
Dale J. Mortensen

ZIN Technologies, Inc., Brook Park, Ohio

Louis M. Handler

Glenn Research Center, Cleveland, Ohio

Todd M. Quinn

ZIN Technologies, Inc., Brook Park, Ohio

Design and Testing of Space Telemetry

SCA Waveform

NASA/TM—2006-214245

April 2006

SDR’05 4.6–02

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI Program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NASA Aeronautics and Space Database and its

public interface, the NASA Technical Reports Server,

thus providing one of the largest collections of

aeronautical and space science STI in the world.

Results are published in both non-NASA channels and

by NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies that

contain minimal annotation. Does not contain

extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services also include creating custom

thesauri, building customized databases, organizing

and publishing research results.

For more information about the NASA STI

program, see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 301–621–0134

• Telephone the NASA STI Help Desk at

301–621–0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076–1320

Design and Testing of Space Telemetry

SCA Waveform

NASA/TM—2006-214245

April 2006

National Aeronautics and

Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Prepared for the

2005 Software Defined Radio Technical Conference and Product Exposition

sponsored by Spectrum Signal Processing, RICS Sensor Processing, Primtech, Boeing, Pentek, and

SDR Forum

Orange County, California, November 14–18, 2005

SDR’05 4.6–02

Dale J. Mortensen

ZIN Technologies, Inc., Brook Park, Ohio

Louis M. Handler

Glenn Research Center, Cleveland, Ohio

Todd M. Quinn

ZIN Technologies, Inc., Brook Park, Ohio

Acknowledgments

The authors would like to especially thank the following NASA Glenn STRS waveform team members for their contributions

to this effort: Daniel Oldham, Thomas Bizon, and Jeffrey Glass.

Available from

NASA Center for Aerospace Information

7121 Standard Drive

Hanover, MD 21076–1320

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Trade names and trademarks are used in this report for identification

only. Their usage does not constitute an official endorsement,

either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

This report contains preliminary findings,

subject to revision as analysis proceeds.

NASA/TM—2006-214245 1

Design and Testing of Space Telemetry SCA Waveform

Dale J. Mortensen
ZIN Technologies, Inc.

Brook Park, Ohio 44142

Louis M. Handler
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Todd M. Quinn

ZIN Technologies, Inc.
Brook Park, Ohio 44142

Abstract

A Software Communications Architecture (SCA)
Waveform for space telemetry is being developed at the
NASA Glenn Research Center (GRC). The space telemetry
waveform is implemented in a laboratory testbed consisting of
general purpose processors, field programmable gate arrays
(FPGAs), analog-to-digital converters (ADCs), and digital-to-
analog converters (DACs). The radio hardware is integrated
with an SCA Core Framework and other software
development tools. The waveform design is described from
both the bottom-up signal processing and top-down software
component perspectives. Simulations and model-based design
techniques used for signal processing subsystems are
presented. Testing with legacy hardware-based modems
verifies proper design implementation and dynamic waveform
operations.

The waveform development is part of an effort by NASA to
define an open architecture for space based reconfigurable
transceivers. Use of the SCA as a reference has increased
understanding of software defined radio architectures.
However, since space requirements put a premium on size,
mass, and power, the SCA may be impractical for today’s
space ready technology. Specific requirements for an SCA
waveform and other lessons learned from this development
are discussed.

1. Introduction
The Space Telecommunication Radio System (STRS)

project team at the NASA GRC is currently studying the SCA
to support the design effort of an open architecture for
software defined radios in the space environment. In order to
better understand the application of such an architecture to
space-based radios, the STRS waveform development team is
currently working on a prototype SCA waveform that mirrors
the functional characteristics of current NASA space telemetry
(ref. 1). The waveform’s basic characteristics are QPSK

modulation, 1/2 rate Viterbi coding, and 1 Mbps user data
throughput.

An SDR-3000 development platform, part of the testing
and validation laboratory at NASA Glenn, was utilized for the
waveform development. The platform consists of a number of
PowerPC multipurpose processors; (FPGAs), (DACs),
(ADCs), a real-time operating system, the Harris SCA core
framework, and a communication board support package. This
platform was used to transmit and receive signals to other
commercial satellite modems at 70 MHz intermediate
frequency (IF) for testing and validation purposes.

Both a bottom-up and top-down design approach was
implemented, as described in the next section. Testing and
validation methods and results are described in section 3. To
conclude, a discussion of implications for space-based radio
applications is in section 4. Lessons learned are included
throughout these sections.

