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Abstract 

A Software Communications Architecture (SCA) 
Waveform for space telemetry is being developed at the 
NASA Glenn Research Center (GRC). The space telemetry 
waveform is implemented in a laboratory testbed consisting of 
general purpose processors, field programmable gate arrays 
(FPGAs), analog-to-digital converters (ADCs), and digital-to-
analog converters (DACs). The radio hardware is integrated 
with an SCA Core Framework and other software 
development tools. The waveform design is described from 
both the bottom-up signal processing and top-down software 
component perspectives. Simulations and model-based design 
techniques used for signal processing subsystems are 
presented. Testing with legacy hardware-based modems 
verifies proper design implementation and dynamic waveform 
operations. 

The waveform development is part of an effort by NASA to 
define an open architecture for space based reconfigurable 
transceivers. Use of the SCA as a reference has increased 
understanding of software defined radio architectures. 
However, since space requirements put a premium on size, 
mass, and power, the SCA may be impractical for today’s 
space ready technology. Specific requirements for an SCA 
waveform and other lessons learned from this development 
are discussed. 

1. Introduction 
The Space Telecommunication Radio System (STRS) 

project team at the NASA GRC is currently studying the SCA 
to support the design effort of an open architecture for 
software defined radios in the space environment. In order to 
better understand the application of such an architecture to 
space-based radios, the STRS waveform development team is 
currently working on a prototype SCA waveform that mirrors 
the functional characteristics of current NASA space telemetry 
(ref. 1). The waveform’s basic characteristics are QPSK 

modulation, 1/2 rate Viterbi coding, and 1 Mbps user data 
throughput. 

An SDR-3000 development platform, part of the testing 
and validation laboratory at NASA Glenn, was utilized for the 
waveform development. The platform consists of a number of 
PowerPC multipurpose processors; (FPGAs), (DACs), 
(ADCs), a real-time operating system, the Harris SCA core 
framework, and a communication board support package. This 
platform was used to transmit and receive signals to other 
commercial satellite modems at 70 MHz intermediate 
frequency (IF) for testing and validation purposes. 

Both a bottom-up and top-down design approach was 
implemented, as described in the next section. Testing and 
validation methods and results are described in section 3. To 
conclude, a discussion of implications for space-based radio 
applications is in section 4. Lessons learned are included 
throughout these sections. 

2. Design and Implementation 
Knowing where to begin the development was a significant 

challenge, even with a basic understanding of the SCA. 
Developing this SCA waveform required experience in 
several different areas, such as middleware, object oriented 
embedded programming, FPGA design, digital signal 
processing, not to mention space communications. On 
occasion industry software engineers were consulted to 
supplement the waveform team’s experience and knowledge. 
Specifically, during the course of this effort, the team acquired 
knowledge in the following areas: 

 
• Use of the software development and monitor tools 

accompanying the core framework. 
• Use of the interface definition language (IDL) to define 

various interfaces for the components of a waveform. 
• The SCA domain profile specification and how to 

deploy and configure various parts of the waveform. 
• How the core framework uses CORBA and how 

CORBA applies to the waveform. 



NASA/TM—2006-214245 2

• The process path needed for developing the various 
components of the waveform and connecting them 
together. 

 
The waveform development process followed can be 
summarized in the following steps (ref. 2): 
 

1. Identify the functionality that comprises the operation of 
the waveform. 

2. Identify the interfaces between the components. 
3. Create and compile IDL for the waveform specific 

interfaces (e.g., PullPacket). 
4. Write CORBA Servant code. 
5. Create XML. 
6. Test and debug. 
 

In parallel, the various waveform digital signal processing 
functions, such as the modulation mapping, were tested and 
debugged in a non-SCA waveform. Then these functions were 
integrated with the corresponding SCA waveform software 
components. 

The initial development tasks focused on how the 
waveform is managed by the SCA core framework, and how 
the various sections of the SCA handle deployment and 
operation of the waveform. The SCA core framework 
provides a Domain Manager, Application Factory and 

Application entities for deployment and control of the 
waveform. The waveform developer only needs to concentrate 
on a set of basic application interfaces such as Port, 
PropertySet, Resource and others as described in the SCA 
specification. Waveform components are developed with 
these base application interfaces and interact with the SCA 
deployment and control mechanism through information 
provided in the Software Assembly Descriptor XML file, and 
other supporting XML files (ref. 3). 

