Performance and Safety Evaluations of Moli Spinel Lithium-ion Cells

Judith Jeevarajan
Joe Cook
Jacob Collins
NASA-JSC
November 18, 2003
• Introduction
• Physical and Electrochemical Characteristics
• Performance Evaluation
 A. Rate Performance
 B. Internal Resistance
 C. Performance at Different Temperatures
• Safety Evaluation
 A. Overcharge
 B. Overdischarge
 C. External Short
 D. Simulated Internal Short
 E. Heat-to-Vent
 F. Vibration
 G. Drop Test
 H. Vent and Burst Pressure
Introduction

- LiMn$_2$O$_4$ is a spinel oxide.
- Co and Ni are more expensive and toxic than Mn.
- Performance of the LiMO$_2$ is influenced strongly by the ordering of the Li$^+$ and M$^{3+}$ ions.
- Cation disordering is a major drawback in LiCoO$_2$ cathodes. Presence of Co in the Li planes leads to the extraction of Co into the solution leading to higher levels of cell failure.
- However, LiMn$_2$O$_4$ exhibits capacity fading. Due to the Jahn-Teller distortion associated with the Mn$^{3+}$ ions.
Electrode Potential Ranges of Lithium Insertion Compounds
LAYEROED (2-D) LiMO$_2$ (M = Co, Ni)
SPINEL (3-D) LiMn$_2$O$_4$
Physical and Electrochemical Characteristics

Physical Characteristics:
Diameter: 18 mm
Height: 65 mm
Weight: 41.8 g

Electrochemical Characteristics:
OCV: 3.88 V (as recd.)
CCV: 3.5 V
Capacity: 1.27 Ah (1.4 Ah)
Typical Discharge Profiles for the Moli Spinel 18650 Cell

Figure A1.2 - Voltage vs. Discharge Capacity of Moli Spinel 18650 Li-ion Cell For 1C Rate Charge to 4.2V with Taper to 50mA and -1C Rate Discharge to 3.0V

Judith Jeevarajan/NASA-JSC
Typical Discharge Profiles for the Moli Spinel 18650 Cell

Figure A3.2 - Voltage vs. Discharge Capacity of Moli Spinel 18650 Li-Ion Cell
For 1C Rate Charge to 4.2V with Taper to 50mA and 0.25C Rate Discharge to 3.0V

Judith Jeevarajan/NASA-JSC
Summary of Rate Capability Tests

<table>
<thead>
<tr>
<th>Charge/Discharge Rate</th>
<th>Capacity 5<sup>th</sup> Cycle [Ah]</th>
<th>Capacity 200<sup>th</sup> Cycle [Ah]</th>
<th>Capacity Change [Ah]</th>
<th>% Capacity Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C/1C</td>
<td>1.071</td>
<td>1.023</td>
<td>-0.048</td>
<td>4.5 %</td>
</tr>
<tr>
<td>1C/0.5 C</td>
<td>1.173</td>
<td>1.117</td>
<td>-0.056</td>
<td>4.8 %</td>
</tr>
<tr>
<td>1C/0.25 C</td>
<td>1.202</td>
<td>1.154</td>
<td>-0.048</td>
<td>4.0 %</td>
</tr>
<tr>
<td>0.5 C/1C</td>
<td>1.044</td>
<td>1.034</td>
<td>-0.010</td>
<td>0.95 %</td>
</tr>
<tr>
<td>0.5 C/0.5 C</td>
<td>1.156</td>
<td>1.117</td>
<td>-0.039</td>
<td>3.4 %</td>
</tr>
<tr>
<td>0.5 C/0.25 C</td>
<td>1.188</td>
<td>1.134</td>
<td>-0.054</td>
<td>4.5 %</td>
</tr>
<tr>
<td>0.25 C/1 C</td>
<td>1.049</td>
<td>1.046</td>
<td>-0.003</td>
<td>0.3 %</td>
</tr>
<tr>
<td>0.25 C/0.5 C</td>
<td>1.187</td>
<td>1.097</td>
<td>-0.090</td>
<td>7.6 %</td>
</tr>
<tr>
<td>0.25 C/0.25 C</td>
<td>1.191</td>
<td>1.108</td>
<td>-0.083</td>
<td>6.9 %</td>
</tr>
</tbody>
</table>
Internal Resistance vs SOC for the Moli Spinel 18650 Li-ion Cells

Figure 3 - Effective Internal Resistance of Moli 18650 Li-Ion Cells

Judith Jeevarajan/NASA-JSC
Performance of the Moli Spinel 18650 Li-ion Cells at Different Temperatures

Figure 7 - Voltage vs. Discharge Capacity Curves of Moli 18650 Li-Ion Cells
For 0.5C Rate Charge at +25°C and -0.5C Rate Discharge at Different Temperatures

Re:
0 °C : 0.079 ohm
25 °C: 0.083 ohm
45 °C: 0.117 ohm
65 °C: 0.264 ohm
Abuse Tests
Fast Charge Test of the Moli Spinel 18650 Cells

3C charge to 4.2 V with current taper/discharge with 0.5 C rate to 2.7 V
Overvoltage Test on the Moli Spinel 18650 Cells

CID activation (0.7 Ah charge rate)

![Graph showing voltage, current, and temperature over time.]

