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Abstract: Identification of parametric nonlinear models involves estimating unknown
parameters and detecting its underlying structure. Structure computation is concerned
with selecting a subset of parameters to give a parsimonious description of the system
which may afford greater insight into the functionality of the system or a simpler
controller design. In this study, a least absolute shrinkage and selection operator (LASSO)
technique is investigated for computing efficient model descriptions of nonlinear systems.
The LASSO minimises the residual sum of squares by the addition of a`1 penalty
term on the parameter vector of the traditional`2 minimisation problem. Its use for
structure detection is a natural extension of this constrained minimisation approach to
pseudolinear regression problems which produces some model parameters that are exactly
zero and, therefore, yields a parsimonious system description. The performance of this
LASSO structure detection method was evaluated by using it to estimate the structure of
a nonlinear polynomial model. Applicability of the method to more complex systems such
as those encountered in aerospace applications was shown by identifying a parsimonious
system description of the F/A-18 Active Aeroelastic Wing using flight test data.
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1. INTRODUCTION

Discrete-time nonlinear polynomials are often use-
ful to describe the input-output behaviour of com-
plex systems encountered in many control engineer-
ing, aerospace engineering and biological science ap-
plications. These polynomial mappings describe the
dynamic relationship of a system by an expansion
of the present output value in terms of present and
past values of the input signal and past values of
the output signal. These models are popularly known
as polynomial NARMAX (Nonlinear AutoRegressive,
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Moving Average eXogenous) models, a special case of
the so-called NARMAX model class (Leontaritis and
Billings, 1985a; Leontaritis and Billings, 1985b).

Many systems are described by these polynomial
models having only a few terms. However, even if the
system order is known through somea priori knowl-
edge, a full expansion of this model representation
yields a large number of candidate terms which may
be required to represent the system dynamics. Often
many of these candidate terms are insignificant and,
therefore, can be removed. Hence, the structure detec-
tion problem is that of selecting a subset of candidate
terms that best predicts the output whilst maintaining
an efficient system description.



The relevance of structure computation is, for exam-
ple, controller design and study of aerospace vehicle
dynamics. For control, a parsimonious system descrip-
tion is essential for many control strategies. In mod-
elling the objective is often to gain insight into the
function of the underlying system.

There are two fundamental approaches to the struc-
ture detection problem: (i) exhaustive search, where
every possible subset of the full model is considered
(see e.g. (Draper and Smith, 1981)), or (ii) parameter
variance, where the covariance matrix,Pθ , based on
input-output data and estimated residuals is used to
assess parameter relevance (see e.g. (Ljung, 1999)).
Both have problems. Exhaustive search requires a
large number of computations and parameter variance
estimates are often inaccurate when the number of
candidate terms is large.

Recently, a bootstrap method has been proposed
to solve the structure detection problem for over-
parameterised models (Kukrejaet al., 2004). Al-
though it has been demonstrated that the bootstrap
is a useful tool for structure detection of NARMAX
models, there is a limitation of the model complexity
that can be studied with this technique. This limitation
is a result of the large number of candidate terms,
for a given model order, and the data length required
to guarantee convergence. It was demonstrated that
a necessary condition for bootstrap structure detec-
tion to yield accurate results is the number of data
points needed for identification beat least10 times
the square of the initial number of candidate terms.

For many practical systems, collecting large data
records may be financially and/or technically infeasi-
ble. Estimation techniques used for NARMAX identi-
fication all require an over-determined system of equa-
tions to solve for the unknown system parameters. Due
to the large number of possible candidate terms and
limited data records available for any practical iden-
tification problem, it may not be feasible to analyse
highly complex systems with the bootstrap technique.
Nonlinear aeroelastic dynamics of aircraft are highly
complex processes likely involving a large number of
candidate terms which may not be accurately charac-
terised by current approaches.

We propose the application of a novel method for
NARMAX model identification via a least absolute
shrinkage and selection operator (LASSO) (Tibshirani,
1996). This approach permits identification of NAR-
MAX models in situations where current methods
cannot be applied. In this paper, we show that the
LASSO yields good results for structure detection of
an over-parameterised polynomial NARMAX model
in the presence of additive output noise. Application
of structure computation to aeroelastic modelling is
presented using flight test data from the F/A-18 Active
Aeroelastic Wing (AAW) (Pendletonet al., 2000) and
shown to yield a parsimonious model structure whilst
maintaining a high percent fit to cross-validation data.

