

#### Issues in Shuttle System Instrumentation

#### George James

#### NASA-JSC/SED/ES2

Technical Manager - Space Shuttle Loads & Dynamics Panel Structures & Dynamics Branch - NASA-JSC

#### And

2004 Structural Engineering Division Representative to the NASA-JSC MEMS & Nanotechnology Initative

11/2/04

ı



Structural Engineering Division

#### **Purpose**

- 1. Customer's perspective on Space Shuttle Return-To-Flight (RTF) Instrumentation.
- 2. Focus on the difficult instrumentation issues.
- 3. Enable a discussion of new technologies (I.e. NANO/MEMS/Small Tech) that could enhance Shuttle instrumentation posture.









## **Ground Capabilities & Constraints**

#### 1. T 0 Umbilical

- Allows vehicle instruments to be monitored and recorded prior to launch.
- Retracts during launch.

#### 2. Launch Complex Instrumentation

- Instruments needed for assessment of Launch Commit Criteria (LCC).
- · Salt-air and launch environments are issues.

#### 3. Drag-On instrumentation

- Instrumentation can be added as needed to the vehicle for non-flight use.
- The current Roll-out Fatigue Testing is a primary example.



T-0 Umbilicals

5



Structural Engineering Division

## **SRB Capabilities & Constraints**







## **SRB Capabilities & Constraints**

- 1. On-board recording is available (1st Stage Only).
  - Chamber pressures and accelerations are recorded.
  - Recording capability may be expanded.
- 2. Systems must survive difficult environments.
  - Launch acoustics, heat, overpressure.
  - Recovery water impact and immersion.
- 3. Must be electrically benign.
  - · Solid Rocket Boosters are always loaded.
  - Hydrazine powered APUs and Booster Separation Motors are also on-board.



NASA

Structural Engineering Division

## **ET Capabilities & Constraints**

- 1. The system is not recovered.
  - · Historically the Orbiter has recorded the data.
  - · Telemetry is typically used now for cameras.
- 2. The environment is dangerous.
  - · Cryogenic temperatures and aerodynamic heating.
  - · Hydrogen gas is potentially present
- 3. Potential debris generation must be reduced.
  - Any external instrumentation must not become a debris source.
  - The local foam insulation must not be weakened and released.



## MPS Capabilities & Constraints



11



Structural Engineering Division

## MPS Capabilities & Constraints

#### 1. The engines are already instrumented.

- · The Orbiter records and transmits the data.
- · Most sensors are for engine performance.

#### 2. The environment is dangerous.

- · Cryogenic temperatures and combustion-induced heating.
- Hydrogen and Oxygen gas are potentially present.

#### 3. The environment is highly dynamic.

- · Acoustics, dynamics, and thermal shocks are all issues.
- · The resulting environment is highly complex.



## Cargo Integration Capabilities & Constraints





13

NASA

Structural Engineering Division

## Cargo Integration Capabilities & Constraints

- 1. The system is always changing.
  - Payloads change from flight-to-flight and can interact significantly.
  - · The dynamic environment and response are therefore variable.
- 2. There are limited electrical feeds to cross the Orbiter interface.
  - The MADS system instruments the longeron on OV-103 & OV-102.
  - SAAMD, WB-SAAMD, Micro-TAU, and Wide-Band Micro-TAU are stand-alone units.
- 3. Time-synchronization is needed.
  - Multiple systems make this nearly-impossible today.
  - Mix of permanent and stand-alone systems.

Stand-Alone Acceleration Monitoring Device (SAAMD)





### **Orbiter Capabilities & Constraints**



13



Structural Engineering Division

## **Orbiter Capabilities & Constraints**

- 1. The Orbiters are self-contained systems.
  - · Each vehicle has power and telemetry.
    - Each vehicle has a (Modular Auxiliary Data System) MADS recorder.
- 2. Sensors are difficult to install.
  - Tile replacement and substructure access (nose, tail) is an issue.
  - · Significant engineering support for installation, wiring, certification.
- 3. MADS System is difficult to change.
  - · Specific sensors types/sampling rates.
  - · Analog recording no on-orbit play-back





## **Shuttle System Overview - Orbiters**

#### Table of MADS Channels by Orbiter

| Sensor<br>Type             | Columbia<br>OV-102 | Discovery<br>OV-103 | Atlantis<br>OV-104 | Endeavor<br>OV-105 |
|----------------------------|--------------------|---------------------|--------------------|--------------------|
| Pressure                   | 249                | 64                  | (2)                | 1                  |
| Strain                     | 373                | 27                  | 14                 | 17                 |
| Temperature                | 96                 | 5                   | 22                 | 9                  |
| Accel/Vib                  | 22                 | 54                  | 3                  | 18                 |
| Other                      | 11                 | 10                  | 7 <u>4</u> 2       | 40                 |
| Total<br>(Excluding Other) | 740                | 150                 | 39                 | 45                 |

17



Structural Engineering Division

# Shuttle System Overview – ET,SRB's, MLP

## Instrumentation by Element

- ET None
- SRB's
  - Low Sample Rate Chamber Pressure
  - Accelerometers
- MLP 5 Microphones





#### Shuttle Instrumentation Issue: Number of Requested Sensors

- Original VHMS Request from Loads 881 Channels
- Original RTF Request from Loads 383 Channels
- Removing Pre-Approved Channels 230 Channels
- Program Agreed to Consider 206
- Maximum That Elements Can Support on STS-114 44
- Maximum That Elements Can Support on any of the first six missions – 178
- Possible Solution Cheap MEMS Sensors

