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Aligned and Unaligned Coherence:

A New Diagnostic Tool

The study of combustion noise from turbofan engines has become important again as the

noise from other sources like the fan and jet are reduced. A method has been developed to

help identify combustion noise spectra using an aligned and unaligned coherence technique.

When used with the well known 3 signal coherent power method and coherent power

method it provides new information by separating tonal information from random process

information. Examples are presented showing the underlying tonal structure which is

buried under broadband noise and jet noise. The method is applied to data from a Pratt

and Whitney PW4098 turbofan engine.

Nomenclature

δ(f) the Dirac δ- function
ˆX(f) Expected value of the Fourier transform of x(t)

Ŷ (f) Expected value of the Fourier transform of y(t)
τ integration variable
a, b amplitude factors
Be resolution bandwidth,Hz.,Be = 1/Td = r/NP = 11.71875Hz
co turbofan engine to microphone sound propagation speed, m.

sec.
D delay, sec.
d time delay expressed as units of the sequence
E[ ] expected value of [ ]
EI confidence interval
f frequency, Hz
fc upper frequency limit,fc = 1/2∆t = r/2, Hz. (24000 Hz.)
FN the Fejer kernel
Gxx(f) auto power spectral density function defined for non-negative frequencies only (one-sided)
Gxy(f) cross power spectral density function defined for non-negative frequencies only (one-sided)
h(τ) weighting function
H(f) transfer function frequency response
h11 auto-spectrum
h12 cross-spectrum
Ik
xx(f, T ) two sided auto-spectra periodogram, E[Sxx(f, T, k)]

Ik
xy(f, T ) two sided cross-spectra periodogram, E[Sxy(f, T, k)]

j positive imaginary square root of −1,
√
−1

Jk
xx(f, T ) one sided auto-spectra periodogram, E[Gxx(f, T, k)]

Jk
xy(f, T ) one sided cross-spectra periodogram, E[Gxy(f, T, k)]

Ly number of frequencies, fc/∆f = NP/2 ( 2048 )
M block size in points
N total number of points in discrete sequence is 2N − 1
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N1CORR corrected rotor speed, rpm
n1, n2, and n3 independent stationary Gaussian random time series
nd number of disjoint (independent) segments used in spectra estimates of PW4098 test data,nd =

BeTtotal=234
ns number of segments/blocks
NP segment length, number of data points per segment (4096)
PI probability confidence interval, percent
R distance from turbofan engine to microphone, m.
r sample rate,samples/sec. (48000)
R̂xy(τ) estimated cross-correlation
Rxy(τ) cross-correlation
R12(s) cross-covariance function
Rǫǫ(s) auto-covariance function for ǫt

Rxy cross-correlation function
Ryy auto-correlation function
s summation index for discrete spectra
sF (t) output of the system
Sxy(f) power spectral density function defined for both positive and negative frequencies (Two-Sided)
t time, sec.
Ttotal total record length,sec.(≈ 20 sec.)

Td(i) record length of segment i ,Ttotal

nd
, NP

r ,sec. Td = NP
r = 4096/48000 = 0.08533 sec.

u1(t), u2(t), and u3(t) core noise signals
WsF sF

(f) coherent output power spectral function
w(τ weighting function also known as a window function
W (f) Fourier transform of window function w(t)
x(t) signal x time history
xn(t), yn(t) and zn(t) noise time series
y1(t), y2(t), and y3(t) external microphone signals
y(t) signal y time history
ℓ(t), m(t), and n(t) uncorrelated noise signal from the jet

Subscripts

i running segment index
x signal x
y signal y

Symbols

α noise time series mixing parameter
∆f frquency step, 1/Td,Hz. (11.718)
∆t sampling interval,1/r (1/48000),sec.
γy1y2

(f) complex coherence function
γ̂2

rkrℓ
(f) estimated magnitude squared coherence (MSC) function

γ2
xnyn

(f) magnitude squared coherence (MSC) function of noise,γ2
xnyn

γ2
xy(f) magnitude squared coherence (MSC) function
ˆ[ ] estimate of [ ]

ω angular frequenchy, 2πf
τ time displacement, sec.
τ1 propagation time delay
τo turbofan engine to microphone propagation time delay, R

co
,sec.,0.1317=6323/48000

ℓ(t),m(t), and n(t) noise time series

Superscripts
∗ complex conjugate
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I. Introduction

A. Motivation

A key priority of the National Aeronautics and Space Administration (NASA) Aeronautics program is to
achieve a noise reduction of 20 dB relative to 1997 state of the art noise reduction technology. Consequently,
the objective of most outdoor aircraft turbofan engine noise test programs that NASA participates in is
to evaluate the noise measurements to identify dominant sources. This report discusses new core noise
diagnostic procedures developed to study correlated turbo machinery noise and correlated combustion noise.

Figure 1. Pratt & Whitney test stand C11, West Palm Beach Florida, with PW4098 engine and attached
acoustic inflow control device also with and without aft acoustic barrier walls for EVNRC Phase 2 tests.

Flight data generally indicate more noise than would be expected from the theoretical predictions
or model simulation tests. It is possible that internal noise sources (i.e. core noise) might become significant
contributors to overall turbofan engine noise during takeoff or approach when the fan and jet noise are reduced
because of forward velocity effects. Core noise consists of noise associated with combustor, compressor noise,
and turbine noise. This paper discusses an extension of the three signal coherence technique to study
compressor and turbine noise and an extension of the coherent output power technique to study combustor
noise.

Figure 2. Kulite hardware mounted on PW4098
turbofan engine at Pratt & Whitney test stand C11,
West Palm Beach Florida for EVNRC Phase 2 tests.

In the analysis of aircraft acoustic core noise
sources presented herein the measured signal is treated
as a mixture of random data from stationary processes
composed of time series data from ”coherent” random
processes, ”incoherent” random processes and tones
which are due to periodic/almost periodic determinis-
tic processes. More generally, this is a situation with a
time series having a mixed spectrum that is composed
of contiuous and discrete parts. Many approaches to
decompose this type of spectra into components have
been tried. Early attempts are reviewed by Priest-
ley.1 More recent attempts use solve the problem by
estimating parameters of an autoregressive (AR) pro-
cess or some other process ( Sengupta and Kay,2 Kay
and Nagesha3, 4 Ciuciu, Idier, and Giovannelli5). The
aligned and unaligned coherence method provide means
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to separate this mixture so that noise components can
be related to turbofan engine sources without a param-
eter estimation procedure.

Table 1. Spectral Estimate Parameters

Parameter value

Segment/block length i.e. Data points per segment/block, NP 4096

Sample rate, r, samples/second 48,000

Segment length, Td = NP/r, seconds 0.08533

Sampling interval, ∆t = 1/r , seconds 2.0833× 10−5

Frequency step, ∆f = 1/Td, Hz 11.718

Upper frequency limit, fc = 1/2∆t = r/2,Hz 24000

number of frequencies, Ly = fc/∆f = NP/2 2048

Time delay, τ = 6323/48000,seconds 0.1317

number of independent segments/blocks 234

overlap 0.50

Sample length,sec. 20

Figure 3. Acoustic arena and microphone array at
Pratt & Whitney test stand C11, West Palm Beach
Florida for EVNRC Phase 2 tests.

The data analyzed is from a Pratt & Whit-
ney PW4098 turbofan engine. The test was con-
ducted as part of the NASA Engine Validation of
Noise Reduction Concepts (EVNRC) Program in
2001. Two Kulite pressure transducers are mounted
in the combustor and four far field microphone are
used. The Kulites failed during the test. Con-
sequently, a sensor validation analysis was con-
ducted based on the aligned and unaligned coher-
ence method and is reported in Miles.6The PW4098
combustor Kulite cross-spectra amplitude and phase
plots resembled the cross-spectra used in the acous-
tic modal analysis of a YF102 combustor installed in
a ducted test rig which was conducted by Karchmer
Ref.7 This suggeted that the observed structure in
the coherence was due to a modal pattern. Con-
sequently, using a model of the physics of pressure
waves propagating in annular ducts as discussed by
Tyler and Sofrin in a treatment of axial flow com-
pressor noise8 a procedure was developed that uses
the available Kulite data to obtain a descriptions
of the combustion modes in the annular combus-
tor. Results from this work were used to select the
signals to be analyzed and to interpret the results
in an attempt to identify combustion noise in the
far field data. Work was then done that showed
that by comparing aligned coherent power spectra
calculated using the estimated time delay with the
un-aligned coherent power spectra calculated with
no time delay one can identify combustion noise. In
addition, it was shown that conventional statistical
methods could be used to detect correlated combus-

tion noise and create a one parameter measure of its presence or absence. It was shown that correlated
combustion noise is only a small part of the total noise and that the plane wave combustion mode is appar-
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ent at low engine speeds. The aligned and unaligned coherence method used in this work is discussed herein.
Results are illustrated with examples from studies made of the Pratt and Whitney P&W 4098 turbofan
engine data.

A review of previous work, the formulation of the three signal technique, and the formulation of the
coherent power method are discussed in the appendix.
In the next section the experiment is discussed then the new diagnostic procedure is discussed.

II. Experiment

To demonstrate the usefulness of the proposed aligned and unaligned coherence method, Kulite pressure
measurements made in a Pratt & Whitney PW4098 combustor will be used. The measurements were made
in a study of aircraft turbofan engine core noise conducted as part of the NASA Engine Validation of Noise
Reduction Concepts (EVNRC) Program. One Kulite was at 127 degrees and the other was at 337 degrees.
Kulite angles are measured clockwise from top dead center viewed from the rear or exhaust section of the
engine.
The spectral estimate parameters are shown in table 1 on the preceding page The signal processing procedure
used is discussed in the next section.

The test stand is shown in Figure 1 on page 3. The Kulites inside water cooled jackets mounted in
the combustor are shown in Figure 2 on page 3. The angular placement of the far field microphones on a
150 foot radius is shown in Figure 3 on the page before. This analysis uses the microphones at 100o, 110o,
120o and 130o.

III. Core Noise Study System Concepts

In this paper signal I discuss signal analysis calculations which are well defined for deterministic
signals. However, they are only defined for a limited classes of random signals. To simplify the discussion
I will assume the random signals under discussion are from a 0 mean Gaussian stocahstic process. I will
assume the process is ergodic so that the time-averaged statistics are the same as the ensemble-averaged
statistics. I will assume the process is strict-sense stationary so that the parameters of the probability model
of the process are time invariant. A discussion of a larger class of stochastic processes is given by Vaseghi9

(Chapter 3), Grimmett and Stirzaker,10 and Parzen.11 The signal analysis calculations discussed herein are
calculations of the auto-spectrum and cross-spectrum. A discussion of various methods of calculating spectra
are discussed by Vaseghi9 (Chapter 9) and Stearns and Hush.12

The procedure discussed herein involes the following items

• The estimated magnitude squared coherence (MSC) function ,γ̂2
xy(f). First, the MSC function will be

discussed. Then, the estimation procedure will be discussed.