The organisation of this paper is as follows. In §2 we
formulate the identification problem addressed here.
LASSO and its application as a tool for structure
computation is discussed in §3. Simulation results of
LASSO’s performance as a structure detection instru-
ment are presented in §4 whilst in §5 application re-
sults to flight test data of the F/A-18 AAW are pre-
sented. Section 6 provides a discussion of our findings
and §7 summarises the conclusions of our study.

2. PROBLEM STATEMENT

Consider the linear statistical model

z(n) =
p

∑
j=1

θ j f (ϕ j(n))+e(n) (1)

where z(n) is the observed system output,θ j is an
unknown system parameter,ϕ j(n) is a regressor,e(n)
is an independent Gaussian variable with zero-mean
and constant varianceσ2, f is a nonlinear mapping of
the regressors, andn is a sample index point.

Let the regressors be described as a linear expansion
of the observed system output, input and noise as

ϕ(n) = [1,z(n−1), · · · ,z(n−nz),u(n), · · · , (2)

u(n−nu),e(n−1), · · · ,e(n−ne)]T

whereu is the input. For the special case wheref is a
nonlinear mapping of polynomial form it may include
a variety of nonlinear terms, such as terms raised to
an integer power, products of current and past inputs,
past outputs, or cross-terms. In addition, the nonlinear
mapping, f , can be described by a wide variety of
nonlinear functions such as a sigmoid.

Identification of a NARMAX model consists of three
stages: (1) model order selection, (2) structure detec-
tion and (3) parameter estimation. A brief summary of
each stage of this process is discussed next.

2.1 Model Order Selection

The central problem in NARMAX identification is
that of selecting the correct model order. Initially,
there are an infinite number of candidate terms that
could be considered. Establishing the model order lim-
its the choice of terms to be considered. For poly-
nomial NARMAX models, the system order may be
defined as an ordered tuple

O
.= [nu nzne l ] (3)

where nu is the maximum lag on the input,nz the
maximum lag on the output,ne the maximum lag on
the error andl is the maximum nonlinearity order.
Note that for non-polynomial NARMAX models,l
may be simply replaced by a nonlinear mapping of
some specified class. For simplicity, in the sequel,
we assume nonlinearities that can be described by a
polynomial expansion.



2.2 Structure Detection

The structure detection problem is that of selecting
the subset of candidate terms that best describes the
output. Therefore, the parametrisation of a system is
still further reduced by determining which of the com-
ponents are required. The maximum number of terms
in a NARMAX model with nz, nu and ne dynamic
terms andl th order nonlinearity is:

p =
l

∑
i=1

pi +1;pi =
pi−1(nu +nz+ne+ i)

i
, p0 = 1.(4)

As a result, the number of candidate terms becomes
very large for even moderately complex models mak-
ing structure detection difficult. We define the maxi-
mum number of terms,p, as the number of candidate
terms to be initially considered for identification. Due
to the excessive parameterisation (the curse of dimen-
sionality), the structure detection problem often leads
to computationally intractable combinatorial optimi-
sation problems.

2.3 Parameter Estimation

The final step involves the estimation of the individual
model parameters. Since a NARMAX model is linear
in its parameters, standard least-squares minimisation
techniques can be used:

min
θ

1
2
‖(Z−Φθ)‖2

2 (5)

whereZ ∈ RN×1 is a vector of outputs,Φ ∈ RN×p

is a matrix of regressors andθ ∈ Rp×1 is a vector
of unknown system coefficients. The regression ma-
trix is a function of the measured input-outputs and
unmeasured noise, which makes this a pseudolinear
regression problem sinceΦ is (partly) unknown and
must be estimated along with the parameters. The
noise is estimated as a sequence of prediction errors
as,RN×1 3 ε̂ = Z− Ẑ whereẐ = Φθ̂ is the predicted
output andθ̂ the estimated parameter vector. As stated
earlier, using least-squares it is difficult to estimate
accurate parameter variance when the number of can-
didate terms is large. Therefore, a novel procedure
which may enable structure selection of highly over-
parameterised models is now considered.

3. LASSO

The least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996) is least-squares like prob-
lem with the addition of à1 penalty on the parameter
vector as

min
θ

1
2
‖(Z−Φθ)‖2

2 +λ ‖θ‖1 (6)

where‖·‖2 denotes thè2-norm and‖·‖1 denotes the
`1-norm.

The regularisation parameterR 3 λ = [λmin, . . . ,λmax]
controls the trade-off between approximation error
and sparseness. The LASSO shrinks the least-squares
estimator (Eqn.5) towards 0 and potentially setsθ j =
0 for some j. Consequently, LASSO behaves as a
structure selection instrument.

