
1

DRAFT

1 0-7803-8155-6/04/$17.00© 2004 IEEE Correct 2005 number in August.
2 IEEEAC paper #1543, Version 1, Updated Oct 13, 2004

A Data-Based Console Logger for Mission Operations
Team Coordination

Carroll Thronesbery Jane T. Malin Patrick Oliver Jiajie Zhang
S&K Technologies, Inc Kenneth Jenks Lockheed Martin Yang Gong

201 Flint Ridge Plaza, Ste 102 David Overland 2101 NASA Road 1, ER2/LMES Tao Zhang
Webster, TX 77598 NASA Johnson Space Center Houston, TX 77058 Univ Texas, Houston

281-244-5602 2101 NASA Road 1, ER2 281-483-2062 P.O. Box 20036
c.thronesbery@jsc.nasa.gov Houston, TX 77058 patrick.j.oliver@jsc.nasa.gov Houston, TX 77225

281-483-2046 713-500-3922
jane.t.malin@nasa.gov jiajie.zhang@uth.tmc.edu

Abstract—Concepts and prototypes1,2 are discussed for a
data-based console logger (D-Logger) to meet new
challenges for coordination among flight controllers arising
from new exploration mission concepts. The challenges
include communication delays, increased crew autonomy,
multiple concurrent missions, reduced-size flight support
teams that include multidisciplinary flight controllers
during quiescent periods, and migrating some flight
support activities to flight controller offices. A spiral
development approach has been adopted, making simple,
but useful functions available early and adding more
extensive support later. Evaluations have guided the
development of the D-Logger from the beginning and
continue to provide valuable user influence about upcoming
requirements. D-Logger is part of a suite of tools designed
to support future operations personnel and crew. While
these tools can be used independently, when used together,
they provide yet another level of support by interacting with
one another. Recommendations are offered for the
development of similar projects.

Table of Contents

1. Introduction 1
2. D-Logger Functions 2
3. Related Console Support Tools 3
4. Spiral Development Model 4
5. Evaluations 5
6. Conclusions and Recommendations 6
Acknowledgement 7
References 8
Biography 8

1. Introduction

The purpose of console logs is to keep a written record of

2

DRAFT
the events that occur at the console of a flight discipline in
the Mission Control Center (MCC) [FCOH, 2003]. They
are used for reference during the shift as a reminder of
specific times, data values, events, and responses to support
subsequent flight decisions by the flight controller. They
serve as the basis of the shift handover to maintain mission
awareness as new flight controllers assume responsibility
for monitoring flight operations. They serve as reference
for researching anomalies on previous flights to understand
better how those anomalies developed, what actions were
taken, and how successful those actions were. Finally, they
serve as the basis for a number of a number of reports used
to monitor and manage flight support activities.

Traditionally, console logs were handwritten notes written
on a tablet kept on the flight controller’s console.
Increasingly, they are kept in computer documents to
improve legibility and availability. D-Logger represents
another advancement in keeping console logs. It is web-
based, increasing the availability further, allowing
incoming flight controllers to maintain mission awareness
from their offices before they arrive at MCC. It is also
database oriented, supporting better search capability when
flight controllers need to research anomalies similar to one
they are currently observing. Finally, it also has API
interfaces, allowing software agents to make automated log
entries of specific routine events. This capability should
make it easier for flight controllers to keep complete,
accurate records of well-understood telemetry events,
freeing them to track more telemetry and to maintain
awareness of higher, mission-level events.

Future mission concepts promise to place even more stress
on providing flight controllers with adaptable tools that
allow them to concentrate more on the missions and less on
managing the tools themselves. Exploration mission
concepts pose a number of coordination problems for
ground support [Ops Concept, 2000]. They include
communication delays that make crew autonomy more
desirable, supporting multiple concurrent missions,
supporting missions with a reduced flight support team of
multi-disciplinary flight controllers during quiescent
periods, allowing analyses and inputs from remote locations
(office, home), and coordination with automated agents that
analyze telemetry and report on recognized mission events.
Traditionally, voice loops have supported real-time
coordination and console logs have supported coordination
across shifts within each discipline. Data-based console
logs will enable richer written coordination.

