&mn

architecture, the failure of a pipe will automatically be propagated deans. However,

as there is no dataflow in the upstream direction, there is notavpyopagate loss of
pressure to these components in the system model. One solutiomprigpagate this
failure by describing additional fault propagation connections tapk&eam pipes in the
fault model.

The fault model could also identify other dependent faults sucbrasion mode failures.
These are faults that simultaneously affect a number of compgottaait may not be
explicitly connected in the system model. For example, in théeS\W number of
components in the system might be supplied power by the same papéyr. $-ailure of

this power supply would lead to failure of all these components. Thénabsystem

model might not even mention the power supply, since it is not negeesdescribe the
nominal behavior of the system. But the fault model will need tottakeeommon mode
failure into account.

4.3.4 Proposed Approach: Aspect-oriented Technique

We view the nominal model that captures the system functionaiiytle fault model as
conceptually distinct. For example, in a model-based development aepptioaa nominal model
of software is used for code generation to derive the implementatitre afoftware. If fault
modeling is integrated into these components, then it is no longeblpossgenerate desirable
code for these components. Also, having an integrated fault model otakedVIBD activities
such as test-case generation and formal analysis of nominal model behavidifficole

In addition, integrating the fault model into the system model leagsoblems in the creation
and evolution of the extended system model. Even with an extremglesiault model, the
fault information can dwarf the description of the nominal behavithinvian extended system
model, leading to problems in system understanding, maintenanceprreatd evolution.
Manually adding a single fault to a component to the system modgl require several
additional inputs to the top-level model and modifications to severgb@oemts to “wire” the
fault information to the appropriate place within the model. This step is fudhweslicated if we
wish to describe fault propagation or composite faults. Finallypfien want to separately
evolve the system and fault models, for example, to easily introoluceodify faults into a
stable system model. In short, if the fault model is not seguhrétis extremely difficult and
error-prone to manage the evolution of the combined model.

We believe that it is critical to have the ability to separateféloét model from the system model
and provide flexible options for combining the two models to perform meaningful safety analysis
By keeping the functional system model and the fault modelsratepand automating the
composition, we can (1) keep the individual models simpler and more foarsed?) reduce

the possibility of introducing errors while manually composing thgiral functionality with the
failure functionality.

In addition to separation of the fault model from the nominal modele timeist be support for
flexible fault modelingHaving a notation that is specifically targeted towards fault modeling will
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promote ease of specification of complex fault behaviors, suchawds gropagations and
hierarchies, allowing the engineer to create realistic models faspreafety analysis.

Due to these shortcomings in using the existing tools for model-lsasety analysis, there is a
need to extend the existing framework to support separation ohtiteaind system models,
flexible modeling of the fault model, and automatic system modehsion. In this framework,
the system and safety engineers can separately forrntadizeominal system model and the fault
model, which can be then automatically composed to form an extendedsuitdele for safety
analysis. This extension should be performed at the modeling languoddeXel so that the
engineers can simulate the extended model in addition to performing formaisinal

The fault model is not intrinsic to the basic functionality of th&tesm, but is an artifact required
for the safety analysis and defines the failure behavior of $teray We observe that the fault
model affects various components of the system in different ways. This canritieabdgseen as
cross-cutting the system functionality — @aspectof the system — which can be woven into the
nominal system only when required for safety analysis. Aspeented programming (AOP)
[21], [22], is a recent technique that makes it possible to Iglepress programs with
crosscutting concerns, or aspects, including appropriate isolatiocoamabsition of the aspect
code. Using the AO-technique, one can specify the components thatnemplhe basic system
functionality in the component language (component program), the gtinsgcaspects in an
aspectual language (aspect program), and define an aspect thaaw®mposes the two to give
an extended component prograwle hypothesize that there is a natural application of these
aspect-orientedechniques to resolve some of the research issues identified in fault modeling and
model extensionA fault model can be thought of as an aspect of the originalnsyatel,
consequently, we can view model extension as aspect-weaving. \&\eeltbiat aspect-oriented
techniques can be successfully applied in the formal modeling domaithat fault modeling
and model extension can be considered as a natural instance aypghestion. Given aspect-
oriented tool support, we hope to achieve (1) separation of the fault mochethe system
model, (2) flexible specification of the fault model, and (3) sopmlasd and flexible
composition of the two models to create an extended system model.