3.1 Solution of LASSO

A solution to LASSO can be constructed in a quadratic
programming framework (Chenet al., 2001). With
the introduction of slack variables the solution to this
optimisation problem can be written as a simple bound
constrained quadratic program (QP),

min
x

1
2

xTMx +cTx such thatxk ≥ 0,and where, (7)

M=
[

Φ
T

Φ −Φ
T

Φ

−Φ
T

Φ Φ
T

Φ

]
,c=λ1−

[
Φ

TZ
−Φ

TZ

]
,x=

[
θ

+

θ
−

]
.

The model parameters are given byθ = θ
+ − θ

−.
The QP can be solved readily using standard optimis-
ers (Mészáros, 1998). Thus, given a suitable regular-
isation parameter, the general structure computation
problem can be solved. A method which enables the
selection of an appropriate regularisation parameter is
now considered.

3.2 Selection of Regularisation Parameter:λ

LASSO requires the determination of regularisation
parameter,λ , for the penalty term (Eqn.6) . To obtain
λ , the method of cross-validation is used (Shao, 1993).
This approach allows the prediction error

PE = E [Z−Φθ ]2 (8)

to be estimated. The regularisation parameter,λ , is
chosen to minimise this estimate.

3.3 Unique Optimum & Convergence of LASSO

For identification it is often assumed the excitation
signal is persistently exciting which implies thatΦTΦ

is positive definite. As a result the first term of Eqn.6
is a strictly convex function. Since the second term
is convex, it follows that the sum is strictly convex
and a unique optimiser is guaranteed (Osborneet
al., 2000). Next, assume the optimal regularisation
parameter,λ ∗, is known. Since Eqn.6 is strictly a con-
vex optmisation problem the solution will converge
to a unique global minimum (Osborneet al., 2000).
From parametric optimisation theory it is known that
PE(λ ) is not necessarily a convex function (it is a
piecewise quadratic function) (Grigoriadis and Rit-
ter, 1969). Hence, for several choices ofλ giving
the same PE but different model structures can result.
In the sequel, we investigate the validity of LASSO
to select the correct model structure for a simulated
nonlinear model.



4. SIMULATION EXAMPLE

The efficacy of LASSO as a tool for structure detec-
tion was assessed using Monte-Carlo simulations of a
polynomial nonlinear system. In these simulations, a
white input with uniform distribution was used. One
thousand Monte-Carlo simulations were generated in
which each input-output realisation was unique and
had a unique Gaussian distributed, white, zero-mean,
noise sequence added to the output. The output addi-
tive noise amplitude was increased in increments of 5
dB, from 20 to 0 dB signal-to-noise-ratio (SNR). Each
input-output set consisted of 1,000 data points.

The regularisation parameter,λ , was determined by
numerically minimising the cross-validation error across
a discrete set of 1,000 logarithmically spacedλ values
(10λmin ≤ λ ≤ 10λmax). The min-max regularisation pa-
rameter levels were set toλmin =−10 andλmax= 1.5.
For cross-validation, the last 1/3 of each data set was
used; 667 points for estimation and 333 for validation.

For each input-output realisation, the structure detec-
tion result was classified into one of three categories:

(1) Exact Model: A model which contains only true
system terms,

(2) Over-modelled: A model with all its true system
terms plus spurious parameters and

(3) Under-modelled: A model without all its true
system terms. An under-modelled model may
contain spurious terms as well.

We studied the nonlinear polynomial system:

z(n) = 0.4[u(n−1)+u(n−1)2 +u(n−1)3]

+ 0.8z(n−1)−0.8e(n−1).

It was assumed that the system order is fully known,
O = [1,1,1,3], to assess the accuracy of LASSO
to compute the correct structure when the model is
mildly over-parameterised. This system is described
by 3 lagged inputs, 1 lagged output, 1 lagged error
and third order nonlinearity. A model of this order has
35 candidate terms, but the true system has only 5 true
terms.