In the remainder of the paper, we describe the functions of
the Data-Based Logger (D-Logger), the related console
support tools with which it can interact, the spiral
development model we used to develop it, evaluations of D-

Logger, and some recommendations for similar
development projects.

2. D-Logger Functions

D-Logger has a number of functions which support
consulting the console logs, adding new log entries,
searching them, and using them to create reports.

View the Current Console Log

D-Logger has a display of the current console log so the
flight controller can readily consult the information already
recorded about the current shift. Some data observations
and timestamps are important for current decisions about
mission events. Reviewing existing notes also helps to
ensure that the log notes are a complete record of current
console events. The main view of D-Logger is shown in
Figure 1. At the very top of the display, the software is
identified as the logger. It allows selection of other console
tools (Viewport, WorkIT, a workspace tool to organize
specialized tasks like anomaly response, and Reports). It
shows other major functions of the logger (help, admin
functions, and feedback to developers). Finally, the top of
the display shows how the user has logged in (tbery has
logged into the test0 activity as a BME, or biomedical
engineer). The middle of the display is a scrollable area
showing the current console log. It consists of a number of
entries. The most important parts of an entry are the
timestamp (279/15:02) and the text of the entry. These are
the columns that appeared on the early paper tablets on
which console logs were originally kept. Twenty-four
hours of console logs are available in the scrollable, middle
section of the display. If the user wishes to see an earlier
set of log notes, then a new “end time” can be entered into
the blue area at the top of the current logs display.
Alternatively, the user can move the time window of the
logs display to one day earlier or later by using the arrow
buttons near the “end time” specification blank. The
bottom of the display is where new log entries are made.

Add an Entry

During times of high activity, it is important for flight
controllers to be able to add a log entry quickly. Simply
typing text into the text entry box and submitting will cause
a new entry to the console log, with a timestamp
corresponding to the entry time. The entry area supports a
standard set of editing capabilities, along with an “undo-
redo” capability and a spellchecker. It also supports
inserting hyperlinks, inserting a current timestamp in the
text, and putting very specialized icons and text markups to
fit the needs of each specific flight controller discipline

3

DRAFT
using D-Logger. These specialized text markups and icons
save entry time for the flight controllers and make the
resulting logs more uniform and make subsequent searches
more productive. In Figure 1, the BioMedical Engineers
(BMEs) have special icons for information called down by
the crew, information which has already been read up to the
crew, information which still needs to be read up to the
crew, important information, information communicated
from one flight discipline to another, and “to-do” list items.
The flight controller can specify the timestamp (GMT, or
Greenwich Mean Time) so that a chronological listing of
the log notes reflects the actual sequence of events on the
console.

Flight controllers would like to be able to enter log notes
with very little effort, yet they would also like the capability
to search those log notes later and to use them as the basis
for subsequent reports. As more uses are made of the log
notes, more information (metadata) needs to be entered to
support those uses. The Quick menu, Snippets menu, and
the Report Categories area make it easier to enter the
information supporting those additional uses.

Report Categories are used to associate individual log
entries with a specific heading of a report, like the Console
Support heading of the Shift Handover Report. This allows
the ReportMaker function to search for these log entries
and place them in the report automatically so that there is
less manual effort in creating the report.

The Quick menu is for entries that are frequently made by
members of a discipline, automatically entering text into
the edit area and selecting the appropriate Report
Categories. For instance, a common entry is to announce a
newly arrived flight controller on shift. The Quick menu
selection for this action is illustrated in Figure 2. When the
user makes the Console Support selection from the Quick
menu, the text shown in the menu is placed in the edit area
with bold formatting, and the Report Categories selection of
Console Support is automatically selected. The user then
replaces the xxx text entries with actual names. At that
point, a complete entry has been made in a uniform fashion
for consistent appearance in subsequent reports and
conducive to subsequent searches. The Quick menu is an
example of “knowledge in the world” rather than
“knowledge in the head” recommended for software
displays by Wright, el. al [2000] and Zhang [1996].