The magnitude squared coherence (MSC) function, γ2
xy(f) calculated using the complex cross-spectral

density, Gxy(f), and two auto-spectral densities at frequency f Gxx(f) and Gyy(f) is defined by:

γ2
xy(f) =

|Gxy(f)|2
Gxx(f)Gyy(f)

(1)

The MSC function is discussed by Bendat and Piersol,13–15 Carter,16 Halliday17 et. al. and Jenkins
and Watts18 where it is called the squared coherency.

The MSC function estimation procedure used herein are based on signal processing algorithms devel-
oped by Stearns and David.19 They refer to their spectral-estimation code as using a periodgram aver-
aging method. The algorithm is also referred to a being based on Welch’s method (Welch,20McCellan21)
and as a weighted overlapped segment averaging (WOSA) method (Carter Knapp and Nuttall,22 Carter
and Nuttall23, 24 ,Nuttall and Carter25). The term ”WOSA” will be used in a generic sense herein rather
than refer to a spcific code implementation. In the WOSA method, the finite data records of the two
signals x(t) and y(t) are divided into ns (possibly) overlapping segments of length Td; each segment is
multiplied by a smooth weighting window, w(τ), the cross-spectra density, and the auto-spectal densi-
ties are computed using a fast Fourier transform for each segment, and then the averaged cross-spectra
density and the auto-spectral densities are obtained from the ns segment. The estimated MSC,γ̂2

xy(f)
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is the estimated cross-spectral density normalized by the estimated auto-spectral densities. The MSC
and its estimate are bounded by zero and unity.

The estimated MSC function calculated using nd weighted Fourier transforms ˆX(f)i and ˆY (f)i based
on a segment record length Td is defined by

w(τ) =

(

1 − |τ |
Td

)

x̂(τ) = w(τ)x(τ)

ŷ(τ) = w(τ)y(τ)

X̂i(f) =

∫ Td(i)

0

x̂(τ) exp (−j2πfτ)dτ

Ŷi(f) =

∫ Td(i)

0

ŷ(τ) exp (−j2πfτ)dτ

γ̂2
xy(f) =

|∑ns

i=1 X̂i(f)Ŷ ∗
i (f)|2

∑ns

i=1 X̂i(f)X̂∗
i (f)

∑ns

i=1 Ŷi(f)Ŷ ∗
i (f)

(2)

Here,* denotes the complex conjugate. In the procedure, X̂i(f) and Ŷi(f) are the fast Fourier transform
of the ith weighted segment of the process x(t) and y(t).

The WOSA procedure is advocated by Carter and Nuttall23–25 since it gives stability and minimizes
the impact of window sidelobes. Expressions for the mean and variance of WOSA spectral estimators
are developed by Percival and Walden.26 Carter, Knapp and Nuttall22 empirically investigated the
effect of overlap, as opposed to no overlap on coherence estimation using the WOSA method. Results
show a decrease in bias and variance to the estimator with increasing overlap and it is suggested that
50-percent overlap is highly desirable when cosine (Hanning) weighting is used. Early implementations
of the WOSA method are described by Welch,20 Bingham, Godfrey, and Tukey,27 and Hinich and
Clay.28 An extension of the WOSA method is discussed by Nuttall and Carter.29 A survey of many
power spectra estimation procedures starting with the periodogram is given by Brillinger30 ( Chapter
5 ). A review and comparison of many spectrum analysis techniques is given by Kay and Marple.31

To test, use, and validate the WOSA method certain assumptions are made about the time series and
the procedure (Scannell and Carter,32, 33 Nuttall and Carter,25Carter,16 Carter,34Kay and Marple.31

Some of the assumptions that characterize the method are viewed as limitations by Kay and Marple.31

1. In testing the method one uses time sequences which are from stochastic processes and are assumed
to be 0 mean, jointly stationary Gaussian stochastic processes. This assumptions are made to
make the mathematical investigation of stability tractable.

2. the data segments are independent.

3. the data segments are multiplied by a smooth weighting window to reduce sidelobe leakage

4. each data segment is sufficiently long to ensure adequate spectral frequency resolution and reduce
the bias.

5. the number of the data segments,ns, is sufficient to make the estimator achieve reliable statistical
performance or one can state this as are requirement that large observation-time,TTotal, resolution-
bandwidth,Be products are needed. This is due to the fact that for zero overlap BeTTotal = ns

where Be = ∆f = 1/Td.

These assumptions have been tested to see how sensitive the WOSA method is to them (Carter34, 35).
Carter34 states the results are relatively insensitive to the Gaussian assumption. Consequently, these
assumptions do not limit from to applying the WOSA method to turbofan noise where the measured
process has deterministic components embedded in random noise. For example, the spectral density
estimated is directly proportional to the power for a sinusoidal time process.

Two additional characteristics of the MSC estimation process is its sensitivity to the alignment or
translation of the time series (Carter and Knapp35 and the inability to observe tones mixed with
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broadband noise in the spectrum. These points will be discussed later. One of the objective of this
paper is to point out how deliberate mis-alignment of the time series can enable one to observe tones
in the spectrum.

• The spectrum based on the three signal magnitude coherence function (Appendix B on page 33 )

Gu1u1
(f) = Gy1y1

(f)
|γy1y2

(f)||γy1y3
(f)|

|γy2y3
(f)| (3)

• The coherent output power function ( Appendix C on page 35 )

WsF sF
(f) = γ2

xy(f)Gyy(f) (4)

IV. Traditional Viewpoint

First the traditional view on measuring coherence will be presented to pinpoint the ”blind spots”. A good
place to start is a statement about the proper analysis procedures to obtain a coherence measurement as
stated by Piersol36 :

1. The instrumentation is calibrated to eliminate relative phase errors in the measured signals.

2. The received signals are aligned as required to eliminate time delay bias errors in the coherence calcu-
lation.

3. The number of averages nd is sufficiently large to suppress small sample bias errors in the coherence
calculations.

V. Relationship or Randomness

At this point it must be mentioned that the problem of interest concerns situations where the
measured coherence spectrum has an orderly structure but most of the coherence values are less than 0.1.
A measurement of the coherence of two independent random time series might also have a spectrum where
most of the values are less than 0.1. Consequently, the paper discusses a method to decide if a given
small coherence represents a relationship or randomness. The coherence between the Kulite sensors in the
combustor and the far field microphones is small since the P&W4098 combustor was designed to reduce
correlated noise. It has many fuel nozzles each of which acts as an independent noise source. Since the
coherence of interest are small and positive in this paper they are plotted on a logarithmic scale rather than
a linear scale. The tools used to answer the question are statistical theory, simulation and the aligned and
unaligned coherence technique.

VI. Statistical Estimates of Coherence

A. Bias, Variance, and Confidence Interval

It is common to evaluate the significance of the measured magnitude squared coherence (MSC) function
of the stochastic processes ( assumed to be 0 mean, jointly stationary Gaussian stochastic processes) by
computing statistical estimates of the bias, B, variance, V , and confidence interval, EI . Definitions for these
quantities are given in statistical theory references such as Bronwlee37 and examples are usually given for
simple distribution functions. The statistics of the MSC function and its distribution function are not simple.
They are akin to those found in the study of multivariate statistical analysis or linear statistical models
which involve Wishart probability density distributions. (Anderson,38Graybill,39 Cramer40 ). However,
statistical theories involving the MSC are even more complicated since use is made of a complex Wishart
distribution (Goodman41 ). In obtaining estimates of the bias, B, variance, V , and confidence interval, EI ,
of |γ̂|2 one uses the conditional probability of estimated of the MSC, |γ̂|2, given the true MSC, |γ|2 and the
number of independent segments/blocks, ns, used in the spectral estimation procedure. This is expressed as
p(|γ̂|2

∣

∣ ns, |γ̂|2) and will be referred to herein as a density function. Consequently,
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(b) Logorithmic scale.

Figure 4. Confidence interval for coherence function nd = 600.

B = E[|γ̂|2
∣

∣ ns, |γ|2] − |γ|2 (5)

V = E[|γ̂|4
∣

∣ ns, |γ|2] − E2[|γ̂|2
∣

∣ ns, |γ|2] (6)

The confidence interval EI can be calculated using the ”equal tail areas” interval approch. We need to find

a and b, a ≤ |γ̂|
2
≤ b so α = .05 to have the 95 percent confidence interval for |γ̂|2 using the relationship

∫ a

0

p(|γ̂|2
∣

∣ ns, |γ|2)d|γ̂|2 =

∫ 1

b

p(|γ̂|2
∣

∣ ns, |γ|2)d|γ̂|2 =
α

2
(7)

Assuming the Gaussian random processes have been divided into ns independent segments an an-
alytical expression for the conditional probability density function of |γ̂| when |γ|2 and ns are known,
p(|γ̂|

∣

∣ ns, |γ|2), was first given by Goodman.41 It is also given by Hannan42 (page 253) for slightly less
restrictive conditions that include the properties of Gaussian stochastic processes. The form given can writ-
ten in terms of a hypergeometric function using Eq. 15.1.1 of Oberhettinger.43 Hannan42 points out that
the statistics do not hold at the zeroth and folding frequencies ( The first and last points in the spectrum).
This conditional probability density function for |γ̂| must be converted to one for |γ̂|2 using the standard
transformation of probability functions (Carter,22 Brownlee37).

g = |γ̂|2

y = |γ̂|

p(|γ̂|2
∣

∣ ns, |γ|2) =
p(|γ̂|

∣

∣ ns, |γ|2)
dg
dy

=
1

2|γ̂|p(|γ̂|
∣

∣ ns, |γ|2)

= (ns − 1)(1 − |γ|2)ns(1 − |γ̂|2)ns−2
2F1(ns, ns; 1; |γ|2|γ̂|2) 0 ≤ |γ|2|γ̂|2 < 1 (8)

where 2F1 is the hypergeometric function (Eq. 15.1.1 of Oberhettinger43)
This equation for p(|γ̂|2

∣

∣ ns, |γ|2) is also given by Brillinger30 (Eq. 8.2.55) where we take r = 1 in his
equation Eq. 8.2.55.
Various forms of this probability density and the cumulative distribution function are tabulated by Carter.16, 22

In addition, statistical estimates of coherence bias and coherence variance based on Eq. 8 are discussed by
Carter.16, 22

NASA/TM—2006-214112 8



A significant limitation to the application of the MSC estimate is that for coherence values smaller
than some fairly large value (like 0.1) and for large sample sizes the confidence interval is not available. For
values greater than some value (like 0.1) the confidence interval is only given approximately ( Bendat and
Piersol,13–15 Brillinger,30 Carter16, 22 ) A procedure calculating the exact confidence interval is discussed by
Wang et al.44, 45 Consequently, if one calculates the upper and lower confidence interval one can determine
the significance of the estimation and the significance of the differences of MSC values at different frequencies.
Confidence limits are shown in Figure 4 on the preceding page for nd = 600. The confidence limits are shown
on linear plot as they are usually shown (Scannell33) in Fig. 4a. The confidence limits are plotted in a more
realistic manner in Fig. 4b on a logarithmic plot which demonstrates that for a given value of ns the
confidence interval becomes larger as the value of |γ|2 is reduced.