Fig.1 presents the results of this study. The left panel
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Fig. 1. Left: Selection rate of exact, over and under
modelling. Right: Mean and STD of spurious
term selection rate for over-modelling.

shows the LASSO method had a 0% rate of under-
modelling for 20–10 dB SNR which then increased
from 12.3%–30.3% for 5–0 dB SNR. The rate of

over-modelling increased for 20–5 dB SNR, from
48.6%–76.8% then deceased at 0 dB SNR to 62.6%
where under-modelling started to increase rapidly. The
rate of selecting the exact model decreased across
all SNR levels with a maximum of 51.4% at 20 dB
and a minimum of 7.1% at 0 dB . The right panel
illustrates the rate of selecting spurious terms when
over-modelling occurred. This rate was low for all
SNR levels with a minimum of 1.01± 0.0733 and a
maximum of 4.55± 1.72. For this third order model
with known model order, LASSO performed well for
high SNR’s since it did not drop any true terms. The
performance of LASSO deteriorated when the SNR
decreased. When LASSO selected an over-modelled
model, the rate of spurious term selection was low for
all SNR levels.

5. EXPERIMENTAL AIRCRAFT DATA

Lastly, the LASSO technique was assessed on exper-
imental flight test data from the F/A-18 AAW project
at NASA Dryden Flight Research Center. The data
analysed for this study used collective aileron position
input and structural accelerometer response output.

5.1 Procedures

Flight data was gathered during subsonic flutter clear-
ance of the AAW. At each flight condition, the air-
craft was subjected to multisine inputs corresponding
to collective and differential aileron, collective and
differential outboard leading edge flap, rudder, and
collective stabilator excitations in the range of 3-35
Hz for 26 sec. This paper considers accelerometer
data measured during the collective aileron sweeps at
Mach 0.85 at 4,572 m (15,000 ft). The input collective
aileron position was obtained as the average of four
position transducer measurements from the right and
left ailerons. The output was taken as the response
of an accelerometer mounted near the wing leading
edge just inside the wing fold. Data was sampled at
400 Hz. For analysis, the recorded flight test data was
decimated by a factor of 2, resulting in a final sampling
rate of 200 Hz.

For identification a model with fourth-order input-
output and error dynamics and third-order nonlinear-
ity, O = [3,4,4,4], was used. A model with fourth-
order dynamics was selected because it has been
observed that aeroelastic structures are well defined
by a fourth-order linear time-invariant (LTI) system
(Smith, 1995). The nonlinearity order was chosen as
third-order because models of higher nonlinear order
can often be decomposed to second or third-order.
This gave a full model description with 560 candidate
terms.

The system was identified as outlined in §4. For esti-
mation,Ne = 5,200 points were used from accelerom-
eter response measurements on the right wing. For
cross-validation,Nv = 5,200 points were used from



data collected at a similar location on the left wing.
In both the estimation and cross-validation sets, the
input was the same collective aileron position. The
min-max regularisation parameter levels were set to
λmin = −10 andλmax = 1.0 with a discretisation grid
of 1,000 logarithmically spacedλ ’s.

5.2 Results

The results of identifying the AAW data are presented.
Fig. 2 shows the input-output trial used for this anal-
ysis. The data represents collective aileron position
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Fig. 2. Upper panel: Collective aileron position. Lower
panel: Structural accelerometer response.

sequence and structural accelerometer response (right
wing) used to compute the system structure.

Eqn. 9 depicts the model structure computed by the
LASSO method

z(n) = θ̂0 + θ̂1u(n−1)+ θ̂2u(n−2)+ θ̂3u(n−4)

+ θ̂4u2(n−1)+ θ̂5u2(n−2)+ θ̂6u2(n−4) (9)

+ θ̂7z(n−1)+ θ̂8z(n−4)+ θ̂9u2(n−1)z(n−4)

+ θ̂10u
2(n−2)z(n−1)+ θ̂11u

2(n−4)z(n−4)

+ θ̂12z
3(n−1)+ θ̂13z

3(n−4)+ θ̂14ε̂(n−1)

+ θ̂15ε̂(n−4)+ θ̂16u
2(n−1)ε̂(n−4)

+ θ̂17u
2(n−2)ε̂(n−1)+ θ̂18u

2(n−4)ε̂(n−4)

+ θ̂19z
2(n−1)ε̂(n−1)+ θ̂20z(n−1)ε̂2(n−1)

+ θ̂21ε̂
3(n−1)+ θ̂22z

2(n−4)ε̂(n−4)

+ θ̂23z(n−4)ε̂2(n−4)+ θ̂24ε̂
3(n−4).

The computed model structure is represented by a
combination of linear and nonlinear, lagged input-
output terms and contains 25 terms. Hence, the
LASSO technique successfully produced a parsimo-
nious model description from the full set of 560 can-
didate terms.