The Snippets menu is similar in concept the to Quick menu
with the exception that it is intended to help users manage
temporary lists of frequently entered complex text. For
instance, Figure 3 illustrates the use of the Snippets for
maintaining a list of current document numbers and titles.
Flight controllers use specific types documents to

communicate with one another across the MCC and to
manage issues and anomalies. These document numbers
and names appear in the console log when an action is
taken on them. By using the Snippets menu, the flight
controllers avoid retyping the long document number and
name, avoid mistyping the number, and make the log note
more amenable to subsequent searches. By selecting the
“Modify” option at the bottom of the menu list, the user can
enter a new block of text to be added to the menu. New
items are added to the top of the list. As new items are
added, old items, not used any more, are dropped from the
bottom of the list. Snippets are another example of placing
knowledge in the computer interface rather than leaving
users to manage it on their own. If users need to designate
a document which has been discussed recently, they simply
need to select the right document name and number from a
list rather than looking up the full document number and
name from external sources.

Prepare a Shift Handover Report

Near the end of the shift, the outgoing flight controller
completes a Shift Handover Report to be used by the
incoming flight controller to support continuity of mission
awareness across shifts of flight controllers. A big part of
the shift handover process involves the console log. The
Shift Handover Report provides event-oriented, anomaly-
oriented, and issue-oriented views of the console activities
in addition to the chronologically oriented view provided by
the console log. The ReportMaker function sorts the log
messages into report categories for the Handover Report,
forming the initial draft. The outgoing flight controller can
then add more explanatory text under these categories to
fill in any gaps or provide additional information not
already appearing in the individual log entries. The
format, content, and appearance of the Handover Report
can be specified differently for each MCC discipline of
flight controllers. Figure 4 shows a partially completed
Handover Report. Note that ReportMaker puts the report
into Microsoft Word format where the user has full control
over its appearance before it is given to the incoming flight
controller and archived.

Search Log Entries

The primary reason flight controllers requested a search
capability is to retrieve information relevant to current
anomalies by finding similar incidents in the past. This
enables to them to examine how previous incidents
developed, what responses were taken, and how effective
those responses were. Storing the log entries in a database
expedites these searches. Figure 5 shows the results of a
search of log entries of BME notes in the test0 activity, for
the string “PPCR5555”, a specific document number. Once
the log entry of interest is identified, it often becomes

4

DRAFT
important to view it in the context of the console log where
it was entered – to be aware of other events happening at
the time of the incident in question. Figure 6 shows the
results when the user selects the “View In Context” link.
Note that the entry in question is highlighted in the View
In Context view to orient the user to the event of interest
and its context (some printouts make this highlighting less
noticeable than the on-screen display).

Perform Administrative Functions

A number of administrative functions are provided to users
of D-Logger. For instance, a group administrator can
specify the categories, headings, and appearance of the
Shift Handover Report, as well as specify formats for
additional reports the group may want to generate from log
entries. They can also add new users to their group and
define new Quick menu entries for their group. Regular
group members do not have the edit privileges for many of
the administrative functions but can view them all. In that
way, all users know what specifications can be made and
how they are currently specified. This supports the group
interaction among the discipline members so that they can
have the right set of specifications for that group’s needs.

Feedback

Feedback has been incorporated into D-Logger to make it
easy for users to report bugs, identify awkward functioning
or sequencing, and to identify new functions they would
like to see. This feature is particularly important to D-
Logger since a primary goal of our project is to establish
requirements for console support tools so that flight
controllers can concentrate on monitoring flight activities
and concentrate less on managing their software tools.

3. Related Console Support Tools

While D-Logger can be used independently, it was intended
for coordinated use with a number of related tools
supporting flight controllers. The tool suite includes the
ViewPort, WorkIT, ReportMaker, Notifier, and IBRA
[Malin, et. al, 2002].

ViewPort

ViewPort provides an overview into the current data and
options offered by the tools in the tool suite. When
completed, it should allow a quick glance at the state of
console activities for the discipline. Two important parts of
this view are an overview of the data being managed by
each of the tools and a way to navigate to the tools. A third
part, which we have not yet added, is an insight into
planned activities and their execution.

WorkIT

WorkIT is a workspace management tool, originally
designed to support the organization of multidisciplinary
anomaly response teams [Malin et. al, 2002b]. It allows
teams to manage tasks, actions, written reports, links to
reference materials, and notes during the course of
investigating an incident, anomaly, or issue. Like D-
Logger, WorkIT is also web based to improve access from
the MCC and from flight controller offices, and it is
database oriented to enable searches across workspaces to
find related issue analyses.