B. Coherence of independent processes

In considering the MSC of two stationary Gaussian random processes it is often stated that the MSC will be
zero when the processes are independent and do not have a linear time-invariant relationship. However, the
estimated MSC is never zero but has some numerical value. The only statement that can be made is that
if the true MSC value is zero, |γ| = 0, the expected value is in a certain confidence interval with a certain
probability. The threshold value of this confidence interval will be called EI = γ̂2

xnyn
.

The conditional probability of the estimated value of the MSC, |γ̂|2, given the true MSC is zero,
|γ|2 = 0 and the number of independent segments/blocks, ns, can be calculated from Eq. 8 as

p(|γ̂|2
∣

∣ ns, |γ|2 = 0) = (ns − 1)(1 − |γ̂|2)ns−2 (9)

This equation is given by Brillinger30 as Eq. 8.2.55.
Then the probability, PI that |γ̂|2 is in the interval 0 < |γ̂|2 < EI

Ĉ = |γ̂|2

PI =

∫ EI

0

p(|γ̂|2
∣

∣ ns, |γ|2 = 0)d|γ̂|2

=

∫ EI

0

(ns − 1)(1 − Ĉ)ns−2dĈ

= −(1 − Ĉ)ns−1

∣

∣

∣

∣

∣

EI

0

= −(1 − EI)
ns−1 + 1 (10)

Thus the cumulative distribution derived using he probability density function of the coherence derived by
Goodman41 has been used to determine a PI -percent confidence interval if the true MSC is zero. This is
given by

γ̂2
xnyn

= EI = 1 − (1 − PI)
1/(ns−1) (11)

where ns is the number of independent segments used in the spectrum calculations and the interval is
between 0 and γ2

xnyn
. This relationship is tabulated in Table 3 for probability values , PI , of 80, 90, 95, and

99 percent. and is shown in figure 6.
This statistical test for independence using Eq. (11) is discussed by Carter16, 34 who proposes using γ2

xnyn

as a threshold value below which coherence estimtes are not presented to a human decision maker looking
at an extensive volume of data collected for brain wave analysis or sonar or radar signal analysis.
This equation is also given by Halliday17 et. al. page 247 and Brillinger30 page 317.
Halliday suggests one should plot the value of γ2

xnyn
calculated from Eq. (11) i.e. under the hypothesis of

independence on each coherence plot. He states that estimated values of coherence lying below this line can
be taken as evidence to indicate that the coherence is zero at that frequency. This opinion is shared by
Nuttall46 who thinks this is the standard result for a true coherence of zero. However, the author thinks it
may indicate that not enough segments/blocks have been used to determine the coherence. One can state
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with more confidence that values above the γ2
xnyn

line are not from two independent stationary random
Gaussian series. Note that this statement is valid independent of the magnitude of γ2

xnyn
.

It is also possible to calculate the bias and variance of |γ̂|2 when |γ|2 = 0 using Eqs (5) (6) and (9).
We have

Ĉ = |γ̂|2

B = E[|γ̂|2
∣

∣ ns, |γ|2 = 0]

=

∫ 1

0

Ĉ(ns − 1)(1 − Ĉ)ns−2dĈ = 1/ns (12)

V = E[|γ̂|4
∣

∣ ns, |γ|2] − E2[|γ̂|2
∣

∣ ns, |γ|2]

=

∫ 1

0

Ĉ2(ns − 1)(1 − Ĉ)ns−2dĈ − 1

n2
s

=
2

ns(ns + 1)
− 1

n2
s

=
ns − 1

n2
s(ns + 1)

(13)

Note that for |γ|2 = 0 the bias, B, is the expected or mean value of |γ̂|2. and that for a large number of
segments/blocks, ns, these results agrees with those given by Carter.16, 22

A reference to this result is made byTukey47 page 32 who states

In dealing with the real-valued measure of coherence, we must recall that wholly incoherent
time series will show an average coherence of 2

m , where the spectrum estimates are worth m
degrees of freedom each.

The degrees of freedom, m, are defined as m = 2BeTTotal = 2ns. Consequently, Tukey states that

E[|γ̂xnyn
|2(f)

∣

∣ ns, |γ|2 = 0] =
1

ns

The fact that Tukey knew this is not surprising since he was the Ph.D thesis advisor of Goodman.

VII. Coherence and Simulation Methods

Many assessments of the validity of the statistical estimates of coherence have been made using
simulations. The probability density function of the coherence derived by Goodman41 was derived for
Gaussian data. Foster and Guinzy48tested this distribution by means of Monte Carlo experiments for validity
and robustness (insensitivity to the Gaussian assumption) and it passed the tests. Coherence function bias
and confidence intervals were studied using Monte Carlo methods by Benignus.49

The probability density function of the coherence derived by Goodman41 does not take into account
the use of overlapping data. Empirical simulation results by Carter, Knapp and Nuttall16, 22show a decrease
in bias and variance of the estimator with increasing overlap and suggest a 50-percent overlap as being highly
desirable.

Furthermore, since the probability density function of the coherence derived by Goodman41 is inde-
pendent of the computer code time series analysis implementation comparing bias and variance simulation
results can provide some confidence in the analysis procedure. Simulations were done for a range of target
coherence values and a range of independent segments/blocks using

xn(t) = n3 + αn1

yn(t) = n3 + αn2 (14)

zn(t) = n3

where n1, n2, and n3 are independent Gaussian random time series.
The time series are selected so that

Gn3n3
= Gn1n1

= Gn2n2
= Gss

Gn1n2
= Gn3n1

= Gn3n2
= 0
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(f, P = 0.95) = 0.005985 and the confidence interval.
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Taking the Fourier transform of xn yields

Xxn
(f) = Xn3

(f) + αXn1
(f) (15)

The spectrum Gxnxn
is then

Gxnxn
= Xxn

(f)X∗
xn

(f) = (Xn3
(f) + αXn1

(f))(Xn3
(f) + αX(n1)(f))∗

= Gn3n3
+ α2Gn1n1

We then also have Gynyn
= Gn3n3

+ α2Gn2n2
and

Gxnxn
= Gn3n3

Gxnzn
= Gn3n3

Gynzn
= Gn3n3

Gznzn
= Gn3n3

Then the target MSC is a function of α given by

|γ|2xnyn
=

|Gxnyn
|2

Gxnxn
Gynyn

=
1

(1 + α2)2
(16)

and

|γ|2xnzn
= |γ|2ynzn

=
1

(1 + α2)
. (17)

These expressions are independent of frequency. A similar approach is used to create target simulations by
Carter, Knapp, and Nuttall22 Eq. (18) and Foster and Guinzy48 Eq. (13). Simulation results using a target
coherence of |γ|2xy = 0.03 are shown in Figure 5 on the page before . The coherence is low so a logarithmic
coherence scale is used. The target coherence is shown by the dashed blue line. The plot shows the estimated
or measured coherence, |γ̂|2xnyn

(f), as red triangles and an estimated or measured noise coherence , |γ̂|2n1n2
(f)

as blue triangles for ns = 500. The upper and lower confidence interval is shown as pink and orange dashed
lines. In addition, the horizontal line γ2

xnyn
(f, P = 0.95) = 0.005985 is shown using black dots. For this

case the estimated noise coherence is less than γ2
xnyn

(f, P = 0.95) and the measured coherence is well above
0.00595. Consequently, the coherence while low is significant.

The results of a great many simulations are shown in figure 6 on the following page where average
MSC values, γ̄2

xy are presented as a function of the number of independent segments/blocks ,ns. Each
simulation resembles the one shown in figure 5 on the page before and is designed for a particular target
value. We use as a measure of convergence to a particular target value

γ̄2
xy =

1

n

n−1
∑

i=0

|γ̂|2xy(fi) (18)

Simulations with a range of target MSC values calculated using Eq. (14) and (15) are shown. The colored
symbols trace each target value. The target values are given in the legend. In addition, simulation results
for the mean value when two independent simulated random Gaussian time histories are used to calculate
|γ̂|2n1n2

(f) are shown as black triangles and identified as γ2
xy = 0 in the legend.

The results show clearly that a coherent pair of signals will have a coherence that resembles the
coherence of random noise if the number of segments/blocks, ns, is too small. For example, for ns = 100 one
would see an indication of MSC = 0.01 but not of MSC = 0.0025. Consequently, the value ns controls not
only the bias and variance of the coherence but also its existence. Consequently, for a given measurement of
coherence using a given value of ns one can say that a coherence may not be observed if there is a P -percent
probability that it is less than γ̂2

xnyn
(f, PI) = EI = 1− (1−PI)

1/(ns−1) (Eq. 11 ). This curve is identified as
y = 1 − 0.05x in the legend box. This curve is shown in the figure as a red line for a 95 percent confidence
interval. In addition, the γ2

xy = 1/ns line is shown as a diagonal black line identified as y = x in the legend.
This line corresponds to the expected or mean value of |γ̄|2xy for |γ|2xy = 0 as given in Eq. (12). This curve
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also corresponds to the one Tukey47 suggested as discussed in the previous section. The estimated mean
value of |γ̂|2n1n2

(f) shown by the black triangles is close to this line However, The 95 percent confidence
interval provides a better number to be larger than when one wishes to identify a small coherence value as
being significant.
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s

γ2 xy

Figure 6. Simulation result summary.

VIII. Aligned and Unaligned Coherence

A. Time delay bias error

One explanation for the time delay bias error starts by considering two measurement points separated by a
distance ∆x. The transfer function between the two measurement points is exp(jk∆x) = exp (j2πf∆x/co)
where k is the wave number, f the frequency, and co the speed of sound. The phase angle is θ = 2πf∆x/co.
For a situation where the cross-spectrum between the two points is calculated Tick50 writes:

Then for increasing f , the phase angle changes at an increasing rate. At some frequency the
cross-spectrum will oscillate sufficiently rapidly that the expected value of the cross-spectrum
estimate will be zero.