Fig.3 shows the predicted output for a cross-validation
data set for the identified structure (Eqn. 9). The up-
per panel displays the full 26s time history of the
accelerometer response recorded on the left wing. The
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Fig. 3. Upper panel: Full time history of structural ac-
celerometer response. Lower panel: Predicted ac-
celerometer response of left wing superimposed
on top of measured velocity output.

lower panel displays a 4.5 second slice of the predicted
output superimposed on top of the measured output.
The predicted output accounts for over 98% of the
measured outputs variance. The result demonstrates
that the computed model structure is capable of repro-
ducing the measured output with high accuracy.

6. DISCUSSION

6.1 Simulations

The LASSO approach to structure detection yielded
good results for the nonlinear polynomial model con-
sidered. It had a high rate of selecting the exact
structure for high SNR levels. For lower SNRs, over-
modelling dominated the structure computation pro-
cedure except at 0 dB at which the rate of under-
modelling started to increase quickly. For all SNR
levels when the computed model was over-modelled,
the rate of selecting spurious terms was low.

The results for this case study were obtained using
only 667 data points for estimation and 333 for val-
idation. Often, there is more data available in many
system identification applications and, therefore, the
exact selection rate should improve given more data
for identification.

6.2 Experimental Aircraft Data

Experimental results demonstrate that LASSO may be
a useful tool for structure computation of dynamic
aircraft data. LASSO successfully reduced the large
number of regressors posed to aircraft aeroelastic data
yielding a parsimonious model structure. Addition-
ally, this parsimonious structure was capable of pre-
dicting a large portion of the observed cross-validation
data, collected on an adjacent wing and with a differ-
ent sensor. This suggests that the identified structure
and parameters explain the data well. Using percent fit
alone as an indicator of model goodness may lead to



incorrect interpretations of model validity. However,
in many cases, for nonlinear models this may be the
only indicator that is readily available.

For this study, only a polynomial map was used as a
basis function to explain the nonlinear behaviour of
the F/A-18 AAW data. Clearly, different basis func-
tions should be investigated to determine if another
basis can produce accurate model predictions with
reduced or comparable complexity. Moreover, further
studies are necessary to evaluate whether the model
structure is invariant under different operating con-
ditions, such as Mach number and altitude, and for
model parameterisations.

6.3 Improvements and Future Work

There may be more efficient ways to address the solu-
tion of Eqn.6 for differentλ . The LASSO optimisation
problem can be viewed as special case of a param-
eterised QP. It is known that the solutionθ(λ ) is a
piecewise function (Grigoriadis and Ritter, 1969) and
there are reasonably efficient ways to construct this
function for low order dimension on the parametric
variableλ (Kvasnicaet al., 2004). Sinceλ is scalar
in our case, a parametric approach might be tractable.
If the piecewise functionθ(λ ) has a compact descrip-
tion, it could be more computationally efficient than a
brute-force gridding.

It should be acknowledged that the overall problem
with the two stages, (i) computing a finite set of
optimal θ for varying λ and (ii) optimisingλ in a
second phase to minimise the cross-validation criteria,
can be interpreted as an ad-hoc approach to solve
a bi-level optimisation problem. These problems are
notoriously difficult to solve exactly. Nevertheless,
improved computation of sub-optimal solutions may
be possible by exploring more advanced approaches
to address the bi-level optimisation problem

The optimisation criteria in the LASSO setup is mo-
tivated by the well known fact that a‖ · ‖1 penalty
appended to a quadratic objective tends to yield a
sparse solution. However, it is only a heuristic for ad-
dressing the underlying problem: achieving few non-
zero parameters. An alternative way to address this,
in an optimisation framework, is to use combinatorial
optimisation. Solving the regression problem (Eqn.
5) with a bound on the number of non-zero param-
eters may be achieved in a straightforward manner
using mixed binary quadratic programming. Instead of
performing the cross-validation optimisation problem
over a bank of solutions, computed using differentλ ,
one could compute solutions for a different number
of non-zero parameters and use these solutions in the
cross-validation phase.

7. CONCLUSIONS

LASSO is a novel approach for detecting the structure
of over-parameterised nonlinear models in situations

where other methods may be inadequate. The main
point here is that the LASSO technique is clearly
amenable to the study of a wide range of nonlin-
ear systems. These results may have practical sig-
nificance in the analysis of aircraft dynamics during
envelope expansion and could lead to more efficient
control strategies. In addition, this technique could
allow greater insight into the functionality of various
systems dynamics, by providing a quantitative model
which is easily interpretable.
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