ReportMaker

ReportMaker is a tool for constructing written reports. Its
power lies in its ability to communicate with other tools in
the suite so that written reports can be generated
automatically. The product of ReportMaker can be the
final report, normally in Microsoft Word format, or it can
be an automatically generated draft, which a person can
then edit or append additional information to complete the
report. We have seen how ReportMaker can use log entries
in D-Logger to make a draft Shift Handover Report. It can
be used to generate summary reports of WorkIT workspaces
and their current status. The Intelligent Briefing and
Response Agent (IBRA) can also generate written reports
on events it recognizes by using ReportMaker.

Notifier

The Notifier is used ensure that people are notified
appropriately of important events [Martin, et. al, 2003;
Schreckenghost, 2002]. The modalities available to the
user include the user interface in the tool suite
environment, pagers, and email. The way in which a
notice is constructed and sent depends on characteristics of
the recipient (online vs offline, current role in the project,
personal preferences), characteristics of the event, and
decisions of the group about how members should be
notified of important events. The Notifier is used by other
tools in the suite. For instance, IBRA could use the
Notifier to alert people about a new event it recognized, or
WorkIT can notify someone that they have been assigned a
new analysis task for a specific issue.

IBRA

IBRA is a tool for recognizing patterns in the data and
taking appropriate actions [Malin, et. al, in preparation].
For instance, IBRA can watch telemetry data and report
that the Remote Manipulator System has been returned to
its resting position. A report of a nominal state like this
would probably appear as a log message automatically
entered by an IBRA action. On the other hand, if IBRA
were to recognize an anomalous state that needs immediate

5

DRAFT
attention, its actions might include sending a notice
through Notifier, beginning an anomaly report through
ReportMaker, and starting a WorkIT workspace for use by
an anomaly response team, as well as making a log entry
through D-Logger.

4. Spiral Development Model

We are employing a spiral development model to D-Logger
and related tools [Boehm, 1988; Thronesbery & Malin,
1998]. This means that we first build the basic functioning
of a given tool, get feedback from users, and then design
improvements and additional functioning based on the
initial usage feedback.

Basic D-Logger Functions

The basic function of keeping a console log includes
keeping a record of console events that can be consulted to
guide future console decisions, support shift handovers, and
maintain archives of those events. The original paper
tablets fulfilled these functions in the simplest way, but left
flight controllers wanting a bit more support. Keeping that
information in word processing documents improved the
legibility and accessibility of those logs. However, flight
controllers needed a little more functionality to feel they
had a complete basic set of console logging support. The
most important of these additional functions is a better
capability for searching through existing logs. These
searches help them to find things like specific observations,
settings, and event times, as well as to locate previous
anomalies similar to current observations. Consequently,
we have included in the basic functioning of D-Logger, the
web-based application which keeps log entries in a database
to support searches. Since the handover report consists
primarily of log notes already entered into the computer, we
also included the capability to generate a draft handover
report from those log notes, eliminating the need to retype
that information. Also, we have added a number of
features to make it easier to enter the additional data to
support handover reports and effective searches. This helps
to make it easier, rather than more difficult, to create a
console log with more information. We included the
feedback functions to ensure that we collect as much
information about requirements as possible. Finally, we
included a sizeable complement of user specification tools
(admin functions) so that each discipline using D-Logger
could tailor it to their specific and changing needs.

Future D-Logger Functions

We have plans for adding more specialized functions to the
logger. These plans involve integrating support for

tracking things like to-do lists, data uploads, paperwork,
and planned console activities into the logger. In this way,
as a result of tracking these activities, the flight controller
can have log notes automatically entered from the tracking
tools (no longer needing to both track and manually report
on the activity). A full set of metadata can be added to
those logs so that they can be used in creating tables for
reports (e.g., a summary in the Shift Handover Report of all
the currently open paperwork along with actions taken on it
during the last shift). This integration of support for
tracking activities and reporting in the console log involves
a closer association with work processes employed by the
flight controllers as they track these items, but it should be
a big step in improving the effectiveness with which flight
controllers are supported by their software. An additional
challenge is to design new admin functions to allow flight
controllers of each discipline to specify activity tracking.
This capability would eliminate their need to formally
request those capabilities from a software organization.