In regards to this type of time delay bias error Tukey47 wrote

If we fail to fix ”zero lag” between the two series appropriately, we can almost wholly lose sight
of the actual cross-spectrum (by averaging over narrow frequency bands within which the phase
relation revolves one or more complex revolutions.
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The second explanation puts these vague words about expected value and averaging in a more
mathematical form. The account given should serve as representation of the origin of the time delay bias.
The following discussion follows along the same line of reasoning used by Seybert and Hamilton51 and by
Carter52 but tries to relate the formulation to the average periodogram method of spectral estimation (
Stearns and Hush,12 Vaseghi9 ).

The cross-spectral density Sxy between two stationary random ergodic Gaussian processes x(t) and
y(t) is estimated from a finite length time record, Tk by

Sxy(f, T, k) =
1

T
X(f, T, k)X∗(f, T, k) (19)

For a stochastic process the spectrum Sxy is defined as

Sxy =
lim

T → ∞E[Sxy(f, T, k)] (20)

where E[Sxy(f, T, k)] means the expected value operation is done over the ensemble index k which is record
length, Tk index. However, to be more precise we are using an averaged periodogram procedure. The
periodograms are averaged to produce the spectral estimate. To arrive at the final equation we define the
average of the cross spectral densities.

φ̄xy(f, T ) =
1

K

k
∑

i=1

Sxy(f, T, k) (21)

If the cross-spectral densities are independent then spectrum, Sxy(f, T ) , is the expected value of the sum
φ̄xy(f, T ).

Sxy(f) = E[φ̄xy(f, T )] =
1

K

K
∑

i=1

E[Sxy(f, T, i)] =
1

K

K
∑

i=1

Ii
xy(f, T ) (22)

where the average periodogram is defined as Ik
xy(f, T ) = E[Sxy(f, T, k)]

It can be shown that the average periodogram is

Ik
xy(f, T ) = E[Sxy(f, T, k)] =

∫ Tk

−Tk

(

1 − |τ |
T

)

Rxy(τ) exp(−j2πfτ)dτ (23)

where Rxy(τ) is the cross-correlation function between x(t)a and y(t).
This expression appears in Priestley1 on page 417 and is explained for discrete formulations on page 319.
A derivation of Eq. (23) is given by Bendat and Piersol14 section 3.2.3. A similar derivation is given
by Davenport and Root53 page 106 and Jenkins and Watts18 section 6.2.1. The derivation is sketched in
Appendix D on page 36.
The expected values of the one sided cross-spectra and auto-spectra periodograms of x(t) and y(t) are

Jk
xy(f, T ) = E[Gxy(f, T, k)] =

∫ Tk

0

2

(

1 − |τ |
T

)

Rxy(τ) exp(−j2πfτ)dτ (24)

Jk
xx(f, T ) = E[Gxx(f, T, k)] =

∫ Tk

0

2

(

1 − |τ |
T

)

Rxx(τ) exp(−j2πfτ)dτ (25)

Jk
yy(f, T ) = E[Gyy(f, T, k)] =

∫ Tk

0

2

(

1 − |τ |
T

)

Ryy(τ) exp(−j2πfτ)dτ (26)

The one sided spectra are then given by

Gxy(f) =
1

K

K
∑

i=1

J i
xy(f, T ) (27)

Gxx(f) =
1

K

K
∑

i=1

J i
xx(f, T ) (28)

NASA/TM—2006-214112 14



Gyy(f) =
1

K

K
∑

i=1

J i
yy(f, T ) (29)

We now use these definitions to study the time delay bias problem using the white noise example found in
Seybert and Hamilton.51 Seybert and Hamilton51 derived an equation for the time delay bias for this case
provided one uses an average periodogram type calculation procedure to calculate MSC .

Let x(t) and y(t) be Gaussian, white noise stochastic processes. For a white noise the spectrum is
constant at all frequencies. Thus the spectra are Gxy = Gxx = Gyy = A and the |γ|2xy = 1.

For this case the autocorrelation functions are Rxx = Ryy = Aδ(τ) (Bendat13 page 85)
Since y(t) is delayed

y(t) = x(t − τo)

Rxy = Aδ(τ − τo) (30)

Substituting these relations into Eqs.(23) through (29) we have for the spectra.

Gxy = Jk
xy(f, T ) = A

(

1 − |τo|
T

)

exp (−j2πfτo) (31)

Gxx = Gyy = Jk
xx(f, T ) = Jk

yy(f, T ) = A (32)

Consequently, with a time delay, τo the estimated MSC for this case , |γ̂|2xy for this case is

|γ̂|2xy =
|Gxy|2

GxxGyy
=

(

1 − |τo|
T

)2

|γ|2xy (33)

This relationship has been used to explain time delay bias by Halvorsen and Bendat,54 Seybert and Hamil-
ton,51 Bendat and Piersol15 in chapter 11.2 (page 271) and Carter.16, 52 The importance of eliminating time
delay bias and realigning time series by dsisplacing one of them with respect to the other has been men-
tioned in books by Bendat13 section 7.4.5, Jenkins and Watts18 page 399-400, Koopmans55 page 309, and
Brillinger30 page 266 and in articles by Tukey47 p32 Tick56 p 135, Halvorsen and Bendat,54 Carter16, 22, 52

Seybert and Hamilton,51 and Trethewey and Evensen.57

The importance of using the correct model for the spectrum analysis process will be illustrated using
an analysis provided by Priestly1 on page 663 where an example is derived for linear regression with delay.
This is a discrete parameter process problem and will be discussed using the appropriate discrete definitions
(see Priestley1 section 4.8.3). The objective of the analysis was to show the invariance of coherency under
linear transformations. However, this example will be used to show the importance of using the correct
expression for E[Sxy(f, T, K)] (Appendix D on page 36 ). The discussion starts on page 657 using expressions
of the form

h(ω) =
1

2π

∞
∑

s=−∞

R(s) exp (−jsω) (34)

to define spectra as Fourier transforms of the respective auto and cross covariance functions, R(s). This
expression is also found as equation (4.8.34) on page 225. The next step is to let X1,t and X2,t satisfy a
linear regression without time delay relationship of the form

X1,t = aX2,t + ǫt (35)

where ǫt is a white noise process uncorrelated with X2,t. Here, we change the example slightly and assume
that X1,t are X2,t also has a white noise spectrum so that we have expressions for auto and cross covariance
functions. We then have

Rǫǫ(s) = bδ(s)

R12(s) = aR22(s) = aδ(s)
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h11(ω) = a2 + b2

h22(ω) = 1

h12(ω) = ah22(ω) = a

γ12(ω) =
h12√

h11

√
h22

=
a√

a2 + b2

|γ12(ω)|2 =
|h12|2
h11h22

=
|a|2

a2 + b2

where h11(ω) and h22(ω) are auto-spectra and h12(ω) is the cross-spectra. The coherence is γ12(ω) and the
MSC is |γ12(ω)|2.

We continue his example by next assuming that X1,t and X2,t satisfy a linear regression with a time
delay of d time units. Then

X1,t = aX2,t−d + ǫt (36)

Then in this case

R12 = aR22(s − d) = aδ(s − d) (37)

Then from his equation (9.1.13)

h21 =
1

2π

∞
∑

s=−∞

R21(s) exp (−jsω)

=
a

2π

∞
∑

s=−∞

aR22(s − d) exp (−jsω)

= a exp (−jωd)

To summarize we have

Rǫǫ(s) = bδ(s)

R12(s) = aR22(s) = aδ(s − d)

h11(ω) = a2 + b2

h22(ω) = 1

h12(ω) = ah22(ω) = a exp (−jωd)

γ12(ω) =
h12√

h11

√
h22

=
a exp (−jωd)√

a2 + b2

|γ12(ω)|2 =
|h12|2
h11h22

=
|a|2

a2 + b2

Priestley then points out that the magnitude has not changed which shows an invariance of coherence under
a linear transformationand. Next it is pointed out that the phase spectrum is a linear function of frequency
which has a slope representing the magnitude of the delay. However, if for the spectra analysis equations used
were the averaged periodogram equations discussed by Priestly1 in section 6.2.3 for a continuous spectrum
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the results would not show the invariance of coherence under a linear transformation. We have using Eqs..
(6.2.54) and (6.2.65)

E[ĥ(ω)] =
1

2π

(N−1)
∑

s=−(N−1)

[

1 − |s|
M

]

R(s) exp (−jsω) (38)

where M < (N − 1) is the number of points in a block. Since the spectra of interest is from a white noise
source all blocks are identical and the block average is the same as the result for each block.
Then for the time delayed case where the delay is d units of the sequence.

E[ĥ(ω)] =
1

2π

(N−1)
∑

s=−(N−1)

[

1 − |s|
M

]

R21(s) exp (−jsω)

=
a

2π

(N−1)
∑

s=−(N−1)

[

1 − |s|
M

]

aR22(s − d) exp (−jsω)

= a

[

1 − |d|
M

]2

exp (−jωd)

Consequently,

h11(ω) = a2 + b2

h22(ω) = 1

h12(ω) = a

[

1 − |d|
M

]

exp (−jωd)

γ12(ω, d) =
h12√

h11

√
h22

=

[

1 − |d|
M

]

a exp (−jωd)√
a2 + b2

|γ12(ω, d)|2 =
|h12|2
h11h22

=

[

1 − |d|
M

]2 |a|2
a2 + b2

=

[

1 − |d|
M

]2

|γ12(ω)|2 (39)

Thus we have shown that when the spectrum calculation procedure is performed using the discrete form of
E[Sxy(f, T, K)] (Appendix D on page 36 ), the time delay bias appears again. The coherence is not invariant
under a linear transformation when it is calculated using an averaged periodogram procedure. We find
again, that if the time delay, d, exceeds the block size M the coherence goes to zero. These points are not
made by Priestley since in this example the analyzing procedure was one based on the original periodogram
procedure instead of an averaged periodogram procedure. Priestly1 does discuss translating the time-axis of
one process relative to the other so as to obtain the maximum cross-correlation at zero lag on page 712.