4.4 Formal Safety Analysis

After extending the model with faults and failure modes, we wawcheck whether the safety
property holds in the face of component failures. As mentioned in S&H#dn2, there are two
ways to perform this analysis — 1) one can either prove tle¢ygafoperty without constraining
the number of faults that can occur in the system, or 2) one cantpegafety property after
constraining it to some maximum numb&j Of faults. In the first case, it will probably be
necessary to assert that certain unlikely combinations of failltsot occur for the proof to go
through. After ruling out all the unlikely combinations of faults, if greof goes through, then
the system adequately satisfies the safety property. Inetend case, we restrict the safety
property such that it will only consid&rcombinations of faults. If this property is satisfied, the
engineer will get a proof that the safety property is satisfied fopaibinations ok faults.

In this section we describe an example safety analysisam perform on the extended wheel
brake system model. We describe the system fault toleranéeatern, in which we investigate
if the system can handle some fixed number of faults.
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4.4.1 Fault Tolerance Verification Using Model-Checkers

We want to investigate what is the maximum number of faultsthiegasystem can recover from
and still satisfy the (relaxed) safety requirement. We wdaké&lto explore the effects of both
transientandpermanentaults on system fault tolerance.

First, let us attempt to verify that our safety requirentesitls in the presence of at most one
transient fault at any point in time.

In the presence of at most one transient fault, when the brakéipgutassed in the absence of
skidding, then either the normal pressure or the alternate pressuitdostrabove the threshold.

For this example, we again formalize our safety properti€&M K. To make it easier to specify
properties we extend our model to compute the number of faultsredyge thecurrent step
(given by Nuntai | s). To flexibly formalize the notion ot most nfaults, we introduce a
variable,k, in NuSMV with range 0..n. We define the next relationfaguch that it keeps its
previous value. Thug& has some non-deterministic assignment in the initial stat@o@el
checker considers all possible initial values in the range) and then holds thatoradtant.

We first formalize the notion of correct behavior of the system in a particatar dn CTL, this
can be defined as:

DEFI NE
CorrectBraking := ((NunfFails = k & k <= 1 & PedP_NoSki d) -> SoneP);

This definition states that if there is at most one fault occurring in the cstegnfNuntai | s)
and if the pedal is pressed in the absence of skidding, then we will get some pressure at t
output in the same step. We can formalize the property over all states @ig-tues
intermediate variables defined in section 4.2) as follows:

SPEC AG ( Correct Braki ng);

As may be expected, this property does not hold and NuSMV returns aerexample
indicating that as soon as a critical component fails (eg.githen pump) we will instantly lose
pressure at the brake calipers. The underlying problem ighihalystem needs time to discover
and react to the failure. To account for this interval, we intr@dudelay into our property to
give the system chance to recover,

SPEC AG (ABF 0..1 CorrectBraking)

This property introduces thF operator, which is a real-time CTL operator supported in

NuSMV [19]. TheABF 0. . 1 specification states that tlkaer r ect Br aki ng property must either

hold immediately or in the following step (alternately, the propesty ect Br aki ng can be false

for no more than one step). Given this formulation, NuSMV comes back with a counterexample
where the Green Isolation Valve fails. The only way for the system ta deeteedback is

through the pressure feedback after the Meter Valve along the Normal line tivee is a step

delay in the model (Figure 14).
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Figure 14 : Counter-example for a downstream fault requiring additional déay

From the counterexample, it is clear that we need to allow the systenotifaeett failures
located on the Normal system and switch to the Alternate system. We deemaiaadelptable
and refine our property to reflect this additional delay.

SPEC AG (ABF 0..2 CorrectBraking);

This property states that if there is a single fault and tloalpe pressed in the absence of
skidding for three consecutive time steps, then we will get preastine brakes by the third step
(i.e., the propertyCorrect Braki ng can be false for no more than two steps). Nevertheless,
verification of this relaxed safety property is still not pbksi as illustrated by the scenario
shown in Figure 15: If there is some transient failure (e.g.Gtleen pump fails) then the BSCU
will detect this failure and switch over to the Alternate system powsréaelBlue pump. In this
version of the WBS, the switchover to the Alternate system is not reversible.