19



#### Structural Engineering Division

## Instrumentation Issue: Manned Spaceflight Certification

- Problem Certification is costly
  - Environmental testing is required
  - Paper trail for each sensor
  - Materials must be approved
  - Batteries must be approved
  - Acceptance testing is required
  - All other safety issues must be addressed
- Possible Solution Lower the size, weight, and power



### Instrumentation Issue: Integration Engineering

- Problem Integrating a sensor on the Shuttle is costly
  - Attach hardware must be designed and built
  - Wiring runs must be designed and built
  - Drawings must be produced
  - Installation must be planned in the flow
  - Maintenance must be planned and performed



## Possible Solution – Small wireless systems

- Already flying wireless units on the Shuttle
- Already flying units small enough for adhesive mounting

21



Structural Engineering Division

## Instrumentation Issue: Large Dynamic Range Needed

- Problem The Shuttle sees a wide range of excitation
- Launch, Hi-Q, and Staging have extremely high loading
  - Input fades to a lower value before ET separation
  - Some very telling events produce minimal change in a signal
- Possible Solution MEMS-based sensors
  - MEMS-based sensors can have an extremely high dynamic range
  - Ultra-small size keeps the sensor resonances very high





## Instrumentation Issue: Time Synchronization Needed

- Problem Multiple sensor systems cannot be synchronized
  - Looking for validation of system level models
  - Looking for system-level response
  - Looking for system-level anomalies
  - Looking for system-level forcing functions
  - System-level means that time synchronization is important
- Possible Solution Is there one?
  - There is no near-term solution
  - An advanced Vehicle Health Monitoring System might be capable

23



#### Structural Engineering Division

### Instrumentation Issue: Obtaining SRB Chamber Pressures

- · Problem Internal chamber pressures are difficult to obtain
  - Need chamber pressures at more than one location
  - The SRB's dominate everything during first stage flight
  - Environment is extremely harsh
  - No desire to create additional holes in case
- · Is there a solution?





### Instrumentation Issue: Recording ET Data

- Problem The ET has no data recorder
  - The ET is expendable
  - The ET has no power source
  - The ET has a couple of antenna, but they are dedicated to video
- Near Term Solution Record the data on the SRB's
  - Additional recorders can be flown on the SRB's
  - The SRB's are recovered
  - Limited data and recording time
- Long Term Solution Provide the ET a stand-alone system
  - A data system from an Atlas rocket can be used
  - Must be man-rated and certified
  - Will take up to two years to certify and implement



Atlas V





# Instrumentation Issue: Internal ET Sensors Needed in Small Area

- Problem The LH2 Tank/Intertank Ring Is a Tight Fit
  - The forward Orbiter attach is on the Lowest Intertank Ring
  - This ring comes to a knife edge at the Liquid Hydrogen dome
  - An internal stiffener further crowds the area
  - Cryogenic temperatures exist
  - Acceleration, vibration
  - Sensors can be mounted before assembly if they are small enough

Knife Edge

Possible Solution:
 MEMS-size sensors

- Allows internal monitoring
- Avoids skin panel effects

27

NASA

Structural Engineering Division

## Instrumentation Issue: External ET Sensors can be a Debris Hazard

- Problem Several ET Sensors must be mounted externally
  - Up to six ET's are covered in TPS\* (Foam)
  - External sensors will require removing and replacing large sections
  - External sensors will also be a debris hazard
  - Later ET's have bare skin
  - Bare-Skin applications will see cryogenic temperatures
  - The ET experiences significant cryo-shrinkage
  - Pressure, microphone, vibration, temperature, strain
- Possible Solution MEMS-size sensors
  - Keep the size below the debris danger level
  - Smart Dust Concepts

\* TPS - Thermal Protection System







### Instrumentation Issue: Orbiter Wiring

- Problem Wiring the Orbiter is difficult
  - OV-103 has some wiring in place

- OV-104 & OV-105 have little wiring in place

Wiring in OV-102 Wing Box







31



#### Structural Engineering Division

#### Instrumentation Issue: Strut Strain Gauge Calibration

Aft ET/Orb Struts

- Problem Strain gauges on attach struts require calibration
- SRB-ET struts can be performed by the vendor
  - SRB-ET struts do not have major TPS concerns
  - Orbiter-ET struts have to be performed on the vehicle
  - The calibration frame may be unavailable
  - TPS-covered struts are an issue



- Possible Solution Fiber Optic Sensor systems
  - May not help calibration issue
  - May help installation and recording issue









## Instrumentation Issue: Orbiter TPS Change-Out

- Problem Some Sensors require special Orbiter tiles
  - Pressure, temperature, and microphones on external surfaces
  - Significant engineering and installation
- Possible Solution Small sacrificial sensors, smart dust





33



#### Structural Engineering Division

## **Issues Summary**

- Issues:
  - Number of Sensors
  - Certification
  - Integration Engineering
  - Dynamic Range
  - Time Synchronization
  - SRB Chamber Pressures
  - No ET Recorder
  - Internal ET Sensors in a Small Area
  - External ET Debris Hazard
  - ET LOX Feedline Bracket
  - Orbiter Wiring
  - Orbiter TPS Change-Out
  - Strut Strain Gauge Calibration







#### Conclusions

- 1. Instrumenting the Shuttle system will be a challenge.
- 2. New Technologies Should be considered where appropriate.
- Wireless Sensors, Smart Dust, Fiber-Optic Strain Gauges, MEMSbased sensors are possible technologies.