Identifying the functionality of the various components that 
would comprise the transmit portion of the space telemetry 
waveform produced the following four software components, 
(as shown in fig. 1): 

 
1. Data Generator—produces internally generated data 

patterns, and provides an interface with external data 
sources. 

2. Encoder—convolutionally at 1/2 rate and 
differentially encodes data. 

3. Modulation Mapper—converts the binary data to 
modulation symbol samples. 

4. Filter & UpConv—performs pulse shaped filtering 
and digital up conversion. 

 
To deploy these components within the SCA core framework, 
an additional component called the Assembly Controller is 
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Figure 1.—Transmit SCA software components and interfaces. 
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needed. The SCA specification requires that all external 
configuration, control and query requests are relayed by the 
core framework and processed by the Assembly Controller. 
For example, as shown in figure 1, the Data Generator is a 
resource component which has properties DG_MODE and 
DG_SOURCE. These parameters can be set by a user via an 
external interface that communicates through the core 
framework domain manager. The domain manager passes the 
information along to the Assembly Controller. The Assembly 
Controller has port connections to the various components to 
relay the property values to the proper destinations. 

The Assembly Controller, the Data Generator, the Encoder 
and the Modulation Mapper are components that are to be 
deployed on general purpose PowerPC processors. The SCA 
specification requires that these components communicate 
using CORBA. To minimize communication delays among 
distributed objects in the CORBA environment, the four 
components were collocated on the same processor. 
Connections between the components are achieved by 
specifying SCA ports on each component. 

A PullPacketInterface is defined in IDL to encapsulate the 
transfer of a data packet using CORBA. The 
PullPacketInterface is used by the Modulation Mapper to 
transfer packetized data from the Encoder. The Encoder, in 
turn transfers data from the Data Generator with the same type 
of interface. In IDL, a PullPacketInterface is defined with a 
function called PullPacket. An IDL compiler for C++ is used 
to create the code to support the PullPacketInterface within 
the CORBA communication environment. The waveform 
components that support the PullPacketInterface must 
implement a PullPacket function. 

The PullPacket function in the Data Generator creates a 
packet of data based upon the current DG_MODE setting. The 
data packet is passed back to the Encoder which adds its 
encoding and then passes the data packet back to the 
Modulation Mapper to prepare it for further processing. In a 
similar fashion, the interface between the Filter & UpConv 
requests a data packet by using a different CORBA interface 
called RequestPacket. 

Up to this point the waveform components fit nicely within 
the SCA core framework because they are to be deployed on 
general purpose processors (GPP). The filter and up converter 
functions however are deployed and executed inside an FPGA 
for performance reasons. This currently requires a SCA 
component, shown as the Filter & UpConv block of figure 1. 
This represents the control part of the filter and up converter 
function, and resides on a GPP with a direct connection to the 
FPGA. The hardware platform on which the waveform is 
deployed has a board support package with various SCA 
logical devices which allow specialized hardware to operate 
within the core framework. The development platform uses 
flexFabric (platform specific RapidIO switched fabric) to 
quickly move data between various processors. The control 
portion of the Filter & UpConv can receive parameter control 
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Figure 2.—XML connections to FPGA. 

 
information from the Assembly Controller and configure the 
FPGA appropriately. Also, digital signal data packets from the 
Modulation Mapper can be directly sent over a flexFabric 
communication channel via a SCA port connection. 

The WriteFabric interface between the Modulation Mapper 
and the filter and up converter functions on the FPGA uses a 
special mechanism to take advantage of the flexFabric 
interface to send data to the FPGA without CORBA. This is 
important since the Modulation Mapper and the FPGA are on 
different physical processor boards and the CORBA 
communication delays via Ethernet would be too long for the 
waveform to function as it’s currently designed at a data rate 
of 1 Mbps. 