Equation (23) is often considered as being equivalent to the Fourier transform of the true cross-
correlation function multiplied by a window function of the form

wτ = 1 − τ

T
(40)

This is the Bartlett triangular window function. The convolution theorem show that

Ik
xy(f, T ) = E[Sxy(f, T, k)] =

∫ ∞

−∞

W (f − f ′)P (f ′)df ′ (41)
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where W (f) is the Fourier transform of w(τ). The Fourier transform of the Bartlett triangular window is
called the Fejer kernel, FN (f) (Priestley1 Section 6.2 ) and

FN (f) =

∫ T

−T

(

1 − |τ |
T

)

exp (j2πfτ)dτ = T

[

sin(πfT )

(πfT )

]2

(42)

This function has a broad central peak and small side lobes which peak at odd multiples of 1
2T that is at

n
2T , n = ±1,±3,±5 . . . .
From equation (35)

Ik
xy(f, T ) = E[Sxy(f, T, k)] =

∫ ∞

−∞

FN (f − f ′)P (f ′)df ′ (43)

This indicates that the Bartlett window results in a smoothing of the true spectrum but introduces a rippling
effect. Accordingly, the MSC is ”smeared out”.
As T → ∞, FN (f) → δ(f) ( the Dirac δ-function)/. Consequently,

Ik
xy(f, T → ∞) = E[Sxy(f, T → ∞, k)] =

∫ ∞

−∞

δ(f − f ′)P (f ′)df ′ = P (f) (44)

This suggests the importance of selecting a window function. One commonly used window, suggested by R.
W. Hamming is

w(τ) =

{

0.54 + 0.46cos(πτ
T ) : for |τ | < T

0 : otherwise
(45)

This window reduces the magnitude of the peak in the first side lobe of the spectral window relative to the
magnitude of the peak in the main lobe. This transformation is made since windowing creates ”leakage”
in the spectral domain. This is the name for the transfer of energy in the main lobe of a spectral response
function into the sidelobes obscuring and distorting other spectral responses that are present. Many window
functions of interest are discussed by Priestly1 (section6.2.3). A good review of spectral analysis is given by
Kay and Marple.31

Now the time-delay bias error given in equations (33) and (39) only applies to the Bartlett window.
An investigation of the effect of the type of spectral analysis window used has been made by Trethewey
and Evensen.57 They found the a MSC bias error depends on the window. In addition theoretically and
experimentally they found that the MSC time delay the bias error was larger for a Hanning window for
|τ |
T > 0.2 than for a Barlett window.

B. Unaligned Coherence

The method of aligned and unaligned coherence is based on the following two characteristics of the average
periodogram process when it is used to calculate the MSC :

• When the time delay, τ1, exceeds the sample record length ,Td, the coherence of the random process,
γ̂2

xy(f), is the coherence of two independent random signals, γ̂2
xnyn

(f).

• If the signals contain tones using a time delay, τ1, greater than the sample record length ,Td, does not
change the coherence of the tones.

In the next two sections these points will be discussed.

1. Low coherence example

To apply the aligned and unaligned coherence procedure, we first consider the measurement of a corre-
lated Gaussian stationary noise source with time history, s(t), in a situation where the measurement is
contaminated with a Gaussian stationary random noise, n, where the random noise and the correlated noise
are independent. As an example, this could be the measurement of presssure at two points in a turbofan
combustor . Then
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x1(t) = s1(t) + n1(t)

y2(t) = s2(t) + n2(t)

The auto-and cross spectra for this case are

Gx1y2
= Gs1s2

(f) + Nn1n2
(f)

Gx1x1
= Gs1s1

(f) + Nn1n1
(f)

Gy2y2
= Gs2s2

(f) + Nn2n2
(f)

where N(f) is used to designate the spectrum of the noise and G(f) is used to designate the spectrum of
the signal.
The estimated MSC is then

|γ̂xy(f)|2 =
|Gs1s2

(f) + Nn1n2
(f)|2

[Gs1s1
(f) + Nn1n1

(f)] [Gs2s2
(f) + Nn2n2

(f)]
(46)

The noise spectrum due to the uncorrelated random signals n1(t) and ns(t) is retained in this system equation
since the magnitude of the cross spectrum of the signals much smaller than the auto-spectrum. The MSC
under consideration looks that shown in Fig. 7.

The problem then is to find a way to show the measured low coherence is not due to noise. One
method that is available is the method of surrogate data ( Faes.58 Theiler,59 Schreiber60). According to
this method a set of surrogate series mimicking some properties of the original series but being otherwise
uncoupled is generated. The threshold for zero coherence is then computed on the distribution of coherence
estimates obtained from the surrogate series. For example, one of the procedures used by Faes to generate
a surrogate series was to randomly permute in temporal order the segments/blocks of the original series so
that any temporal structure was destroyed in the surrogate generation.

Another method to show the measured low coherence is not due to noise would be to compare the
measured MSC with the 95 percent confidence interval for the same number of segments/blocks given by
Eq. (11). A third method is to compare aligned and unaligned coherence function. Again, we start with
the time series x1(t) and y2(t). However, we now delay the signal by an amount D which is greater than
the record length, T. As discussed in the previous section this decorrelates the signals. The signals can be
treated as if they came from two independent random sources. The signals analyzed are now

x1(t) = s1(t) + n1(t)

y2(t − D) = s2(t − D) + n2(t − D)

The auto-and cross spectra for this case are

Gx1y2
= Nnn(f)

Gx1x1
= Gs1s1

(f) + Nn1n1
(f)

Gy2y2
= Gs2(t−D)s2(t−D)(f) + Nn2(t−D)n2(t−D)(f)

Note, that the cross-spectrum is now just the spectrum of two independent noise sources. The cross-spectrum
of two signals when they are misaligned by a time greater than the block length is the spectrum of two
independent noise sources when this is added to the cross spectrum of random noise the result is again a
random noise spectrum.
The estimated MSC is then

|γ̂xy(f, D D > T )|2 =
|Nnn(f)|2

[Gs1s1
(f) + Nn1n1

(f)]
[

Gs2(t−D)s2(t−D)(f) + Nn2(t−D)n2(t−D)(f)
] (47)
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The signal auto-spectrum and the noise auto-spectrum are invariant with time shifting. Consequently,

Ns2s2
= Ns2(t−D)s2(t−D)

Gs2s2
= Gs2(t−D)s2(t−D)

Thus

|γ̂xy(f, D D > T )|2 =
|Nnn(f)|2

[Gs1s1
(f) + Nn1n1

(f)] [Gs2s2
(f) + Nn2n2

(f)]
(48)

Note that by obtaining the MSC of the unaligned signals we have established the level of coherence for
two independent signals measured and processed with the same procedures and equipment as the aligned
signals. All the results presented in section VII where the MSC was calculated using simulated independent
Gaussian random time series now may be attributed to the unaligned MSC. In particular, the results shown
in figure 6 on page 13 for |γ̂xnxb

|2 apply to the unaligned MSC.
Consequently, a comparison of the results immediately determines the validity of the low MSC

measurement. An example, is shown in Fig. 7 and will be discussed in the results section of this paper. In
addition, since the value of the aligned and unaligned MSC is derived by direct calculation using measured
data one can obtain results for cases where the data blocks are overlapped instead of being independent. In
addition, any problems due to windowing that change the effective number of segments/blocks, the averaging,
or the energy leakage from the main lobe to side lobes is also accounted for.

All the findings provided in the previous section dealing with two independent random series applies
to the unaligned and aligned time series if no tones are present. Note the MSC is independent of the number
of cross-spectra from independent series that are used in the calculation. The value of the MSC does not
change even though the coherent noise spectrum Gs1s2

(f) has been converted into the noise spectrum of two
independent signals Ns1s2(t−D)(f) and added to the spectrum of any uncorrelated random noise present. Its
properties depend only on the number of segments/blocks, ns.

The aligned and unaligned coherence procedure might have some application in the field of biomedical
engineering. For example, in cardiovascular variability analysis, the degree of coupling between two time
series can be estimated from the coherence function. This is called ”setting a threshold level” by Faes58

and refers to deciding if the coherence measured is that of two random signals. Faes58 uses surrogate data
analysis to assess the significance of the coherence function from two signals. A procedure based on using
aligned and unaligned coherence functions might be more cost effective and efficient than the procedure
tested by Faes.58

2. Coherence with tones example

In this section the application of the aligned and unaligned coherence procedure to a mixed spectrum
consisting of discrete and continuous components will be discussed. The analysis of processes with mixed
spectra is discussed by Priestly1 in chapter 8. Many statistical approaches are reviewed. They all have
trouble separating peaks in the continuous spectrum from peaks due to harmonic components. This is
especially true if a narrow bandwidth is used. When the noise components become sharper and more peaked
the noise component may resemble a harmonic, a complex periodic signal, or an almost periodic signal (
Bendat and Piersol13 Chapter 1). To demonstrate the application we first consider the measurement of a a
correlated Gaussian stationary noise source with time history, s(t), in a situation where the measurement is
contaminated with a Gaussian stationary random noise, n, and a time series due to tones, χ(t) where the
random noise, tonal noise, and the correlated noise are all independent. As an example, this could be the
measurement of pressure at two points in the far field of a turbofan engine. The two measured time series
x1(t) and x2(t) are

x1(t) = s1(t) + n1(t) + χ1(t)

y2(t) = s2(t) + n2(t) + χ2(t)

The auto-and cross spectra for this case are
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Gx1y2
= Gs1s2

(f) + Nn1n2
(f) + Ξχ1χ2

(f)

Gx1x1
= Gs1s1

(f) + Nn1n1
(f) + Ξχ1χ1

(f)

Gy2y2
= Gs2s2

(f) + Nn2n2
(f) + Ξχ2χ2

(f)

where N(f) is used to designate the spectrum of the noise, G(f) is used to designate the spectrum of the
coherent random signal and Ξ(f) is used to designate the tonal auto and cross spectra.
The estimated MSC is then

|γ̂xy(f)|2 =
|Gs1s2

(f) + Nn1n2
(f) + Ξχ1χ2

(f)|2
[Gs1s1

(f) + Nn1n1
(f) + Ξχ1χ1

(f)] [Gs2s2
(f) + Nn2n2

(f) + Ξχ2χ2
(f)]

(49)

Again, we start with the time series x1(t) and y2(t). However, we now delay the signal by an amount
D which is greater than the record length, T. The signals analyzed are now

x1(t) = s1(t) + n1(t) + χ1(t)

y2(t − D) = s2(t − D) + n2(t − D) + χ1(t − D)

The auto-and cross spectra for this case are

Gx1y2
= Nnn(f) + Ξχ1χ2(t−D)(f)

Gx1x1
= Gs1s1

(f) + Nn1n1
(f) + Ξχ1χ1

(f)

Gy2y2
= Gs2(t−D)s2(t−D)(f) + Nn2(t−D)n2(t−D)(f) + Ξχ2(t−D)χ2(t−D)(f)

The estimated MSC is then

|γ̂xy(f, D D > T )|2 =
|Nnn(f) + Ξχ1χ2(t−D)(f)|2

[Gs1s1
(f) + Nn1n1

(f) + Ξχ1χ1
(f)]

[

Gs2(t−D)s2(t−D)(f) + Nn2(t−D)n2(t−D)(f) + Ξχ2(t−D)χ2(t−D)(f)
]

(50)
Since the noise auto and cross spectra are invariant with time delay and the tonal auto and cross spectra
are invariant with time delay. We have

Ns2s2
= Ns2(t−D)s2(t−D)

Gs1s2
= Gs1s2(t−D)

Gs2s2
= Gs2(t−D)s2(t−D)

Consequently, the estimated MSC is simplified to

|γ̂xy(f, D D > T )|2 =
|Nnn(f) + Ξχ1χ2

(f)|2
[Gs1s1

(f) + Nn1n1
(f) + Ξχ1χ1

(f)] [Gs2s2
(f) + Nn2n2

(f) + Ξχ2χ2
(f)]

(51)

Comparing the unaligned MSC (Eq. 46) and the aligned MSC (Eq. 50) we see that they have the same
denominator. The numerator of the unaligned coherence differs in that the coherent noise spectrum has
been changed into an incoherent noise spectrum. Consequently, in regions without tones the coherence will
be that of two random uncorrelated signals measured using ns segments/blocks. Thus, the discussion in
section VII for the MSC |γ̂xnxb

|2 apply to the unaligned MSC measured with tones if tones are not actually
apparent in a particular frequency band.