Even if the fault that caused the switchover is transient and is repairedstiéra syill not switch
back to the Normal hydraulic system. In our counterexample, ietes transient fault recovers,
the active hydraulic system will still be the Alternatsteyn. Now, if, for example, some meter
valve along the Alternate system fails closed (stuck aedlpghen the system cannot recover
from this failure and will not generate any braking pressure.
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The issue is that even though it tawko transient faults to cause the loss of braking pressure,
there was never more thame fault at any particular instant in time. After examinirug t
system, we realize that the original formulation of the propsathnot hold if faults are allowed

to “migrate” between different components

We realize that the real measure of interest is not the nuoflmerrent failures, but thdotal
number of failures over the course of operatioho capture this notion, we introduce a new
variable ot al Fai | s) that will compute the total number of faults triggered untildheent
step.Tot al Fai | s considers only rising edges of faults, i.e., a fault input wke fan the
previous step and true in the current step. Thus, a persistentwithidnly be counted once,
regardless of how long it lasts. In the previous failure sognbot al Fai | s will count two
failures even though we never have more than one failure at any one instamee in t

We now redefin€or r ect Br aki ng to us€elotalFails instead olNumFails as follows:

DEFI NE
CorrectBraking := ((TotalFails = k & k <= 1 & PedP_NoSkid) -> SoneP);

and given the property:
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SPEC AG (ABF 0..2 CorrectBraking);

NuSMV now verifies that the property is satisfied. As noted befatal Fai | s captures both
scenarios for single transient and persistent (and permamdts)f We can conclude that our
system can recover from any single transient or permanemtefatlowever, the system is not
tolerant to two (or more) failures. In this case, NUSMV rettinescounterexample described in
Figure 15.

4.4.2 Formal Safety Analysis Issues

Currently the computation tools like model checkers do not generatksras the form of
traditional safety artifacts, like fault trees. The resuktither the property is true, or the property
is false with a counterexample. There is research [8], [9],tfi&% has begun to address turning
counterexamples generated by model checkers into fault treeshéuturrent results are
unacceptable for real safety analyses for reasons discussed in Settion

Ideally, we would like to represent the safety analysis results in the faartraditional fault tree
with all possible fault combinations encoded in a way that reftaetarchitecture of the system.
We can then use existing fault tree analysis tools (cf. $4]]35]) to compute the probability of
the top level event and check whether it is within acceptable limits.

Alternately, the tool can rule out combinations of faults that agelyunlikely (based on some
probability estimates) and only analyze for possible fault combinatiorscdi be performed as
an iterative process, starting with no constraints. If counterexsngpé returned, the user rules
out certain combinations of faults and re-runs the tools. The end tiesuibe tool will produce
will be proof of the degraded safety property, in the presence of user specifiedintsst

Also, current notations (such as temporal logic) used for describing complgxsafeerties are

not very familiar to practicing engineers nor straightforwarduse for specifying degraded
properties. More support is needed for capturing complex propertiegrifying system fault

tolerance. Due to the size and complexity of the models, we ofierate at the limit of the
capabilities of automated tools, such as model checkers. Scalitng upodels to significantly

larger systems will require additional research into techniquasving model abstraction and
partitioning, or the use of manually guided tools such as theorem provers like PVS.

4.4.3 Proposed Approach for Fault Tree Generation using PVS

Theorem proving is another method for performing verification on forspakifications of
system models. Theorem provers (for example, PVS [37]) apply nfleésference to a
specification in order to derive new properties of interesthdahan exploring the global state
space, theorem provers automate human reasoning, reducing a ptduifitipoauman guidance)
to simpler sub-goals that can be discharged automaticallipdoyprimitive axioms or decision
procedures of the prover.

Given a property and a model, the user is either able to verifgrédperty by completing the
proof or is presented with unproven subgoals that describe scenaritsch the property is
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violated. Theorem proving is generally harder than model checkingeguites considerable
technical expertise and understanding of the specification dsawethe theorem proving
environment. On the other hand, the process of creating a proof is dlergxegy to gain
insight into the specification. One of the major disadvantages of using theoresnspsothat the
prover does not help the user to determine if a proof is failinguse the property is unprovable
or the user is not providing the right steps to complete the proof.