We also plan to integrate the logger more closely with the
other console support tools. For instance, the IBRA agent,
which can recognize important telemetry events can
automatically enter a log note (identifying itself as the
creator of that log note). This would eliminate the need to
record those telemetry events manually into the written
history of console events. Again, those automatically
entered log notes will be tagged so that they can appear in
appropriate places in reports like the Shift Handover
Report. Similarly, some of the WorkIT activities should be
recorded in the console log to report on progress in
analyzing related issues and anomalies. Some of these
activities should be reported automatically and some should
be reported as an option taken by those people working the
anomaly. In either case, WorkIT would communicate with
D-Logger to enter a note in the console log.

5. Evaluations

Because a major project goal is to derive a good set of
requirements for console support tools, evaluation has been
an integral part of the project from the outset. We
consulted with users concerning requirements before
beginning the design process, and we used those
requirements in every type of evaluation since then. In
addition, we used every opportunity when talking with
users to refine those requirements. The sequencing of the
evaluations was guided not only by principles discussed in
Thronesbery and Malin [1988] of increasing scenario
fidelity and complexity, but also from user input on what
sequence of evaluations would make them feel comfortable
in using D-Logger to support actual missions.

6

DRAFT
Expert Walkthroughs

The initial evaluation for each function of D-Logger was in
the form of an expert walkthrough. For functions that were
expected to require innovative user interaction, the initial
design was a paper prototype created from a user-centered
perspective. The design was made employing the users’
statements about their desire for console support, example
artifacts they currently use in performing their jobs, and
specific data to support one or two common usage
scenarios. The expert walkthroughs included experts from
software design and database design, as well as those from
user interaction design. We modified checklists from
Lewis and Rieman [1993] to guide the analysis from the
user’s cognitive task perspective and to ensure a thorough
heuristic evaluation of the general characteristics of the
user interaction. When a problem was encountered from
one perspective, a discussion would ensue concerning
alternate designs or implementation strategies so that the
design would be workable from all perspectives.
Consequently, we finished the walkthroughs with designs
that not only support users, but also can be developed
within the scope of project assets.

User Walkthroughs

When we had a working prototype with a full set of basic
functions, we performed the first user evaluations. These
included four evaluators from a specific discipline we
identified as our primary initial user, the biomedical
engineers (BMEs). We also included two evaluators from
other disciplines so that we could be aware of how D-
Logger should be tailored to fit the needs of additional
disciplines of flight controllers. Evaluations were
performed individually, taking about two hours per
evaluation. To provide structure for the evaluation
sessions, we prepared a walkthrough scenario to illustrate
the logger functions. The session consisted of describing
the usage scenario, describing each D-Logger function, and
allowing the evaluator to exercise that function. The
evaluator was encouraged to provide feedback as the
session progressed. Following an approach described by
Woods, et. al [1996], we were looking to verify if we had an
accurate understanding of the requirements, if we had
adopted a reasonable strategy to support those
requirements, and if we had implemented those strategies
effectively. This approach helps to organize the results of a
formative evaluation so they point to more obvious
improvements in the evaluated software. In addition, while
the users were interacting with the software, they were
encouraged to think aloud to give us further insight into
their work processes as well as difficulties they may
experience with the software. The evaluation sessions were
videotaped to identify moments when flight controllers
experienced difficulty with D-Logger as well as to ensure

that nuances of think-aloud feedback and suggestions for
improvement would not be lost. At the end of the session,
we had a questionnaire of open-ended questions, beginning
with general questions and concluding with questions about
specific issues concerning the design.

This evaluation was a formative evaluation, aimed at
finding ways of improving the existing prototype so that it
would be ready for the next level of evaluation. The
evaluation indicated that the performance speed of the
system needed improvements before D-Logger could be
used to support missions. It also indicated wording
changes for menu items and a better set of Quick menu
items. The Shift Handover Report had evolved since we
last talked with users, so we also got an improved format
for that report. In addition, we got new handover report
artifacts to match the new format. We also received
indications of what new features our users would find most
helpful. We have not yet had the opportunity to incorporate
those new features, but this advanced notice has helped us
to plan for those features and to consider possible
approaches for incorporating them.