Consequently, the regions without tones establish a level. All tones above this level will be observed.
This procedure identifies all the tones in the measured spectrum above the background noise level set by
the number of segments/blocks, ns. The method using the aligned and unaligned coherence function with
the averaged periodogram seems to be better than the tests discussed by Priestly.1 Note, that it has the
same limitations in terms of resolution as any averaged periodogram procedure. Measurements are made over
specific frequency bands. Tones are still lumped into these bands. However, tones lost in the broad band noise
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do appear. The procedure provides a new version of the turbofan engine noise spectrum. In addition, this is
achieved without estimating parameters as is done by Sengupta and Kay,2 Kay and Nagesha3, 4 and Ciuciu,
Idier, and Giovannelli.5 It should also be noted that several methods are availbale to get line spectra that
have higher resolution than the average periodogram procedure achieves (Cabrera,61 Sacchi,62 Ciuciu5) and
it is possible these could be used with the unaligned time histories to get the toneless cross-spectrum. Since
the broadband noise has been essentially removed, it should not be necessay to use an average periodogram
procedure.

The problems of time delay bias error and of confidence limits of coherence are discussed in texts and
articles on random data analysis Bendat13–15 by Tukey,47and in other texts on digital time series analysis
Otnes and Enochson,63 Koopmans,64Priestley,65 and Brillinger.66These topics are crucial to the aligned and
unaligned coherence method. In addition, the coherence of tones is well known. However, the use of the
aligned and unaligned coherence for signal diagnosis is not discussed in these texts. The method is new and
was only be developed for the present case where

• The signals analyzed are from turbofan engine noise and are a combination of random data and tones.

• The coherence is low but above the coherence of random noise.

We have shown how the cumulative distribution derived using he probability density function of
the coherence derived by Goodman41can be used to determine a P -percent confidence interval ( Eq. 11 ).
Consequently, the coherence confidence interval of the unaligned coherence should correspond to this value

γ̂2
xy(f, D > T )

∣

∣

unaligned
= EI = 1 − (1 − P )1/(ns−1) (52)

However, the estimated unaligned coherence provides more information since it is not based on any assump-
tions. For example, it accounts for any overlap used in the time series calculations and does not depend on
the process being Gaussian or stationary. In addition, it is based on the same computational software and
electronic hardware used to obtain the aligned coherence. In general this type of empirical approach is less
approximate and has the advantage of being of broader applicability.
As a consequence using unaligned coherence functions i.e. coherence functions created by time shifting one
time history more than the sample record length ,Td, we can see the coherence of the tones and measure the
minimum coherence observable. Consequently, if provides a solution to two very difficult problems.
Thus using the unaligned coherence functions in addition to the aligned coherence functions provides a clear
indication of how much of the result is due to random noise and how much of the result is due to correlated
signals.

Jet noise measured between microphone separated by more than 10 degrees is at a radius of 150
feet uncorrelated between microphones. Consequently, the new technique when used with the three signal
coherence method (Appendix B on page 33 ) to examine far field turbofan engine acoustic spectra produces
using aligned signals acoustic spectra without jet noise but with coherent broadband noise and tones. With
unaligned signals it produces spectra with only tones and completely random noise. This is an improvement
since it separates tones from the turbofan engine noise and enables one to examine core and fan tonal noise
sources. The new technique when used with the coherent output power method (Appendix C on page 35 )
to separate and identify correlated combustion noise in far field measurement turbofan engine noise provides
more confidence in the results.

The procedure might be used to study broadband fan noise. One can imagine an active filter using
the unaligned coherence to identify tones and to modify itself so that tones can be filtered from the signals.
The method has utility on its own since in calculating the MSC of two random broad band noise source
the two signals must be aligned to be detected. Consequently, using the aligned and unaligned coherence
procedure can separate broad band noise from tonal noise providing the spectra do not overlap.

Under the old paradigm two time series x(t) and y(t) are regarded as ”coherent” at a frequency f if
γ̂2

xy(f) ≈ 1 and incoherent if γ̂2
xy(f) ≈ 0.

Under the new paradigm two time series x(t) and y(t) are regarded as ”coherent” at a frequency f if
|γ̂|2xy(f, τ1 = 0)

∣

∣

aligned
is greater than |γ̂|2xy(f, τ1 > Td)

∣

∣

unaligned
and incoherent if |γ̂|2xy(f, τ1 = 0)

∣

∣

aligned

is less than or equal to |γ̂|2xy(f, τ1 > Td)
∣

∣

unaligned
. This paradigm corresponds to the concept of ”finding

a threshold level in the coherence function for zero coherence” discussed by Faes.58 To the extent that
translating the data beyond the block length, T , violates the traditional viewpoint on the proper procedure
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for coherence measurement, the use of aligned and unaligned coherence might be viewed as an elementary
method of surrogate data analysis.

It is important to note that for the P&W4098 test results reported herein sound wave travel time
from the turbofan engine to the far field microphones introduces a time delay, τo = R/co, where R is the
distance from the turbofan engine and co is the sound propagation speed. As discussed, this time delay
must be removed so that the Kulite signal and the far field microphone signal are aligned in order to see
the correlated combustion noise. If the signals are analyzed as measured τo is greater than Td so the signals
will be unaligned and the results will consist only of tones and a random noise coherence dependent on the
number of averages, nd.

IX. Results
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(a) N1 Corr = 1622.
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(b) N1 Corr = 1999.
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(c) N1 Corr = 2600.

Figure 7. Aligned and unaligned coherence between Kulite (1) and (2).

A. Kulite coherence

Typical logarithmic plots of aligned and unaligned coherence between the two Kulites are shown in figure 7.
Also shown is the confidence interval for the aligned coherence and the independent signal 95 percent co-
herence level, |γ̂xnyn

|2, calculated from Eq. 11. Note that as indicated in Fig. 4b, the confidence interval is
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narrow for coherence values near 1 and becomes much larger for lower coherence values.
As previously mentioned, the PW4098 combustor Kulite cross-spectra amplitude and phase plots

resembled the cross-spectra used in the acoustic modal analysis of a YF102 combustor installed in a ducted
test rig which was conducted by Karchmer Ref.7 This suggested that the observed structure in the coherence
was due to a modal pattern. Consequently, using a model of the physics of pressure waves propagating in
annular ducts as discussed by Tyler and Sofrin in a treatment of axial flow compressor noise8 a procedure
was developed that uses the available Kulite data to obtain a descriptions of the combustion modes in the
annular combustor. Results from this work were used to select the signals to be analyzed and to interpret
the results in an attempt to identify combustion noise in the far field data. These broad peaks and dips in
the coherence due to combustion duct modes are seen in figure 7 on the page before. Note, the aligned and
unaligned coherence values (Eqs. 46 and 47) are well separated. The aligned coherence is well above the
independent signal coherence line and the unaligned coherence plot. The unaligned coherence plot shows
the presence of tones only at higher rpm values.

The coherent plane wave mode as determined by a model analysis is apparent in Fig. 7a between 0
and 200 Hz at 1662 rpm (N1 CORR) . However, it is not apparent in Fig. 7b between 0 and 200 Hz at 1999
rpm (N1 CORR) while coherent combustion noise is apparent at higher frequencies.

In Fig. 7c at 2600 rpm (N1 CORR) the aligned and unaligned coherence are not well separated
indicating one Kulite has failed (plot 7(c)). This failure is also seen in the auto-spectra plots shown in Miles6

where it is obeserved that Kulite 2 has failed.Note also that for this case the aligned and unaligned coherence
are mostly below the independent signal coherence line. In calculating the independent signal coherence,
|γ̂|2xnyn

, shown in the coherence plots a value of nd = 500 was used.
Using the aligned and unaligned coherence method one can observe sensor degradation, total sensor failure,
or changes in the signal.

B. Three signal coherence technique

1. 1 far field microphones and 2 Kulites

The three signal coherence technique is described in Appendix B on page 33. It is applied to noise from a
P&W4098 turbofan engine using aligned and unaligned coherence functions (Eqs 49 and 51) in the threes
signal cohernce technique. Typical results of applying the three signal and unaligned coherence technique
are shown in figures 8 on the next page and figure 9 on page 26. The example shown is for 1622 rpm (N1
CORR). Results calculated using signals from 1 far field microphones and 2 Kulites are shown in figure 8 on
the next page. Results calculated using signals from 3 far field microphones. are shown in Figure 9 on
page 26 .

Figure 8 on the next page was created to see if the procedure would detect combustion noise. The
number of translation points, D, used for each cross-spectrum so that the signals of interest would be in
proper alignment is shown in the legend. To calculate the aligned G33 spectrum a delay of 6839 time steps
was used in calculating the cross-spectrum G13, a delay of G6134 time steps was used in calculating the
G23 cross-spectrum, and the G12 cross-spectrum was used as measured. To calculate the unaligned G33

spectrum a delay of 6323 time steps was used in calculating the cross spectrum G12, and the G13 and G23

cross-spectrum were used as measured. The D=6839 and D=6134 time steps are in the range of the travel
time from the turbofan to the microphones used. However, some attempt was made to find time intervals
that maximized the coherence in the 0 to 200 Hz. frequency band and those are used here.

Broad band combustion noise in the aligned power spectrum between 0 and 200 Hz is shown in
Figure 8 on the following page. Tone noise appears in both the aligned and unaligned poser spectrum.
The tone at one BPF ( first blade passing frequency) is especially noticeable. However, it is best shown in
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Figure 8. Three signal coherence technique using 1 far field microphone and two Kulites

the unaligned power spectrum where the broad band noise does not appear. Note that one can view tones
approximately 10 dB below the measured auto spectrum in the 3 signal coherent aligned and unaligned
power spectrum. In the unaligned 3 signal spectrum many tones previously unseen are now exposed to sight
since the coherent broadband noise has been removed.