Proof trees correspond closely to fault trees (see Figure i@nahy ways, the process of
constructing a proof tree is similar to the construction of a feedt. The safety requirements
will guide the formulation of safety properties and Top Level EvémtE), in case of fault

trees, for the system or subsystem under consideration. In ariyltthhe system engineers
encode all the combinations of failures that will make the top Exeaht occur. While proving a
safety property, the engineer will have to rule out bad scen@nidse form of the unprovable

sub-goals) with the help of assumptions or axioms that enable the tpr@oicceed. These
assumptions will potentially encode all the failure combination<hvibuld cause the safety
requirement to fail. These assumptions can be checked later ifals®e satisfy the probability

constraints.
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Figure 16 : Correspondence between Fault Trees and Proof Trees

45 Summary

In this section, we illustrated the model-based safety analgtisties on a wheel brake system
example using existing commercial modeling tool, Simulink [13], andficegion tool,
NuSMV [19]. We demonstrated how simulations and formal analysisekpose interesting
failure scenarios even in case of a simple model. We identifipdrtant research challenges
that need to be resolved in order to make the model-based safety analysis appobiaeh pra
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5 Related Work

This section discusses related work in automating safety @alMe start by discussing

architectural specification languages and how they may baldeekafety analysis. Following

that, we look at research more specifically related to safeflysis. Since fault trees are
considered one of the most important safety artifacts, most @xibeng work in the field has

been in fault tree generation and analysis. We discuss somegptiis for automated fault

tree generation (in conjunction with fault injection) and fauk tapalysis. We finally discuss
some integrated formalisms for modeling and capturing safety information.

5.1 Architecture Specification Languages

There are several architectural specification languagesaithatiready in use or are proposed for
use in industrial applications. In this section, we discuss a few of the better-largyuages.

5.1.1 Architecture Analysis and Design Language (AADL)

The Architecture Analysis and Design Langua@\DL) is an SAE standard [34] specifically
targeted to the design and analysis of the software and hardwhre@ure of performance-
critical real-time systems. The language is used to desdhe structure of systems as an
assembly of software components mapped onto an execution platform.afigneage can
describe functional interfaces to components (such as data inputs patspahd performance-
critical aspects of components (such as timing). The languagedascribes how components
interact, such as how data inputs and outputs are connected and havati@ppksoftware
components are allocated to execution platform components. The largaragéso describe
adaptable systems through the use of operational modes and mode transitions.

This standard does not specify how the detailed design or impldroerdatails of software and

hardware components are to be specified. Those details can bedfmBca variety of software

and hardware description languages. The relevant design and enpdion characteristics are
specified as AADL component properties, and as rules of conformanegedethe properties

and the described components.

AADL is designed to be extensible to accommodate analyses of the runtimedciucas that the
core language does not completely support. Extensions to accommodatenalyses and
unique hardware properties take the form of new properties and iarsgdgsific notations that
can be associated with components. Some annexes may be propgosedided to the standard.
There is a proposed annex that will provide support for specigrimmg models

In the context of this work, we can use synchronous languageR8ML® or Lustre (SCADE)

to specify the component implementations and AADL to specify tbleitacture. We can use
properties associated with each component to specify safgtyraments. Work is already
underway on an error model annex that may be suitable for speciigiluge modes of

components. AADL supports specification of both the logical and pdiyarchitecture, which
could be used to separate logical and physical faults.
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5.1.2 EAST-ADL

EAST-ADL [28] is a language for the modeling and development of aoftwased systems,
with its primary domain of application in automotive systems. &hguage has been developed
within the project EAST-EEA by representatives of European auteenobdustries and
academic research sites. EAST-ADL is intended to capturéenfarmation needed for the
development, from early analysis to implementation and evolution, aretsnmspecific
automotive requirements such as support for automatic code generatibe toritext of
common automotive hardware.