2. Design and Implementation
Knowing where to begin the development was a significant

challenge, even with a basic understanding of the SCA.
Developing this SCA waveform required experience in
several different areas, such as middleware, object oriented
embedded programming, FPGA design, digital signal
processing, not to mention space communications. On
occasion industry software engineers were consulted to
supplement the waveform team’s experience and knowledge.
Specifically, during the course of this effort, the team acquired
knowledge in the following areas:

• Use of the software development and monitor tools

accompanying the core framework.
• Use of the interface definition language (IDL) to define

various interfaces for the components of a waveform.
• The SCA domain profile specification and how to

deploy and configure various parts of the waveform.
• How the core framework uses CORBA and how

CORBA applies to the waveform.

NASA/TM—2006-214245 2

• The process path needed for developing the various
components of the waveform and connecting them
together.

The waveform development process followed can be
summarized in the following steps (ref. 2):

1. Identify the functionality that comprises the operation of
the waveform.

2. Identify the interfaces between the components.
3. Create and compile IDL for the waveform specific

interfaces (e.g., PullPacket).
4. Write CORBA Servant code.
5. Create XML.
6. Test and debug.

In parallel, the various waveform digital signal processing
functions, such as the modulation mapping, were tested and
debugged in a non-SCA waveform. Then these functions were
integrated with the corresponding SCA waveform software
components.

The initial development tasks focused on how the
waveform is managed by the SCA core framework, and how
the various sections of the SCA handle deployment and
operation of the waveform. The SCA core framework
provides a Domain Manager, Application Factory and

Application entities for deployment and control of the
waveform. The waveform developer only needs to concentrate
on a set of basic application interfaces such as Port,
PropertySet, Resource and others as described in the SCA
specification. Waveform components are developed with
these base application interfaces and interact with the SCA
deployment and control mechanism through information
provided in the Software Assembly Descriptor XML file, and
other supporting XML files (ref. 3).

Identifying the functionality of the various components that
would comprise the transmit portion of the space telemetry
waveform produced the following four software components,
(as shown in fig. 1):

1. Data Generator—produces internally generated data

patterns, and provides an interface with external data
sources.

2. Encoder—convolutionally at 1/2 rate and
differentially encodes data.

3. Modulation Mapper—converts the binary data to
modulation symbol samples.

4. Filter & UpConv—performs pulse shaped filtering
and digital up conversion.

To deploy these components within the SCA core framework,
an additional component called the Assembly Controller is

Domain
Log
Log

Data
Generator

Resource
LogOut

DG_MODE
DG_SOURCE

Modulation
Mapper

Resource
LogOut

MOD_TYPE

PacketIn

Encoder

Resource
LogOut

ENC_CONV_ENABLE
ENC_DIFF_ENABLE

PacketIn

Assembly
Controller

DataGen

Encoder ModMapper

DG_MODE
DG_SOURCE

ENC_CONV_ENABLE
ENC_DIFF_ENABLE

MOD_TYPE
DAC_FILTER_MODE
DUC_OUT_SCALE

DUC_RATE
VIRTEX_NAME

TM1_TYPE

LogOut

Filter & UpConv

Resource
LogOut

DAC_FILTER_MODE
DUC_OUT_SCALE

DUC_RATE
VIRTEX_NAME

TM1_TYPE

DAC

Filter&UpConv

Pull Pull

PPC 7410
Logical Device

FabricWriteChannel

Analog IF

PacketOut RequestOutRequestIn

Data packets

Configuration
and Control

DUC output

Interrupt
signal

FPGA Sands
Logical Device

FabricChannel0

Configuration
(TM1-3300 API)

PacketOut

WriteFabric

Figure 1.—Transmit SCA software components and interfaces.

NASA/TM—2006-214245 3

needed. The SCA specification requires that all external
configuration, control and query requests are relayed by the
core framework and processed by the Assembly Controller.
For example, as shown in figure 1, the Data Generator is a
resource component which has properties DG_MODE and
DG_SOURCE. These parameters can be set by a user via an
external interface that communicates through the core
framework domain manager. The domain manager passes the
information along to the Assembly Controller. The Assembly
Controller has port connections to the various components to
relay the property values to the proper destinations.