Observed Trial Usage During Mission Simulations

After we had incorporated some of the lessons learned from
the user walkthroughs, D-Logger was ready for an
evaluation under more realistic usage conditions. After
consulting with users, we chose to evaluate D-Logger
during mission simulations, balancing the need for a
realistic evaluation and the need to avoid any risk from
using an unknown tool during an actual mission. Mission
simulations are performed for flight controller training to
ensure that they know how to respond to any mission
occurrence. Simulations are planned for a specific duration
and to exercise a particular type of mission scenario,
introducing a number of anomalies not known in advance
by the flight controllers. We chose to evaluate during two
mission simulations, lasting from six to eight hours.
Because shift handovers were an important concern, they
arranged to have a shift handover midway through each
simulation. We videotaped the use of D-Logger during the
mission simulations and encouraged the flight controllers
to talk aloud while using the logger when circumstances
would allow. We prepared a set of questions aimed at
increasing our understanding of the users’ tasks, assessing
our choice of strategies for supporting those tasks, and
assessing the implementation of those support strategies.
We also prepared questions to guide our choices for future
functions and their design. These questions supported
impromptu discussions with the flight controllers during
low activity periods during the simulations. At the end of
the evaluation session we asked the questions which had
not already been addressed during the simulation.

7

DRAFT
During this evaluation, we received additional information
about improving the Shift Handover Report. Their format
had again changed again, but most importantly, using the
format and automated software functions in a realistic
context clarified their requirements. The evaluation
identified the need for new Quick menu items; it exposed
some new security concerns about read and write
privileges; and it indicated the need for a new edit button.
The performance speed during this evaluation was
sufficient to support a mission. Because of the extended
length of the test and its more realistic use conditions, we
were able to uncover new bugs. We also found a few new
requirements concerning timestamps for simulation
exercises. Only the bugs, timestamps, and security
concerns needed to be addressed to be ready for the next
level of evaluation.

During the course of these discussions, we were able to
collect a larger set of artifacts that flight controllers use to
perform their console activities. These artifacts have
greatly increased our understanding of how new support
functions in the logger should be designed.

Free Play User Evaluations

We are ready for unobserved trial use (free play) by flight
controllers. In this evaluation, the flight controllers will
use D-Logger during simulations, in a flight following
mode, or just to exercise any function they are curious
about. The common factor in all these exercises is that we
will not be there to observe the use of D-Logger. Flight
controllers will exercise it in any way necessary to gain the
comfort needed to use it during an actual mission. The
data planned for this evaluation is a little less direct than
that of previous evaluations. We will rely heavily on the
online feedback system and an online questionnaire.

Online Feedback

The online feedback function is designed to get user
feedback concerning bugs, information about task
understanding, our choice of strategies for supporting tasks,
and our implementation of those strategies. The feedback
also includes users’ requests for new functions. A feedback
item includes automatically collected information about the
usage context when the feedback system was called. It also
includes a description of the problem or improvement.
Feedback items are emailed to key people on the
development team so that they can give the items
immediate attention. Feedback items are also maintained
in a database so that they can be managed like a bug list or
a list of future requirements, depending on the nature of the
specific feedback item.

Online Questionnaire

Once the users have had enough experience to form an
opinion of D-Logger, they will be asked to complete an
online questionnaire. The questionnaire has been
fashioned after the standard QUIS questionnaire discussed
by Harper, et. al [1997], but with the evaluation items
tailored to software which supports maintaining a console
log in the MCC. The online questionnaire is the first
evaluation we will conduct whose primary objective is a
summative evaluation of how well D-Logger supports its
users. Evaluations prior to this have been formative, aimed
at identifying how D-Logger should be improved and what
new functions should be added in the near future. The
value of this summative evaluation is to form a baseline so
that the level of support of this and subsequent versions of
D-Logger can be directly compared.

Observed Trial Use During a Mission

When the free play evaluations have concluded and any
needed improvements are made, then D-Logger will be
ready for evaluation in the context of supporting an actual
mission. After that, D-Logger can be adopted for regular
use while research continues on new functions (automated
log entries, use of logger by related console support tools).