The EAST ADL is structured into 7 layers, each layer only loosely coupled threggliements
entities and associations. The EAST ADL abstraction layers-¥ehicle Viewdescribing user
visible features)Functional Analysis Architecturgapturing the behavior and algorithms of the
Vehicle View functions),Functional Design Architecturdrepresenting a decomposition of
functionality in the Functional Analysis Architecture to meenstraints regarding allocation,
efficiency, etc), Function Instance ModglHardware Architecturg Platform Model (which
models the operating system or middleware) Alhacation Model(which contains configuration
information needed for mapping of application software to hardwateprogression through
these models is implicit, but as there is overlap between th#emtores, the path through them
can be adapted to the needs of the different domains and companies. Hahevanguage
defines the artifacts in a unique and consistent way.

The description of the language elements is divided into parts corresgotadidifferent
language domains: the structure specifying structural reldbierhehavior describing behavioral
models, the requirements modeling requirements (functional and non functiesland their
relations to other entities, the V&V elements describing estitrelated to testing and
verification.

5.2 Automated Safety Analysis Tools and Techniques

This section discusses some of the related tools and techniqueBcalbegoroposed for
automated safety analysis.

5.2.1 FSAP/NuSMV-SA

FSAP/NUSMV-SA is a tool for automating the generation of fagksr FSAP/NUSMV-SA [8],
[9], [10], [14] is based on two components — FSAP (Formal SafetyysisalPlatform), which
provides a graphical front-end through the Safety Analysis Task)($#anager, and the
NuSMV2 model checker, which provides the safety analysis engitd?/RESMV-SA requires
the system model to be specified in NuSMV. FSAP/NuSMV-SA hppasti for failure mode
definition and model extension through automatic failure injection.

5.2.1.1 Fault Model
FSAP/NuSMV-SA provides certain predefined failure modestuek at(stuck at a particular

value),inverted(boolean value gets invertedipon_determinisngnon-deterministic, i.e. random,
value), ramp_down(integer value decreases by a fixed amount each step, dowbaiboan
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value), andylitch (wrong, random value for a limited number of steps). The usespecify the
failure mode of a particular input/output by selecting one of tileréamodes from the pre-
defined list of failures or the user-defined failures. The feduare assumed to ben-
deterministicin the time and order they may fail. With the exceptiorglgth, they are also
persistenfailures, i.e. once the failure occurs, it will exist from then on.

5.2.1.2 Automatic Fault Injection and Model Extension

After the failure modes are defined, the user can automgtiogict the failures in the system
model to create a new extended model. The extended system moddegoatied behavior to
the original system corresponding to the failure modes definedniddel can then be used for
safety assessment of the system.

5.2.1.3 Automated Fault Tree Analysis

A significant advantage of an automated analysis tool like HSAlfat it removes the burden of
manually creating fault trees once the system and the fadlelnare specified. This ensures that
the system and safety engineer work off the same models and assumptions.

FSAP uses model checking to perform fault tree analysis [12], [27 this analysis, one
describes a potential system failure, or Top Level Event (ThE)e analyzed. Rather than
generate a counterexample describing that failure, FSAPexbasistive state-space analysis to
identify all sets of basic events, which may cause that TLBctur. Thus, the tool will
automatically extract all collections of basic events, i.ematimal cut sets, which can cause the
given TLE. It creates all the minimum sets of basic evems$ tause the failure to occur
independently, ensuring that all the events not affecting the TlLBatibe a part of a minimum
cut set. This gives a more exact and complete analysis than a manuatéaaitatysis.

NuSMV-SA also provides a trace for each minimal cut setnegdes. The trace shows how the
TLE is reached, given a particular configuration of failuresrdeteed by the minimal cut set.
FSAP/NuSMV-SA can also automatically perform event orderingysisa Specifically, given a
TLE and a minimum cut set, it will find out whether there ang ordering constraints, which
hold between the pair of basic events in the cut set. TraditionBlyi$-a static analysis; using
FSAP we can investigate influence of fault modes in dynamic situations.

5.2.1.4 Discussion

Though FSAP is a very powerful tool, it has disadvantages, which fimghits applicability to
practical systems. A fault tree generated by FSAP hiat structure (see Figure 17) — the
structure of the generated fault trees is an “or-and” stryctereit is a disjunction of all the
minimum cut sets, with each minimum cut set being a productsit keaents. Thus the tree is
only two levels deep and can be very broad. A fault tree genergtedttaditional manual
analysis is usually more intuitive to read, as the analystes¢lae fault tree, which corresponds
to the structure of the system. This is an important concern as it hampers theandadeyof the
fault trees, and in turn the acceptance of the tool by the safety engineers.