A special association is needed to use the flexFabric to send 
data from the GPP to the FPGA. There is an indirect 
connection made to a proxy allowing the WriteFabric port on 
the Modulation Mapper to obtain a handle from the core 
framework, as in item 1 below. This handle is used to access 
the flexFabric to write data to the FPGA. The implementation 
requires three XML connections in the software assembly 
descriptor (SAD) file, as figure 2 illustrates: 

 
1. From the GPP1 module (Modulation Mapper) to fabric 

proxy on the same device. 
2. From fabric proxy on GPP1 to fabric proxy on GPP2, 

the device with a direct connection to the FPGA. 
3. From GPP2 module (Filter & UpConv) to fabric proxy 

on the same device. This connection is a placeholder to 
complete the connection, but the handle in the Filter & 
UpConv is not usable by the waveform. 

 
The bottom-up design approach focused on developing the 

waveform functions independent of the SCA, yet cognizant of 
the waveform’s top-level module boundaries and interfaces. 
For example, GPP code was written for the Data Generator 
function that was independent of the encoding and mapping 
routines instead of being highly integrated. Likewise the 
FPGA code was written with SCA control delays in mind, in 
terms of buffering data to deal with relatively lengthy CORBA 
calls. 
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A model-based design approach was employed with the 
FPGA circuit development. Simulations of the digital up 
converter allowed parameters to be set properly for the given 
waveform specifications before testing on the hardware. 
VHDL code was auto-generated from the working 
simulations, and then brought into the FPGA synthesis CAD 
tool. The platform provided FPGA wrapper VHDL code was 
integrated with the application code. Figure 3 shows a 
functional block diagram of the platform FPGA wrapper with 
the transmit waveform functions. The block labeled “DUC” 
contains the auto-generated code from the simulation model. 

3. Testing and Validation 
Testing was focused to learn whether SCA waveforms can 

be used for space applications. Although the SCA start and 
stop methods were designed for normal use, testing and 
debugging was accomplished more efficiently using the 
runTest method. This allows a variety of tests to be invoked 
without changing the waveform.  

The SCA components in the waveform inherit from the 
SCA CF::Resource interface which inherits the runTest 
method from the Testable Object interface. The runTest 
method was implemented in the SCA components to test 
passing data between components. The data in the XML 
preferences was used to control what data was sent for those 
components tested. A large value for the property NTIMES 
was entered to repeat the test for the corresponding number of 
packets where each packet was 4096 bytes long. Timing was 
kept and the lapse time was computed for the pertinent tests. 
Thus, debugging of different portions of the waveform’s 
functionality was possible by changing property values with 
the user interface.  

Referring to figure 1, a test of the Modulation Mapper 
pulling a packet from the Encoder which pulls the packet from 
the Data Generator and sends the packet over the flexFabric to 
the FPGA was performed. It took 2.05 mesc to send each 
packet. The results for the test of the Filter & UpConv 
requesting a packet from the Modulation Mapper which pulls 
the packet from the Encoder which pulls the packet from the 
Data Generator and sends the packet over the flexFabric to the 
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FPGA was 3.09 mesc per packet. The difference of about 
1 mesc is the time to send a request from the Filter & UpConv 
to the Modulation Mapper. This relatively significant delay is 
due to using CORBA between different boards in the SDR. 
There will be more about the implications of this in the next 
section. 

A challenge in waveform testing and debugging was the 
time it takes to make a simple change before it can be 
debugged. The process of making a code change, recompiling, 
rebooting the hardware, loading the core framework, and 
starting the user interface usually takes at least 15 min. This 
time delay makes the debug process cumbersome and 
inefficient by today’s standards. Additional challenges 
encountered were timeout errors, insufficient error messages 
from the core framework, system hang ups, and limited 
documentation.  

Several COTS legacy hardware modems were used in the 
validation testing of the waveform. Some of these modem 
specifications are proprietary, such as the synchronization 
technique and forward error correction details, so 
interoperability with this equipment became a challenge. A 
few of the original waveform specifications needed to be 
changed along the way as the testing revealed some of the 
differences with the legacy modems. In particular the addition 
of differential encoding became necessary to allow phase 
ambiguity resolution in the commercial receivers. The original 
waveform design was a unique word method of 
synchronization, but this was not possible given the 
proprietary nature of the COTS modems. 