6. Conclusions and Recommendations

The human-centered approach to software development has
helped us to design a logger based on a realistic
understanding of the console activities it must support.
This understanding also includes the ongoing tasks that
serve as the context of logging activities. This
understanding of the users’ tasks has helped us to identify
good strategies for supporting these activities. Preliminary
results indicate that we have also arrived at reasonably
effective implementations of those strategies. The
approach, originally formulated in Thronesbery and Malin
[1998], inherits from a number of influences from spiral
development [Boehm, 1988], user centered design [Norman
& Draper, 1986], contextual design [Beyer & Holtzblatt,
1999], ethnographic approaches [Wixon & Ramey, 1996],
to methods of bridging the gap between requirements and
implementation [Woods, et. al, 1996]. It has been refined
over the course of this general project for designing tools
for support of flight controllers and has proven effective in
the current software design and evaluation of D-Logger. In
addition to refining and confirming the value of this
general development approach, D-Logger development has
allowed us to confirm a number of specific
recommendations for innovative software development
projects.

8

DRAFT
Be Useful Early

The first recommendation is to be useful early, and add to
basic functions later. Identifying the core of functionality
provides focus to the entire development team and helps to
avoid time-consuming, schedule-breaking distractions.
Most importantly, it helps to establish the right relationship
with users. Early interactions with users are more focused.
They can trust your ability to deliver a finished product
when you produce a product that is useful. At that point,
they can begin to use the innovative product and
understand it on new levels as users incorporate it into their
work process. The sooner users can begin using the
innovative support software, the sooner they can give you
informed feedback on how to improve that software.

Integrate Evaluation into All Phases of Development

The next recommendation is to integrate evaluation into all
phases of development. This provides continuous user
influence on the development process and improves the
probability of a useful, usable product. Early phases of
evaluation should concentrate on task understanding.
Subsequently, focus should move to strategies for
supporting tasks. Then, the focus should move to effective
implementation of those strategies. When a new area of
functionality is added, then this progression of focus from
understanding, usefulness, and usability should begin
again.

Make Tools Independently Useful

Making tools independently useful is a special case of the
first recommendation. For instance, we made the WorkIT
workspace tool available first. It is a fully functional tool
that does not require any other tool to be useful. Flight
controllers are now using WorkIT in its standalone form
and are providing feedback on how to improve it. We are
in the process of making D-Logger available as an
independently functioning tool. Later, users who care to
use both can take advantage of integrating the two tools.
However, users are not required to have both in order to
find either tool useful. This makes it easier for users to add
the tool to their suite of support software.

Make Tool Interoperate

Making tools interoperate helps to support the users’
overall tasks. This helps users to perform a task once
without having to enter the same information multiple
times. Ideally, it should help users concentrate on the their
tasks without having to concentrate on managing their
tools. For instance, a normal function of WorkIT is to close
out an issue when the analysis has been completed. If
WorkIT allows the user to record the closing of an issue in
the console log without any additional effort, then we have

made the flight controller’s job easier.

Allow Users to Customize Their Software Tools

Finally, we recommend that users have the ability to
customize their tools. Many features of D-Logger provide
very specific support that applies to only one of about 14
disciplines of flight controllers. However, we have taken
special care to allow customization of those parts of the
support that are specific to one discipline. For instance, the
Quick menu is currently loaded with items that are
frequently entered by BMEs. However, a very short session
with the admin functions can change the Quick menu items
to those that will be useful to another discipline. This not
only allows the tool to be tailored to each discipline, it also
allows each discipline to tailor the tool to their changing
requirements. This allows the tool to remain useful in the
face of changes in what is required of the users over time.

Acknowledgement

This work is funded by the Human Centered Computing
area of the Intelligent Systems Program managed by
NASA. The authors want to thank Mike Shafto for his
constant support of this interdisciplinary work. [Jane I
need help here.—CT]

References

[1] International Space Station Flight Controller
Operations Handbook (JSC-29229, rev DCN006).
(October 2003). Houston: Johnson Space Center.

[2] Operations Concept Definition for the Human
Exploration of Mars (DV-00-014) 2d ed., May 17,
2000. Houston: Johnson Space Center.

[3] Wright, Peter; Bob Fields; & Michael Harrison.
(2000). Analysing Human-Computer Interaction as
Distributed Cognition: The Resources Model.
Human Computer Interaction 15(1):1-42.