Another issue is that FSAP (or any automatically) generaigdtttrees are completely reliant on
the correctness and completeness of the system and fault mod#lpdssible failures are not
considered, or if the component specifications do not correspond to thé@dpebfathe real
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system, then the fault trees will be incomplete or inaccuradaulsl creation of fault trees also
serves as a human review that helps to catch such errors.

Finally, in FSAP most faults (except glitch) are consideredetggermanent when they occur.
There is no flexibility in defining the fault model — no good way ofcdgeng fault propagation,
simultaneous/dependent faults, and persistent/intermittent faults. u$ae cannot control
triggering of faults; it is performed non-deterministicallythg tool. An additional point to note
is that there is no way to simulate faults since the fajdtiion is performed at a lower level in
NuSMV. The fault injection is straight-forward — there isw@pping of failures as discussed
earlier.

(()Either_Independent_Mode &
Left_Independent_Mode =11 &
Right_Independent_Mode =1

JE—

[ ]

inverted non_determinism

NN

| _inverted | | _hon_determinism |

Figure 17: Example Fault Tree Automatically Generated by FSAP/NUSM-SA
5.2.2 Galileo — Dynamic Fault Tree Analysis Tool

Galileo [4], [39] is a dynamic (and static) fault tre@delingandanalysistool that incorporates
DIFTree analysis methodology. Dynamic fault trees extend iwadit (static) fault trees to
enable modeling of fault-tolerant systems in which failure mada depend on the ordering of
component and sub-system failures and can include cascading andrtoramse failures
(functional dependencies). DIFTree (Dynamic Innovative Fault Tapa)ysis methodology [5]
combines static and dynamic fault tree analysis techniques using a modutechppr
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5.2.2.1 Fault Tree Creation

Galileo enables engineers edit and displayfault trees in textual and graphical form through
widely used, commercially-supported components that are easy tmatetago real engineering
practice.

5.2.2.2 Fault Tree Analysis Capabilities

Galileo performs reliability analysis on the constructeck.tréhe tool supportzoverage
modeling in static and dynamic trees. Failure probabilinestatic trees may be constant (time-
independent) or follow the exponential distribution. Dynamic fault trees only supgmohential
distribution of time to failure. A basic event is characteribgda failure probability and a
coverage factor.

DIFTree is a hybrid technique that supports automatic decompositialysis and integration of
partial results. During traversal, a subtree is marked asmidgnifa dynamic gate is present,
otherwise it is marked as static. The static fault submeesolved by automatic conversion to
the equivalent BDD, while dynamic subtrees are solved by autoroatigersion to the
equivalent Markov model. Each submodel is solved for the probabilities ofrecbwand
uncovered failures and is replaced by a basic event in the higher-level model.

The tool also supports a Monte-Carlo simulation engine that usesmeaneduction techniques
for the analysis of reliable systems.

5.2.2.3 Discussion

Since Galileo is a fault tree analysis tool, not fault geeeration tool, any automated fault tree
generation tool can be used in conjunction with it. Given a qualitativk free (generated
automatically from automatic fault tree generation tools HEAP or our proposed tools), it can
be imported into Galileo, which can then use it to do the quantitatigsenhy plugging in the
actual probabilities. Galileo is also useful for managing modular analylsisge systems.

5.2.3 HiP-HOPS

HiP-HOPS (Hierarchically Performed Hazard Origin and Pgapan Studies) [31] is a method
for safety analysis originating from a number of clasgieahniques such as Functional Failure
Analysis (FFA), Failure Mode and Effects Analysis and FaulteTAnalysis. The method
enables integrated assessment of a complex system from therfaht#vel through to the low
level of component failure modes. Though the HiP-HOPS process atalysin the design
lifecycle with exploratory FFA, we describe its use onleaftte have a hierarchical model of
the system (following the FFA). HiP-HOPS is currently supabitty a tool called the Safety
Argument Manager (SAM).