The transmit waveform has been successfully tested with 
legacy modem receivers using pseudo random bit sequence 
data and differential encoding. Additive white Gaussian noise 
was added at the 70 MHz IF yielding the BER performance 
plotted in figure 4. Some degradation from theoretical for 
differentially encoded QPSK is observed (ref. 4). This is due 
in part to the unmatched pulse-shaped filtering between the 
transmit waveform and the commercial receiver. The 
proprietary nature of the legacy modem receivers makes 
matching the filter difficult. 

4. Implications for Space Based SDR 
Certain aspects of the SCA are important when considering 

deployment, especially those that relate to size, weight, and 
power for a space-based radio. Development of this space 
telemetry waveform has brought forth issues regarding 
FPGAs, memory, and waveform file system complexity. 

This development effort intentionally placed as many 
waveform functions as possible in the GPP (ref. 1). The 
FPGA was used for remaining functions that would not meet 
data rate performance in the GPP. In actual space radio 
applications FPGAs are favored over GPPs because of 
performance and power efficiency. Optimization is key for 
limited resource space-based radios. The model-based design 

approach offers 
 

portability but is not yet optimal from a performance 
standpoint. A standard FPGA wrapper would help with 
reusability and portability of optimized code. Since there is no 
standard FPGA wrapper, there is a porting challenge for each 
new radio, having a different FPGA implementation. 
Unfortunately, the SCA does not currently address FPGA 
application interfaces adequately. Although there is on going 
work in this area, it is recommended that industry and the 
standards bodies increase their efforts. 

The bottom-up waveform development approach produced 
a non-SCA waveform, which allows an interesting 
comparison with the SCA waveform in terms of resources. 
The non-SCA waveform is a combination of all the data flow 
functions, such as encoders and upconverters, running without 
any SCA infrastructure. 

As an estimate of the effort involved and resources 
required, the SCA waveform consisted of 69 files: 22 “.h” 
files, 
25 “.cpp” files, 18 XML files, and 4 IDL files, whereas the 
non-SCA waveform consisted of 15 “.c” files. The previous 
SCA waveform file count does not include 44 additional files, 
11 generated for each IDL file. The SCA and non-SCA 
waveforms each consist of about 11600 lines of code. 
Although these numbers of lines appear to be similar, the SCA 
waveform is much more complex. It contains implementations 
of the CF:: Resource interface methods, and CORBA for data 
transfer, whereas the non-SCA waveform contains extra test 
programs required for bottom-up testing. 

In terms of memory footprint, there are significant 
differences for the SCA and non-SCA waveforms. The SCA 
waveform consisted of 6.3 Mb generated in 7 “*.out” files 
whereas the non-SCA waveform consisted of 0.5 Mb 
generated in 2 “.out” files. The SCA waveform is almost 13 
times as large as the non-SCA waveform, even before the core 
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framework and CORBA are included in the SCA 
environment. On the test platform’s GPPs, the core framework 
took over 
35 Mb of memory, which includes 6 Mb for the XML parser 
alone. The XML files are used for dynamic deployment, 
which may not be necessary on a space-based radio due to the 
static nature of the mission requirements. In addition, the 
ACE/TAO ORB took about 12 Mb. Although there are other 
much smaller ORBs available, the core framework and ORB 
would still consume a significant proportion of the required 
resources. Current reconfigurable space radios have only 
about 2 Mb of memory to do everything, including the 
operating system. The processing power in terms of GPP 
speed and FPGA gates is also at a premium, so it would be 
difficult to fly such an SCA waveform on space transceivers 
in the near term. However, a viable “light weight” version of 
the SCA may enable the SCA to fly on future missions. 

In the meantime, NASA is developing an open architecture 
radio infrastructure that parallels the SCA in many aspects but 
is small enough to fly on near-term missions. Tradeoffs with 
the flexibility the SCA offers and the constraints of the space-
based radios are a major part of the architecture design. The 
 

SCA space telemetry waveform effort reported on in this 
paper has enabled the NASA architecture team to understand 
and assess the use of the SCA for space. Many subtle aspects 
were only discovered through this hands-on development. 
Future plans involve a port of the SCA space telemetry 
waveform to the new NASA software radio infrastructure as 
one of the first test cases.  
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