The Assembly Controller, the Data Generator, the Encoder
and the Modulation Mapper are components that are to be
deployed on general purpose PowerPC processors. The SCA
specification requires that these components communicate
using CORBA. To minimize communication delays among
distributed objects in the CORBA environment, the four
components were collocated on the same processor.
Connections between the components are achieved by
specifying SCA ports on each component.

A PullPacketInterface is defined in IDL to encapsulate the
transfer of a data packet using CORBA. The
PullPacketInterface is used by the Modulation Mapper to
transfer packetized data from the Encoder. The Encoder, in
turn transfers data from the Data Generator with the same type
of interface. In IDL, a PullPacketInterface is defined with a
function called PullPacket. An IDL compiler for C++ is used
to create the code to support the PullPacketInterface within
the CORBA communication environment. The waveform
components that support the PullPacketInterface must
implement a PullPacket function.

The PullPacket function in the Data Generator creates a
packet of data based upon the current DG_MODE setting. The
data packet is passed back to the Encoder which adds its
encoding and then passes the data packet back to the
Modulation Mapper to prepare it for further processing. In a
similar fashion, the interface between the Filter & UpConv
requests a data packet by using a different CORBA interface
called RequestPacket.

Up to this point the waveform components fit nicely within
the SCA core framework because they are to be deployed on
general purpose processors (GPP). The filter and up converter
functions however are deployed and executed inside an FPGA
for performance reasons. This currently requires a SCA
component, shown as the Filter & UpConv block of figure 1.
This represents the control part of the filter and up converter
function, and resides on a GPP with a direct connection to the
FPGA. The hardware platform on which the waveform is
deployed has a board support package with various SCA
logical devices which allow specialized hardware to operate
within the core framework. The development platform uses
flexFabric (platform specific RapidIO switched fabric) to
quickly move data between various processors. The control
portion of the Filter & UpConv can receive parameter control

FPGA

Modulation
Mapper

fabric proxy
on GPP1

fabric proxy
on GPP2

1

2

Filter&UpConv

3

flexFabric

Figure 2.—XML connections to FPGA.

information from the Assembly Controller and configure the
FPGA appropriately. Also, digital signal data packets from the
Modulation Mapper can be directly sent over a flexFabric
communication channel via a SCA port connection.

The WriteFabric interface between the Modulation Mapper
and the filter and up converter functions on the FPGA uses a
special mechanism to take advantage of the flexFabric
interface to send data to the FPGA without CORBA. This is
important since the Modulation Mapper and the FPGA are on
different physical processor boards and the CORBA
communication delays via Ethernet would be too long for the
waveform to function as it’s currently designed at a data rate
of 1 Mbps.

A special association is needed to use the flexFabric to send
data from the GPP to the FPGA. There is an indirect
connection made to a proxy allowing the WriteFabric port on
the Modulation Mapper to obtain a handle from the core
framework, as in item 1 below. This handle is used to access
the flexFabric to write data to the FPGA. The implementation
requires three XML connections in the software assembly
descriptor (SAD) file, as figure 2 illustrates:

1. From the GPP1 module (Modulation Mapper) to fabric

proxy on the same device.
2. From fabric proxy on GPP1 to fabric proxy on GPP2,

the device with a direct connection to the FPGA.
3. From GPP2 module (Filter & UpConv) to fabric proxy

on the same device. This connection is a placeholder to
complete the connection, but the handle in the Filter &
UpConv is not usable by the waveform.

The bottom-up design approach focused on developing the

waveform functions independent of the SCA, yet cognizant of
the waveform’s top-level module boundaries and interfaces.
For example, GPP code was written for the Data Generator
function that was independent of the encoding and mapping
routines instead of being highly integrated. Likewise the
FPGA code was written with SCA control delays in mind, in
terms of buffering data to deal with relatively lengthy CORBA
calls.

NASA/TM—2006-214245 4

A model-based design approach was employed with the
FPGA circuit development. Simulations of the digital up
converter allowed parameters to be set properly for the given
waveform specifications before testing on the hardware.
VHDL code was auto-generated from the working
simulations, and then brought into the FPGA synthesis CAD
tool. The platform provided FPGA wrapper VHDL code was
integrated with the application code. Figure 3 shows a
functional block diagram of the platform FPGA wrapper with
the transmit waveform functions. The block labeled “DUC”
contains the auto-generated code from the simulation model.

3. Testing and Validation
Testing was focused to learn whether SCA waveforms can

be used for space applications. Although the SCA start and
stop methods were designed for normal use, testing and
debugging was accomplished more efficiently using the
runTest method. This allows a variety of tests to be invoked
without changing the waveform.