5.2.3.1 Fault Model
As the refinement of the system hierarchical model proceedtgiline behavior of components

in the model is analyzed using a modification of classical FMaRAed Interface Focused-
FMEA (IF-FMEA). The application of this technique generatesadel of the local failure
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behavior of the component under examination, which is represented as a tablg¢ablbe
provides a list of component failures modes as they can be obsemedcamponent outputs
and for each such output failure, it determines the causes ggcal lcombination ofnternal
malfunctions of the componemtdeviations of the component inpuds IF-FMEA table records
how a hardware or software component reacts to failures genéatether components. In
addition, the table determines the failure modes that the compormrdingéiserates or propagates
to other components.

5.2.3.2 Fault Tree Generation

Once the local failure behavior of all components is determinedgamedetermine how the
functional failures that have been identified in the explorafét# arise from combinations of
the low-level component failure modes that we have identifiedarnR-FMEAs. In HiIiP-HOPS,
this is achieved mechanically by synthesizing fault trees.

A fault tree is generated incrementally by parsing theressions contained in the IF-FMEA
encountered during hierarchical traversal. The fault tree steuctecords hazardous
dependencies between components in the model (caused by data flovenflni¢pendencies
between sub-systems and components). Input deviations received bycaapbnent are
substituted by corresponding output failures by other components. Thpetd@ms minimal
cut-set analysis and probabilistic calculations on the fault tree.

5.2.3.3 Discussion

The fault model consists of the standard failure modes, such as atuak the base level
components (lowest level in the hierarchy). In addition to thensitricomponent failures, fault
propagation is explicitly considered wherever relevant at the compouoguts. The user has to
explicitly construct the IF-FMEA table which will be latereglsin fault tree generation. One of
the strong points of this approach is that the hierarchical steucfuthe system is captured
neatly in the fault tree.

The component behavior is not considered while generating thertssgt-t the fault tree seems
to be just a hierarchical representation of what the user deifindte IF-FMEA table. We
observe that there is no fault order dependency information, whithevéxtremely important
in systems using synchronization. The fault trees do not contaitioaddlitrace information like
in FSAP. We also observe that there is no direct support for formal analysisudtadepend on
the modeling notation chosen.

5.2.4 Altarica — Language with support for Fault Modeling

The Altarica language [6], [7] was designed to formallgcsfy the behavior of systems when
faults occur. An Altarica model can be assessed of means of coergbey tools such as a fault
tree generator and a model-checker.

5.2.4.1 Fault Model

An Altarica model of a system consists of hierarchies of compsnealled nodes. A node
gathers flows, states, events, transitions and assertions.ufefahn be defined as an event
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which can affect the state of the node. A transition is chaiaeteby a guard, an event name
and command part (assignment to some state variable). A faibole can be defined using a
transition which takes the particular failure event.

5.2.4.2 Fault Tree Generation

Altarica fault tree generator takes as input an Altaricaleh and some unexpected event and
generates a fault tree for the non-temporal failure conditionse @wcfault tree is generated, a
fault tree analyzer, ARALIA, can be used to compute the serinfe implicants of the non-
temporal failure conditions.

5.2.4.3 Discussion

Since we do not have experience in using Altarica, we referethder to a short experience
paper [7] that discusses the advantages, disadvantages and limitatismgydiltarica for safety
analysis. Some key points made in the paper are as followas fiowrnd to be difficult to model
certain types of failure propagations in Altarica — e.g. propagdailures in both directions,
upstream and downstream without adding additional delays. Also, Altisesanot differentiate
between transient and permanent faults.
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6 Conclusions and Future Directions

In this report, we introducelllodel-Based Safety Analysen approach for automating portions
of the safety analysis process using executable formal models of b syate believe that this
approach has several benefits when integrated into safety analysispsoces

* A tighter integration between systems and safety analysexib@s common models of
system architecture and failure modes.

» The ability to simulate the behavior of system architectuegly én the development
process to explore potential safety hazards.

* The ability to exhaustively explore all possible behaviors of gesysrchitecture with
respect to some safety property of interest using automated analysis tools.

* The ability to automatically generate many of the artifabts are manually created
during a traditional safety analysis such as fault trees and FMEAUAIBarts.