2. 3 far field microphones

Figure 9 on the next page shows the three signal aligned and unaligned power spectra calculated using 3 far
field microphones Three signal aligned and unaligned power spectra calculated using 3 far field microphones
are shown in Figure 9 on the following page. The aligned coherence values were used as measured. The
unaligned coherence values were found by dealying one signal 6323 time units with respect to the other.
The jet noise is missing in the three signal aligned and unaligned power spectra to the extent that the
microphones are far enough apart that the jet noise signals they receive are independent in this frequency
range. This feature of jet noise is exploited by the three signal coherence technique using three far field
microphones. The aligned and unaligned spectra from 0 to 500 Hz. are well separated showing the presence
of a coherent noise source. The plot clearly shows the tonal component due to the core and fan in the far
field noise spectrum using the unaligned coherence (green dots). Above this spectrum is one made using the
aligned coherence (blue dots). This clearly shows the broadband noise spectrum and the tonal component
where it dominates. Above this is a broad band spectrum interrupted in places by tonal noise. The 1BPF,
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Figure 9. Three signal coherence technique using 1 far field microphone and two Kulites

2BPF, and 3 BPF tones are clearly observable along with many other tones in the three signal aligned and
unaligned power spectra. Note again, that one can view tones approximately 10 dB below the measured
auto spectrum in the 3 signal coherent aligned and unaligned power spectrum. Similar behavior appears at
other turbofan engine speeds.

C. Coherent Output Power

Coherent output power is described in Appendix C on page 35. Results for measurements using Kulite one
and two with the 120 degree far field microphone (signal source 5) are presented in figure 10 on the following
page for a test condition of 1622 rpm (N1 CORR). To obtain the aligned coherent output power using Kulite
one and signal source 5, a time delay of 0.116875 sec was used. To obtain the aligned coherent output power
for Kulite two and signal source 5 a time delay of 0.128083 sec. was used. The plane wave combustion
noise is apparent between 0 an 200 Hz in both aligned coherent output power spectra γ̂2

15G55 and γ̂2
25G55.

Both spectra are clearly above their corresponding unaligned coherent output power spectra. The unaligned
coherent output power spectra were obtained using the as measured signals with no time delay. Furthermore,
the results suggest that combustion noise due to higher combustion duct modes is present near 300 Hz, 400
Hz, and 600 Hz. Note that the noise floor is about 20dB below the measured auto-spectrum.

The corresponding aligned and unaligned coherence is shown in figure 11 on page 28. Also shown is
the confidence interval for the aligned coherence and the independent signals 95 percent coherence level.

In calculating the coherence of random noise, γ̂2
xnyn

, shown in the coherence plot a value of nd = 500
was used. Again the plane wave combustion noise is apparent between 0 an 200 Hz in both aligned coherence
functions. Furthermore, the results suggest that combustion noise due to higher combustion duct modes is
present near 300 Hz, 400 Hz, and 600 Hz.

D. Discussion

Table D on page 29 shows that using longer record lengths, TTotal, of 2 minutes or 5 minutes provide a
significantly lower noise floor. Note that the coherent power noise floor is always a factor of 2 less than the
coherence noise floor based on the three signal method.
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Figure 10. Total sound power, aligned and un-aligned coherent output power calculation for a test condition
of 1622 rpm (N1 CORR), using signals 1 (Kulite 1 at 127 Degrees clockwise from top dead center viewed from
rear) and 5 (150 foot microphone at 120 Degrees).
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Figure 11. Aligned and un-aligned coherence calculation for a test condition at 1622 rpm (N1 CORR) using
signals 1 (Kulite 1 at 127 Degrees clockwise from top dead center viewed from rear) and 5 (150 foot microphone
at 120 Degrees).
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The standard procedure for coherence functions should be modified if the coherence is small. For a
given number of independent segments/blocks, ns one can

• Compare it with the statistical theory value for the coherence of random noise.

• Compare it with coherence based on a simulation.

• Calculate the unaligned coherence function to see if the aligned coherence is greater than the coherence
of two independent time series.

Table 2. Time series estimation parameters

(r = 48000samples/sec.,NP=number of points in FFT=4096,P=0.95,
Be = r/NP = 11.71875Hz.,nd = BeTTotal=number of disjoint (indpendent) segments)

Total record length γ2
xnyn

= 3-signal Coherent Output Power

, TTotal,sec. Overlap nd 1 − (1 − P )1/(nd−1) noise floor, dB noise floor, dB

20 0 234 0.0127749 -9.468 -18.936

20 50 % ≈ 468 0.00639431 -10.971 -21.9421

120 0 1406 0.00221992 -13.3582 -26.7164

120 50 % ≈ 2812 0.00106515 -14.8629 -28.7259

300 0 3515 0.00085215 -15.3474 -30.6948

300 50 % ≈ 7030 0.000426105 -16.8524 -33.7048

E. Conclusions

New technology has been developed based on a ”paradigm” shift in the definition of coherence and applied
to turbofan engine core noise diagnostics. The method provides a new procedure for estimating the degree of
coupling between two time series. In addition, the procedure provides a new way to examine mixed spectra
and identify tones mixed with broad band noise.
The aligned and unaligned coherence procedure used alone, used with the three signal coherence technique
and used with the coherent power method provides new information.

• The combustor model structure can be observed due to the use of the aligned and unaligned combustor
coherence.

• One can observe sensor degradation, total sensor failure, or changes in the signal.

• The underlying tonal structure which is buried under broadband noise and jet noise is clearly visible
when the unaligned 3 signal coherent power is examined.

• Combustion noise can be observed in the far field using the aligned and unaligned coherence with the
coherent power method.

It is expected that this method will improve turbofan source diagnostic tests and enable the identification
of noise sources that are often confused with one another. Furthermore, the method might have application
in the field of biomedical engineering whenever the degree of coupling between two time series needs to be
evaluated.
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Table 3. EI threshold

nd 80 90 95 99
percent percent percent percent

4.000000 .415196 .535841 .631597 .784557
8.000000 .205403 .280314 .348164 .482053
10.000000 .163749 .225736 .283129 .400516
12.000000 .136112 .188869 .238404 .342067
14.000000 .116446 .162322 .205817 .298296
16.000000 .101740 .142304 .181036 .264358
25.000000 .064861 .091482 .117346 .174596
32.000000 .050593 .071585 .092114 .138046
45.000000 .035917 .050986 .065819 .099372
64.000000 .025223 .035889 .046438 .070490
85.000000 .018978 .027039 .035035 .053348
105.000000 .015356 .021897 .028394 .043314
128.000000 .012593 .017967 .023312 .035612
145.000000 .011114 .015863 .020589 .031474
165.000000 .009766 .013942 .018101 .027690
185.000000 .008709 .012436 .016149 .024717
205.000000 .007858 .011224 .014578 .022321
225.000000 .007159 .010227 .013285 .020349
230.000000 .007003 .010005 .012997 .019909
250.000000 .006443 .009205 .011959 .018325
300.000000 .005368 .007671 .009969 .015284
350.000000 .004601 .006576 .008547 .013109
400.000000 .004026 .005754 .007480 .011475
450.000000 .003578 .005115 .006650 .010204
500.000000 .003220 .004604 .005985 .009186
550.000000 .002927 .004185 .005442 .008353
600.000000 .002683 .003837 .004989 .007659
650.000000 .002477 .003542 .004605 .007071
750.000000 .002146 .003069 .003992 .006130
850.000000 .001894 .002708 .003522 .005410
1050.000000 .001533 .002193 .002852 .004380
2205.000000 .000730 .001044 .001358 .002087
2405.000000 .000669 .000957 .001245 .001914
2605.000000 .000618 .000884 .001150 .001767
2805.000000 .000574 .000821 .001068 .001641
3005.000000 .000536 .000766 .000997 .001532
3205.000000 .000502 .000718 .000935 .001436
3405.000000 .000473 .000676 .000880 .001352
3605.000000 .000446 .000639 .000831 .001277
3800.000000 .000424 .000606 .000788 .001211
4030.000000 .000399 .000571 .000743 .001142
6030.000000 .000267 .000382 .000497 .000764
8030.000000 .000200 .000287 .000373 .000573
10030.000000 .000160 .000230 .000299 .000459
12030.000000 .000134 .000191 .000249 .000383
14030.000000 .000115 .000164 .000214 .000328
16030.000000 .000100 .000144 .000187 .000287
18030.000000 .000089 .000128 .000166 .000255
20030.000000 .000080 .000115 .000150 .000230
22030.000000 .000073 .000105 .000136 .000209

1
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Fundamentals

A. Previous Work

Core noise was studied at the NASA Glenn Research Center when it was known as the NASA Lewis Re-
search Center using a AVCO-Lycoming YF102 byReshotko, Karchmer, Penko, and McArdle67, 68and Kre-
jsa.69Grande70studied JT8D core noise Ref. . He found a strong peak at approximately 150 Hz which he
attributed to the rotational frequency of the high-pressure spool and the second harmonic of the rotational
frequency of the low-pressure spool. Sillier, Arnold and Michael71used a phased microphone array to inves-
tigate aero-engine core-noise of a BR700 aero-engine. Lesson, Dotty and McLaughlin72studied jet noise and
Core noise from a small gas turbine APU type engine.

B. Three signal coherence technique

The three signal coherence technique was developed by Chung73, 74for flow noise rejection. A similar tech-
nique was developed and used byKrejsa.69The three signal coherence technique was used byShivashankara75

to study core noise in a Pratt and Whitney JT9D. It was used by Hsu and Ahuja76to separate ejector internal
mixing noise from far field measurements and by Stoker, Ahuja, and Hsu77to separate wind-tunnel back-
ground noise and wind noise from automobile interior noise measurements . It was used byMichalke,Arnold
and Holste78to study sound in a circular duct with mean flow .

The complex coherence function is the normalized cross spectral density

γxy(f) =
Gxy(f)

√

Gxx(f)Gyy(f)
(53)

where Gxy(f) is the cross-spectral density at frequency f between acoustic signals x(t) and y(t) with auto
spectra Gxx and Gyy. Another coherence function is the magnitude-squared coherence, γ2

xy. where

γ2
xy(f) =

| Gxy(f) |2
Gxx(f)Gyy(f)

(54)

The technique is developed as follows. We assume each of the three external microphones pick up the core
noise and uncorrelated external noise from the jet.
Then

y1(t) = u1(t) + ℓ(t) (55)

y2(t) = u2(t) + m(t) (56)

y3(t) = u3(t) + n(t) (57)
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Since the time histories u1(t), u2(t), and u3(t) are due to core noise the ordinary coherence function between
pairs is assumed to be unity.