 [4] Zhang, J. (1996). A Representational Analysis
of Relational Information Displays. International
Journal of Human-Computer Studies, Vol. 45, 59-
74.

 [5] J.T. Malin; Johnson, K.; Molin, A.;
Thronesbery, C.; & Schreckenghost, D. (Mar,
2002). Integrated Tools for Mission Operations
Teams and Software Agents, IEEE Aerospace
Conference.

9

DRAFT
[6] Malin, J.T.; L. Hicks; D. Overland; C.G.

Thronesbery; K. Christoffersen; & R. Chow.
(February, 2002). Creating a Team Archive during
Fast-Pasced Anomaly Response Activities in Space
Shuttle Missions. NASA Technical Report
(NASA/TP-2002-210776). Houston: NASA Johnson
Space Center.

[7] Martin, C.; D. Schreckenghost; P. Bonasso; D.
Kortenkamp; T. Milam; & C. Thronesbery. (2003,
March). Aiding Collaboration among Humans and
Complex Software Agents. AAAI Spring
Symposium. Workshop on Human Interaction with
Autonomous Systems in Complex Environments.
AAAI Spring Symposium.

[8] Schreckenghost, D., Martin, C., and Thronesbery,
C. (2002). Specifying organizational policies and
individual preferences for human-software
interaction. Proceedings of AAAI 2002 Fall
Symposium Workshop on Etiquette for Human-
Computer Work. November 2002, (North
Falmouth, MA).

[9] Boehm, B. (1988, May). "The Spiral Model of
Software Development and Enhancement," IEEE
Computer, 21(5), pp.61-72.

[10] Thronesbery, C.G., & J. Malin. (1998, July). Field
Guide for Designing Interaction with Intelligent
Systems. NASA Technical Memorandum, NASA
TM-1998-208470.

[11] Lewis, Clayton; & John Rieman. (1993). Task-
Centered User Interface Design: A Practical
Introduction. An online book.
http://hcibib.org/tcuid/tcuid.pdf

[12] Woods, D., Patterson, E., Corban, J., Watts,
J.(1996). Bridging the gap between user-centered
intentions and actual design practice. Proceedings of
the Human Factors and Ergonomics Society 40th
Annual Meeting. Philadelphia, PA.

[131] Harper, B., Slaughter, L., & Norman, K.
(1997, November). Questionnaire administration via
the WWW: A validation and reliability study for a
user satisfaction questionnaire. Paper presented at
WebNet 97, Association for the Advancement of
Computing in Education, Toronto, Canada.
http://www.lap.umd.edu/QUIS/publications/harper1997.
pdf

[14] Norman, Don; & Stephen Draper. (1986). User

Centered System Design. Hillsdale, NJ: Lawrence
Earlbaum..

[15] Beyer, H.; & Holtzblatt, K. (1999). Contextual
Design. Interactions, vol 6.1, 32-42.

[16] Wixon, D.; & J. Ramey (Eds.) (1996). Field
Methods Casebook for Software Design. New York:
John Wiley & Sons.

Biography

Carroll
Thronesbery…………………… ………………….

10

DRAFT

A Data-Based Console Logger for Mission Operations Team
Coordination

Carroll Thronesbery, Jane T. Malin, Kenneth Jenks, David Overland, Patrick Oliver, Jiajie
Zhang, Yang Gong, Tao Zhang

Abstract—Concepts and prototypes are discussed for a data-based console logger (D-
Logger) to meet new challenges for coordination among flight controllers arising from
new exploration mission concepts. The challenges include communication delays,
increased crew autonomy, multiple concurrent missions, reduced-size flight support teams
that include multidisciplinary flight controllers during quiescent periods, and migrating
some flight support activities to flight controller offices. A spiral development approach
has been adopted, making simple but useful functions available early and adding more
extensive support later. Evaluations have guided the development of the D-Logger from
the beginning and continue to provide valuable user influence about upcoming
requirements. D-Logger is part of a suite of tools designed to support future operations
personnel and crew. While these tools can be used independently, when used together,
they provide yet another level of support by interacting with one another.
Recommendations are offered for the development of similar projects.