The SCA components in the waveform inherit from the
SCA CF::Resource interface which inherits the runTest
method from the Testable Object interface. The runTest
method was implemented in the SCA components to test
passing data between components. The data in the XML
preferences was used to control what data was sent for those
components tested. A large value for the property NTIMES
was entered to repeat the test for the corresponding number of
packets where each packet was 4096 bytes long. Timing was
kept and the lapse time was computed for the pertinent tests.
Thus, debugging of different portions of the waveform’s
functionality was possible by changing property values with
the user interface.

Referring to figure 1, a test of the Modulation Mapper
pulling a packet from the Encoder which pulls the packet from
the Data Generator and sends the packet over the flexFabric to
the FPGA was performed. It took 2.05 mesc to send each
packet. The results for the test of the Filter & UpConv
requesting a packet from the Modulation Mapper which pulls
the packet from the Encoder which pulls the packet from the
Data Generator and sends the packet over the flexFabric to the

FPGA Wrapper - I/O Layer

FPGA Wrapper - Protocol Layer

IO
Framer

I/O
Framer

I/O

TM1
I/O

Application

SAND
protocol

TM1
protocol

Data Select
Mux

from 7410 or FP

TM1 FlexFabric I/O Interface

Front
Panel

I/O

405GP
I/O

Frequency & Filtering
Control Interface

(via 3100 405)

405 control
applicationflexFabric

from
7410

Front Panel I/O and LEDs

DUC
Xilinx LogiCORE

to
DAC

IRA

Asynchronous
FIFO

Clk divide
& dist.

Clock
Distribution

Demux

Figure 3.—FPGA functions and wrapper integration.

NASA/TM—2006-214245 5

FPGA was 3.09 mesc per packet. The difference of about
1 mesc is the time to send a request from the Filter & UpConv
to the Modulation Mapper. This relatively significant delay is
due to using CORBA between different boards in the SDR.
There will be more about the implications of this in the next
section.

A challenge in waveform testing and debugging was the
time it takes to make a simple change before it can be
debugged. The process of making a code change, recompiling,
rebooting the hardware, loading the core framework, and
starting the user interface usually takes at least 15 min. This
time delay makes the debug process cumbersome and
inefficient by today’s standards. Additional challenges
encountered were timeout errors, insufficient error messages
from the core framework, system hang ups, and limited
documentation.

Several COTS legacy hardware modems were used in the
validation testing of the waveform. Some of these modem
specifications are proprietary, such as the synchronization
technique and forward error correction details, so
interoperability with this equipment became a challenge. A
few of the original waveform specifications needed to be
changed along the way as the testing revealed some of the
differences with the legacy modems. In particular the addition
of differential encoding became necessary to allow phase
ambiguity resolution in the commercial receivers. The original
waveform design was a unique word method of
synchronization, but this was not possible given the
proprietary nature of the COTS modems.

The transmit waveform has been successfully tested with
legacy modem receivers using pseudo random bit sequence
data and differential encoding. Additive white Gaussian noise
was added at the 70 MHz IF yielding the BER performance
plotted in figure 4. Some degradation from theoretical for
differentially encoded QPSK is observed (ref. 4). This is due
in part to the unmatched pulse-shaped filtering between the
transmit waveform and the commercial receiver. The
proprietary nature of the legacy modem receivers makes
matching the filter difficult.

4. Implications for Space Based SDR
Certain aspects of the SCA are important when considering

deployment, especially those that relate to size, weight, and
power for a space-based radio. Development of this space
telemetry waveform has brought forth issues regarding
FPGAs, memory, and waveform file system complexity.

This development effort intentionally placed as many
waveform functions as possible in the GPP (ref. 1). The
FPGA was used for remaining functions that would not meet
data rate performance in the GPP. In actual space radio
applications FPGAs are favored over GPPs because of
performance and power efficiency. Optimization is key for
limited resource space-based radios. The model-based design

approach offers

portability but is not yet optimal from a performance
standpoint. A standard FPGA wrapper would help with
reusability and portability of optimized code. Since there is no
standard FPGA wrapper, there is a porting challenge for each
new radio, having a different FPGA implementation.
Unfortunately, the SCA does not currently address FPGA
application interfaces adequately. Although there is on going
work in this area, it is recommended that industry and the
standards bodies increase their efforts.