γ2
u1u2

(f) =
| Gu1u2

(f) |2
Gu1u1

(f)Gu2u2
(f)

= 1 (58)

γ2
u1u3

(f) =
| Gu1u3

(f) |2
Gu1u1

(f)Gu3u3
(f)

= 1 (59)

γ2
u2u3

(f) =
| Gu2u3

(f) |2
Gu2u2

(f)Gu3u3
(f)

= 1 (60)

The core noise and the external noise are uncorrelated. Thus

Gu1ℓ(f) = Gu2m(f) = Gu3n(f) = 0

Further more the external jet noise at each microphone for an angular separation greater than 10 degrees is
uncorrelated due to the distributed nature of jet mixing noise. Experimental results showing this are given
byThuja.79 Thus

Gℓm(f) = Gℓn(f) = Gmn(f) = 0

The ordinary coherence function between microphones 1 and 2 is calculated as follows using Eq. (4)

γ2
y1y2

(f) =
| Gu1u2

(f) |2
(Gu1u1

(f) + Gℓℓ(f))(Gu2u2
(f) + Gmm(f))

(61)

=
Gu1u1

(f)Gu2u2
(f)

(Gu1u1
(f)Gu2u2

(f) + Gℓℓ(f)Gu2u2
(f) + Gmm(f)Gu1u1

(f) + Gℓℓ(f)Gmm(f))

=
1

1 + Gℓℓ(f)
Gu1u1

(f) + Gmm(f)
Gu2u2

(f) + Gℓℓ(f)Gmm(f)
Gu1u1

(f)Gu2u2
(f)

To simplify equation (7) we define

a =
Gℓℓ(f)

Gu1u1
(f)

=
Gy1y1

(f) − Gu1u1
(f)

Gu1u1
(f)

(62)

b =
Gmm(f)

Gu2u2
(f)

=
Gy2y2

(f) − Gu2u2
(f)

Gu2u2
(f)

(63)

Then the ordinary coherence function γ2
y1y2

becomes

γ2
y1y2

=
1

1 + a + b + ab
(64)

Using the third microphone and letting

c =
Gnn(f)

Gu3u3
(f)

=
Gy3y3

(f) − Gu3u3
(f)

Gu3u3
(f)

(65)

we obtain by pairing off the microphones
Microphone 1 and 2:

γ2
y1y2

=
1

1 + a + b + ab
(66)

Microphone 1 and 3:

γ2
y1y3

=
1

1 + a + c + ac
(67)
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Microphone 2 and 3:

γ2
y2y3

=
1

1 + b + c + bc
(68)

Substituting Eqs (8), (9) and (11) for a, b, and c and solving for Gu1u1
, Gu2u2

, and Gu3u3
yields

Gu1u1
(f) = Gy1y1

(f)
γy1y2

(f)γy1y3
(f)

γy2y3
(f)

(69)

Gu2u2
(f) = Gy2y2

(f)
γy1y2

(f)γy2y3
(f)

γy1y3
(f)

(70)

Gu3u3
(f) = Gy3y3

(f)
γy1y3

(f)γy2y3
(f)

γy1y2
(f)

(71)

By using the definition of the complex coherence function as given by Eq. (1). Then

W1u1u1
(f) =

Gy1y2
(f)Gy1y3

(f)

Gy2y3
(f)

(72)

W1u2u2
(f) =

Gy1y2
(f)Gy2y3

(f)

Gy1y3
(f)

(73)

W1u3u3
(f) =

Gy1y3
(f)Gy2y3

(f)

Gy1y2
(f)

(74)

where W1u1u1
(f), W1u2u2

(f), and W1u2u2
(f) are complex.

The form thatKrejsa69used is obtained by assuming that the sound field is coherent.
Then

Gu1u1
(f) = | W1u1u1

(f) |=| Gy1y2
(f) || Gy1y3

(f) |
| Gy2y3

(f) | (75)

Gu2u2
(f) = | W1u2u2

(f) |= | Gy1y2
(f) || Gy2y3

(f) |
| Gy1y3

(f) | (76)

Gu3u3
(f) = | W1u3u3

(f) |= | Gy1y3
(f) || Gy2y3

(f) |
| Gy1y2

(f) | (77)

C. Coherent output power

In the past, methods have been developed using spectrum analysis techniques to characterize acoustic
signals from different sources mixed with noise. Bendat13–15 discusses these methods . Among the methods
discussed is using coherent output power spectra for noise source identification. The application of this
technique that is of interest is the use of coherent output power spectra to separate and identify correlated
combustion noise in far field measurements of turbofan engine noise. Karchmer80 and Karchmer, Reshotko,
and Montegani .,81use the coherence function calculated from internal microphone measurements of fluc-
tuating pressures in the combustor and far field acoustic pressures to determine the correlated combustion
noise of a YF102 turbofan engine at far field locations by calculating the coherent output power spectrum. A
typical results showed the coherence measured between the combustor pressure and the 120 degree far-field
acoustic pressure had a roughly Gaussian shaped distribution in the range 0 Hz to 200 Hz with a peak near
125 Hz and a maximum value at 30 % speed of 0.38 and at 43% speed a maximum value of 0.5(Karchmer80

Figs 39 and 48).The corresponding combustion coherence output power spectrum for the 43 % speed case
have a peak near 125 Hertz and a generally dome like shape. The peak is about 20 log(0.5) = −6.02 dB
below the peak of the far-field spectrum at 120 Hz. The dome edges are 20 dB down at 40 Hz and 200 Hz.
The basic formulation for the coherent output power spectrumis presented by Bendat and Piersol.15We
assume that sF is the output of a constant parameter linear system with weighting function h(τ) and
frequency response H(f). The output of the system is given by the convolution integral
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sF (t) =

∫ ∞

0

h(τ)sc(t − τ)dτ. (78)

Then the far field combustion noise spectrum, GsF sF
(f), and the combustion noise cross spectrum between

the far field signal and the Kulite signal, GsF sc
(f) are related to the Kulite signal as follows:

GsF sF
(f) = | H(f) |2 Gscsc

(f) (79)

GsF sc
(f) = H(f)Gscsc

(f) (80)

Here the cross power spectrum between the combustor Kulite signal, x(k), and the far field microphone
signal, y(k), is Ĝxy(f) and the corresponding Kulite power spectra and far field spectra are Ĝxx(f) and

Ĝyy(f).

Ĝxx(f) = Ĝscsc
(f) + Ĝn1n1

(f) (81)

Ĝyy(f) = ĜsF sF
(f) + Ĝn2n2(f) (82)

These are obtained by averaging many ( approximately 467 ) successive directly calculated power spectral
densities using a 20 second interval in most cases and a sampling rate of 48,000 samples per second. In
practice, only estimates, Ĝxy(f) of Gxy(f), Ĝxx(f) of Gxx(f), and Ĝyy(f) of Gyy(f) can be obtained due
to the finite observation interval and theˆnotation will be dropped.
The combustion noise reaching a microphone will be estimated using the magnitude squared coherence
function, γ2

xy(f), where

γ2
xy(f) =

| Gxy(f) |2
Gxx(f)Gyy(f)

. (83)

Then

| Gxy(f) |2=| GsF sc
(f) |2=| H(f) |2 G2

scsc
(f) = GsF sF

(f)Gscsc
(f) (84)

and the coherent output power spectrum, WsF sF
(f), is

WsF sF
(f) = γ2

xy(f)Gyy(f) (85)

= GsF sF
(f)

Gscsc
(f)

Gscsc
(f) + Gn1n1

(f)

where we assume the extraneous noise terms are uncorrelated with each other and with the signals.

Gscn1
(f) = GsF n2

(f) = Gn1n2
(f) = 0 (86)

Thus the estimated coherent output power spectrum , WsF sF
(f) = γ2

xy(f)Gyy(f), will determine GsF sF
(f)

when the input noise is zero, Gn1n1
(f) = 0, regardless of the output noise Gn2n2

(f). In the frequency range
of interest we may assume Gn1n1

(f) = 0 or just consider that WsF sF
(f) is a measure of the combustion

noise.

D. Expected value of the spectrum

In this section we outline the origin of the equation for E[Sxy(f, T, K)] given in Eq. (23).
As mentioned, a derivation of Eq. (23) is given by Bendat and Piersol14 section 3.2.3. A similar derivation
is given by Davenport and Root53 page 106 and Jenkins and Watts18 section 6.2.1.

We have

Xk(f, T ) =

∫ T

0

xk(t) exp (−i2πft)dt
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Yk(f, T ) =

∫ T

0

yk(t) exp (−i2πft)dt

Sxy(f, T, k) =
1

T
X∗

k(f, T )Yk(f, T ) =
1

T

∫ T

0

xk(α) exp (+j2πfα)dα

∫ T

0

yk(β) exp (−j2πfβ)dβ

=
1

T

∫ T

0

∫ T

0

xk(α)yk(β) exp (−j2πf(β − α))dαdβ

Letting τ = β − α, the double integral becomes the sum of two integrals. The first corresponds to
β = 0 and the second corresponds to β = T . We also use the definition

Rxy(τ) = E [xk(α)yk(α + τ)] (87)

Sxy(f, T, k) =

∫ 0

−T

[

1

T

∫ T

−τ

xk(α)yk(α + τ)dα

]

exp (−j2πfτ)dτ

+

∫ T

0

[

1

T

∫ T−τ

0

xk(α)yk(α + τ)dα

]

exp (−j2πfτ)dτ

E [Sxy(f, T, k)] = E

[

1

T
X∗

k(f, T )Yk(f, T )

]

=

∫ 0

−T

[

1

T

∫ T

−τ

Rxy(τ)dα

]

exp (−j2πfτ)dτ

+

∫ T

0

[

1

T

∫ T−τ

0

Rxy(τ)dα

]

exp (−j2πfτ)dτ

=

∫ 0

−T

[

1 − τ

T

]

Rxy(τ) exp (−j2πfτ)dτ +

∫ T

0

[

1 − τ

T

]

Rxy(τ) exp (−j2πfτ)dτ

=

∫ T

−T

[

1 − |τ |
T

]

Rxy(τ) exp (−j2πfτ)dτ

It should be noted that this expression indicates that the averaged periodogram procedure is an
averaged truncated peridogram procedure which reduces the bias and variance in the original periodogram
estimate by removing contributions from the ”tails” and averaging the remainder over the record length, T

using the weighting function 1 − |τ |
T . (Priestley1 page 433 ). This averaged truncated peridogram creates a

consistent estimate of the spectrum at each frequency. The original periodogram was devised for discrete
spectra and works well for discrete spectra. It fails for continuous spectra where it can be shown the variance
of the original periodogram for a Gaussian process does not go to zero. ( Davenport and Root53 page 107–108
, Koopmans55 Chapter 8, Priestley1 section 6.2.2,pages 429–432 )
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