Furthermore, this approach is based on existing commercial tadisteghniques that are
increasingly used for systems and software engineering for saiitglsystems.

Nevertheless, there are several research challenges thdieragdressed before the full benefits
of this approach can be realized. The first involves constructittimreahodel: which languages
and tools are most applicable and how much detail is necessHng?second involves the
analysis tools: can they be scaled to the point of analyzingstieatiystems for relevant
properties? The third involves the user-interface and presentsgiogsi can we make the tools
straightforward for system and safety engineers to use?we€adake the results of these formal
analyses and turn them into artifacts that can be easily undeestdaged by system and safety
engineers? Can these artifacts be used for certification credit?

Our goal in the short term was to use existing tools on indiistrielevant examples to
determine the actual problems and needs of safety engineers. Givempénisree, we can set a
realistic, grounded research agenda to improve the process in thee fufar this end, we have
modeled the Wheel Brake System example from ARP 4761 — Append ib fthis report
(Section 4). This example was chosen primarily because thedXBP document is used as the
main reference for safety assessment by a majority ofsdlfiety engineers in the avionics
community, and this example is complex enough to illustrate m&the concerns that occur in
practice. Further, it contains a detailed safety assessaoiethe system, which provides a
benchmark with which we can compare the results of our automated analyses.

We modeled the system using the Simulink [13] modeling languagdid®el.1). As part of
this model construction process, we had to make several assumptiohshabbehavior of the
system in question that affect the safety of the system. prbiess of discovering “hidden”
assumptions when constructing the model may be beneficial to thesianalocess, as these
models require that system behaviors be unambiguously specifiece wahé then able to
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exhaustively analyze one of the safety properties callednotite ARP document using the
NuSMV model checker [19] (Section 4.4.1).

In the process of creating the Simulink models and performingafieéysanalysis activities, we
discovered several shortcomings in regard to flexibility in modefmgts, fault injection,
performing safety analysis, and formatting of the analysslt® Each of these deficiencies
provides interesting avenues for future work.

6.1 Fault Modeling and Model Extension

The current process of creating fault models and injecting fae#ts into the system model is
cumbersome, and it significantly clutters the model of the ndrbef@avior of the system with
additional failure inputs. Such models can be difficult to creatigculifto read, and difficult to
update as the system evolves.

In Section 4.3.4, we describe an alternate approach that sepaeatésult model from the
nominal system behavior model. Usmagpect-oriented programmirjgl], it may be possible to
create a library of reusable faults that can be applied toadeliffierent mechanical or digital
components within a systersing this approach, it would becomes straightforward to add or
modify faults without the tedious redrawing of the model that ieeatly required, and it allows
more flexible fault models to be specified. Ideally, this preeesuld be integrated into the GUI

of existing tools, allowing the systems engineer to choose drpadette of pre-defined faults (or
create specialized faults) and drag them onto existing sysiemponents. We believe this is
possible to achieve with some existing tools, but this would regigmficant development
effort.

6.2 Notations for Describing System Safety Properties

Current notations (such as temporal logic) for describing complexysproperties are not very
familiar to practicing engineers or straightforward to use sjpecifying complex properties.
More support is needed for capturing complex properties for verifying syaténtolerance.

6.3 Presenting Safety Analysis Results

Currently, the results generated by model checkers and theoremsprloveot correspond to the
expected artifacts of safety analysis. There is reseidwahhas begun to address turning
counterexamples into fault trees, but the current results aregmable for real safety analyses
for several reasons, as discussed in Section 5.2.1.4. To better fiihgexdafety analysis
guidelines we need to be able to present analysis resuéimilial forms, such as fault trees, in
ways that better map to current safety analysis practiceSection 4.4.2, we describe an
approach using PVS to create fault trees that may yieldiwgwnd well-structured fault trees
derived from the formal model.

6.4 Scaling the Formal Analysis Tools

Due to the size and complexity of the models, we often operdte &irit of the capabilities of
automated tools, such as model checkers. Scaling up the modesiticasitly larger systems
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will require additional research into techniques involving model attstn and partitioning, or
the use of manually guided tools such as theorem provers, e.g., PVS [37].
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