Judith Jeevarajan/NASA-JSC
Overcharge of the Moli Spinel Cells to 12 V for 50 minutes

1C charge rate; CID activation in 15 minutes; Max temp: 57 °C
Overcharge to 12 V on the Moli Spinel Cells

- Charge with C/5 current to 12 V for 50 minutes
 No occurrences; max temp: 37 °C
- Charge with C/2 current to 12 V for 50 minutes
 CID activation occurred at approximately 30 minutes; max temp: 43 °C
- Charge with 2 C current to 12 V for 50 minutes
 CID activation occurred in 7 minutes; max temp. 78 °C
Fast Rate Discharge Test on the Moli Spinel 18650 Cells

3C current discharge to 2.7 V; cap: 0.9 Ah; max temp. 50 °C
Overdischarge into Reversal Test of the Moli Spinel 18650 Li-ion Cells
Discharge: 0.5 C; max temp: 29 ºC
Overdischarge into Reversal on the Moli Spinel 18650 Li-ion Cells

- Discharge current: 1C; max temp: 40 °C
- Discharge current: 2C; max temp: 50 °C
External Short Circuit Test on the Moli Spinel 18650 Cells

0.01 ohm load; 8.2 A current spike; max temp: 31 °C

Voltage (V) and Current (A)

Test Time (Sec)

Temperature (°C)

Judith Jeevarajan/NASA-JSC
External Short Circuit Test on Moli Spinel 18650 li-ion Cells

• 0.05 ohm load; 5.8 A current spike, max temp: 35 ºC

• 0.01 ohm load to cells charged to 50 % SOC; 8 A current spike; no significant changes in temp.
Simulated Internal Short/Crush Test on the Moli Spinel 18650 Li-ion Cells

- Fully charged cells: max temp: 77 °C (electrolyte leakage; no venting or fire)
- 50 % charged cells: max temp: 57 °C (no venting or fire)
Heat-to-vent Test on the Moli Spinel 18650 Li-ion Cells

100 % charged cells: Onset of thermal runaway: 217 °C; max temp 424 °C
Heat-to-vent Test on the Moli Spinel
18650 Li-ion Cells

50 % charged cells: Voltage drop at 168 °C; max temp 287 °C; no rapid increase in temp.
Vibration of Moli Spinel 18650 li-ion cells

20 to 80 Hz + 3 db/oct
80 to 350 Hz 0.1 g^2/Hz
350 to 2000 Hz - 3 db/oct

15 minutes in each independent axis.

No change in capacity on subsequent cycling of the cells.
Drop Test on the Moli Spinel 18650 Li-ion Cells

Drop from 6 ft. Cells gained 11 % capacity after the drop.
Vent and Burst Pressure Test on Moli Spinel Li-ion Cells

Vent Pressure: 250 psi-300 psi
Burst Pressure: 1650 psi
Conclusions

• Moli spinel cells show similar performance under the rate protocols tested.
• The R_e for the cells varies between 100 and 120 mohms for the cells.
• The overcharge on the cells shows that the cells do not perform well under fast charge conditions.
• Under conditions of high rate overcharge, the CID gets activated faster than under low charge rates.
• The fast rate discharge shows that the cells can tolerate it.
• The overdischarge into reversal tests show that the cells die benignly.
Conclusions

• The current spike obtained during the hard external short test is small (8.2 A) compared to those obtained from a LiCoO$_2$ system (60 to 80 A).
• The simulated internal short did not result in an explosion or fire as it does with the LiCoO$_2$ systems.
• The temperatures obtained during the heat-to-vent test are not very high compared to the cobaltate cells.
• The cells do not retain capacity very well, but the capacity can be recovered with cycling.
• The spinel cells are much safer under abuse conditions than the lithium-ion cells with other transition metal oxides.
Acknowledgment

Energy Systems Test Area
 Mike Salinas
 Juan Rodriguez
 Ray Gonzalez
 Anita Thomas