The bottom-up waveform development approach produced
a non-SCA waveform, which allows an interesting
comparison with the SCA waveform in terms of resources.
The non-SCA waveform is a combination of all the data flow
functions, such as encoders and upconverters, running without
any SCA infrastructure.

As an estimate of the effort involved and resources
required, the SCA waveform consisted of 69 files: 22 “.h”
files,
25 “.cpp” files, 18 XML files, and 4 IDL files, whereas the
non-SCA waveform consisted of 15 “.c” files. The previous
SCA waveform file count does not include 44 additional files,
11 generated for each IDL file. The SCA and non-SCA
waveforms each consist of about 11600 lines of code.
Although these numbers of lines appear to be similar, the SCA
waveform is much more complex. It contains implementations
of the CF:: Resource interface methods, and CORBA for data
transfer, whereas the non-SCA waveform contains extra test
programs required for bottom-up testing.

In terms of memory footprint, there are significant
differences for the SCA and non-SCA waveforms. The SCA
waveform consisted of 6.3 Mb generated in 7 “*.out” files
whereas the non-SCA waveform consisted of 0.5 Mb
generated in 2 “.out” files. The SCA waveform is almost 13
times as large as the non-SCA waveform, even before the core

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 3 6 9 12
Eb/No (dB)

B
ER

testing
theory

Figure 4.—BER performance with legacy modem.

NASA/TM—2006-214245 6

framework and CORBA are included in the SCA
environment. On the test platform’s GPPs, the core framework
took over
35 Mb of memory, which includes 6 Mb for the XML parser
alone. The XML files are used for dynamic deployment,
which may not be necessary on a space-based radio due to the
static nature of the mission requirements. In addition, the
ACE/TAO ORB took about 12 Mb. Although there are other
much smaller ORBs available, the core framework and ORB
would still consume a significant proportion of the required
resources. Current reconfigurable space radios have only
about 2 Mb of memory to do everything, including the
operating system. The processing power in terms of GPP
speed and FPGA gates is also at a premium, so it would be
difficult to fly such an SCA waveform on space transceivers
in the near term. However, a viable “light weight” version of
the SCA may enable the SCA to fly on future missions.

In the meantime, NASA is developing an open architecture
radio infrastructure that parallels the SCA in many aspects but
is small enough to fly on near-term missions. Tradeoffs with
the flexibility the SCA offers and the constraints of the space-
based radios are a major part of the architecture design. The

SCA space telemetry waveform effort reported on in this
paper has enabled the NASA architecture team to understand
and assess the use of the SCA for space. Many subtle aspects
were only discovered through this hands-on development.
Future plans involve a port of the SCA space telemetry
waveform to the new NASA software radio infrastructure as
one of the first test cases.

5. References
1. D.J. Mortensen, M. Kifle, C.S. Hall, T.M. Quinn, “SCA

Waveform Development for Space Telemetry,” SDR Forum
Technical Conference, November 2004.

2. Gonzalez, R. Hess, “JTRS SCA Developer’s Guide,”
Raytheon for JTRS JPO, June 2002.

3. JTRS–5000SCA, appendix D, rev 2.2.
4. B. Sklar, Digital Communications 2nd ed., Prentice Hall,

UpperSaddle River, NJ, 2001.

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

April 2006

NASA TM—2006-214245
SDR'05 4.6–02

E–15490

WBS–22–041–20–06

12

Design and Testing of Space Telemetry SCA Waveform

Dale J. Mortensen, Louis M. Handler, and Todd M. Quinn

Software defined radio; Space communications; Reconfigurable;
Software communications architecture

Unclassified -Unlimited
Subject Category: 17

A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn

Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose

processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters

(DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The wave-

form design is described from both the bottom-up signal processing and top-down software component perspectives.

Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy

hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform

development is part of an effort by NASA to define an open architecture for space based reconfigurable

transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However,

since space requirements put a premium on size, mass, and power, the SCA may be impractical for today’s space ready

technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

Prepared for the 2005 Software Defined Radio Technical Conference and Product Exposition sponsored by Spectrum
Signal Processing, RICS Sensor Processing, Primtech, Boeing, Pentek, and SDR Forum, Orange County, California,
November 14–18, 2005. Dale J. Mortensen and Todd M. Quinn, ZIN Technologies, Inc., 3000 Aerospace Parkway,
Brook Park, Ohio 44142; and Louis M. Handler, NASA Glenn Research Center. Responsible person, Dale Mortensen,
organization code RCD, 216–925–1267.

